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A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed
Mumford--Shah Color and Multiphase Image Segmentation\ast 

Kevin Bui\dagger , Fredrick Park\ddagger , Yifei Lou\S , and Jack Xin\dagger 

Abstract. In a class of piecewise-constant image segmentation models, we propose to incorporate a weighted
difference of anisotropic and isotropic total variation (AITV) to regularize the partition boundaries in
an image. In particular, we replace the total variation regularization in the Chan--Vese segmentation
model and a fuzzy region competition model by the proposed AITV. To deal with the nonconvex
nature of AITV, we apply the difference-of-convex algorithm (DCA), in which the subproblems can
be minimized by the primal-dual hybrid gradient method with linesearch. The convergence of the
DCA scheme is analyzed. In addition, a generalization to color image segmentation is discussed. In
the numerical experiments, we compare the proposed models with the classic convex approaches and
the two-stage segmentation methods (smoothing and then thresholding) on various images, showing
that our models are effective in image segmentation and robust with respect to impulsive noises.

Key words. (multiphase) image segmentation, alternating minimization, total variation, difference-of-convex
algorithm, primal-dual algorithms
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1. Introduction. Image segmentation is an important problem in computer vision, where
the goal is to partition a given image into salient regions that usually represent specific objects
of interest. Each partitioned region has uniform characteristics such as edges, intensities,
colors, and textures. Mathematically, given an image f : \Omega \rightarrow \BbbR , where the image domain \Omega 
is a bounded and open subset of \BbbR 2, the aim is to partition \Omega into N predetermined number
of regions \{ \Omega i\} Ni=1 such that \Omega i \cap \Omega j = \emptyset for each i \not = j and \Omega =

\bigcup N
i=1\Omega i.

In the past two decades, image segmentation has been studied extensively using varia-
tional methods and partial differential equations as common and popular methodologies. One
class of models, such as the snake model and geodesic contour model, uses edge-detection
functions and evolves the curves toward sharp gradients [8, 17, 33, 34]. However, these mod-
els are sensitive to noise. As an alternative, region-based models that incorporate region and
boundary information are robust to noise. One of the most fundamental region-based models
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AITV SEGMENTATION 1079

is the Mumford--Shah (MS) model [52], which approximates an image using piecewise-smooth
functions. The MS model is formulated as

min
g,\Gamma 

\lambda 

\int 
\Omega 
(f(x, y) - g(x, y))2 dx dy + \mu 

\int 
\Omega \setminus \Gamma 

| \nabla g(x, y)| 2 dx dy + | \Gamma | ,(1.1)

where g : \Omega \rightarrow \BbbR is a smooth approximation of the given image f , \Gamma =
\bigcup N

i=1 \partial \Omega i is the
union of the boundaries of the regions \Omega i, | \Gamma | denotes the arc length of \Gamma , and \lambda , \mu are positive
parameters. Unfortunately, solving (1.1) is extremely complex and difficult because it requires
discretizing the unknown set of edges.

Instead of piecewise-smooth functions, the Chan--Vese (CV) model [14] approximates f by
piecewise-constant functions with two constant values c1, c2 for the regions inside and outside
\Gamma . The CV model is expressed as

min
c1,c2,\Gamma 

\lambda 

\int 
\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}(\Gamma )

(f(x, y) - c1)
2 dx dy + \lambda 

\int 
\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}(\Gamma )

(f(x, y) - c2)
2 dx dy + | \Gamma | .(1.2)

Note that CV simultaneously optimizes c1 and c2 together with \Gamma . It is popular to minimize
(1.2) via the level-set method [54]. Let \phi : \Omega \rightarrow \BbbR be a Lipschitz function such that \Gamma =
\{ (x, y) \in \Omega : \phi (x, y) = 0\} and

inside(\Gamma ) = \{ (x, y) \in \Omega : \phi (x, y) > 0\} , outside(\Gamma ) = \{ (x, y) \in \Omega : \phi (x, y) < 0\} .

We denote the Heaviside function

H(\phi (x, y)) =

\Biggl\{ 
1 if \phi (x, y) \geq 0,

0 if \phi (x, y) < 0.

The level-set reformulation of (1.2) is

min
\phi ,c1,c2

\lambda 

\int 
\Omega 
(f(x, y) - c1)

2H(\phi (x, y)) + (f(x, y) - c2)
2(1 - H(\phi (x, y))) dx dy

+

\int 
\Omega 
| \nabla H(\phi (x, y))| dx dy.

(1.3)

A numerical scheme for (1.3) requires solving the Euler--Lagrange equation for \phi , followed
by updating c1, c2 as average intensities inside and outside of \Gamma , respectively; please see [14, 25]
for details. Lie, Lysaker, and Tai [43] introduced a binary level-set formulations of the MS
model. Esedoglu and Tsai [22] later developed a more efficient algorithm using the Merriman--
Bence--Osher scheme [51]. Chan, Esedoglu, and Nikolova [12] proposed a convex relaxation of
the CV model, formulated as

min
u(x,y)\in [0,1],c1,c2

\lambda 

\int 
\Omega 
(f(x, y) - c1)

2u(x, y) + (f(x, y) - c2)
2(1 - u(x, y)) dx dy

+

\int 
\Omega 
| \nabla u(x, y)| dx dy.

(1.4)
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1080 K. BUI, F. PARK, Y. LOU, AND J. XIN

The segmented regions can be defined by thresholding u as follows:

inside(\Gamma ) = \{ (x, y) \in \Omega : u(x, y) > \tau \} , outside(\Gamma ) = \{ (x, y) \in \Omega : u(x, y) \leq \tau \} 

with a chosen constant \tau \in [0, 1]. Since the objective function in (1.4) is convex with respect to
u, it can be minimized using popular convex optimization algorithms, such as split Bregman
[27], alternating direction method of multipliers (ADMM) [3, 24], and primal-dual hybrid
gradient (PDHG) [11, 23]. As a result, (1.4) inspired various segmentation models [1, 10, 32,
39, 58, 73, 74, 75] that can be solved by convex optimization.

In (1.4), the total variation (TV) term \| \nabla u\| 1 =
\int 
\Omega | \nabla u(x, y)| dx dy approximates the

length of the curves that partition the segmented regions. Furthermore, it is the tightest
convex relaxation of the jump term \| \nabla u\| 0, which counts the number of jump discontinuities.
When u is piecewise constant, \| \nabla u\| 0 is exactly the total arc length of the curves [63]. Unfor-
tunately, minimizing \| \nabla u\| 0 is an NP-hard combinatorial problem, and it is often replaced by
\| \nabla u\| 1 that is algorithmically and theoretically easier to work with. Numerically, \| \nabla u\| 1 can
be approximated isotropically [60] or anisotropically [16, 21]:

J\mathrm{i}\mathrm{s}\mathrm{o}(u) =

\int 
\Omega 

\sqrt{} 
| Dxu(x, y)| 2 + | Dyu(x, y)| 2 dx dy,(1.5)

J\mathrm{a}\mathrm{n}\mathrm{i}(u) =

\int 
\Omega 
| Dxu(x, y)| + | Dyu(x, y)| dx dy,(1.6)

where Dx and Dy denote the horizontal and vertical partial derivative operators, respectively.
In order to better approximate \| \nabla u\| 0, we consider the weighted anisotropic-isotropic TV

(AITV),

J\mathrm{a}\mathrm{n}\mathrm{i}(u) - \alpha J\mathrm{i}\mathrm{s}\mathrm{o}(u)

=

\int 
\Omega 
| Dxu(x, y)| + | Dyu(x, y)|  - \alpha 

\sqrt{} 
| Dxu(x, y)| 2 + | Dyu(x, y)| 2 dx dy

(1.7)

with \alpha \in [0, 1]. The AITV term was inspired by recent successes of L1  - L2 minimization
[20, 45, 46, 47, 71, 72] in compressed sensing. Compared with L1, Lp for p \in (0, 1) [15, 36, 70],
and L0 [65], the L1  - L2 penalty was shown to have the best performance in recovering
sparse solutions when the sensing matrix is highly coherent or violates the restricted isometry
property [7]. Figure 1 compares L0, L1, and L1 - \alpha L2 by their contour lines in two dimensions.
We observe that as \alpha increases, the contour lines of L1  - \alpha L2 are bending more inward and
closer to the ones of L0. This phenomenon illustrates that L1  - \alpha L2 can encourage sparsity,
and the constant \alpha acts like a parameter controlling to what extent. By applying L1  - \alpha L2

on the gradient, Lou et al. [48] proposed AITV with a difference-of-convex algorithm (DCA)
[38, 56, 57] for image denoising, deconvolution, and MRI reconstruction. Later, Li et al. [42]
demonstrated the robustness of AITV with respect to impulsive noise corruption of the data.
Both works [42, 48] showed that AITV preserves sharper image edges than the anisotropic TV.
Moreover, AITV is preferred over the isotropic TV that tends to blur oblique edges [2, 18].

As edges are defined by gradient vectors, it is expected that AITV (L1 - \alpha L2) should pro-
duce sparser gradients and maintain sharper edges compared to TV (L1). A preliminary workD
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AITV SEGMENTATION 1081

Figure 1. Contour lines of \| x\| 0 (L0) and \| x\| 1  - \alpha \| x\| 2 (L1  - \alpha L2), where x \in \BbbR 2 and \alpha \in 
\{ 0, 0.25, 0.5, 0.75, 1.0\} . As \alpha increases, the contour lines of L1  - \alpha L2 are closer to the ones of L0.

that replaced \| \nabla u\| 1 by AITV in (1.4) was conducted by Park, Lou, and Xin [55], showing
better segmentation results than TV. However, this approach was limited to predetermined
values of c1/c2, grayscale images, and two-phase segmentation (rather than multiphase).

The CV model can be extended to vector-valued images [13] and to multiphase segmen-
tation [4, 66]. The vector-valued extension is straightforward, i.e., replacing f with a vector-
valued input f : \Omega \rightarrow \BbbR C and replacing c1, c2 with vector-valued constants c1, c2 \in \BbbR C , where
C is the number of channels in an image. The multiphase CV model relies on log2(N) level-
set functions to partition \Omega into N regions \{ \Omega i\} Ni=1 and, hence, most CV-based multiphase
segmentation methods are limited to a power-of-two number of regions so that log2(N) is
an integer. There are two approaches that can deal with an arbitrary number of regions.
One approach represents each region by a single level-set function [61], which unfortunately
causes vacuums and overlapping regions to appear. The other approach defines regions by
membership functions, referred to as fuzzy region (FR) competition [40].

In this paper, we propose to incorporate the AITV term into both CV and FR models
together with an extension to color image segmentation. To solve these models, we develop an
alternating minimization framework that involves DCA and PDHG with linesearch (PDHGLS)
[49]. We provide convergence analysis of the proposed algorithms. Experimentally, we com-
pare the proposed models with the classic convex approaches and other segmentation methods
to showcase the effectiveness and robustness of the AITV penalty. The major contributions
of this work are threefold:

\bullet We study the AITV regularization comprehensively in image segmentation, including
grayscale/color image and multiphase segmentation.D
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1082 K. BUI, F. PARK, Y. LOU, AND J. XIN

\bullet We propose an efficient algorithm that combines DCA and PDHGLS with guaranteed
convergence. To the best of our knowledge, this paper pioneers the implementation of
PDHGLS in image segmentation.

\bullet We conduct extensive experiments to demonstrate the effect of the constant \alpha in AITV
on the segmentation performance and the robustness to impulsive noise. We compare
the results with the two-stage segmentation methods.

The paper is organized as follows. Section 2 describes notations that will be used through-
out the paper. In section 3, we introduce the AITV extension of the CV model, which can
be solved by DCA with convergence analysis. In section 4, we incorporate AITV into the
FR model [40] for multiphase segmentation with an algorithm similar to the CV model. In
section 5, we extend both CV and FR models to color image segmentation. Numerical results
are shown in section 6. Lastly, conclusions and future works are given in section 7.

2. Notations. For simplicity, we adopt the discrete notations for images and related mod-
els. The space \BbbR n is equipped with the standard inner product \langle x, y\rangle =

\sum n
i=1 xiyi and standard

Euclidean norm \| x\| 2 =
\sqrt{} 

\langle x, x\rangle for x, y \in \BbbR n.
Without loss of generality, an image is represented as an m \times n matrix, i.e. the image

domain is \Omega = \{ 1, 2, . . . ,m\} \times \{ 1, 2, . . . , n\} . We denote X := \BbbR m\times n and the all-ones matrix
in X as 1. The vector space X is equipped with following inner product and norm:

\langle u, v\rangle X =
m\sum 
i=1

n\sum 
j=1

ui,jvi,j , \| u\| X =

\sqrt{}    m\sum 
i=1

n\sum 
j=1

u2i,j \forall u, v \in X.

We denote Dx, Dy by the horizontal and vertical partial derivative operators, respectively, i.e.,

(Dxu)i,j =

\Biggl\{ 
ui,j+1  - ui,j if 1 \leq j \leq n - 1,

ui,1  - ui,n if j = n,

(Dyu)i,j =

\Biggl\{ 
ui+1,j  - ui,j if 1 \leq i \leq m - 1,

u1,j  - um,j if i = m.

Let Y := X \times X. Then the discrete gradient operator D : X \rightarrow Y is defined as

(Du)i,j = ((Dxu)i,j , (Dyu)i,j) \in Y.

For any p = (px, py), q = (qx, qy) \in Y , the inner product on Y is defined by

\langle p, q\rangle Y = \langle px, qx\rangle X + \langle py, qy\rangle X ,

and the norms on Y are

\| p\| Y =

\sqrt{}    m\sum 
i=1

n\sum 
j=1

| (px)i,j | 2 + | (py)i,j | 2, \| p\| 1 =
m\sum 
i=1

n\sum 
j=1

(| (px)i,j | + | (py)i,j | ) ,

\| p\| 2,1 =
m\sum 
i=1

n\sum 
j=1

\sqrt{} 
| (px)i,j | 2 + | (py)i,j | 2 =

m\sum 
i=1

n\sum 
j=1

\| ((px)i,j , (py)i,j)\| 2.
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AITV SEGMENTATION 1083

We use a bold letter to denote a three-dimensional tensor, e.g., u = (u1, u2, . . . , uN ) \in XN .
We further denote u<k := (u1, . . . , uk - 1) and u>k := (uk+1, . . . , uN ) for 1 \leq k \leq N . The
notations u\leq k and u\geq k are defined similarly by including uk. Note that u<1 and u>N are null
or empty variables.

3. Anisotropic-isotropic CV model. Let f \in X be an observed image. Suppose the
image domain \Omega has N = 2M nonoverlapping regions, i.e., \Omega =

\bigcup N
i=1\Omega i and \Omega i \cap \Omega j = \emptyset 

for each i \not = j. Let u = (u1, . . . , uM ) \in XM and c = (c1, . . . , cN ) \in \BbbR N . We propose an
AITV-regularized CV (AICV) model for multiphase segmentation as follows:

min
\bfu \in \scrB 
\bfc \in \BbbR N

M\sum 
k=1

(\| Duk\| 1  - \alpha \| Duk\| 2,1) + \lambda 
N\sum 
\ell =1

\langle f\ell (c), R\ell (u)\rangle X ,(3.1)

where \scrB =
\bigl\{ 
u \in XM : (uk)i,j \in \{ 0, 1\} \forall i, j, k

\bigr\} 
, f\ell (c) = (f  - c\ell 1)

2 with square defined elemen-
twise, and R\ell (u) is a function of u related to the region \Omega \ell such that

R\ell (u)i,j =

\Biggl\{ 
1 if (i, j) \in \Omega \ell ,

0 if (i, j) \not \in \Omega \ell 

with
\sum N

\ell =1R\ell (u) = 1. Specifically when N = 2 (M = 1), we have R1(u) = u1 and R2(u) =
1 - u1. When N = 4 (M = 2), we have

R1(u)i,j = (u1)i,j(u2)i,j , R2(u)i,j = (u1)i,j [1 - (u2)i,j ],

R3(u)i,j = [1 - (u1)i,j ](u2)i,j , R4(u)i,j = [1 - (u1)i,j ][1 - (u2)i,j ].

When N = 8 (M = 3), we have

R1(u)i,j = (u1)i,j(u2)i,j(u3)i,j , R2(u)i,j = (u1)i,j(u2)i,j [1 - (u3)i,j ],

R3(u)i,j = (u1)i,j [1 - (u2)i,j ](u3)i,j , R4(u)i,j = (u1)i,j [1 - (u2)i,j ][1 - (u3)i,j ],

R5(u)i,j = [1 - (u1)i,j ](u2)i,j(u3)i,j , R6(u)i,j = [1 - (u1)i,j ](u2)i,j [1 - (u3)i,j ],

R7(u)i,j = [1 - (u1)i,j ][1 - (u2)i,j ](u3)i,j , R8(u)i,j = [1 - (u1)i,j ][1 - (u2)i,j ][1 - (u3)i,j ].

For N = 2M with M \geq 4, R\ell depends on \ell 's binary representation to decide whether to
include uk or 1 - uk as a factor in R\ell .

Due to the binary constraint set \scrB , (3.1) is a nonconvex optimization problem, thus numer-
ically difficult to solve. We relax the binary constraint \{ 0, 1\} by a [0, 1] box constraint, which
in turn has R\ell (u)i,j \in [0, 1]. In particular, we rewrite (3.1) as an unconstrained formulation
by introducing the indicator function

\chi U (u) =

\Biggl\{ 
0 if ui,j \in [0, 1] for all i, j,

+\infty otherwise.

Hence, a relaxed model of (3.1) can be expressed as

min
\bfu \in XM

\bfc \in \BbbR N

\~F (u, c) :=
M\sum 
k=1

\Bigl( 
\| Duk\| 1  - \alpha \| Duk\| 2,1 + \chi U (uk)

\Bigr) 
+ \lambda 

N\sum 
\ell =1

\langle f\ell (c), R\ell (u)\rangle X .(3.2)
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1084 K. BUI, F. PARK, Y. LOU, AND J. XIN

3.1. Numerical algorithm. We propose an alternating minimization algorithm to find a
solution of (3.2) with the following framework:

ut+1 \in argmin
\bfu 

\~F (u, ct),(3.3)

ct+1 \in argmin
\bfc 

\~F (ut+1, c),(3.4)

where t counts the (outer) iterations. Below, we discuss how to solve each subproblem.
We start with the c-subproblem (3.4), as it is simpler than the other. Notice that we can

solve c\ell separately for each \ell = 1, . . . , N , i.e.,

ct+1
\ell \in argmin

c\ell 

\lambda \langle f\ell (c), R\ell (u
t+1)\rangle X = argmin

c\ell 

\lambda 

m\sum 
i=1

n\sum 
j=1

(fi,j  - c\ell )
2R\ell (u

t+1)i,j .(3.5)

If
\sum m

i=1

\sum n
j=1R\ell (u

t+1)i,j \not = 0, we differentiate the objective function in (3.5) with respect to
c\ell , set the derivative equal to zero, and solve for c\ell ; otherwise, since the objective function
does not depend on c\ell , the solution can take on any value, so we set the solution to 0 as a
default. In summary, there is a closed-form solution to (3.5) for updating ct+1

\ell , i.e.,

ct+1
\ell =

\left\{                     

m\sum 
i=1

n\sum 
j=1

fi,jR\ell (u
t+1)i,j

m\sum 
i=1

n\sum 
j=1

R\ell (u
t+1)i,j

if

m\sum 
i=1

n\sum 
j=1

R\ell (u
t+1)i,j \not = 0,

0 if

m\sum 
i=1

n\sum 
j=1

R\ell (u
t+1)i,j = 0.

(3.6)

The formula (3.6) implies that ct+1
\ell is the mean intensity value of the region \Omega \ell \subset \Omega at the

(t+ 1)th iteration.
The u-subproblem (3.3) is separable with respect to each k, i.e.,

ut+1
k \in argmin

uk

\| Duk\| 1  - \alpha \| Duk\| 2,1 + \chi U (uk) + \lambda \langle rk(ct,ut+1
<k ,u

t
>k), uk\rangle X ,(3.7)

where rk(c
t,ut+1

<k ,u
t
>k) is a multivariate polynomial of (ut+1

<k ,u
t
>k) obtained by rewriting\sum N

\ell =1\langle f\ell (c), R\ell (u)\rangle X in (3.2) and getting the coefficients in front of uk. Because a general
form of rk is complicated, we provide some specific examples in smaller dimensions. When
N = 2 (M = 1), we have r1(c,u<1,u>1)i,j = (fi,j  - c1)

2  - (fi,j  - c2)
2; when N = 4 (M = 2),

we have

r1(c,u<1,u>1)i,j =
\bigl[ 
(fi,j  - c1)

2  - (fi,j  - c2)
2  - (fi,j  - c3)

2 + (fi,j  - c4)
2
\bigr] 
(u2)i,j

+ (fi,j  - c2)
2  - (fi,j  - c4)

2,

r2(c,u<2,u>2)i,j =
\bigl[ 
(fi,j  - c1)

2  - (fi,j  - c2)
2  - (fi,j  - c3)

2 + (fi,j  - c4)
2
\bigr] 
(u1)i,j

+ (fi,j  - c3)
2  - (fi,j  - c4)

2.
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AITV SEGMENTATION 1085

In order to minimize (3.7), we apply a descent algorithm called DCA [38, 56, 57] for solving
a difference-of-convex (DC) optimization problem of the form minu\in X g(u) - h(u), where g and
h are proper, lower semicontinuous, and strongly convex functions. The algorithm consists of
two steps per iteration with u0 as initialization:\left\{   vt \in \partial h(ut),

ut+1 \in argmin
u\in X

g(u) - \langle vt, u\rangle X .
(3.8)

For each k = 1, . . . ,M , we can express (3.7) as a DC function g(uk) - h(uk) with\Biggl\{ 
g(uk)= \| Duk\| 1 + \chi U (uk) + \lambda \langle rk(ct,ut+1

<k ,u
t
>k), uk\rangle X + c\| uk\| 2X ,

h(uk)= \alpha \| Duk\| 2,1 + c\| uk\| 2X ,
(3.9)

where c > 0 enforces strong convexity on the functions g and h. Experimentally, c can be
chosen arbitrarily small for better performance. We then compute the subgradient of h(u),
i.e.,

\alpha 
D\top 

x Dxu+D\top 
y Dyu\sqrt{} 

| Dxu| 2 + | Dyu| 2
+ 2cu \in \partial h(u).

Therefore, the u-subproblem in (3.8) can be expressed as

ut+1
k = argmin

uk

\| Duk\| 1 + \chi U (uk) + \lambda \langle rk(ct,ut+1
<k ,u

t
>k), uk\rangle X + c\| uk\| 2X

 - \alpha \langle Duk, q
t
k\rangle Y  - 2c\langle uk, utk\rangle X ,

(3.10)

where qtk := ((qx)
t
k, (qy)

t
k) = (Dxu

t
k, Dyu

t
k)/

\sqrt{} 
| Dxutk| 2 + | Dyutk| 2. Note that we compute qtk

elementwise and adopt the convention that if the denominator is zero at some point, the
corresponding qtk value is set to zero, which aligns with the subgradient definition. To solve the
convex problem (3.10), we apply the PDHG algorithm [11, 23, 77] since it was demonstrated
in [11] that PDHG solves imaging models with the TV term [60] efficiently.

In general, the PDHG algorithm [11, 23, 77] targets at a saddle-point problem

min
u

max
v

\Psi (u) + \langle Au, v\rangle Y  - \Phi (v),

where \Psi ,\Phi are convex functions and A is a linear operator. The PDHG algorithm is outlined
as

u\eta +1 = (I + \tau \partial \Psi ) - 1(u\eta  - \tau A\top v\eta ),

\=u\eta +1 = u\eta +1 + \theta (u\eta +1  - u\eta ),

v\eta +1 = (I + \sigma \partial \Phi ) - 1(v\eta + \sigma A\=u\eta +1)

with \tau , \sigma > 0, \theta \in [0, 1]. The inverse is defined by the proximal operator, i.e.,

(I + \tau \partial \Psi ) - 1(z) = min
u

\biggl( 
\Psi (u) +

\| u - z\| 2X
2\tau 

\biggr) 
,

and similarly for (I + \sigma \partial \Phi ) - 1.D
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1086 K. BUI, F. PARK, Y. LOU, AND J. XIN

In order to apply PDHG for the uk-problem in (3.10), we define its saddle-point formula-
tion:

min
uk

max
(px)k,(py)k

\langle Dxuk, (px)k\rangle X + \langle Dyuk, (py)k\rangle X + \chi U (uk)

+ \lambda \langle rk(ct,ut+1
<k ,u

t
>k), uk\rangle X + c\| uk\| 2X  - \alpha \langle Duk, q

t
k\rangle Y  - 2c\langle uk, utk\rangle X

 - \chi P ((px)k) - \chi P ((py)k),

(3.11)

where (px)k, (py)k are dual variables of Dxuk, Dyuk, and P = \{ p : | pi,j | \leq 1 \forall i, j\} is a convex
set. Please refer to [9, 11] for the derivation of the saddle-point formulation in more detail.
Then we have

\Psi k,t(uk) = \chi U (uk) + \lambda \langle rk(ct,ut+1
<k ,u

t
>k), uk\rangle X + c\| uk\| 2X

 - \alpha \langle Duk, q
t
k\rangle Y  - 2c\langle uk, utk\rangle X ,

Auk = (Dxuk, Dyuk),

\Phi ((px)k, (py)k) = \chi P ((px)k) + \chi P ((py)k).

With the initial condition ut,0k = utk, the u-subproblem can be computed as

ut,\eta +1
k =(I + \tau \partial \Psi k,t)

 - 1
\Bigl( 
ut,\eta k  - \tau 

\Bigl( 
D\top 

x (px)
\eta 
k +D\top 

y (py)
\eta 
k

\Bigr) \Bigr) 
= min

0\leq (uk)i,j\leq 1

\Biggl\{ 
\lambda \langle rk(ct,ut+1

<k ,u
t
>k), uk\rangle X + c\| uk\| 2X

 - \alpha \langle Duk, q
t
k\rangle Y  - 2c\langle uk, utk\rangle X

+
\| uk  - 

\Bigl( 
ut,\eta k  - \tau 

\bigl( 
D\top 

x (px)
\eta 
k +D\top 

y (py)
\eta 
k

\bigr) \Bigr) 
\| 2X

2\tau 

\Biggr\} 
,

(3.12)

where \eta indexes the inner iteration, as opposed to t for the outer iteration. To solve (3.12),
we derive a closed-form solution that is similar to the one for the u-subproblem of (1.4)
determined in [26]. In particular, we observe that the objective function in (3.12) is proper,
continuous, and strongly convex with respect to uk, so it has a unique minimizer. By ignoring
the constraint and differentiating the objective function in (3.12) with respect to uk, we obtain

\~ut,\eta +1
k =

2cutk +
1
\tau u

t,\eta 
k

2c+ 1
\tau 

 - 
\lambda rk(c

t,ut+1
<k ,u

t
>k) - \alpha D\top qtk + (D\top 

x (px)
\eta 
k +D\top 

y (py)
\eta 
k)

2c+ 1
\tau 

.

If (\~ut,\eta +1
k )i,j lies in the interval [0, 1], then the (i, j)-entry of the unique minimizer also co-

incides with the minimizer of the constrained problem (3.12). If (\~ut,\eta +1
k )i,j is outside of the

interval, then the (i, j)-entry of the unique minimizer lies at the interval endpoint closest to
the unconstrained minimizer due to the quadratic objective function. As a result, we project
\~ut,\eta +1
k onto [0, 1], leading to a closed-form solution for ut,\eta +1

k :

(3.13) ut,\eta +1
k = min\{ max\{ \~ut,\eta +1

k , 0\} , 1\} ,

where min and max are executed elementwise.D
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It is straightforward to derive closed-form solutions for (px)k, (py)k in (3.11) given by

(px)
\eta +1
k = ProjP ((px)

\eta 
k + \sigma Dx\=u

t,\eta +1
k ),

(py)
\eta +1
k = ProjP ((py)

\eta 
k + \sigma Dy\=u

t,\eta +1
k )

(3.14)

with \=ut,\eta +1
k = ut,\eta +1

k +\theta (ut,\eta +1
k  - ut,\eta k ) and ProjP (p) =

p
\mathrm{m}\mathrm{a}\mathrm{x}\{ | p| ,1\} . We see that (3.13) is projected

gradient descent of the primal variable u with entrywise box constraint [0, 1], while (3.14) is
projected gradient ascent of the dual variable (px, py) that is constrained to the set P . The
update order between the primal variable ut,\eta k and the dual variables (px)

\eta 
k, (py)

\eta 
k does not

matter for PDHG [11, 49]. To further improve the speed and solution quality of PDHG, we
incorporate a linesearch technique [49] that starts with the primal variable, followed by the
dual update. The PDHG algorithm with linesearch is referred to as PDHGLS. Both PDHG
and PDHGLS provide a saddle-point solution (u\ast k, (px)

\ast 
k, (py)

\ast 
k) for (3.11) upon convergence

[11, 49]. Since (3.10) is convex, u\ast k is indeed its solution, independent of the choice between
using PDHG or PDHGLS. We summarize the proposed DCA-PDHGLS algorithm to solve
(3.2) in Algorithm 3.1.

3.2. Convergence analysis. We analyze the convergence of the sequence \{ (ut, ct)\} \infty t=1

generated by (3.3) and (3.4), which are solved by (3.10) and (3.6), respectively. We establish in
Lemma 3.1 that the sequence \{ \~F (ut, ct)\} \infty t=1 decreases sufficiently, followed by the convergence
result in Theorem 3.2.

Lemma 3.1. Suppose \alpha \in [0, 1] and \lambda > 0. Let \{ (ut, ct)\} \infty t=1 be a sequence such that ut is
generated by (3.10) and ct is generated by (3.6). Then we have

\~F (ut, ct) - \~F (ut+1, ct+1) \geq 2c

M\sum 
k=1

\| utk  - ut+1
k \| 2X .

Proof. Since ct+1 satisfies (3.6), we have

\~F (ut+1, ct+1) \leq \~F (ut+1, ct).(3.15)

Then we estimate

\~F ((ut+1
\leq k - 1,u

t
\geq k), c

t) - \~F ((ut+1
\leq k ,u

t
\geq k+1), c

t)

= \| Dutk\| 1  - \| Dut+1
k \| 1  - \alpha (\| Dutk\| 2,1  - \| Dut+1

k \| 2,1) + \chi U (u
t
k) - \chi U (u

t+1
k )

+ \lambda 
N\sum 
\ell =1

\langle f\ell (c), R\ell (u
t+1
\leq k - 1,u

t
\geq k) - R\ell (u

t+1
\leq k ,u

t
\geq k+1)\rangle X .

(3.16)

It follows from the first-order optimality condition of (3.10) at ut+1
k that there exists pt+1

k \in 
\partial 
\bigl( 
\| Dut+1

k \| 1 + \chi U (u
t+1
k )

\bigr) 
such that

0 = pt+1
k  - \alpha D\top qtk + 2c(ut+1

k  - utk) + \lambda rk(c
t,ut+1

<k ,u
t
>k).
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1088 K. BUI, F. PARK, Y. LOU, AND J. XIN

Algorithm 3.1 DCA-PDHGLS algorithm to solve (3.2)

Input:
\bullet Image f
\bullet model parameters \alpha , \lambda > 0
\bullet strong convexity parameter c > 0
\bullet PDHGLS initial step size \tau 0 > 0
\bullet PDHGLS primal-dual step size ratio \beta > 0
\bullet PDHGLS parameter \delta \in (0, 1)
\bullet PDHGLS step size multiplier \mu \in (0, 1)

1: Set u0k = 1 (k = 1, . . . ,M) for some region \Sigma \subset \Omega and 0 elsewhere.
2: Compute c0 = (c01, . . . , c

0
N ) by (3.6).

3: Set t := 0.
4: while stopping criterion for DCA is not satisfied do
5: for k = 1 to M do
6: Set ut,0k := utk and (px)

0
k = (py)

0
k = 0.

7: Compute ((qx)
t
k, (qy)

t
k) = (Dxu

t
k, Dyu

t
k)/

\sqrt{} 
| Dxutk| 2 + | Dyutk| 2.

8: Set \theta 0 = 1.
9: Set \eta := 0.

10: while stopping criterion for PDHGLS is not satisfied do
11: Compute ut,\eta +1

k by (3.13) with \tau := \tau \eta .
12: Set \tau \eta +1 = \tau \eta 

\sqrt{} 
1 + \theta \eta .

Linesearch:
13: Compute \theta \eta +1 =

\tau \eta +1

\tau \eta 
and \sigma \eta +1 = \beta \tau \eta +1.

14: Compute \=ut,\eta +1
k = ut,\eta +1

k + \theta \eta +1(u
t,\eta +1
k  - ut,\eta k ).

15: Compute p\eta +1
k := ((px)

\eta +1
k , (py)

\eta +1
k ) by (3.14) with \sigma := \sigma \eta +1.

16: if
\surd 
\beta \tau \eta +1\| (D\top 

x (px)
\eta +1
k , D\top 

y (py)
\eta +1
k )  - (D\top 

x (px)
\eta 
k, D

\top 
y (py)

\eta 
k)\| Y \leq \delta \| p\eta +1

k  - p\eta k\| Y
then

17: Set \eta := \eta + 1, and break linesearch
18: else
19: Set \tau \eta +1 := \mu \tau \eta +1 and go back to line 13.
20: end if

End of linesearch
21: end while
22: Set ut+1

k := ut,\eta k .
23: end for
24: Compute ct+1 by (3.6).
25: Set t := t+ 1.
26: end while

Output: (u, c) := (ut, ct).
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Taking the inner product with utk  - ut+1
k and rearranging it, we obtain

\lambda \langle rk(ct,ut+1
<k ,u

t
>k), u

t
k  - ut+1

k \rangle X
= - \langle pt+1

k  - \alpha D\top qtk, u
t
k  - ut+1

k \rangle X + 2c\| ut+1
k  - utk\| 2X .

(3.17)

The last term in (3.16) can be simplified to

N\sum 
\ell =1

\langle f\ell , R\ell (u
t+1
\leq k - 1,u

t
\geq k) - R\ell (u

t+1
\leq k ,u

t
\geq k+1)\rangle X = \langle rk(ct,ut+1

<k ,u
t
>k), u

t
k  - ut+1

k \rangle X ,

as R\ell (u) consists of terms with at most one uk, and the terms without utk and ut+1
k are canceled

out. Together with (3.16) and (3.17), we get

\~F ((ut+1
\leq k - 1,u

t
\geq k), c

t) - \~F ((ut+1
\leq k ,u

t
\geq k+1), c

t)

= \| Dutk\| 1  - \| Dut+1
k \| 1  - \alpha (\| Dutk\| 2,1  - \| Dut+1

k \| 2,1)
+ \chi U (u

t
k) - \chi U (u

t+1
k ) + \lambda \langle rk(ct,ut+1

<k ,u
t
>k), u

t
k  - ut+1

k \rangle X
= \| Dutk\| 1  - \| Dut+1

k \| 1  - \alpha (\| Dutk\| 2,1  - \| Dut+1
k \| 2,1)

+ \chi U (u
t
k) - \chi U (u

t+1
k ) - \langle pt+1

k  - \alpha D\top qtk, u
t
k  - ut+1

k \rangle X + 2c\| ut+1
k  - utk\| 2X

=
\bigl[ \bigl( 
\| Dutk\| 1  - \langle pt+1

k , utk  - ut+1
k \rangle X + \chi U (u

t
k)
\bigr) 
 - \| Dut+1

k \| 1  - \chi U (u
t+1
k )

\bigr] 
+ \alpha (\| Dut+1

k \| 2,1  - \langle D\top qtk, u
t
k  - ut+1

k \rangle X  - \| Dutk\| 2,1) + 2c\| ut+1
k  - utk\| 2X .

(3.18)

The definitions of convexity and subgradient yield that

\| Dutk\| 1 + \chi U (u
t
k) - \langle pt+1

k , utk  - ut+1
k \rangle X \geq \| Dut+1

k \| 1 + \chi U (u
t+1
k ),(3.19)

\| Dut+1
k \| 2,1  - \langle D\top qtk, u

t+1
k  - utk\rangle X \geq \| Dutk\| 2,1.(3.20)

Combining (3.18)--(3.20), we have

\~F ((ut+1
\leq k - 1,u

t
\geq k), c

t) - \~F ((ut+1
\leq k ,u

t
\geq k+1), c

t) \geq 2c\| ut+1
k  - utk\| 2X .

Summing over k = 1, . . . ,M leads to

\~F (ut, ct) - \~F (ut+1, ct) =
M\sum 
k=1

\~F ((ut+1
\leq k - 1,u

t
\geq k), c

t) - \~F ((ut+1
\leq k ,u

t
\geq k+1), c

t)

\geq 2c

M\sum 
k=1

\| ut+1
k  - utk\| 2X .

(3.21)

Therefore, (3.15) and (3.21) establish the desired result.

Theorem 3.2. Suppose \alpha \in [0, 1] and \lambda > 0. Let \{ (ut, ct)\} \infty t=1 be a sequence such that ut is
generated by (3.10) and ct is generated by (3.6). We have the following:

(a) \{ (ut, ct)\} \infty t=1 is bounded.
(b) For k = 1, . . . ,M , we have \| ut+1

k  - utk\| X \rightarrow 0 as t \rightarrow \infty .D
ow

nl
oa

de
d 

06
/2

6/
22

 to
 1

28
.1

95
.6

6.
13

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1090 K. BUI, F. PARK, Y. LOU, AND J. XIN

(c) The sequence \{ (ut, ct)\} \infty t=1 has a limit point (u\ast , c\ast ) satisfying

0 \in \partial \| Du\ast k\| 1  - \alpha \partial \| Du\ast k\| 2,1 + \partial \chi U (u
\ast 
k) + \lambda rk(c

\ast ,u\ast 
<k,u

\ast 
>k)(3.22)

for k = 1, . . . ,M, and

0 \in \partial \~F (u\ast , c\ast )

\partial c\ell 
, \ell = 1, . . . , N.(3.23)

Proof. (a) As each entry of utk is bounded by [0, 1] for k = 1, . . . ,M , \{ ut\} \infty t=1 is a bounded
sequence. It further follows from (3.6) that 0 \leq | ct+1

\ell | \leq maxi,j | fi,j | . Therefore, \{ ct\} \infty t=1 is also
bounded, and, altogether, so is the sequence \{ (ut, ct)\} \infty t=1.

(b) Since \alpha \| Duk\| 2,1 \leq \| Duk\| 1 for \alpha \in [0, 1], we have

\~F (u, c) \geq 
M\sum 
k=1

\chi U (uk) + \lambda 
N\sum 
\ell =1

\langle f\ell , R\ell (u)\rangle X \geq 0,(3.24)

which implies that \~F (u, c) is lower bounded. As it is also decreasing by Lemma 3.1, the
sequence \{ \~F (ut, ct)\} \infty t=1 converges. By a telescope summation of (3.21), we obtain

\~F (u1, c1) - lim
t\rightarrow \infty 

\~F (ut, ct) \geq 2c
\infty \sum 
t=1

M\sum 
k=1

\| utk  - ut+1
k \| 2X = 2c

M\sum 
k=1

\infty \sum 
t=1

\| utk  - ut+1
k \| 2X .

Therefore,
\sum \infty 

t=1 \| utk  - ut+1
k \| 2X < \infty , leading to limt\rightarrow \infty \| utk  - ut+1

k \| 2X = 0 for k = 1, . . . ,M .

(c) By the Bolzano--Weierstrass theorem, the bounded sequence \{ (ut, ct)\} \infty t=1 has a conver-
gent subsequence \{ (utL , ctL)\} \infty L=1 such that limL\rightarrow \infty (utL , ctL) = (u\ast , c\ast ) . By (b), limL\rightarrow \infty utL+1

k  - 
utLk = 0. As limL\rightarrow \infty utL+1

k = limL\rightarrow \infty utLk = u\ast k, we have limL\rightarrow \infty utL+1 = u\ast . Since utL is
generated by (3.10), all of its entries are bounded by [0, 1]; otherwise, the objective function
would be at +\infty . Hence, \chi U (u

tL
k ) = 0 and similarly \chi U (u

tL+1
k ) = 0 for all L, from which

follows that \chi U (u
\ast 
k) = 0. In short, we have

lim
L\rightarrow \infty 

\chi U (u
tL
k ) = \chi U (u

\ast 
k) for k = 1, . . . ,M.(3.25)

Now we establish (3.23) by showing that \~F (u\ast , c\ast ) \leq \~F (u\ast , c) for all c \in \BbbR n. On one
hand, we have

lim
L\rightarrow \infty 

\~F (utL , ctL)

= lim
L\rightarrow \infty 

\Biggl[ 
M\sum 
k=1

\Bigl( 
\| DutLk \| 1  - \alpha \| DutLk \| 2,1 + \chi U (u

tL
k )

\Bigr) 
+ \lambda 

N\sum 
\ell =1

\langle f\ell (ctL), R\ell (u
tL)\rangle X

\Biggr] 

=

M\sum 
k=1

lim
L\rightarrow \infty 

\Bigl( 
\| DutLk \| 1  - \alpha \| DutLk \| 2,1 + \chi U (u

tL
k )

\Bigr) 
+ \lambda 

N\sum 
\ell =1

lim
L\rightarrow \infty 

\langle f\ell (ctL), R\ell (u
tL)\rangle X

=

M\sum 
k=1

(\| Du\ast k\| 1  - \alpha \| Du\ast k\| 2,1 + \chi U (u
\ast 
k)) + \lambda 

N\sum 
\ell =1

\langle f\ell (c\ast ), R\ell (u
\ast )\rangle X = \~F (u\ast , c\ast ).

(3.26)
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AITV SEGMENTATION 1091

We can take the limit as all the terms of \~F except for \chi U are continuous with respect to (u, c).
On the other hand, we have

lim
L\rightarrow \infty 

\~F (utL , c)

= lim
L\rightarrow \infty 

\Biggl[ 
M\sum 
k=1

\Bigl( 
\| DutLk \| 1  - \alpha \| DutLk \| 2,1 + \chi U (u

tL
k )

\Bigr) 
+ \lambda 

N\sum 
\ell =1

\langle f\ell (c), R\ell (u
tL)\rangle X

\Biggr] 

=

M\sum 
k=1

lim
L\rightarrow \infty 

\Bigl( 
\| DutLk \| 1  - \alpha \| Duk\| 2,1 + \chi U (u

tL
k )

\Bigr) 
+ \lambda 

N\sum 
\ell =1

lim
L\rightarrow \infty 

\langle f\ell (c), R\ell (u
tL)\rangle X

=
M\sum 
k=1

(\| Du\ast k\| 1  - \alpha \| Du\ast k\| 2,1 + \chi U (u
\ast 
k)) + \lambda 

N\sum 
\ell =1

\langle f\ell (c), R\ell (u
\ast )\rangle X = \~F (u\ast , c).

(3.27)

It follows from (3.4) that for all L \in \BbbN , we have

\~F (utL , ctL) \leq \~F (utL , c) \forall c \in \BbbR N .(3.28)

Combined with (3.26)--(3.27),

\~F (u\ast , c\ast ) = lim
L\rightarrow \infty 

\~F (utL , ctL) \leq lim
L\rightarrow \infty 

\~F (utL , c) = \~F (u\ast , c) \forall c \in \BbbR N

or, equivalently, \~F (u\ast , c\ast ) = inf\bfc \in \BbbR N
\~F (u\ast , c). The minimization with respect to c can be

expressed elementwise for each c\ell , leading to the optimality condition of (3.23).
For the rest of the proof, we establish (3.22). For each k = 1, . . . ,M , the optimality

condition at the (tL + 1)th step of (3.10) is

0 \in \partial (\| DutL+1
k \| 1 + \chi U (u

tL+1
k )) + \lambda rk(c

tL ,utL+1
<k ,utL

>k) + 2c(utL+1
k  - utLk )

 - \alpha D\top qtLk .
(3.29)

Denote sLk :=  - \lambda rk(c
tL ,utL+1

<k ,utL
k ) - 2c(utL+1

k  - utLk ) + \alpha D\top qtLk . Then (3.29) implies that

sLk \in \partial (\| DutL+1
k \| 1 + \chi U (u

tL+1
k )).(3.30)

Since rk(c,u<k,u>k) is continuous in (c,u<k,u>k), we have

lim
L\rightarrow \infty 

rk(c
tL ,utL+1

<k ,utL
>k) = rk(c

\ast ,u\ast 
<k,u

\ast 
>k).

To compute the limit of D\top qtLk , we recall the multivariate subgradient of
\partial \| Duk\| 2,1 =

\prod 
(i,j) \partial \| (Duk)i,j\| 2, where

\partial \| (x1, x2)\| 2 =

\left\{   
\biggl\{ 

(x1,x2)\surd 
x2
1+x2

2

\biggr\} 
if (x1, x2) \not = (0, 0) \in \BbbR 2,

\{ (y1, y2) \in \BbbR 2 : y21 + y22 \leq 1\} if (x1, x2) = (0, 0).
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1092 K. BUI, F. PARK, Y. LOU, AND J. XIN

Let ((v\ast x,k)i,j , (v
\ast 
y,k)i,j) := ((Dxu

\ast 
k)i,j , (Dyu

\ast 
k)i,j) be the discrete gradient of u\ast k at entry (i, j)

for k = 1, . . . ,M, which satisfies

\partial \| (v\ast x,k)i,j , (v\ast y,k)i,j\| 2

=

\left\{     
\Biggl\{ 

((v\ast x,k)i,j ,(v
\ast 
y,k)i,j)\sqrt{} 

| (v\ast x,k)i,j | 2+| (v\ast y,k)i,j | 2

\Biggr\} 
if ((v\ast x,k)i,j , (v

\ast 
y,k)i,j) \not = (0, 0),

\{ (y1, y2) \in \BbbR 2 : y21 + y22 \leq 1\} if ((v\ast x,k)i,j , (v
\ast 
y,k)i,j) = (0, 0).

Note that we define qtLk in the following way:

(qtLk )i,j =

\left\{   
((Dxu

tL
k )i,j ,(Dyu

tL
k )i,j)\sqrt{} 

| (Dxu
tL
k )i,j | 2+| (Dyu

tL
k )i,j | 2

if ((Dxu
tL
k )i,j , (Dyu

tL
k )i,j) \not = (0, 0),

(0, 0) if ((Dxu
tL
k )i,j , (Dyu

tL
k )i,j) = (0, 0).

(3.31)

Denote q\ast k := limL\rightarrow \infty qtLk . Therefore, by (3.31), when ((v\ast x)i,j , (v
\ast 
y)i,j) \not = (0, 0), we have

(q\ast k)i,j = lim
L\rightarrow \infty 

(qtLk )i,j =
((v\ast x,k)i,j , (v

\ast 
y,k)i,j)\sqrt{} 

| (v\ast x,k)i,j | 2 + | (v\ast y,k)i,j | 2
\in \partial \| ((v\ast x,k)i,j , (v\ast y,k)i,j)\| 2

and when ((v\ast x)i,j , (v
\ast 
y)i,j) = (0, 0), we have

(qtLk )i,j \in \{ (y1, y2) \in \BbbR 2 : y21 + y22 \leq 1\} \subseteq \partial \| ((v\ast x,k)i,j , (v\ast y,k)i,j)\| 2,

for all L \in \BbbN so that taking the limit L \rightarrow \infty yields (q\ast k)i,j \in \partial \| ((v\ast x,k)i,j , (v\ast y,k)i,j)\| 2. By the
chain rule of the subgradient (Corollary 16 in [28]), we have

\partial \| (Du\ast k)i,j\| 2 = D\top \partial \| ((v\ast x,k)i,j , (v\ast y,k)i,j)\| 2.

Since D\top is a linear operator (thus continuous), we get

lim
L\rightarrow \infty 

D\top qtLk = D\top q\ast k \in \partial \| Du\ast k\| 2,1.(3.32)

In short, we obtain that s\ast k := limL\rightarrow \infty sLk =  - \lambda rk(c
\ast ,u\ast 

<k,u
\ast 
>k) + \alpha D\top q\ast k.

It further follows from (3.30) and the subgradient definition that

\| Duk\| 1 + \chi U (uk) \geq \| DutL+1
k \| 1 + \chi U (u

tL+1
k ) + \langle sLk , uk  - utL+1

k \rangle 
= \| DutL+1

k \| 1 + \langle sLk , uk  - utL+1
k \rangle 

(3.33)

for all uk \in X and L \in \BbbN . By continuity, we obtain

\| Duk\| 1 + \chi U (uk) \geq lim
L\rightarrow \infty 

\Bigl( 
\| DutL+1

k \| 1 + \langle sLk , uk  - utL+1
k \rangle 

\Bigr) 
= \| Du\ast k\| 1 + \langle s\ast k, uk  - u\ast k\rangle = \| Du\ast k\| 1 + \chi U (u

\ast 
k) + \langle s\ast k, uk  - u\ast k\rangle ,
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where the last equality is due to \chi U (u
\ast 
k) = 0. Since both \| Du\| 1 and \chi U (u) are convex,

s\ast k \in \partial (\| Du\ast k\| 1 + \chi U (u
\ast 
k)) = \partial \| Du\ast k\| 1 + \partial \chi U (u

\ast 
k). Therefore, we have

0 \in \partial \| Du\ast k\| 1 + \partial \chi U (u
\ast 
k) + \lambda rk(c

\ast ,u\ast 
<k,u

\ast 
>k) - \alpha D\top q\ast k

\subseteq \partial \| Du\ast k\| 1  - \alpha \partial \| Du\ast k\| 2,1 + \partial \chi U (u
\ast 
k) + \lambda rk(c

\ast ,u\ast 
<k,u

\ast 
>k).

This concludes the proof.

Remark 3.3. The limit point (u\ast , c\ast ) is not guaranteed to be a global optimal solution for
(3.2) because the objective function is nonconvex, and (u\ast , c\ast ) may not even satisfy a first-
order optimality condition 0 \in \partial (\bfu ,\bfc ) \~F (u\ast , c\ast ). However, according to Theorem 3.2(c), each
coordinate u\ast k or c\ast \ell satisfies its respective first-order optimality condition, since (u\ast , c\ast ) =
(u\ast 1, . . . , u

\ast 
M , c\ast 1, . . . , c

\ast 
N ). In convex optimization, if g is convex, a point x\ast is a critical point

if 0 \in \partial g(x\ast ). (3.23) establishes c\ast \ell to be a critical point of the function convex in c\ell ,

m\sum 
i=1

n\sum 
j=1

(fi,j  - c\ell )
2R\ell (u)i,j ,

which is derived from (3.2) when minimizing for c\ell . In DC optimization, a point x\ast is a critical
point of DC function g - h if 0 \in \partial g(u\ast ) - \partial h(u\ast ) [38]. However, this optimality condition is not
as strong as the optimality condition 0 \in \partial (g - h)(u\ast ) because \partial (g - h)(u\ast ) \subset \partial g(u\ast ) - \partial h(u\ast ) in
terms of either the Clarke subdifferential or the Fr\'echet subdifferential [38]. (3.22) establishes
u\ast k to be a DC critical point of the DC function

\| Duk\| 1 + \chi U (uk) + \lambda \langle rk(c,u<k,u>k), uk\rangle X\underbrace{}  \underbrace{}  
g(uk)

 - \alpha \| Duk\| 2,1\underbrace{}  \underbrace{}  
h(uk)

,

which is derived from (3.2) when minimizing for uk.

4. Fuzzy extension of the AICV model. One limitation of the CV models is that they
are only applicable for image segmentation that has specifically a power-of-two number (i.e.,
2M ) of regions. To generalize to an arbitrary number of regions N , we associate each region
\Omega \ell with a membership function u\ell for \ell = 1, . . . , N . A membership function u\ell represents a
region \Omega \ell in the following way:

(u\ell )i,j =

\Biggl\{ 
1 if (i, j) \in \Omega \ell ,

0 if (i, j) \not \in \Omega \ell .

To avoid overlap between the u\ell 's, we enforce the constraint
\sum N

\ell =1 u\ell = 1, but we relax it
with a quadratic penalty to make the model numerically tractable. As such, we propose an
AITV extension to the FR model, referred to as AIFR,

min
\bfu \in XN

\bfc \in \BbbR N

\^F (u, c) :=
N\sum 
\ell =1

(\| Du\ell \| 1  - \alpha \| Du\ell \| 2,1 + \chi U (u\ell )) + \lambda 

N\sum 
\ell =1

\langle f\ell (c), u\ell \rangle X

+
\nu 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 
\ell =1

u\ell  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

(4.1)

with \nu > 0. Similarly to (3.3)--(3.4), we adopt the alternating minimization framework toD
ow

nl
oa

de
d 

06
/2

6/
22

 to
 1

28
.1

95
.6

6.
13

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1094 K. BUI, F. PARK, Y. LOU, AND J. XIN

solve (4.1), i.e.,

ut+1 \in argmin
\bfu 

\^F (u, ct),(4.2)

ct+1 \in argmin
\bfc 

\^F (ut+1, c).(4.3)

The c-subproblem (4.3) has a closed-form solution for \ell = 1, . . . , N :

ct+1
\ell =

\left\{                     

m\sum 
i=1

n\sum 
j=1

fi,j(u
t+1
\ell )i,j

m\sum 
i=1

n\sum 
j=1

(ut+1
\ell )i,j

if
m\sum 
i=1

n\sum 
j=1

(ut+1
\ell )i,j \not = 0,

0 if

m\sum 
i=1

n\sum 
j=1

(ut+1
\ell )i,j = 0.

(4.4)

For (4.2), we can find ut+1
\ell coordinatewise with respect to \ell by solving

ut+1
\ell \in argmin

u\ell 

\| Du\ell \| 1  - \alpha \| Du\ell \| 2,1 + \chi U (u\ell ) + \lambda \langle f\ell (c), u\ell \rangle X

+
\nu 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j<\ell 

ut+1
j + u\ell +

\sum 
j>\ell 

ut\ell  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

.
(4.5)

Applying DCA (3.8) to solve for (4.5) gives

ut+1
\ell = argmin

u\ell 

\| Du\ell \| 1 + \chi U (u\ell ) + \lambda \langle f\ell (c), u\ell \rangle X

+
\nu 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j<\ell 

ut+1
j + u\ell +

\sum 
j>\ell 

ut\ell  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

+ c\| u\ell \| 2X

 - \alpha \langle Du\ell , q
t
\ell \rangle Y  - 2c\langle u\ell , ut\ell \rangle X ,

(4.6)

where qt\ell := ((qx)
t
\ell , (qy)

t
\ell ) = (Dxu

t
\ell , Dyu

t
\ell )/

\sqrt{} 
| Dxut\ell | 2 + | Dyut\ell | 2 if the denominator is not zero.

Similarly to (3.10), we apply PDHGLS to find ut+1
\ell in (4.6) with the following iteration:

ut,\eta +1
\ell = min

\left\{   max

\left\{   2cut\ell +
1
\tau u

t,\eta 
\ell + \nu 

\Bigl( 
1 - 

\sum 
j<\ell u

t+1
j  - 

\sum 
j>\ell u

t
\ell 

\Bigr) 
2c+ 1

\tau + \nu 
(4.7)

 - 
\lambda f\ell (c) - \alpha D\top qt\ell + (D\top 

x (px)
\eta 
\ell +D\top 

y (py)
\eta 
\ell )

2c+ 1
\tau + \nu 

, 0

\Biggr\} 
, 1

\Biggr\} 
,

\=ut,\eta +1
\ell = ut,\eta +1

\ell + \theta (ut,\eta +1
\ell  - ut,\eta \ell ),(4.8)

(px)
\eta +1
\ell = ProjP ((px)

\eta 
\ell + \sigma Dx\=u

t,\eta +1
\ell ),(4.9)

(py)
\eta +1
\ell = ProjP ((py)

\eta 
\ell + \sigma Dy\=u

t,\eta +1
\ell )(4.10)

for ut,0\ell = ut\ell and \tau , \sigma > 0, \theta \in [0, 1]. The proposed algorithm is referred to as DCA-PDHGLS,
summarized in Algorithm 4.1. Convergence analysis of the sequence \{ (ut, ct)\} \infty t=1 generatedD
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Algorithm 4.1 DCA-PDHGLS algorithm to solve (4.1)

Input:
\bullet Image f
\bullet model parameters \alpha , \lambda > 0
\bullet strong convexity parameter c > 0
\bullet quadratic penalty parameter \nu > 0
\bullet PDHGLS initial step size \tau 0 > 0
\bullet PDHGLS primal-dual step size ratio \beta > 0
\bullet PDHGLS parameter \delta \in (0, 1)
\bullet PDHGLS step size multiplier \mu \in (0, 1)

1: Set u0\ell = 1 (\ell = 1, . . . , N) for some region \Sigma \subset \Omega and 0 elsewhere.
2: Compute c0 = (c01, . . . , c

0
N ) by (4.4).

3: Set t := 0.
4: while stopping criterion for DCA is not satisfied do
5: for \ell = 1 to M do
6: Set ut,0\ell := ut\ell and (px)

0
\ell = (py)

0
\ell = 0.

7: Compute ((qx)
t
\ell , (qy)

t
\ell ) = (Dxu

t
\ell , Dyu

t
\ell )/

\sqrt{} 
| Dxut\ell | 2 + | Dyut\ell | 2.

8: Set \theta 0 = 1.
9: Set \eta := 0.

10: while stopping criterion for PDHGLS is not satisfied do
11: Compute ut,\eta +1

\ell by (4.7) with \tau := \tau \eta .
12: Set \tau \eta +1 = \tau \eta 

\sqrt{} 
1 + \theta \eta .

Linesearch:
13: Compute \theta \eta +1 =

\tau \eta +1

\tau \eta 
and \sigma \eta +1 = \beta \tau \eta +1.

14: Compute \=ut,\eta +1
\ell = ut,\eta +1

\ell + \theta \eta +1(u
t,\eta +1
\ell  - ut,\eta \ell ).

15: Compute p\eta +1
\ell := ((px)

\eta +1
\ell , (py)

\eta +1
\ell ) by (4.8)--(4.10) with \sigma := \sigma \eta +1.

16: if
\surd 
\beta \tau \eta +1\| (D\top 

x (px)
\eta +1
\ell , D\top 

y (py)
\eta +1
\ell )  - (D\top 

x (px)
\eta 
\ell , D

\top 
y (py)

\eta 
\ell )\| Y \leq \delta \| p\eta +1

\ell  - p\eta \ell \| Y
then

17: Set \eta := \eta + 1, and break linesearch
18: else
19: Set \tau \eta +1 := \mu \tau \eta +1 and go back to line 13.
20: end if

End of linesearch
21: end while
22: Set ut+1

\ell := ut,\eta \ell .
23: end for
24: Compute ct+1 by (4.4).
25: Set t := t+ 1.
26: end while

Output: (u, c) := (ut, ct).
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by (4.6) and (4.4) can be established similarly to the one in section 3.2. Hence, we have the
following theorem, but for the sake of brevity, the proof is omitted.

Theorem 4.1. Suppose \alpha \in [0, 1] and \lambda > 0. Let \{ (ut, ct)\} \infty t=1 be a sequence such that ut is
generated by (4.6) and ct is generated by (4.4). We have the following:

(a) \{ (ut, ct)\} \infty t=1 is bounded.
(b) For \ell = 1, . . . , N , we have \| ut+1

\ell  - ut\ell \| X \rightarrow 0 as t \rightarrow \infty .
(c) The sequence \{ (ut, ct)\} \infty t=1 has a limit point (u\ast , c\ast ) satisfying

0 \in \partial \| Du\ast \ell \| 1  - \alpha \partial \| Du\ast \ell \| 2,1 + \partial \chi U (u
\ast 
\ell ) + \lambda f\ell (c

\ast ) + \nu 

\left(  N\sum 
j=1

u\ast j  - 1

\right)  ,(4.11)

0 \in \partial \^F (u\ast , c\ast )

\partial c\ell 
\forall \ell = 1, . . . , N.(4.12)

5. Extension to color images. Both AICV (3.2) and AIFR (4.1) models can be extended
to color image segmentation. Let f = (fr, fg, fb) \in X3 be a color image and (c\ell ,r, c\ell ,g, c\ell ,b) \in \BbbR 3

for \ell = 1, . . . , N . By replacing f\ell (c) with

f\ell (cr, cg, cb) =
\sum 

\iota \in \{ r,g,b\} 

(f\iota  - c\ell ,\iota 1)
2,

where c\iota = (c1,\iota , . . . , cN,\iota ) for \iota \in \{ r, g, b\} , the AICV model for color segmentation is

min
\bfu \in XM

\bfc r,\bfc g ,\bfc b\in \BbbR N

M\sum 
k=1

(\| Duk\| 1  - \alpha \| Duk\| 2,1 + \chi U (uk)) + \lambda 

N\sum 
\ell =1

\langle f\ell (cr, cg, cb), R\ell (u)\rangle X .(5.1)

Similarly, the AIFR model for color segmentation is

min
\bfu \in XN

\bfc r,\bfc g ,\bfc b\in \BbbR N

N\sum 
\ell =1

(\| Du\ell \| 1  - \alpha \| Du\ell \| 2,1 + \chi U (u\ell )) + \lambda 
N\sum 
\ell =1

\langle f\ell (cr, cg, cb), u\ell \rangle X

+
\nu 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 
\ell =1

u\ell  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

.

(5.2)

For (5.1) and (5.2), their respective update formulas for c\iota with \iota \in \{ r, g, b\} are

c\ell ,\iota =

\left\{                     

m\sum 
i=1

n\sum 
j=1

(f\iota )i,jR\ell (u)i,j

m\sum 
i=1

n\sum 
j=1

R\ell (u)i,j

if
m\sum 
i=1

n\sum 
j=1

R\ell (u)i,j \not = 0,

0 if
m\sum 
i=1

n\sum 
j=1

R\ell (u)i,j = 0

(5.3)
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AITV SEGMENTATION 1097

and

c\ell ,\iota =

\left\{                     

m\sum 
i=1

n\sum 
j=1

(f\iota )i,j(u\ell )i,j

m\sum 
i=1

n\sum 
j=1

(u\ell )i,j

if

m\sum 
i=1

n\sum 
j=1

(u\ell )i,j \not = 0,

0 if
m\sum 
i=1

n\sum 
j=1

(u\ell )i,j = 0.

(5.4)

The update formulas for u are similar to their grayscale counterparts since only f\ell needs to
be replaced with f\ell . Hence, their algorithms are straightforward to derive, thus omitted.

6. Numerical results. In this section, we present extensive experiments on various syn-
thetic and real images to demonstrate the effectiveness of AITV in image segmentation. In
particular, we compare the AICV and AIFR models for \alpha \in \{ 0, 0.25, 0.5, 0.75, 1.0\} with
the two-stage segmentation methods that use L1 + L2

2 [5, 6], L0 [62, 69], and real-time MS
(RMS) [64] penalties. When \alpha = 0, the AICV model reduces to the original CV (L1 CV)
model [13, 14], while the AIFR model becomes the FR competition (L1 FR) model [40]. The
two-stage segmentation methods find a smooth approximation \=f of the underlying image f
with certain regularization, followed by k-means clustering on \=f to obtain the segmentation
result. Specifically, Cai et al. [5, 6] proposed an L1 + L2

2 regularization problem1

min
u

\lambda \| f  - u\| 2X + \gamma \| Du\| 2Y + \| Du\| 2,1.(6.1)

Throughout our numerical experiments, we set \gamma = 1, which is suggested in [5, 6]. The
L0-regularized model [62, 69] is given by

min
u

\lambda \| f  - u\| 2X + \| Dxu\| 0 + \| Dyu\| 0,(6.2)

where \| \cdot \| 0 counts the number of nonzero entries of the matrix. The model in (6.2) can be
solved in two different ways. One is by alternating minimization with half-quadratic splitting
[69].2 Another approach [62] incorporates weights for a better isotropic discretizatation than
the original L0 model, followed by ADMM.3 The RMS model [64] replaces the L0 norm in
(6.2) by RMS(u) =

\sum m
i=1

\sum n
j=1min\{ \gamma ui,j , 1\} , thus leading to

min
u

\lambda \| f  - u\| 2X +RMS(Dxu) +RMS(Dyu).(6.3)

In our numerical experiments, we consider the piecewise-constant limit case, where \gamma \rightarrow \infty .
Its implementation is described in [64, Algorithm 1]. We refer to the models (6.1), (6.2), and
(6.3) as L1 + L2

2, L0, and RMS , respectively.

1Code is available at https://xiaohaocai.netlify.app/download/.
2Code is available at http://www.cse.cuhk.edu.hk/\sim leojia/projects/L0smoothing/.
3Code is available at https://github.com/mstorath/Pottslab.D
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For the proposed Algorithms 3.1 and 4.1, we set c = 10 - 8, \tau 0 = 1/8, \beta = 1.0, \delta = 0.9999,
and \mu = 7.5\times 10 - 5, as suggested in [48, 49]. The parameter \lambda depends on the image, which
will be specified for each testing case. For the stopping criteria, we use the relative error

relerr(u, v) =
\| u - v\| X

max\{ \| u\| X , \| v\| X , \epsilon \} 
,(6.4)

where \epsilon is the machine's precision. Following [48], we choose the stopping criterion for the
inner PDHGLS algorithm as relerr(ut,\eta +1, ut,\eta ) < 10 - 6. As for the outer iterations, DCA min-
imization terminates when relerr(ut+1, ut) < 10 - 6 and relerr(ut+1, ut) < 10 - 4 for two-phase
and four-phase AICV models, respectively. For the AIFR models, we use the same stopping
criterion in [41] for the outer iterations, i.e., when all the relative errors of the membership
functions are less than 10 - 4. We further adjust the maximum number of outer/inner itera-
tions for multiple channels and multiphase segmentation, which are selected empirically for
each image.

We shall apply postprocessing to define the segmented regions. In particular, we convert
the results of Algorithm 3.1 to a binary output by setting any pixel values greater than or
equal to 0.5 to 1, and 0 otherwise. For the results from Algorithm 4.1, we set a pixel value
(u\ell )i,j to 1 if it is the maximum among all the membership functions \{ uk\} Nk=1 at pixel (i, j),
and 0 otherwise. For a grayscale image f , we define its reconstructed image

\~f =

N\sum 
k=1

ck1\~\Omega k
,(6.5)

where \{ ck\} Nk=1 and \{ \~\Omega k\} Nk=1 are sets of constants and regions obtained by a segmentation
algorithm, respectively, and 1\~\Omega k

is a binary image corresponding to the region \~\Omega k. The matrix
1\~\Omega k

is obtained by thresholding for Algorithms (3.1) and (4.1) or by k-means clustering for
the two-stage segmentation framework. Specifically for Algorithms 3.1 and 4.1, the constants
\{ ck\} Nk=1 are the final outputs of (3.6) and (4.4), respectively. For the two-stage segmentation
framework, we compute a smoothed image of f by one of the models (6.1)--(6.3), thus getting
\=f , and define the constants in (6.5) by

ck =

m\sum 
i=1

n\sum 
j=1

\=fi,j(1\~\Omega k
)i,j

m\sum 
i=1

n\sum 
j=1

(1\~\Omega k
)i,j

, k = 1, . . . , N.(6.6)

As k-means clustering applied to \=f does not produce an empty cluster, the denominator of
(6.6) is nonzero. Similarly, the color image f is approximated by \~f = ( \~fr, \~fg, \~fb) given by

\~f\iota =

N\sum 
k=1

ck,\iota 1\~\Omega k
for \iota \in \{ r, g, b\} ,(6.7)

where \{ ck,\iota \} Nk=1 is a set of constants for channel \iota . For the color versions of Algorithms 3.1
and 4.1, the constants are obtained by (5.3) and (5.4), respectively. For the color version ofD
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AITV SEGMENTATION 1099

(a) (b) (c)

Figure 2. Synthetic images for image segmentation. (a) Grayscale image for two-phase segmentation.
Size: 385\times 385. (b) Color image for two-phase segmentation. Size: 385\times 385. (c) Color image for four-phase
segmentation. Size: 100\times 100.

the two-stage segmentation framework, the constants are computed by (6.6) applied to each
channel of the smoothed image \=f = ( \=fr, \=fg, \=fb).

All the algorithms are coded in MATLAB R2019a and all the computations are performed
on a Dell laptop with a 1.80 GHz Intel Core i7-8565U processor and 16.0 GB of RAM. The
codes are available at https://github.com/kbui1993/L1mL2Segmentation.

6.1. Synthetic images. We apply various segmentation algorithms on the synthetic im-
ages presented in Figure 2. We scale the intensity values of all the images to be [0, 1] to
ease the parameter tuning. To demonstrate the robustness of the algorithms with respect to
noises, we contaminate the original images with either salt-and-pepper impulsive noise (SPIN)
or random-valued impulsive noise (RVIN). To evaluate the model performance, we compute
the DICE index [19] between the segmentation result and the ground truth. The metric is
defined by

DICE = 2
\#\{ A(i) \cap A\prime (i)\} 

\#\{ A(i)\} +\#\{ A\prime (i)\} 
,

where A(i) is the set of pixels with label i in the ground-truth image f or f , A\prime (i) is the set
of pixels with label i in the segmented image \~f or \~f , and \#\{ A\} refers to the number of pixels
in the set A. If the DICE index equals 1, it means the perfect alignment of the segmentation
result to the ground truth. For two-phase segmentation, we compute the DICE index only
for the object of interest, not the background. For multiphase segmentation, we compute the
mean of the DICE indices across the regions, including the background.

For the two-phase AICV model, the initialization u01 in Algorithm 3.1 is a binary step
function that represents a circle of radius 10 in the center of the image (i.e., taking the value
1 if inside the circle and 0 elsewhere). Since the binary step function forms two regions in an
image, it can be used as initialization for the two-phase AIFR model, i.e., u01 and u02 = 1 - u01 for
Algorithm 4.1. The initialization for the four-phase segmentation requires two step functions,
which are set to be two circles of radius 30 shifted by 5 pixels to the right of the image center
and another by 5 pixels to the left. The circle functions are used here for simplicity. Contours
of the initialization are marked as colored circles in the noisy images.

For Figure 2(a), we set \lambda = 2 for all methods, except for L0 [69] in which \lambda = 50. For the
AIFR models, we set \nu = 10. The maximum number of inner iterations for the AITV modelsD
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Table 1
DICE indices of various segmentation models applied to Figure 2(a) corrupted with different levels of

impulsive noise.

Salt \&
pepper (\%)

0 10 20 30 40 50 60 70

L1  - L2 CV \bfone 0.9977 0.9932 0.9854 0.9594 0.9062 0.8138 0.7643

L1  - 0.75L2CV \bfone 0.9978 0.9929 0.9853 0.9795 0.9727 0.9678 0.9550

L1  - 0.5L2 CV \bfone 0.9975 0.9941 0.9893 0.9850 0.9801 \bfzero .\bfnine \bfseven \bftwo \bfsix \bfzero .\bfnine \bffive \bffive \bffour 

L1  - 0.25L2 CV \bfone 0.9974 0.9954 0.9910 0.9870 \bfzero .\bfnine \bfeight \bftwo \bfthree 0.9711 0.9483

L1 CV \bfone \bfzero .\bfnine \bfnine \bfeight \bfone 0.9960 0.9922 0.9877 0.9802 0.9681 0.9338

L1  - L2 FR \bfone 0.8753 0.7719 0.6833 0.6129 0.5425 0.4702 0.4138

L1  - 0.75L2 FR \bfone 0.9896 0.9841 0.9693 0.9585 0.9437 0.9183 0.7775

L1  - 0.5L2 FR 0.9998 0.9978 0.9956 0.9923 \bfzero .\bfnine \bfeight \bfseven \bfnine 0.9788 0.9495 0.7760

L1  - 0.25L2 FR 0.9995 0.9979 \bfzero .\bfnine \bfnine \bfsix \bfone \bfzero .\bfnine \bfnine \bftwo \bffive 0.9865 0.9737 0.9347 0.6883

L1 FR 0.9992 0.9978 0.9949 0.9877 0.9812 0.9663 0.8990 0.5053

L1 + L2
2 0.9996 0.9961 0.9925 0.9857 0.9733 0.9328 0.8375 0.6840

L0 [69] \bfone 0.8731 0.7666 0.6736 0.5943 0.5226 0.4601 0.4035

L0 [62] 0.9995 0.9944 0.9874 0.9792 0.9738 0.9690 0.9605 0.9474

RMS 0.9995 0.9969 0.9947 0.9887 0.9851 0.9784 0.9670 0.9312

Random
valued (\%)

0 10 20 30 40 50 60 70

L1  - L2 CV \bfone 0.9986 0.9957 0.9909 0.9846 0.9739 0.9534 0.9542

L1  - 0.75L2 CV \bfone 0.9988 0.9971 0.9948 0.9926 0.9894 \bfzero .\bfnine \bfeight \bffour \bfzero \bfzero .\bfnine \bfseven \bfone \bftwo 

L1  - 0.5L2 CV \bfone 0.9989 \bfzero .\bfnine \bfnine \bfseven \bfthree 0.9958 0.9930 \bfzero .\bfnine \bfeight \bfnine \bfnine 0.9816 0.9614

L1  - 0.25L2 CV \bfone \bfzero .\bfnine \bfnine \bfnine \bfzero 0.9971 0.9957 \bfzero .\bfnine \bfnine \bfthree \bffive 0.9898 0.9808 0.9560

L1 CV \bfone 0.9984 0.9972 \bfzero .\bfnine \bfnine \bffive \bfnine 0.9928 0.9863 0.9700 0.9332

L1  - L2 FR \bfone 0.9505 0.9053 0.8578 0.8015 0.7369 0.6478 0.5662

L1  - 0.75L2 FR \bfone 0.9987 0.9971 0.9945 0.9913 0.9879 0.9715 0.5364

L1  - 0.5L2 FR 0.9998 0.9984 0.9972 0.9955 0.9921 0.9833 0.9538 0.3540

L1  - 0.25L2 FR 0.9995 0.9983 0.9972 0.9940 0.9880 0.9763 0.9299 0.5984

L1 FR 0.9992 0.9983 0.9970 0.9925 0.9833 0.9643 0.8800 0.4503

L1 + L2
2 0.9996 0.9980 0.9960 0.9937 0.9903 0.9858 0.9776 0.9668

L0 [69] \bfone 0.8753 0.7697 0.6768 0.5981 0.5247 0.4627 0.4054

L0 [62] 0.9995 0.9966 0.9933 0.9904 0.9874 0.9810 0.9688 0.9462

RMS 0.9995 0.9983 0.9971 0.9954 0.9932 0.9850 0.9731 0.9361

is 300, while the maximum number of outer iterations is 20 for AICV and 40 for AIFR. Table
1 records the DICE indices of the segmentation results for varying levels of both SPIN and
RVIN from 0\% to 70\%. When the noise level is at least 50\%, both L1 - 0.5L2 and L1 - 0.25L2

CV models outperform L1 CV. For AIFR, L1 - 0.5L2 and L1 - 0.25L2 outperform L1 across all
levels of SPIN corruption. In addition, L1 - L2 FR is less robust than other values of \alpha when the
noise level increases. Most of the best results in the cases of intermediate to high RVIN noise
levels are attained by the proposed models. Figures 3--4 display the segmentation results of
Figure 2(a) corrupted with 60\% SPIN and 60\% RVIN, respectively. (We note that the contrastD
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AITV SEGMENTATION 1101

(a) 60\% \mathrm{S}\mathrm{P}\mathrm{I}\mathrm{N} (b) L1 + L2
2 (c) L0 [69] (d) L0 [62] (e) RMS

(f) L1  - L2 \mathrm{C}\mathrm{V} (g) L1  - 0.75L2 \mathrm{C}\mathrm{V} (h) L1  - 0.5L2 \mathrm{C}\mathrm{V} (i) L1  - 0.25L2 \mathrm{C}\mathrm{V} (j) L1 \mathrm{C}\mathrm{V}

(k) L1  - L2 \mathrm{F}\mathrm{R} (l) xL1  - 0.75L2 \mathrm{F}\mathrm{R} (m) L1  - 0.5L2 \mathrm{F}\mathrm{R} (n) L1  - 0.25L2 \mathrm{F}\mathrm{R} (o) L1 \mathrm{F}\mathrm{R}

Figure 3. Reconstruction results on Figure 2(a) corrupted with 60\% SPIN.

of the reconstructed images is different from Figure 2(a) because the impulsive noise in the
corrupted image skews the values of the constants \{ ck\} Nk=1 computed by the segmentation
algorithms. This phenomenon repeats for Figures 2(b)--2(c).) As \alpha decreases in both the
AICV and AIFR models, the results become less noisy, but they have fewer segmented regions.
Therefore, \alpha = 0.5 yields the best compromise in the case of SPIN. For RVIN, the AICV and
AIFR results are not as noisy as in the case of SPIN and, hence, \alpha = 0.75 is the best for RVIN.
The two-stage methods generally produce noisy results in the presence of SPIN and RVIN.

Figure 2(b) is a color version of Figure 2(a). We corrupt the image by 0\% to 50\%
SPIN/RVIN for each color channel. When a color image is corrupted with noise, one channel
might be noisier than the others. In addition, image structures may vary with color chan-
nels, thus making the color extension of finding a balanced segmentation across all the color
channels more challenging than for grayscale images. For Figure 2(b), we set \lambda = 0.5 for all
methods, except for L0 [69] in which \lambda = 50. For the AIFR models, we set \nu = 2.5. The
maximum number of inner/outer iterations are the same as the case for Figure 2(a). TheD
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1102 K. BUI, F. PARK, Y. LOU, AND J. XIN

(a) 60\% \mathrm{R}\mathrm{V}\mathrm{I}\mathrm{N} (b) 3L1 + L2
2 (c) L0 [69] (d) L0 [62] (e) RMS

(f) L1  - L2 \mathrm{C}\mathrm{V} (g) L1  - 0.75L2 \mathrm{C}\mathrm{V} (h) L1  - 0.5L2 \mathrm{C}\mathrm{V} (i) L1  - 0.25L2 \mathrm{C}\mathrm{V} (j) L1 \mathrm{C}\mathrm{V}

(k) L1  - L2 \mathrm{F}\mathrm{R} (l) L1  - 0.75L2 \mathrm{F}\mathrm{R} (m) L1  - 0.5L2 \mathrm{F}\mathrm{R} (n) L1  - 0.25L2 \mathrm{F}\mathrm{R} (o) L1 \mathrm{F}\mathrm{R}

Figure 4. Reconstruction results on Figure 2(a) corrupted with 60\% RVIN.

DICE indices of the segmentation results are reported in Table 2, which shows that L1  - L2

CV generally yields the best results and AIFR is slightly worse than its AICV counterpart
but better than L1 FR. Figure 5 presents the comparison results of AICV (with optimal \alpha ),
L1 CV, AIFR (with optimal \alpha ), L1 FR, and L1 + L2

2 for 40\% SPIN and 40\% RVIN, showing
that AICV and AIFR segment more salient regions than their L1 counterparts and L1 + L2

1.
Figure 2(c) is a color image for multiphase segmentation. We set \lambda = 2.25 for all methods,

except for L0 [69] in which \lambda = 50. For the AIFR models, we set \nu = 5. The maximum number
of inner iterations for the AITV models is 1000, while the maximum number of outer iterations
is 40 for AICV and 160 for AIFR. Table 3 presents the DICE indices of the segmentation results
under 0\% to 40\% SPIN/RVIN contamination for each color channel. For SPIN, L1  - 0.25L2

FR is comparable to L1 FR and outperforms it when the noise level is 40\%. For RVIN,
L1  - 0.5L2 and L1  - 0.25L2 FR give the best results in general. We also observe that the
smaller \alpha is, the more robust AICV/AIFR are with respect to impulsive noise. The visual
results 4 are presented in Figure 6 for 40\% SPIN/RVIN, clearly showing that AIFR providesD
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AITV SEGMENTATION 1103

(a) 40\% \mathrm{S}\mathrm{P}\mathrm{I}\mathrm{N} (b) L1  - L2 \mathrm{C}\mathrm{V} (c) L1 \mathrm{C}\mathrm{V} (d) L1  - 0.75L2 \mathrm{F}\mathrm{R} (e) L1 \mathrm{F}\mathrm{R} (f) L1 + L2
2

(g) 40\% \mathrm{R}\mathrm{V}\mathrm{I}\mathrm{N} (h) L1  - L2 \mathrm{C}\mathrm{V} (i) L1 \mathrm{C}\mathrm{V} (j) L1  - 0.75L2 \mathrm{F}\mathrm{R} (k) L1 \mathrm{F}\mathrm{R} (l) L1 + L2
2

Figure 5. Reconstruction results on Figure 2(b) corrupted with 40\% SPIN (top) and 40\% RVIN (bottom).

(a) 40\% \mathrm{S}\mathrm{P}\mathrm{I}\mathrm{N} (b) L1  - 0.25L2 \mathrm{C}\mathrm{V} (c) L1 \mathrm{C}\mathrm{V} (d) L1  - 0.25L2 \mathrm{F}\mathrm{R} (e) L1 \mathrm{F}\mathrm{R} (f) RMS

(g) 40\% \mathrm{R}\mathrm{V}\mathrm{I}\mathrm{N} (h) L1  - 0.25L2 \mathrm{C}\mathrm{V} (i) L1 \mathrm{C}\mathrm{V} (j) L1  - 0.5L2 \mathrm{F}\mathrm{R} (k) L1 \mathrm{F}\mathrm{R} (l) RMS

Figure 6. Reconstruction results on Figure 2(c) corrupted with 40\% SPIN (top) and 40\% RVIN (bottom).

the best segmentation. AICV and L1 CV contain noise along the edges of the blue region, L1

FR oversegments the red region, and RMS appears slightly worse than AIFR.
Overall, the proposed AICV/AIFR methods are robust against impulsive noise, unlike the

two-stage methods. For the three synthetic images, AICV and AIFR with appropriately chosen
\alpha outperform their L1 counterparts under a high level of impulsive noise. Unfortunately, there
is no optimal choice of \alpha that works for all images, as demonstrated by our experiments. For
example, \alpha = 1.0 yields the highest DICE indices for Figure 2(b) according to Table 2, but it
does not perform as well for Figure 2(a) according to Table 1.
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Table 2
DICE indices of various segmentation models applied to Figure 2(b) corrupted with different levels of

impulsive noise.

Salt \& pepper (\%) 0 10 20 30 40 50

L1  - L2 CV \bfone \bfzero .\bfnine \bfnine \bfseven \bfnine 0.9952 \bfzero .\bfnine \bfnine \bftwo \bfzero \bfzero .\bfnine \bfeight \bfsix \bfseven \bfzero .\bfnine \bfseven \bfseven \bffive 

L1  - 0.75L2 CV 0.9994 0.9978 \bfzero .\bfnine \bfnine \bffive \bfseven 0.9896 0.9856 0.9737

L1  - 0.5L2 CV 0.9992 0.9970 0.9910 0.9889 0.9826 0.9512

L1  - 0.25L2 CV 0.9982 0.9924 0.9904 0.9829 0.9726 0.9308

L1 CV 0.9938 0.9918 0.9808 0.9755 0.9457 0.9109

L1  - L2 FR 0.9977 0.9960 0.9931 0.9685 0.8187 0.7273

L1  - 0.75L2 FR 0.9979 0.9955 0.9920 0.9873 0.9795 0.9626

L1  - 0.5L2 FR 0.993 0.9908 0.9802 0.9720 0.9635 0.9409

L1  - 0.25L2 FR 0.9818 0.9786 0.9690 0.9462 0.9441 0.9195

L1 FR 0.9774 0.9705 0.9524 0.9383 0.9301 0.8906

L1 + L2
2 0.9931 0.9907 0.9874 0.9794 0.9726 0.9686

L0 [69] \bfone 0.8734 0.7687 0.6745 0.5945 0.4307

L0 [62] 0.9939 0.9904 0.9823 0.9762 0.9543 0.9266

RMS 0.9853 0.9801 0.9676 0.9444 0.9116 0.8225

Random valued (\%) 0 10 20 30 40 50

L1  - L2 CV \bfone \bfzero .\bfnine \bfnine \bfeight \bfseven \bfzero .\bfnine \bfnine \bfsix \bfsix \bfzero .\bfnine \bfnine \bfthree \bftwo \bfzero .\bfnine \bfeight \bfeight \bfseven \bfzero .\bfnine \bfeight \bftwo \bfsix 

L1  - 0.75L2 CV 0.9994 0.9983 0.9960 0.9915 0.9877 0.9759

L1  - 0.5L2 CV 0.9992 0.9975 0.9916 0.9899 0.9815 0.9535

L1  - 0.25L2 CV 0.9982 0.9928 0.9913 0.9784 0.9748 0.9344

L1 CV 0.9938 0.9920 0.9798 0.9773 0.9493 0.9145

L1  - L2 FR 0.9977 0.9965 0.9943 0.9902 0.9071 0.7154

L1  - 0.75L2 FR 0.9979 0.9960 0.9921 0.9879 0.9815 0.9520

L1  - 0.5L2 FR 0.993 0.9907 0.9797 0.9742 0.9644 0.9526

L1  - 0.25L2 FR 0.9818 0.9781 0.9702 0.9620 0.9534 0.9161

L1 FR 0.9774 0.9656 0.9533 0.9519 0.9316 0.8770

L1 + L2
2 0.9931 0.9912 0.9877 0.9812 0.9755 0.9726

L0 [69] \bfone 0.9032 0.7991 0.6972 0.6089 0.5312

L0 [62] 0.9939 0.9852 0.9846 0.9786 0.9573 0.9298

RMS 0.9853 0.9797 0.9782 0.9465 0.9074 0.8260

(a) (b) (c) (d) (e)

Figure 7. Real images for image segmentation. (a) Close-up of a target board in a video. Size: 89 \times 121.
(b) Image of a hawk. Size: 318\times 370. (c) Image of a butterfly. Size: 321\times 481. (d) Image of a flower. Size:
321\times 481. (e) Image of peppers. Size: 481\times 321.

6.2. Real images. We apply the proposed methods and the two-stage methods on real
images (all rescaled to [0, 1] for the pixel values) shown in Figure 7 without additive noise. Fig-
ure 7(a) is provided in [44] while Figures 7(b)--7(e) are provided by the Berkeley SegmentationD
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Table 3
DICE indices of various segmentation models applied to Figure 2(c) corrupted with different levels of

impulsive noise.

Salt \& pepper (\%) 0 10 20 30 40

L1  - L2 CV 0.9990 0.9762 0.9524 0.9245 0.8548

L1  - 0.75L2 CV 0.9992 0.9763 0.9649 0.9288 0.8978

L1  - 0.5L2 CV 0.9992 0.9789 0.9704 0.9509 0.9292

L1  - 0.25L2 CV 0.9994 0.9852 0.9686 0.9608 0.9448

L1 CV 0.9987 0.9832 0.9788 0.9597 0.9496

L1  - L2 FR 0.9994 0.7869 0.6566 0.5424 0.4552

L1  - 0.75L2 FR 0.9994 0.9328 0.8736 0.8058 0.6541

L1  - 0.5L2 FR 0.9980 0.9905 0.9847 0.9720 0.8976

L1  - 0.25L2 FR 0.9976 0.9921 0.9863 0.9801 \bfzero .\bfnine \bfseven \bffive \bfthree 

L1 FR 0.9976 \bfzero .\bfnine \bfnine \bftwo \bffour \bfzero .\bfnine \bfeight \bfsix \bfnine \bfzero .\bfnine \bfeight \bfzero \bffour 0.9474

L1 + L2
2 0.9984 0.9904 0.9691 0.8984 0.7562

L0 [69] \bfone 0.7611 0.6284 0.5134 0.4225

L0 [62] 0.9997 0.9245 0.7977 0.6536 0.4884

RMS \bfone 0.9900 0.9771 0.9649 0.9575

Random valued (\%) 0 10 20 30 40

L1  - L2 CV 0.9990 0.9895 0.9757 0.9594 0.9261

L1  - 0.75L2 CV 0.9992 0.9910 0.9831 0.9755 0.9664

L1  - 0.5L2 CV 0.9992 0.9934 0.9875 0.9797 0.9737

L1  - 0.25L2 CV 0.9994 0.9934 0.9876 0.9798 0.9771

L1 CV 0.9987 0.9941 0.9884 0.9789 0.9761

L1  - L2 FR 0.9994 0.8841 0.7118 0.6604 0.5972

L1  - 0.75L2 FR 0.9994 0.9916 0.9875 0.9353 0.8790

L1  - 0.5L2 FR 0.998 0.9947 \bfzero .\bfnine \bfnine \bfone \bftwo \bfzero .\bfnine \bfeight \bffive \bfone \bfzero .\bfnine \bfeight \bfthree \bfthree 

L1  - 0.25L2 FR 0.9976 0.9942 \bfzero .\bfnine \bfnine \bfone \bftwo 0.9849 0.9821

L1 FR 0.9976 0.9921 0.9892 \bfzero .\bfnine \bfeight \bffive \bfone 0.9553

L1 + L2
2 0.9984 0.9949 0.9857 0.9803 0.9705

L0 [69] \bfone 0.7744 0.6932 0.5302 0.4478

L0 [62] 0.9997 0.9828 0.9614 0.9482 0.9311

RMS \bfone \bfzero .\bfnine \bfnine \bffive \bfthree 0.9900 0.9849 0.9831

Dataset and Benchmark [50]. Specifically, Figures 7(a) and 7(b) are for two-phase segmenta-
tion, Figure 7(c) is for four-phase segmentation, and Figures 7(d) and 7(e) are for five-phase
and seven-phase segmentation, respectively. We set the maximum number of inner iterations
for CV/FR methods as 300, and the maximum number of outer iterations for CV as 20. The
maximum outer iteration number of the FR methods depends on images, which is set to 40
for Figures 7(a)--7(b), 80 for Figure 7(c), and 160 for Figures 7(d)--7(e). Following the work
of [31], we compute the peak signal-to-noise ratio (PSNR) between the reconstructed image
\~f derived by (6.7) and the original image f . PSNR is defined by 10 log10

3mn\sum 
\iota \in \{ r,g,b\} \| \~f\iota  - f\iota \| 2X

,

and it quantitatively measures the quality of the segmentation results for real color images
without ground truth. The PSNR values are recorded in Table 4. As the CV methods are
inapplicable to non-power-of-2 segmentation examples, we indicate by NA (``not applicable"")
their results on Figures 7(d)--7(e) in Table 4.D
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Table 4
PSNR values of segmentation methods applied to real color images. NA stands for ``not applicable.""

Figure 7(b) Figure 7(c) Figure 7(d) Figure 7(e)

L1  - L2 CV 23.3949 21.9000 NA NA

L1  - 0.75L2 CV 23.3933 21.9001 NA NA

L1  - 0.5L2 CV \bftwo \bfthree .\bffour \bfzero \bfzero \bfone 21.8976 NA NA

L1  - 0.25L2 CV 23.3913 21.8985 NA NA

L1 CV 23.3690 21.8977 NA NA

L1  - L2 FR 23.4223 22.2574 21.8283 22.2597

L1  - 0.75L2 FR 23.4014 \bftwo \bftwo .\bftwo \bffive \bfseven \bfeight 21.8383 22.4880

L1  - 0.5L2 FR 23.3814 22.2576 \bftwo \bfone .\bfeight \bffour \bfone \bfeight \bftwo \bftwo .\bffour \bfnine \bfzero \bfone 

L1  - 0.25L2 FR 23.3523 22.2575 \bftwo \bfone .\bfeight \bffour \bfone \bfeight 22.4672

L1 FR 23.3173 22.2570 21.8409 21.9482

L1 + L2
2 23.2601 21.6077 21.1802 21.0277

L0 [69] 23.2419 22.2570 21.7914 22.0361

L0 [62] 23.1985 17.7573 21.8129 21.9703

RMS 23.0865 17.7140 21.7832 22.0904

For Figure 7(a), we set \lambda = 100 for all methods, except for L0 [69] in which \lambda = 10000.
For all FR methods, we set \nu = 35. The initialization for the CV and FR methods is a step
function of a circle in the image center with radius 10. The segmentation results of these
competing methods are displayed in Figure 8, each equipped with a zoomed-in region of the
bottom right of the image. We observe that as \alpha decreases, the CV methods segment lesser
regions, while the FR methods identify lesser gaps. The results of the two-stage methods are
not as detailed as the results provided by L1  - L2 CV and FR.

For Figure 7(b), we set \lambda = 50 for L0 [69], \lambda = 10 for the other methods, and \nu = 10.0 for
the FR methods. The initialization for the CV and FR methods is the same as Figure 7(a).
Quantitative comparison of these methods is listed in Table 4, showing that the AICV and
AIFR methods outperform their L1 counterparts. The visual results in Figure 9 demonstrate
that AICV and AIFR can segment finer details, especially on the branch on the left side of
the image and on the hawk, than their L1 counterparts, which thereby explains their higher
PSNR values.

For Figure 7(c), we set \lambda = 1000 for all methods and \nu = 650 for the FR methods.
Initialization for the CV methods are two step functions of circles both with radius 10, one
shifted 5 pixels to the left of the image center and the other shifted 5 pixels to the right.
For the FR methods, the initialization of the membership functions are uniformly distributed
in [0, 1] and then normalized. Figure 10 compares the AIFR and AICV methods (using the
optimal \alpha value that corresponds to the highest PSNR in Table 4) with their L1 counterparts.
As PSNR values are all similar, we do not observe much visual differences between the images
in Figure 10.

For Figure 7(d), we set \lambda = 650 for all methods, except L0 [69] in which \lambda = 1000. For the
FR methods, we set \nu = 1050. For Figure 7(e), we set \lambda = 500 for all methods and \nu = 400 for
the FR methods. Initialization of the membership functions for the FR methods is the same
as for Figure 7(c). The segmentation results of the FR methods and the two-stage methods
are shown in Figures 11 and 12. In Figure 11, the results of the FR methods have betterD
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(a) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} (b) L1 + L2
2 (c) L0 [69] (d) L0 [62] (e) RMS

(f) L1  - L2 \mathrm{C}\mathrm{V} (g) L1  - 0.75L2 \mathrm{C}\mathrm{V} (h) L1  - 0.5L2 \mathrm{C}\mathrm{V} (i) L1  - 0.25L2 \mathrm{C}\mathrm{V} (j) L1 \mathrm{C}\mathrm{V}

(k) L1  - L2 \mathrm{F}\mathrm{R} (l) L1  - 0.75L2 \mathrm{F}\mathrm{R} (m) L1  - 0.5L2 \mathrm{F}\mathrm{R} (n) L1  - 0.25L2 \mathrm{F}\mathrm{R} (o) L1 \mathrm{F}\mathrm{R}

Figure 8. Segmentation results on Figure 7(a). (The images may need to be zoomed in on a PDF reader
to see the differences.)

contrast than the result of L1 + L2
2 and thus they look more similar to the original image.

In Figure 12, L1  - L2 FR, L1 FR, and L0 are unable to identify the yellow/orange peppers
behind the red peppers, which explains their lower PSNR values. Although the results of the
AIFR methods for \alpha = 0.25, 0.5, 0.75 appear similar to L1 +L2

2 and RMS , L1  - 0.5L2 attains
the best segmentation based on its PSNR value.

Last, we report the computational times of the segmentation methods in Table 5. Admit-
tedly, the proposed methods are slower compared to other segmentation methods. Besides,
our computational times largely depend on the image size, the number of channels, and the
number of uk's needed to segment. The acceleration of the proposed scheme will be left for
future investigation.

In summary, given particular choices of \alpha , the AITV models outperform their L1 counter-
parts and the two-stage methods. For Figure 7(a), larger values of \alpha provide better segmen-
tation results, but this may not be the case for other images. Thus, the optimal \alpha value in an
AITV model varies for an individual image. In addition, although the AITV methods tendD
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(a) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} (b) L1  - 0.5L2 \mathrm{C}\mathrm{V} (c) L1 \mathrm{C}\mathrm{V} (d) L1  - 0.75L2 \mathrm{F}\mathrm{R} (e) L1 \mathrm{F}\mathrm{R}

Figure 9. Reconstruction results on Figure 7(b).

(a) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} (b) L1  - 0.75L2 \mathrm{C}\mathrm{V} (c) L1 \mathrm{C}\mathrm{V} (d) L1  - 0.75L2 \mathrm{F}\mathrm{R} (e) L1 \mathrm{F}\mathrm{R}

Figure 10. Reconstruction results on Figure 7(c).

(a) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} (b) L1  - L2 \mathrm{F}\mathrm{R} (c) L1  - 0.75L2 \mathrm{F}\mathrm{R} (d) L1  - 0.5L2 \mathrm{F}\mathrm{R} (e) L1  - 0.25L2 \mathrm{F}\mathrm{R}

(f) L1 \mathrm{F}\mathrm{R} (g) L1 + L2
2 (h) L0 [69] (i) L0 [62] (j) RMS

Figure 11. Reconstruction results on Figure 7(d).
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AITV SEGMENTATION 1109

(a) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} (b) L1  - L2 \mathrm{F}\mathrm{R} (c) L1  - 0.75L2 \mathrm{F}\mathrm{R} (d) L1  - 0.5L2 \mathrm{F}\mathrm{R} (e) L1  - 0.25L2 \mathrm{F}\mathrm{R}

(f) L1 \mathrm{F}\mathrm{R} (g) L1 + L2
2 (h) L0 [69] (i) L0 [62] (j) RMS

Figure 12. Reconstruction results on Figure 7(e).

Table 5
Computational time (seconds) of segmentation methods applied to real color images. NA stands for ``not

applicable.""

Figure 7(a) Figure 7(b) Figure 7(c) Figure 7(d) Figure 7(e)

L1  - L2 CV 2.06 16.09 49.27 NA NA

L1  - 0.75L2 CV 1.86 15.91 55.91 NA NA

L1  - 0.5L2 CV 2.08 15.89 70.68 NA NA

L1  - 0.25L2 CV 2.17 16.09 71.23 NA NA

L1 CV 1.78 16.23 54.94 NA NA

L1  - L2 FR 2.51 43.65 66.27 191.30 212.28

L1  - 0.75L2 FR 1.91 46.26 64.98 185.26 233.79

L1  - 0.5L2 FR 1.23 15.29 68.3 175.67 263.52

L1  - 0.25L2 FR 0.92 13.18 69.49 182.08 227.62

L1 FR 0.72 13.18 69.49 182.08 227.62

L1 + L2
2 0.24 1.8 \bfone .\bftwo 1.75 2.48

L0 [69] \bfzero .\bfone \bffive \bfzero .\bfnine \bftwo 1.71 \bfone .\bfsix \bfone .\bfnine \bfseven 

L0 [62] 0.17 2.96 3.06 3.05 4.26

RMS 0.61 6.60 17.71 17.24 20.10

to be slower than the two-stage methods, they are consistently more accurate based on their
PSNR values. This observation is apparent in Figures 7(c)--7(e), the most complex images
tested in this section.

7. Conclusions and future works. In this paper, we proposed AICV and AIFR models
for piecewise-constant segmentation that can deal with both grayscale and color images. We
developed alternating minimization algorithms utilizing DCA and PDHGLS to efficiently solveD
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the models. Convergence analyses were provided to demonstrate that the objective functions
were monotonically decreasing and to validate the efficacy of the algorithms. Numerical results
illustrated that the AICV/AIFR models outperform their anisotropic counterparts on various
images in a robust manner. The segmentation results are comparable and sometimes better
than those of the two-stage segmentation methods.

In the future, we will consider the application of the weighted anisotropic-isotropic penalty
to other types of segmentation approaches, such as piecewise-smooth formulations [31, 37],
the Potts models [58, 63, 68], the FR model [41], and deep learning techniques [29, 30, 35].
Since the two-stage methods are generally faster to run than our methods, we will leave the
acceleration as a future work. Another future direction involves segmenting blurry images by
combining our proposed models with some deblurring techniques. The numerical experiments
demonstrated that there is no optimal, universal \alpha for all images, which motivates us to
develop an automatic method to select \alpha for any given image in the future. As AICV/AIFR
models indicate the success of using nonconvex penalty terms in image processing, we aim
at other nonconvex penalties, such as transformed L1 [53, 76] and L1/L2 [59, 67], for image
segmentation and other imaging problems including denoising and deblurring.

Acknowledgment. We would like to thank the anonymous referees for their useful sug-
gestions and feedback, which significantly improved the presentation of the paper.
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