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Abstract

Question answering (QA) is an important as-
pect of open-domain conversational agents,
garnering specific research focus in the con-
versational QA (ConvQA) subtask. One no-
table limitation of recent ConvQA efforts is the
response being answer span extraction from
the target corpus, thus ignoring the natural lan-
guage generation (NLG) aspect of high-quality
conversational agents. In this work, we pro-
pose a method for situating QA responses
within a SEQ2SEQ NLG approach to gener-
ate fluent grammatical answer responses while
maintaining correctness. From a technical per-
spective, we use data augmentation to gen-
erate training data for an end-to-end system.
Specifically, we develop Syntactic Transforma-
tions (STs) to produce question-specific can-
didate answer responses and rank them using
a BERT-based classifier (Devlin et al., 2019).
Human evaluation on SQuAD 2.0 data (Ra-
jpurkar et al., 2018) demonstrate that the pro-
posed model outperforms baseline CoQA and
QuAC models in generating conversational re-
sponses. We further show our model’s scalabil-
ity by conducting tests on the CoQA dataset.'

1 Introduction

Factoid question answering (QA) has recently en-
joyed rapid progress due to the increased availabil-
ity of large crowdsourced datasets (e.g., SQuAD
(Rajpurkar et al., 2016), MS MARCO (Bajaj et al.,
2016), Natural Questions (Kwiatkowski et al.,
2019)) for training neural models and the signifi-
cant advances in pre-training contextualized repre-
sentations using massive text corpora (e.g., ELMo
(Peters et al., 2018), BERT (Devlin et al., 2019)).
Building on these successes, recent work exam-
ines conversational QA (ConvQA) systems capa-
ble of interacting with users over multiple turns.

"The code and data are available at

https://github.com/abaheti95/QADialogSystem.
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Large crowdsourced ConvQA datasets (e.g., CoQA
(Reddy et al., 2019), QuAC (Choi et al., 2018))
consist of dialogues between crowd workers who
are prompted to ask and answer a sequence of ques-
tions regarding a source document. Although these
ConvQA datasets support multi-turn QA interac-
tions, the responses have mostly been limited to
extracting text spans from the source document and
do not readily support abstractive answers (Yatskar,
2019a). While responses copied directly from a
Wikipedia article can provide a correct answer to
a user question, they do not sound natural in a
conversational setting. To address this challenge,
we develop SEQ2SEQ models that generate fluent
and informative answer responses to conversational
questions.

To obtain data needed to train these models,
rather than constructing yet-another crowdsourced
QA dataset, we transform the answers from an ex-
isting QA dataset into fluent responses via data aug-
mentation. Specifically, we synthetically generate
supervised training data by converting questions
and associated extractive answers from a SQuAD-
like QA dataset into fluent responses via Syntactic
Transformations (STs). These STs over-generate
a large set of candidate responses from which a
BERT-based classifier selects the best response as
shown in the top half of Figure 1.

While over-generation and selection generates
fluent responses in many cases, the brittleness of
the off-the-shelf parsers and the syntatic transfor-
mation rules prevent direct use in cases that are not
well-covered. To mitigate this limitation, we gen-
erate a new augmented training dataset using the
best response classifier that is used to train end-to-
end response generation models based on Pointer-
Generator Networks (PGN) (See et al., 2017) and
pre-trained Transformers using large amounts of
dialogue data, DialoGPT (D-GPT) (Zhang et al.,
2019). In §3.2 and §3.3, we empirically demon-
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Figure 1: Overview of our method of generating conversational responses for a given QA. In the first method,
the Syntactic Transformations (STs) over-generate a list of responses (good and bad) using the question’s parse
tree and the best response classifier selects the most suitable response from the list. Our second method uses this
pipeline to augment training data for training a SEQ2SEQ networks PGN or D-GPT (§3.1). The final SEQ2SEQ
model is end-to-end, scalable, easier to train, and performs better than the first method exclusively.

strate that our proposed NLG models are capable
of generating fluent, abstractive answers on both
SQuAD 2.0 and CoQA.

2 Generating Fluent QA Responses

In this section, we describe our approach for con-
structing a corpus of questions and answers that
supports fluent answer generation (top half of Fig-
ure 1). We use the framework of overgenerate
and rank previously used in the context of ques-
tion generation (Heilman and Smith, 2010). We
first overgenerate answer responses for QA pairs
using STs in §2.1. We then rank these responses
from best to worst using the response classification
models described in §2.2. Later in §3, we describe
how we augment existing QA datasets with fluent
answer responses using STs and a best response
classifier. This augmented QA dataset is used for
training the PGN and Transformer models.

2.1 Syntactic Transformations (STs)

The first step is to apply the Syntactic Transfor-
mations (STs) to the question’s parse tree along
with the expert answer phrase to produce multiple
candidate responses. For the STs to work effec-
tively accurate question parses are essential. We
use the Stanford English lexparser®(Klein and Man-
ning, 2003), which is trained on WSJ sections 1-21,
QuestionBank (Judge et al., 2006), amongst other
corpora. However, this parser still fails to recognize
~ 20% of the questions (neither SBARQ nor SQ
tag is assigned). For such erroneous parse trees, we
simply output the expert answer phrase as a single

Zhttps://nlp.stanford.edu/software/parser-faq.html#z
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response. The remaining questions are processed
via the following transformations to over-generate
a list of candidate answers: (1) Verb modifica-
tion: change the tense of the main verb based on
the auxiliary verb using SimpleNLG (Gatt and Re-
iter, 2009); (2) Pronoun replacement: substitute
the noun phrase with pronouns from a fixed list;
(3) Fixing Preposition and Determiner: find the
preposition and determiner in the question’s parse
tree that connects to the answer phrase and add
all possible prepositions and determiners if miss-
ing. (4) Response Generation: Using Tregex and
Tsurgeon (Levy and Andrew, 2006), compile re-
sponses by combining components of all previous
steps and the answer phrase. In cases where there
are multiple options in steps (2) and (3), the num-
ber of options can explode and we use the best
response classifier (described below) to winnow.
An example ST process is shown in Figure 2.

2.2 Response Classification and Baselines

A classification model selects the best response
from the list of ST-generated candidates. Given
the training dataset, D, described in §2.3 of n
question-answer tuples (g;, a;), and their list of
corresponding responses, {71, 72, ..., Tim, |, the
goal is to classify each response r;; as bad or good.
The probability of the response being good is later
used for ranking. We experiment with two different
model objectives described below,

Logistic: We assume that the responses for each
g; are independent of each other. The model (F'())
classifies each response separately and assigns 1
(or 0) if 7;; is a good (or bad) response for g;.
The Logistic loss is given by 37" | ", log(1 +
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Figure 2: An example of Syntactic Transformations in
action. Question: “what year did the Netherlands rise
up against Philip I1?” Answer: “1568”. Using the ques-
tion’s parse tree we: (1) modify the verb “rise” based
on the auxiliary verb “did” (red); (2) add missing prepo-
sitions and determiners (sky blue); (3) combine the
subject and other components with the answer phrase
(green) to generate the candidate R;. In another candi-
date Ro, we swap the subject with pronoun “they” (pur-
ple). Our transformations can also optionally remove
Prepositional-Phrases (PP) as shown in Rs (orange). In
the figure, we only show two candidates but in reality
the transformations generate many more different can-
didates, including many implausible ones.

e~ Vis*F(ai.0i7i5)) where yi; is the label for 7;;.
Softmax: We will discuss in §2.3 that annota-
tors are expected to miss a few good responses
since good and bad answers are often very sim-
ilar (may only differ by a single preposition or
pronoun). Therefore, we explore a ranking ob-
jective that calculates errors based on the margin
with which incorrect responses are ranked above
correct ones (Collins and Koo, 2005). Without
loss of generality, we assume 7;; to be better
than all other responses for (g;,a;). Since the
model F'() should rank r;; higher than all other
responses, we use the margin error M;;(F) =
F(qi,as, 1) — F(qi, ai, ri;) to define the Softmax
lossas ) i log (1 + >0, e_Mij(F)>.

We experiment with the following feature based

and neural models with the two loss functions:
Language Model Baseline: The responses are
ranked using the normalized probabilities from a
3-gram LM trained on the Gigaword corpus with
modified Kneser-Ney smoothing.> The response
with the highest score is classified as 1 and others
as 0.
Linear Model: A linear classifier using features
inspired by Heilman and Smith (2010) and Wan
et al. (2006), who have implemented similar linear
models for other sentence pair classification tasks.
Specifically, we use the following features:

3http:// www.keithv.com/software/giga/

e Length (Features 1-3): word length of question
qi, answer-phrase a;, and response 7;;

e WH-word (Features 4-12): [0-1 feat.] what,
who, whom, whose, when, where, which, why or
how is present in the g;

e Negation (Features 13): [0-1 feat.] no, not or
none is present in the g;

e N-gram LM (Features 14-21): 2, 3-gram nor-
malized probability and perplexity of ¢; and r;;

e Grammar (Features 22-93): node counts of g;
and r;; syntactic parse trees

e Word overlap (Features 94-96): three features

based on fraction of word overlap between g;
overlap(qi,rij)
lgi

and their harmonic mean

and ;. precision = , recall =

overlap(q;,rij)
I7i;]

Decomposable Attention: We use the sentence
pair classifier from (Parikh et al., 2016), referred
as the DA model. It finds attention based word-
alignment of the input pair (premise and hypothesis,
in our case question ¢; and response 7;;) and aggre-
gates it using feedforward networks. Apart from
standard vector embeddings, we also experiment
with contextualized ELMo (Peters et al., 2018) em-
bedding with the DA model using the version im-
plemented in AllenNLP (Gardner et al., 2017).
BERT: Lastly, we use the BERT-Base, Uncased
model (Devlin et al., 2019) for sentence pair classi-
fication. The model takes question ¢; and response
r;; separated by the special token [SEP] and pre-
dicts if the response is suitable or unsuitable.

In some cases, the number of responses gener-
ated by the STs for a question could be as high as
5000+. Therefore, when training the DA model
with pre-trained contextualized embeddings such
as ELMo or the BERT model in the Softmax loss
setting, backpropagation requires computing and
storing hidden states for 5000+ different responses.
To mitigate this issue, we use strided negative-
sampling. While training, we first separate all the
suitable responses from all the remaining unsuit-
able responses. We then divide all the responses
for g; into smaller batches of K or fewer responses.
Each batch comprises one suitable response (ran-
domly chosen) and K — 1 sampled from the un-
suitable responses. To ensure that all unsuitable
responses are used at least once during the training,
we shuffle them and then create smaller batches
by taking strides of K — 1 size. We use K = 150
for DA+ELMo and K = 50 for BERT when train-
ing with the Softmax loss. At test time, we com-
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pute logits on the CPU and normalize across all
responses.

2.3 Training Data for Response Classification

In this section, we describe the details of the train-
ing, validation and testing data used to develop the
best response classifier models. To create the super-
vised data, we choose a sample from the train-set
of the SQuAD 2.0 dataset (Rajpurkar et al., 2018).
SQuAD 2.0 contains human-generated questions
and answer spans selected from Wikipedia para-
graphs. Before sampling, we remove all the QA
pairs which had answer spans > 5 words as they
tend to be non-factoid questions and complete sen-
tences in themselves (typically “why” and “how”
questions). We also filter out questions that cannot
be handled by the parser (~ 20% of them had ob-
vious parser errors). After these filtering, we take a
sample of 3000 questions and generate their list of
responses using STs (1,561,012 total responses).

Next, we developed an annotation task on Ama-
zon Mechanical Turk to select the best responses
for the questions. For each question, we ask the
annotators to select a response from the list of re-
sponses that correctly answers the question, sounds
natural, and seems human-like. Since the list of
responses for some questions is as long as 5000+,
the annotators can’t review all of them before se-
lecting the best one. Hence, we implement a search
feature within the responses list such that annota-
tors can type in a partial response in the search
box to narrow down the options before selection.
To make their job easier, we also sorted responses
by length. This encouraged annotators to select
relatively short responses which we found to be
beneficial, as one would prefer an automatic QA
system to be terse. To verify that the annotators
didn’t cheat this annotation design by selecting
the first/shortest option, we also test a Shortest
Response Baseline as another baseline response
classifier model, where first/shortest response in
the list is selected as suitable.

Each question is assigned 5 annotators. There-
fore, there can be at most 5 unique annotated re-
sponses for each question. This decreases the recall
of the gold truth data (since there can be more than
5 good ways of correctly responding to a question).
On the other hand, bad annotators may choose a
unique yet suboptimal/incorrect response, which
decreases the precision of the gold truth.

After annotating the 3000 questions from
SQuAD 2.0 sample, we randomly split the data
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#q/#a | Lo | Kitr
Train | 1756 2028 | 796174
Val [ 300 791 [ 172135
Test | 700 1833 | 182963

Table 1: Statistics of the SG training, validation, and
test sets curated from the SQuAD 2.0 training data.
q and a denotes the question and answer from the
SQuAD 2.0 sample and r denotes the responses gen-
erated by the STs. #g¢ means “number of questions”.
v #r and X#r denotes the number of responses which
are labeled 1 and O respectively after the human anno-
tation process.

into 2000 train, 300 validation, and 700 test ques-
tions. We refer to this as the SQuAD Gold an-
notated (SG) data. To increase SG training data
precision, we assign label 1 only to responses that
are marked as best by at least two different anno-
tators. Due to this hard constraint, 244 questions
from the training data are removed (i.e. the 5 an-
notators marked 5 unique responses). On the other
hand, to increase the recall of the SG test and vali-
dation sets, we retain all annotations.* We assign
label O to all remaining responses (even if some of
them are plausible). The resulting SG data split is
summarized in Table 1.

Every response may be marked by zero or more
annotators. When at least two annotators select
the same response from the list we consider it as a
match. To compute the annotator agreement score,
we divide the number of matches with total num-
ber of annotations by each annotator. Using this
formula we find average annotator agreement to be
0.665, where each annotator’s agreement score is
weighted by their number of annotated questions.

2.4 Evaluation of Response Classification

As previously mentioned in §2.3, the SG data
doesn’t contain all true positives since one can-
not exhaustively find and annotate all the good
responses when the response list is very long. Ad-
ditionally, there is a large class imbalance between
good and bad responses, making standard evalua-
tion metrics such as precision, recall, F1 score and
accuracy potentially misleading. To gather addi-
tional insight regarding how well the model ranks
correct responses over incorrect ones, we calculate

“We found that some bad annotators had a high affinity of
choosing the first (or the shortest) response when it was not
the best choice in the list. To reduce such annotation errors
we add another constraint that the shortest response should be
selected by at least 2 different annotators.



Classifier Loss | P@1 | Max-F1 | PR-AUC
ShortResp | - 0.324 | 0.189 -
LangModel | - 0.058 | 0.012 -
Linear Log. | 0.680 | 0.159 0.070
Linear Soft. | 0.640 | 0.387 0.344
DA Log. | 0.467 | 0.151 0.066
DA+ELMo | Log. | 0.694 | 0.354 0.301
DA Soft. | 0.503 | 0.383 0.297
DA+ELMo | Soft. | 0.716 | 0.456 0.427
BERT Log. | 0.816 | 0.490 0.465
BERT Soft. | 0.833 | 0.526 0.435

Table 2: Best response classifier results on SG test
data. “ShortResp” stands for Shortest Response base-
line, “LangModel” stands for Language Model base-
line, “Linear” stands for Linear model. “Log.” and
“Soft.” in Loss column stands for Logistic and Softmax
loss respectively. DA refers to Decomposable Atten-
tion model (Parikh et al., 2016). “+ELMo” refers to
adding pre-trained ELMo embeddings to DA model.

Precision@1 (P@1),> Max. F1,% and Area Under
the Precision-Recall Curve (PR-AUC). We train all
classifier models on the SG training set and evalu-
ate them on SG test data. The resulting evaluation
is presented in Table 2.

The results show that the shortest response base-
line (ShortResp) performs worse than the ML mod-
els (0.14 to 0.51 absolute P@1 difference depend-
ing on the model). This verifies that annotation
is not dominated by presentation bias where anno-
tators are just selecting the shortest (first in the
list) response for each question. The language
model baseline (LangModel) performs even worse
(0.41 to 0.78 absolute difference), demonstrating
that this task is unlikely to have a trivial solution.
The feature-based linear model shows good per-
formance when trained with Softmax loss beating
many of the neural models in terms of PR-AUC
and Max-F1. By inspecting the weight vector, we
find that grammar features, specifically the num-
ber of prepositions, determiners, and “to”’s in the
response, are the features with the highest weights.
This probably implies that the most important chal-
lenge in this task is finding the right prepositions
and determiners in the response. Other important
features are the response length and the response’s
3-gram LM probabilities. The ostensible limitation
of feature-based models is failing to recognize cor-
rect pronouns for unfamiliar named entities in the
questions.

Due to the small size of SG train set, the vanilla

SP@1 is the % of times the correct response is ranked first
®Max. F1 is the maximum F1 the model can achieve by
choosing the optimal threshold in the PR curve
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Decomposable Attention (DA) model is unable to
learn good representations on its own and accord-
ingly, performs worse than the linear feature-based
model. The addition of ELMo embeddings appears
to help to cope with this. We find that the DA
model with ELMo embeddings is better able to
predict the right pronouns for the named entities,
presumably due to pre-trained representations. The
best neural model in terms of P@1 is the BERT
model fine-tuned with the Softmax loss (last row
of Table 2).

3 Data-Augmentation and Generation

SEQ2SEQ models are very effective in generation
tasks. However, our 2028 labeled question and re-
sponse pairs from the SG train set (Table 1) are
insufficient for training these large neural mod-
els. On the other hand, creating a new large-scale
dataset that supports fluent answer generation by
crowdsourcing is inefficient and expensive. There-
fore, we augment SQuAD 2.0 with responses from
the STs+BERT classifier (Table 2) to create a syn-
thetic training dataset for SEQ2SEQ models. We
take all the QA pairs from the SQuAD 2.0 train-set
which can be handled by the question parser and
STs, and rank their candidate responses using the
BERT response classifier probabilities trained with
Softmax loss (i.e. ranking loss (Collins and Koo,
2005)). Therefore, for each question we select the
top ranked responses’ by setting a threshold on the
probabilities obtained from the BERT model. We
refer to the resulting dataset as SQuAD-Synthetic
(SS) consisting of 59,738 (g, a, r) instances.

To increase the size of SS training data, we take
the QA pairs from Natural Questions (Kwiatkowski
et al., 2019) and HarvestingQA8 (Du and Cardie,
2018) and add (g, a, r) instances using the same
STs+BERT classifier technique. These new pairs
combined with SS result in a dataset of 1,051,938
(g, a,r) instances, referred to as the SS+ dataset.

3.1 PGN, D-GPT, Variants and Baselines

Using the resulting SS and SS+ datasets, we train
Pointer generator networks (PGN) (See et al.,
2017), DialoGPT (D-GPT) (Zhang et al., 2019) and
their variants to produce a fluent answer response

7at most three responses per question

8HarvestingQA is a QA dataset containing 1M QA pairs
generated over 10,000 top-ranking Wikipedia articles. This
dataset is noisy as the questions are automatically generated
using an LSTM based encoder-decoder model (which makes
use of coreference information) and the answers are extracted
using a candidate answer extraction module.



generator. The input to the generation model is
the question and the answer phrase (g, a) and the
response 7 is the corresponding generation target.
PGN: PGNs are widely used SEQ2SEQ models
equipped with a copy-attention mechanism capable
of copying any word from the input directly into
the generated output, making them well equipped
to handle rare words and named entities present in
questions and answer phrases. We train a 2-layer
stacked bi-LSTM PGN using the OpenNMT toolkit
(Klein et al., 2017) on the SS and SS+ data. We
additionally explore PGNs with pre-training infor-
mation by initializing the embedding layer with
GloVe vectors (Pennington et al., 2014) and pre-
training it with (g, r) pairs from the questions-only
subset of the OpenSubtitles corpus’ (Tiedemann,
2009). This corpus contains about 14M question-
response pairs in the training set and 10K pairs in
the validation set. We name the pre-trained PGN
model as PGN-Pre. We also fine-tune PGN-Pre
on the SS and SS+ data to generate two additional
variants.
D-GPT: DialoGPT (i.e. dialogue generative pre-
trained transformer) (Zhang et al., 2019) is a re-
cently released large tunable automatic conversa-
tion model trained on 147M Reddit conversation-
like exchanges using the GPT-2 model architec-
ture (Radford et al., 2019). We fine-tune D-GPT
on our task using the SS and SS+ datasets. For
comparison we also train GPT-2 on our datasets
from scratch (i.e. without any pre-training). Fi-
nally, to assess the impact of pre-training datasets,
we pre-train the GPT-2 on the 14M questions from
questions-only subset of the OpenSubtitles data
(similar to the PGN-Pre model) to get GPT-2-Pre
model. The GPT-2-Pre is later fine-tuned on the SS
and SS+ datasets to get two corresponding variants.
CoQA Baseline: Conversational Question
Answering (CoQA) (Reddy et al., 2019) is a
large-scale ConvQA dataset aimed at creating
models which can answer the questions posed in
a conversational setting. Since we are generating
conversational responses for QA systems, it is
sensible to compare against such ConvQA systems.
We pick one of the best performing BERT-based
CoQA model from the SMRCToolkit (Wu et al.,
2019) as a baseline.'” We refer to this model as the
CoQA baseline.
QuAC Baseline: Question Answering in Context
“http://forum.opennmt.net/t/english-chatbot-model-with-

opennmt/184
%one of the top performing model with available code.
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is another ConvQA dataset. We use the modified
version of BiDAF model presented in (Choi et al.,
2018) as a second baseline. Instead of a SEQ2SEQ
generation, it selects spans from passage which
acts as responses. We use the version of this model
implemented in AllenNLP (Gardner et al., 2017)
and refer to this model as the QuAC baseline.
STs+BERT Baseline: We also compare our gen-
eration models with the technique that created the
SS and SS+ training datasets (i.e. the responses
generated by STs ranked with the BERT response
classifier).

We validate all the SEQ2SEQ models on the hu-
man annotated SG data (Table 1).

3.2 Evaluation on the SQuAD 2.0 Dev Set

To have a fair and unbiased comparison, we create
a new 500 question sample from the SQuAD 2.0
dev set (SQuAD-dev-test) which is unseen for all
the models and baselines. This sample contains
~ 20% of the questions that cannot be handled by
the STs (parser errors). For such questions, we
default to outputting the answer-phrase as the re-
sponse for the STs+BERT baseline. For the CoQA
baseline and the QuAC baseline, we run their mod-
els on passages (corresponding to the questions)
from SQuAD-dev-test to get their responses.

To demonstrate that our models too can operate
in a fully automated setting like the CoQA base-
line and the QuAC baseline, we generate their re-
sponses using the answer spans selected by a BERT-
based SQuAD model (instead of the gold answer
span from the SQuAD-dev-test).

For automatic evaluation we compute validation
perplexity of all SEQ2SEQ generation models on
SG data (3"% column in Table 3). However, vali-
dation perplexity is a weak evaluator of generation
models. Also, due to the lack of human-generated
references in SQuAD-dev-test, we cannot use other
typical generation based automatic metrics. There-
fore, we use Amazon Mechanical Turk to do human
evaluation. Each response is judged by 5 annota-
tors. We ask the annotators to identify if the re-
sponse is conversational and answers the question
correctly. While outputting answer-phrase to all
questions is trivially correct, this style of response
generation seems robotic and unnatural in a pro-
longed conversation. Therefore, we also ask the
annotators to judge if the response is a complete-
sentence (e.g. “it is in Indiana”) and not a sentence-
fragment (e.g. “Indiana”). For each question and
response pair, we show the annotators five options
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a b c d e
X 4 X v v/ correct answer
Model Data | PPL X X v v v complete-sentence
- - - X v grammaticality
CoQA B. - - 13.80 | 82.20 | 1.20 | 0.60 2.20
QuAC B. - - 5.20 3.80 | 4640 | 2.80 || 41.80
STs+BERT B. - - 0.00 | 18.20 | 0.20 | 13.80 || 67.80
PGN SS [ 6.60 | 1.00 | 7.00 | 9.00 | 16.20 || 66.80
PGN SS+ [ 383 ] 1.00 | 3.00 | 840 | 17.60 || 70.00
PGN-Pre SS | 434 | 020 | 460 | 9.80 | 17.40 || 68.00
PGN-Pre SS+ [ 331 ] 040 | 480 | 9.00 | 16.20 || 69.60
GPT-2 SS 1469 ] 1.00 | 5.00 | 13.20 | 18.60 || 62.20
GPT-2 SS+ | 2.70 | 0.80 | 4.20 8.20 | 16.80 || 70.00
GPT-2-Pre SS [323] 040 | 2.80 | 820 | 19.00 || 69.60
GPT-2-Pre SS+ | 2741 080 | 240 | 7.80 | 17.00 || 72.00
D-GPT SS | 220 | 0.40 2.40 8.60 | 13.00 || 75.60
D-GPT SS+ [ 2.06 | 040 | 2.60 | 7.80 | 13.20 || 76.00
D-GPT (0) SS+ | 2.06 | 0.00 | 3.00 | 0.00 | 13.80 || 83.20

Table 3:

Human evaluation results of all the models and baselines on sample of SQuAD-dev-test. In the first

three rows B. stands for baseline. In the last row ”’(0)” stands for oracle. In Column 3 PPL stands for validation
perplexity. All the values are percentage (out of 100) of responses from each model that belong to specific option(a

to e) selected by annotators.

based on the three properties (correctness, gram-
maticality, and complete-sentence). These five op-
tions (a to e) are shown in the Table 3 header.
The best response is a complete-sentence which
is grammatical and answers the question correctly
(i.e. option e). Other options give us more insights
into different models’ behavior. For each response,
we assign the majority option selected by the anno-
tators and aggregate their judgments into buckets.
We present this evaluation in Table 3.

We compute the inter-annotator agreement by
calculating Cohen’s kappa (Cohen, 1960) between
individual annotator’s assignments and the aggre-
gated majority options. The average Cohen’s kappa
(weighted by the number of annotations for every
annotator) is 0.736 (i.e. substantial agreement).

The results reveal that CoQA baseline does the
worst in terms of option e. The main reason for that
is because most of the responses generated from
this baseline are exact answer spans. Therefore,
we observe that it does very well in option b (i.e.
correct answer but not a complete-sentence). The
QuAC baseline can correctly select span-based in-
formative response ~ 42% of the time. Other times,
however, it often selects a span from the passage
which is related to the topic but doesn’t contain the
correct answer i.e. (option c). Another problem
with this baseline is that it is restricted by the input
passage and many not always be able to find a valid
span that answers the questions. Our STs+BERT
baseline does better in terms of option e compared
to the other baselines but it is limited by the STs
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and the parser errors. As mentioned earlier, ~ 20%
of the time this baseline directly copies the answer-
phrase in the response which explains the high
percentage of option b.

Almost all models perform better when trained
with SS+ data showing that the additional data
from Natural Questions and HarvestingQA is help-
ing. Except for the PGN model trained on SS data,
all other variants perform better than STs+BERT
baseline in terms of option e. The GPT-2 model
trained on SS data from scratch does not perform
very well because of the small size of training
data. The pretraining with OpenSubtitiles ques-
tions boosts its performance (option e % for GPT-2-
Pre model variants > option e % for GPT-2 model
variants). The best model however is D-GPT when
finetuned with SS+ dataset. While retaining the
correct answer, it makes less grammatical errors
(lower % in option c and d compared to other
models). Furthermore with oracle answers it per-
forms even better (last row in Table 3). This shows
that D-GPT can generate better quality responses
with accurate answers. We provide some sample
responses from different models in Appendix A.

3.3 Evaluation on CoQA

In this section, we test our model’s ability to gen-
erate conversational answers on the CoQA dev set,
using CoQA baseline’s predicted answers. The
CoQA dataset consists of passages from seven dif-
ferent domains (out of which one is Wikipedia)
and conversational questions and answers on those



Model a b c d e

CoQA B. 120 | 780 | 5.0 | 2.0 3.0
D-GPT 20 | 50 | 16.0 | 20.0 || 57.0
D-GPT (o) | 0.0 | 7.0 | 0.0 | 16.0 || 77.0

Table 4: Human evaluation results of D-GPT model
(trained on SS+ dataset) vs CoQA model on sample of
100 question answers from filtered CoQA dev set. (o)
stands for oracle answers. Options a to e are explained
in Table 3 header.

passages. Due to the conversational nature of
this dataset, some of the questions are one word
(~ 3.1%), like “what?”, “why?” etc. Such ques-
tions are out-of-domain for our models as they
require the entire context over multiple turns of
the conversation to develop their response. Other
out-of-domain questions include unanswerable (~
0.8%) and yes/no (~ 18.4%) questions. We also
don’t consider questions with answers > 5 words
(~ 11.6%) as they are typically non-factoid ques-
tions. We take a random sample of 100 from the
remaining questions. This sample contains ques-
tions from a diverse set of domains outside of the
Wikipedia (on which our models are trained). This
includes questions taken from the middle of a con-
versation (for example, “who did they meet ?)
which are unfamiliar for our models. We perform
a human evaluation similar to §3.2 on this sam-
ple. We compare CoQA against D-GPT trained
on the SS+ dataset (with CoQA’s predictions input
as answer-phrases). The results are shown in Table
4.

This evaluation reveals that the D-GPT model
is able to successfully convert the CoQA answer
spans into conversational responses 57% of the
time (option e). D-GPT gets the wrong answer
18% of the time (option a and c), because the in-
put answer predicted by the CoQA baseline is also
incorrect 17% of the time. However with oracle
answers, it is able to generate correct responses
77% of the times (option e). The weighted av-
erage Cohen’s kappa (Cohen, 1960) score for all
annotators in this evaluation is 0.750 (substantial
agreement). This result demonstrates ability of our
model to generalize over different domains and gen-
erate good conversational responses for questions
when provided with correct answer spans.

4 Related Work

Question Generation (QG) is a well studied prob-
lem in the NLP community with many machine
learning based solutions (Rus et al., 2010; Heilman
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and Smith, 2010; Yao et al., 2012; Labutov et al.,
2015; Serban et al., 2016; Reddy et al., 2017; Du
etal., 2017; Du and Cardie, 2017, 2018). In com-
parison, our work explores the opposite direction,
i.e. (generating conversational humanlike answers
given a question). Fu and Feng (2018) also try to
solve fluent answer response generation task but in
a restricted setting of movie related questions with
115 question patterns. In contrast, our generation
models can deal with human generated questions
from any domain.

Learning to Rank formulations for answer
selection in QA systems is common practice,
most frequently relying on pointwise ranking mod-
els (Severyn and Moschitti, 2015; Garg et al., 2019).
Our use of discriminative re-ranking (Collins and
Koo, 2005) with softmax loss is closer to learn-
ing a pairwise ranking by maximizing the mul-
ticlass margin between correct and incorrect an-
swers (Joachims, 2002; Burges et al., 2005; Koppel
et al., 2019). This is an important distinction from
TREC-style answer selection as our ST-generated
candidate responses have lower semantic, syntactic,
and lexical variance, making pointwise methods
less effective.

Question Answering Using crowd-sourcing
methods to create QA datasets (Rajpurkar et al.,
2016; Bajaj et al., 2016; Rajpurkar et al., 2018),
conversational datasets (Dinan et al., 2018), and
ConvQA datasets (Choi et al., 2018; Reddy
et al., 2019; Elgohary et al., 2018; Saha et al.,
2018) has largely driven recent methodological ad-
vances. However, models trained on these ConvQA
datasets typically select exact answer spans instead
of generating them (Yatskar, 2019b). Instead of cre-
ating another crowd-sourced dataset for our task,
we augment existing QA datasets to include such
conversational answer responses using the STs +
BERT trained with softmax loss.

5 Conclusion

In this work, we study the problem of generating
fluent QA responses in the context of building flu-
ent conversational agents. To this end, we propose
an over-generate and rank data augmentation proce-
dure based on Syntactic Transformations and a best
response classifier. This method is used to modify
the SQuAD 2.0 dataset such that it includes conver-
sational answers, which is used to train SEQ2SEQ
based generation models. Human evaluations on
SQuAD-dev-test show that our models generate



significantly better conversational responses com-
pared to the baseline CoQA and QuAC models.
Furthermore, the D-GPT model with oracle an-
swers is able to generate conversational responses
on the CoQA dev set 77 % of the time showcasing
the model’s scalability.
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A Sample responses from different

models

Sample of responses from different models on SQuAD-dev-test set §3.2. 7Q:” is the Question, ”"R:” is the
Response, ”B.” stands for baseline and (0)” stands for oracle answer spans.

. . |2 2l5 |5
Model Q:what fixed set of factors determine the actions of a determinis- | & | § | & | <
tic turing machine s |(Sg |8
3
CoQA B. R: fixed set of rules JI|X |- |b
QuAC B. R: a deterministic turing machine is the most basic turing ma- | v | v/ e
chine , which uses a fixed set of rules to determine its future ac-
tions
STs+BERT B. R: rules determine the actions IV e
PGN-Pre with SS+ R: fixed set of rules determine the actions IV /e
GPT-2 with SS+ R: fixed set of rules fixed set of factors determine the actions VI v | X |d
GPT-2-Pre with SS+ | R: fixed set of rules determine the actions IV /e
D-GPT with SS+ R: fixed set of rules determine the actions IV /e
D-GPT with SS+ (0) | R: rules determine the actions IV |/ e
[@)
o |5|% |
- : 2B &
Model Q:why was polonia relegated from the country ’s top flightin | & | § | & | <
2013 ? 5 % g -5
“EE|E
g8 |<|53
CoQA B. R: because of their disastrous financial situation v )C(D - b
QuAC B. R: polonia was relegated from the country ’s top flight in 2013 | v | vV |V | e
because of their disastrous financial situation
LGRs+BERT B. R: polonia was relegated from the country ’s top flight because | v | v | X | d
the disastrous financial situation
PGN-Pre with SS+ R: polonia was relegated disastrous financial situation v X | d
GPT-2 with SS+ R: polonia was relegated disastrous financial situation VI v | X |d
GPT-2-Pre with SS+ | R: polonia was relegated disastrous financial situation VI v X | d
D-GPT with SS+ R: polonia was relegated from the country’s top flight for disas- | v | v | vV | e
trous financial situation
D-GPT with SS+ (o) | R: polonia was relegated from the country’s top flight for disas- | v | v | vV | e
trous financial situation
[@])
o |5 |% |8
. . . =125 | &
Model Q:how was sadat rewarded by the islamists for his attempts to | & | § | & | <
bring egypt into modern times and civilization ? 5 % é' ﬁ
CoQA B. R: released Islamists from prison X )C‘D - a
QuAC B. R: egyptian president anwar sadat — whose policies included | X | v | - c
opening egypt to western investment ( infitah ) ; transferring
egypt ’s allegiance from the soviet union to the united states
LGRs+BERT B. R: sadat was rewarded by the islamists for his attempts tobring | v | vV | X | d
egypt assassinated
PGN-Pre with SS+ R: sadat was rewarded piety and charity X | v |- |c¢
GPT-2 with SS+ R: it was rewarded piety and charity X | v |- c
GPT-2-Pre with SS+ | R: sadat was rewarded by piety and charity X | v |- c
D-GPT with SS+ R: sadat was rewarded piety and charity X | v |- |c¢
D-GPT with SS+ (o) | R: sadat was assassinated IV |/ e
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o 8 ] o
S13l2 e
Model Q:from what type of materials must liquid oxygen be separated ? | & f 5 g
% g8
CoQA B. R: combustible materials X |- b
QuAC B. R: both liquid and solid o n2 are clear substances with a light | X | v | - c
sky-blue color caused by absorption in the red
STs+BERT B. R: combustible materials VI X |- |b
PGN-Pre with SS+ R: it must be separated from combustible R AREE
GPT-2 with SS+ R: it must be separated from combustible I Ve
GPT-2-Pre with SS+ | R: they must be separated from combustible VIV |/ e
D-GPT with SS+ R: liquid oxygen must be separated from combustible I/ e
D-GPT with SS+ (o) | R: liquid oxygen must be separated from combustible materials | v | v | vV | e
[€])
o |55 |2
_ . =125 | &2
Model Q:on what type of exponentiation does the diffie — hellmankey | & | § | & | <
exchange depend on ? 5 g é' 3
gl 5|8
a8 |<|3
CoQA B. R: modular exponentiation v )C(D - |b
QuAC B. R: several public-key cryptography algorithms , such asrsaand | X | X | - a
the diffie — hellman key exchange
STs+BERT B. R: modular exponentiation X - b
PGN-Pre with SS+ R: it depends on modular VIV |/ e
GPT-2 with SS+ R: it depends on modular IV /e
GPT-2-Pre with SS+ | R: it depends on the modular IV /e
D-GPT with SS+ R: it depends on modular VIV |/ e
D-GPT with SS+ (o) | R: it depends on modular exponentiation IV /e
[@])
2 | a9
c |2|% |2
. N : 22|52
Model Q:what was sadat seeking by releasing islamists from prison ? g | 218 |<
= ] o | e
2|22 =
CoQA B. R: political support in his struggle against leftists v ; v |e
QuAC B. R: egyptian president anwar sadat — whose policies included | X | v | - c
opening egypt to western investment ( infitah ) ; transferring
egypt ’s allegiance from the soviet union to the united states
STs+BERT B. R: sadat was seeking political support R AREE
PGN-Pre with SS+ R: it was making peace with israel X | v |- |c
GPT-2 with SS+ R: it was making peace with israel X | v |- c
GPT-2-Pre with SS+ | R: sadat seeking was making peace with israel X | vV |- |¢
D-GPT with SS+ R: sadat was making peace with israel X | vV |- |c
D-GPT with SS+ (o) | R: sadat was seeking political support VIV |/ e
[)
o |55 |2
S1%l2 e
Model Q:how did the better jacksonville plan generate money ? 8 f g g
512183
2222
CoQA B. R: authorized a half-penny sales tax v )C(D - b
QuAC B. R: when a consolidation referendum was held in 1967 , voters | X | v | - c
approved the plan . on october 1, 1968, the governments merged
to create the consolidated city of jacksonville
STs+BERT B. R: it generated money authorized a half-penny sales tax VI v | X |d
PGN-Pre with SS+ R: it generated money half-penny sales tax v X | d
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GPT-2 with SS+ R: it generated money half-penny sales tax IV X | d
GPT-2-Pre with SS+ | R: it generated half-penny sales tax money IV /e
D-GPT with SS+ R: it generated money for half-penny sales tax IV /e
D-GPT with SS+ (o) | R: it generated money authorized a half-penny sales tax IV X | d
[]
o Cﬁ B
Model Q:how many items is the university library home to ? 8 i g g
AEIE
215 B =
g% |8
CoQA B. R: over two million V0 X |- |b
QuAC B. R: another important library — the university library , foundedin | vV | vV |V | e
1816, is home to over two million items
STs+BERT B. R: it to is over two million VI v | X |d
PGN-Pre with SS+ R: it is home to over two million IV /e
GPT-2 with SS+ R: it is home to over two million IV /e
GPT-2-Pre with SS+ | R: it is home to over two million R AREE
D-GPT with SS+ R: it to is over two million IV X |d
D-GPT with SS+ (o) | R: it to is over two million IV X |d
[)
Qo
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Model Q:which sea was oil discovered in ? e f g Z
s | 8|82
22| &=
% 28
CoQA B. R: North Sea | X |- b
QuAC B. R: 7 it ’ s scotland ’ s oil ” campaign of the scottish national | X | X a
party (snp )
LGRs+BERT B. R: oil was discovered in north VI v | X |d
PGN-Pre with SS+ R: oil was discovered in the north sea IV /e
GPT-2 with SS+ R: oil was discovered in the north sea IV /e
GPT-2-Pre with SS+ | R: it was discovered in the north sea IV /e
D-GPT with SS+ R: it was discovered in the north sea IV /e
D-GPT with SS+ (o) | R: oil was discovered in north IV X |d
[@)
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Model Q:where are jersey and guernsey 8 Tle <
s | §/8|3
21z | &=
% g8
CoQA B. R: Channel Islands | X |- b
QuAC B. R: the customary law of normandy was developed betweenthe | v | vV |V | e
10th and 13th centuries and survives today through the legal sys-
tems of jersey and guernsey in the channel islands
LGRs+BERT B. R: they are in channel islands AN AREE
PGN-Pre with SS+ R: they are in the channel islands IV /e
GPT-2 with SS+ R: they are on the channel islands I/ e
GPT-2-Pre with SS+ | R: they are on the channel islands IV |/ e
D-GPT with SS+ R: they are in the channel islands IV /e
D-GPT with SS+ (o) | R: they are in channel islands VIV [/ e
[]
@] e B
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Model Q:near chur , which direction does the rhine turn ? 8 i 5 g
2283
21223
2] % '\5. g
CoQA B. R: north v )((D - |b
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QuAC B. R: near tamins-reichenau the anterior rhine and the posterior | X | v | - c
rhine join and form the rhine
LGRs+BERT B. R: it turns north VIV [/ e
PGN-Pre with SS+ R: it turns north VIV |/ e
GPT-2 with SS+ R: it turns north I Ve
GPT-2-Pre with SS+ | R: it turns to the north VIV [/ e
D-GPT with SS+ R: it turns north IV |/ e
D-GPT with SS+ (o) | R: it turns north IV |/ e
(@)
S
A
Slz|2 2
Model Q:what kind of contract is given when the contractor is given a | & Tle <
performance specification and must undertake the project from E g é' 3
design to construction , while adhering to the performance speci- | * § E g
fications ? 3 =
CoQA B. R: design build” contract V] X |- |b
QuAC B. R: the modern trend in design is toward integration of previously | X | v | - c
separated specialties , especially among large firms
LGRs+BERT B. R: a ”design build” contract is given IV /e
PGN-Pre with SS+ R: design build is given IV /e
GPT-2 with SS+ R: the design build is given IV /e
GPT-2-Pre with SS+ | R: design build is given a performance specification and must | v | vV | V/ | e
undertake the project
D-GPT with SS+ R: design build is given IV /e
D-GPT with SS+ (o) | R: the ” design build ” contract is given VIV |/ e
[]
o Cﬁ B
Model Q:how many protestants live in france today ? 8 ¢ g g
5 [8]8|¢
2122 |=
g% |8
CoQA B. R: Approximately one million VI X |- |b
QuAC B. R: approximately one million protestants in modern france repre- | v | v | V | e
sent some 2 % of its population
LGRs+BERT B. R: one million live in france today I/ /e
PGN-Pre with SS+ R: one million live in france today IV /e
GPT-2 with SS+ R: one million live in france today VIV |/ e
GPT-2-Pre with SS+ | R: one million live in france today R AREE
D-GPT with SS+ R: one million live in france today VIV |/ e
D-GPT with SS+ (0) | R: one million live in france today I/ |/ e
[@)
S
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S| s | 2|8
Model Q:what is raghuram rajan ’s career ? 8 ¢ g g
s &g |2
22|23
% 28
CoQA B. R: Central Banking economist I X - b
QuAC B. R: central banking economist raghuram rajan argues that ” sys- | v | X | - b
tematic economic inequalities
LGRs+BERT B. R: he is economist VIV X |d
PGN-Pre with SS+ R: it is central banking economist IV /e
GPT-2 with SS+ R: it is central banking economist IV /e
GPT-2-Pre with SS+ | R: it is central banking economist IV /e
D-GPT with SS+ R: it is central banking economist IV /e
D-GPT with SS+ (o) | R: he is economist VIV X |d
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Model Q:what type of steam engines produced most power up to the | & | & | & | <
early 20th century ? 5 g g %
8
CoQA B. R: Reciprocating piston type steam engines I X - b
QuAC B. R: reciprocating piston type steam engines remained the domi- | v | v |V | e
nant source of power until the early 20th century , when advances
in the design of electric motors and internal combustion engines
LGRs+BERT B. R: reciprocating piston produced most power up V|V | X |d
PGN-Pre with SS+ R: reciprocating piston type produced most power up IV X | d
GPT-2 with SS+ R: reciprocating piston type produced most power up VI v | X |d
GPT-2-Pre with SS+ | R: the reciprocating piston type produced most power uptothe | v | vV |V | e
early 20th century
D-GPT with SS+ R: reciprocating piston type produced most poweruptotheearly | v | vV |V | e
20th century
D-GPT with SS+ (o) | R: reciprocating piston produced most power up tothe early20th | v | v | vV | e
century
AR
. . . , = E | 2
Model Q:where did france win a war in the 1950 ’s g | 218 |<
S g5
22| |B
g9 |3
CoQA B. R: Algeria VI X |- |b
QuAC B. R: france fought and lost a bitter war in vietnam in the 1950s X | v |- |c
LGRs+BERT B. R: france won a war in the 1950 ’s algeria IV /e
PGN-Pre with SS+ R: france won a war in vietnam X|v |- |c¢
GPT-2 with SS+ R: france won a war in vietnam X |V |- c
GPT-2-Pre with SS+ | R: france won a war in vietnam X | v |- c
D-GPT with SS+ R: france won a war in vietnam X|v |- |c¢
D-GPT with SS+ (o) | R: france won a war in algeria IV |/ e
[])
2 | u
s |22 |2
. . o sl 23| 5
Model Q:who did the ottoman empire ally with in ww i ? g | 218 |<
512|383
212 2|3
CoQA B. R: Germany v )((D - |b
QuAC B. R: the ottoman empire gradually declined into the late nineteenth | v | vV | V | e
century . the empire allied with germany
LGRs+BERT B. R: germany did the ottoman empire ally with in ww 1 IV X |d
PGN-Pre with SS+ R: it separated with germany X | v |- c
GPT-2 with SS+ R: it allyed with germany AR AREE
GPT-2-Pre with SS+ | R: it allyed with germany N AREE
D-GPT with SS+ R: it allied germany VI v | X |d
D-GPT with SS+ (o) | R: it allied germany VI v | X |d
[«]
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Model Q:when was ambulatory care pharmacy approved as itsowncer- | & | § | & | <
tification ? 3 g g2
18|55
8 |<|3
CoQA B. R: In 2011 v )((D - |b
QuAC B. R: in 2011 the board of pharmaceutical specialties approved am- | v/ | v/ e
bulatory care pharmacy practice as a separate board certification
LGRs+BERT B. R: it was approved in 2011 IV /e
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PGN-Pre with SS+ R: it was approved in 2011 VIV |/ e
GPT-2 with SS+ R: it was approved in 2011 IV /e
GPT-2-Pre with SS+ | R: it was approved in 2011 IV /e
D-GPT with SS+ R: it was approved in 2011 IV /e
D-GPT with SS+ (o) | R: it was approved in 2011 IV /e
[@])
g | w
s |25 |2
. . . 212 g | &
Model Q:when did arpnet and sita become operational g | 218 |<
AERRE
212 2|3
w % 5- g
CoQA B. R: 1969 4 )((D - |b
QuAC B. R: arpanet and sita hln became operational in 1969 IV /e
LGRs+BERT B. R: 1969 VI X |- |b
PGN-Pre with SS+ R: they became operational in 1969 R AREE
GPT-2 with SS+ R: they became operational in 1969 VIV [/ e
GPT-2-Pre with SS+ | R: they became operational in 1969 VIV |/ e
D-GPT with SS+ R: they became operational in 1969 I/ /e
D-GPT with SS+ (o) | R: they became operational in 1969 VIV |/ e
[@])
=} = B o
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Model Q:how much did saudi arabia spend on spreading wahhabism ? S|l 3| B|<
s | 882
N = = =
% g8
CoQA B. R: over 100 billion dollars | X |- b
QuAC B. R: saudi arabia spent over 100 billion dollars in the ensuing | vV | V' |V | e
decades for helping spread its fundamentalist interpretation of is-
lam
LGRs+BERT B. R: saudi arabia spent over 100 billion dollars IV /e
PGN-Pre with SS+ R: saudi arabia spent over 100 billion dollars IV /e
GPT-2 with SS+ R: saudi arabia spent over 100 billion dollars VIV |/ e
GPT-2-Pre with SS+ | R: saudi arabia spent over 100 billion dollars IV /e
D-GPT with SS+ R: saudi arabia spent over 100 billion dollars IV /e
D-GPT with SS+ (o) | R: saudi arabia spent over 100 billion dollars I VvV |/ e
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