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It is unusual to find QCD factorization explained
in the language of quantum information science.
However, we will discuss how the issue of factorization
and its breaking in high-energy QCD processes relates
to phenomena like decoherence and entanglement.
We will elaborate with several examples and explain
them in terms familiar from basic quantum mechanics
and quantum information science.

1. Introduction
The quark-gluon parton model is the conceptual
basis upon which most scattering experiments seek
to study the constituent quark and gluon structure
of hadrons. The parton model gets its justification in
perturbative QCD (pQCD) and in particular from the
QCD factorization theorems. The basic partonic picture
– see, for example, Feynman’s original formulation of
it in Ref. [1] – is an essentially semi-classical picture
of scattering between hadron constituents, wherein
specific well-defined events occur over specific ranges
of spacetime and in a specific sequence. Indeed,
decoherence is one of the main ingredients of the parton
model as it is normally taught [2]. The purpose of
this article is to highlight the ways that the aims of
QCD factorization derivation often overlap with topics
normally considered the domain of quantum information
theory and interpretations of quantum mechanics [3].

It is useful to start by recalling, in picture form, the
basic description of the parton model for deep inelastic
scattering (DIS). It proceeds through the stages shown
in Fig. 1. First, an electron and a proton approach one
another in the center of mass frame at high velocity
(Fig. 1-A). The proton is assumed to be a cluster of small
constituents.
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Next, the electron collides with one and only one of the parton constituent and scatters at wide
angle (Fig. 1-B). The struck quark itself recoils at wide angle. All the remnant partons continue
to propagate nearly freely and at high speed until, long after the collision, they are separated
by large distances (Fig. 1-C). Pictures like these suggest essentially classical probabilities. For the
cases where only the scattered lepton is observed, there is a sum over all ways that the final state
partons can interact. That formula is simply

dσ=H⊗ f(x) , (1.1)

where σ represents a cross section, H represents the likelihood for the electron-quark collision,
and f(x) is a probability density (or number density) for the quark with momentum fraction x to
be found in the incoming proton. The incoming and outgoing partons are treated as asymptotic
states, even though it is known that the true asymptotic states in QCD are hadrons rather than
quarks or gluons. It is a very classical description that is familiar from textbooks and lectures.

Figure 1. The sequence of distinct steps in a typical description of DIS. A) An electron (left) and hadron (right) approach.

B) The hard collision between an electron and a (red) parton. C) A recoiling electron-parton pair and a final state of free

partons.

The situation is more interesting if one observes the actual final state particles (which in QCD
are always hadrons) and places restrictions on which ones are to be counted. For example, one
might count the number of high momentum pions (still summing over everything else). Events
without pions in a designated range of momentum are excluded from this cross section. Then,
a typical picture of the end stage of the process is shown in Fig. 2. The electron and hadron still
approach one another as in 1-A, and a parton is again struck hard by the electron, as was already
illustrated in 1-B, but now one recognizes that, a long time and distance after the collision, the
struck quark undergoes a transformation (hadronization) into a constituent of one of the counted
pions. (Of course, all of the other partons also hadronize as well.) The details of the hadronization
mechanism are still only vaguely understood, and in Fig. 2 it is represented by the puffy clouds.
The turquoise oval is the observed final state hadron while the lavender oval represents whatever
other unobserved final state particles might be present.
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Figure 2. A hadronization process in semi-inclusive DIS, adding a final step after panel C in Fig. 1.

In this picture, the probability that the initial red parton arrives with fractional momentum
x is determined by processes associated with proton structure that occur a very long time and
distance before the collision (the far right of 1-A). By contrast, the probability for the final red
parton hadronizing with momentum fraction z into a final pion is dictated by processes a long
time and distance after the collision, and a large distance from the other hadronization processes
represented by the lavender oval. The two mechanisms just described are associated with the
parton densities f(x) and the fragmentation functions D(z), respectively. The probability H for
the electron-parton collision involves only very short time and distance scales.

The large time and distance scales between the initial hadron structure mechanisms embodied
by f(x), the partonic collision itself, and the final state parton hadronization embodied by D(z)

suggests that it is reasonable to view each as independent and uncorrelated. In particular, D(z) is
an intrinsic and universal property of a particular type of high-momentum hadronizing parton,
independent of the details of the larger process that it is a part of. In Fig. 2, this means the lower
part of the picture that involves the red parton and the turquoise oval are independent of the
upper part that involves the remaining partons and the lavender oval.

If this classically probabilistic picture holds, then the likelihood for the process (usually
presented in the form of a cross section dσ) is just the product of each of the uncorrelated
component probabilities:

dσ=H⊗ f(x)⊗D(z) . (1.2)

In practice, QCD factorization formulas like Eq. (1.1) and Eq. (1.2) do not involve simple products,
but rather convolution integrals over shared momentum fractions, and this is represented by the
“⊗” symbol.

As might be expected, such simplistic pictures as these come with many caveats, and they
are only approximate when they hold at all. But they provide a useful starting point for more
detailed studies, and are ubiquitous in investigations of partonic structure by way of scattering
experiments.

The practical usefulness of factorization formulas like these lies in the fact that QCD is
asymptotically free over short time and distance scales, so that it is possible to calculateH (which
describes the actual collision with the quark) using ordinary small coupling perturbation theory
techniques. The other pieces of the formula, f(x) and D(z), are to be viewed as intrinsic to
the incoming proton and hadronizing parton, respectively. These nonperturbative functions are
independent of the particular physical process and can be constrained by experimental data.

The semi-classical nature of the factorization formulas above suggests that their derivations
in real QCD are ultimately arguments about decoherence between processes happening over
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widely separate time and distance scales. And departures from the simplest factorized pictures
typically involve some form of failure of decoherence. Since the original fully inclusive DIS
process in Eq. (1.1) involves a sum over a large number of final states, decoherence washes out
the large-distance interference effects that might otherwise spoil the simple treatment of the final
configuration as a collection of free quarks and gluons. In the semi-inclusive case in Eq. (1.2),
the number of final state interactions has been reduced relative to the fully inclusive case in
Fig. 1, along with the opportunities for decoherence to occur, so more work is needed there
to demonstrate factorization. This is clear from the number of possible alternatives to Fig. 2
as descriptions of the final state. Some examples are shown in Fig. 3. In panel A, the struck
parton interacts with one of the other partons in the final state before hadronizing. In panel B
the struck parton splits into two different partons, implying that the outgoing red parton is not
actually an asymptotic state. Of course, one must consider that the physical pictures in Fig. 2
and Fig. 3A-B can all interfere with one another quantum mechanically, so in principle none can
be said to be the “true” picture. Other contributions than these can entangle initial and final
states, complicating the situation even further. If they are localized to short spacetime regions,
these types of contributions might be accommodated through perturbative corrections withinH,
but the possibility that they might involve large spacetime regions threatens to spoil the general
partonic picture itself. It is a non-trivial result, therefore, that a factorization in the form of Eq. (1.2)

Figure 3. Alternatives to Fig. 2 for the final state description of semi-inclusive deep inelastic scattering.
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nevertheless holds true, though there are some cases (e.g., when the observed final state depends
on intrinsic transverse momentum) that interesting departures from naive expectations do arise.

We began this discussion with the very course-grained inclusive process in Eq. (1.1) and
noted the potential for a breakdown in decoherence effects if we moved to the more detailed
semi-inclusive process in Eq. (1.2). Of course, one may continue this trend by considering even
more details and counting, for example, the numbers of more complex events multihadron final
states. If this gets continued indefinitely, one eventually expects the decoherence that allows for
a factorized picture to break down. Where and exactly how that happens is an interesting open
question.

2. Spin and entanglement
Entanglement phenomena play an especially central role in QCD factorization theorems when
they are generalized to include processes involving spin and/or intrinsic transverse momenta. A
prime example is the Collins effect, which we will describe now.

A physical process that is very useful for describing the effect is semi-inclusive electron-
positron annihilation (SIA) with a pair of nearly back-to-back hadrons hA and hB produced
inclusively in the final state:

e+ + e−→ γ∗→ hA + hB +X . (2.1)

The electron-positron pair creates a highly virtual photon γ∗ that splits into a quark-antiquark
pair. The quark and antiquark each hadronize and become constituents of the observed hadrons
hA or hB in a manner similar to what was discussed above for semi-inclusive deep inelastic
scattering. The X indicates that all other final states are unobserved. The inclusive cross section
is a measure of the total number of occurrences of hadron pairs of types hA and hB in nearly
back-to-back configurations.

Figure 4. A schematic of the products of an e+e− collision showing the virtual photon in the center. A quark (red)

and anti-quark (faded red) move apart from each other in a back-to-back configuration. The cloud puffs represent the

hadronization process. Hadrons other than hA and hB are also produced but are not shown in the figure. The fact that

the pair’s spins can remain entangled is represented by the vertical arrows.

Figure 4 is a visualization of the last stages of the process in a reference frame where the quark-
antiquark pair has zero total momentum. It suggests a sequence of events very analogous to what
we discussed above with SIDIS. First, there is a hard collision represented by the central star, and
this can be handled with very high precision using small coupling techniques. Next, the quark and
anti-quark move away from each other until they attain a wide spatial separation. At this point,
they independently transform into constituents of the observed hadrons hA and hB . Since it is an
inclusive process, there are potentially many other final state particles that go uncounted. These
uncounted particles are analogous to the lavender oval in Fig. 2, but we leave this implicit in Fig. 4
to keep the diagram simple. QCD factorization theorems confirm that an equation analogous to
Eq. (1.2) also holds for this process:

dσ=H⊗DA(zA,PA,T )⊗DB(zB ,PB,T ) . (2.2)
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Now there are two fragmentation functions DA and DB representing the clouds on the far
right and left sides of Fig. 4 where the transformation of the (anti)quark/parton into a hadron
constituent occurs. Note, however, that this time we have explicitly included dependence on a
small transverse component of momentum for each of the final hadrons. These two-component
vectors describe the hadrons’ deviation from a back-to-back configuration. They are labeled PA,T
and PB,T in Eq. (2.2), and in this form the equation is the transverse momentum dependent
(TMD) version of the factorization theorem.

Now each of the PA/B,T vectors has an azimuthal angle φA/B that determines its orientation
around the central axis. In each of the hadronization clouds, there is nothing to pick out a
particular azimuthal angle, the partons and hadrons are all unpolarized, and the clouds in Fig. 4
have a large spacelike separation. So, in a purely classical picture, we would not expect any
azimuthal dependence in the cross section.

However, the quark and antiquark, despite being unpolarized, nevertheless have entangled
spins, and this results in a measurable azimuthal dependence. The situation is very reminiscent of
the Einstein-Podolsky-Rosen scenario [4], but with the process of hadronization taking the place
of separate, distant measurements. The entangled spins are allowed in the TMD factorization
theorem for this process, with fragmentation functions each carrying transverse spin indices. The
resulting azimuthal dependence is called the Collins effect [5].

This example illustrates how factorization theorems lose some of their naively classical features
as one examines the finer details involved in a process, such as small kicks of transverse
momentum. The inverse is true if there is an average over the final state details. In the single
inclusive annihilation (SIA) example above, integrating over all the PA/B,T eliminates sensitivity
to the type of entanglement effects just described.

3. Factorization breaking
A number of phenomena can break classically inspired pictures of factorization in more
significant ways than have been described so far.

In the descriptions of it above, QCD factorization describes a type of decoherence between
processes that occur at widely separated locations in space and time. For it to be possible, of
course, there must be a hierarchy of scales in the process. In the SIDIS and SIA examples above,
that was provided by the virtuality Q2 of the exchanged/annihilation photon, and each process
involves a range of scales from small distance scales of the order of the resolution scale . 1/Q

to the large distances involved in hadronization. In QCD, this hierarchy is especially important
because asymptotic freedom over short distance allows the basic partonic process to be calculated
directly in terms of propagating quark and gluon degrees of freedom. As such, the most basic way
that factorization can break down is when the relevant hard scales become too low. Then there is
no distinction between small and large distance scales, and the QCD coupling αs(Q) is no longer
small enough for one to speak of “perturbative” or “nonperturbative” parts.

But there are other more interesting ways that factorization theorems (or specific aspects of
factorization theorems) can potentially be violated, even when hard scales are large. They are
frequently associated with gauge invariance; the necessity to include non-trivial Wilson line
operators in the definitions of parton distribution and fragmentation functions tends to introduce
effects that violate the most naive number density interpretations.

Basu, Ramalho, and Sterman [6] composed a nice classical analogy to help with interpreting
what happens with gauge fields (like QCD) in those hadron-hadron collisions where factorization
theorems hold. It will be helpful to reproduce a description of it here.1 They note that, compared
with simpler hard processes like DIS, there is a greater possibility for factorization breaking effects
in hadron-hadron collisions because the color field of one hadron might alter the structure of the

1Reference [6] discusses hadron-hadron collisions more generally, but for definiteness we will specialize to the Drell-Yan
process, wherein two hadrons collide and an antiquark from one annihilates with a quark from the other to produce a high-
mass lepton-antilepton pair.
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Figure 5. A schematic illustration of the Basu-Ramalho-Sterman picture in the case of Drell-Yan scattering. In A, a red

anti-quark approaches a stationary proton on the right at high speed. (It is presumably associated with its own hadron,

not shown.) P is the point of observation in the proton. The pale blue field represents the vector potential spreading

out through space, while the vertical orange band is the “pulse” force associated with the incoming antiquark. In B, the

antiquark annihilates with the quark. It is only when the orange overlaps with both the red and faded-red partons that the

two may exert forces on one another.

other hadron before their respective constituent partons have an opportunity to collide. If such
interactions are large, then they would break factorization very much.

To build an intuition, Ref. [6] considers the gauge field of an incoming point-like quark from
one of the hadrons as viewed from the rest frame of the other. (See Fig. 5). They note that if
the gauge field were a classical, abelian field like electromagetism, then its vector potential at a
coordinate P = (xT , x

z) would follow from standard electromagnetism textbooks:

A0(P ) =
qγ√

x2
T + γ2(βt− xz)2

, (3.1)

Az(P ) =
−qγβ√

x2
T + γ2(βt− xz)2

, (3.2)

Ax(P ) =Ay(P ) = 0 , (3.3)

with q being the charge of the quark and γ and β being the usual special relativity symbols. In the
limit that the center-of-mass

√
s of the collision approaches infinity, the time and z components

of the vector potential do not vanish for any x or time t, so that one might worry that the quark
in the incoming hadron influences the structure of the other hadron long before the collision
of partons actually takes place. This would constitute a violation of factorization. However, the
vector potential takes the form

lim
s→∞

Aµ(P ) = q∂µ ln(βt− xz) . (3.4)

That is, it is a pure gauge potential for all times and places except where xz = βt. The quark
coming in from the left exerts no significant forces at the observation point in the target hadron
on the right except right at the instant when it is passing through it. Indeed, a direct computation
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of the z-component of the electric field gives

Ez(xz 6= βt)∼ 1/s2 . (3.5)

Therefore, any influence the field from the incoming quark might have on the right-side hadron
before the collision is strongly power suppressed in the high energy limit. There is no chance of
the hadrons significantly influencing one another before the hard collision of the partons, and so
a factorized picture appears to hold.

In the standard factorization theorems for inclusive processes, one is forced to deal with
an infinitely large number of longitudinally polarized gluon exchanges that appear to threaten
factorization graph-by-graph. A significant amount of the effort in deriving a factorization
theorem for a process like Drell-Yan scattering in real QCD amounts to using arguments based
on gauge invariance to show how a cascade of cancellations removes any resulting factorization
breaking effects from these “extra” gluons in specific physical observables. The picture from
Ref. [6] leads to an interpretation of this as confirmation that transitioning to a nonabelian
quantum field theory preserves the normal expectation from a classical analogy.

Formally, the longitudinally polarized gluons simply get absorbed into the Wilson line
operators of separate parton densities, where they appear to play the purely formalistic role
of ensuring gauge invariance for parton densities. The Wilson lines are rather abstract objects,
but they essentially just account for the the fact that a colliding parton must pass through a
background field on its way in or out of a hard collision, similar to the description in Fig. 5.
The phases accumulated along those paths need to be accounted for to preserve formal gauge
invariance in parton densities. But at least in the simplest and most highly inclusive cases, they
do not impact the general overall partonic picture. Indeed, specializing to the light-cone gauge
reduces the Wilson line in a parton density to a unity operator, and the parton density gets an
interpretation very close to that of an actual number density.

In quantum mechanics, a gauge field can have an influence on a particle even when it is
confined to a region where the actual force vanishes, as famously illustrated by the Aharonov-
Bohm effect [7]. Therefore, it is not as trivial as it might initially seem to prove that classical
expectations from the Basu-Ramalho-Sterman or similar pictures carry over to QCD for other
observables. As in the SIA, SIDIS and Drell-Yan cases discussed above, factorization for many
standard processes relies on the fact that the observables are very inclusive, with enough final
state averaging to give the necessary cancellations. If one constructs observabes with greater
sensitivity to details, interesting effects can modify or even break classical expectations.

One place where that happens is when the effects of a small intrinsic transverse momentum
are studied. (We already encountered one example of this in the discussion of Eq. (2.2).) For
instance, we might ask how an intrinsic transverse momentum of a bound state quark in a
proton gets influenced if the proton is transversely polarized. This is called a Sivers effect [8].
It turns out that if the proton is regarded entirely in isolation, without reference to any process,
then an argument based on CP invariance shows that such a correlation must vanish [5]. While
factorization theorems nevertheless hold for processes like SIDIS and the Drell-Yan process where
such an effect might be observed, it turns out that the structure of the Wilson line operator in the
parton densities is crucial. A different structure arises if it is an outgoing struck quark that passes
through the gauge field after the collision, as in the SIDIS example of Fig.2, or if it is in incoming
quark passing through on the way into the collision as in Fig. 5. The result is a nonzero Sivers
effect, but with a sign that flips between these two different scenarios.

One might infer from the Sivers example that factorization always holds when there is a
hard scale, with the only caveat being that the Wilson line operator becomes process dependent.
Indeed, it is easy to check that this appears to be the case for abelian gauge fields. However, it
turns out that separate Wilson lines are not possible in nonabelian cases like QCD. One of the
simplest examples is a high energy collision of two hadrons with a hard production of a nearly
back-to-back hadron pair produced inclusively in the final state:

hA + hB→ hC + hD +X . (3.6)
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Figure 6. A typical Feynman diagram for the squared amplitude of the process in Eq. (3.6).

As in the SIA example, we measure slight deviations from back-to-back, so some form of
transverse momentum dependent factorization with transverse momentum dependent parton
densities is needed. The natural classical expectation, based on the rest of the discussion in this
paper, is that a factorization formula emerges similar to Eq. (2.2), but with combinations of parton
distribution and fragmentation functions for both the initial and final states [9]:

dσ
??
=H⊗ fA(xA,PA,T )⊗ fB(xB ,PB,T )⊗DC(zC ,PC,T )⊗DD(zD,PD,T ) , (3.7)

but possibly with nontrivial and non-universal Wilson line operators for each of the four
correlation functions. Each Wilson line represents an accumulation of phases as a parton passes
in to or out of the hard collision.

The exact reason that a formula like Eq. (3.7) does not follow as in a normal factorization
derivation is somewhat technical, and beyond the scope of what can be included in a short
summary. However, the visualization tools in Figs. 7, 8 and 9 will help to convey the basic obstacle
to a proof. It is a summary of a more detailed argument provided in [10].

What Fig. 7 shows is a simpler version of a hard collision between quarks from separate
hadrons than Fig. 6. We consider the case where a colorless particle is exchanged in the t-channel,
so that at tree-level no color flows between the two hadrons. Next, we consider two of the type of
longitudinally polarized infrared gluons that ordinarily would generate the Wilson lines that go
into definitions for parton densities. A nontrivial flow of color charge through the two hadrons is
possible, given the simultaneous presence of multiple gluons, as shown in Fig. 8. The result is a
nonvanishing contribution to physical observables.

If a factorized expression were possible, then by definition it would be possible for each
of those longitudinally polarized gluon attachments to be re-expressed as contributions to a
separate Wilson line in a separate TMD parton distribution function. But then the only possible
Wilson line structures that can arise from configurations like Fig. 8 are Wilson loops. However,
these have to give a vanishing contribution since they involve exchange of a color singlet gluon,
which is forbidden in QCD (see Fig. 9). Thus, there is an inconsistency between the conjectured
factorization in Eq. (3.7) and the flow of color charge that it would have to contain in order
to be valid. One must conclude that, despite expectations, in general such an equation does
not hold. The Wilson line structures cannot be associated with separate hadrons, but only with
simultaneous combinations of several hadrons. Said differently, the factors accumulated as the
partons propagate into and out of the interaction point are not simple products of the phase
factors from parton A in hadron B and parton B in hadron A.
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Figure 7. A Feynman graph showing a tree-level contribution to the process in Eq. (3.6). This graph is like Fig. 6, but

the hard collision now involves the exchange of a hard colorless scalar (dotted) particle. Thus, at tree-level no color flows

between the top and bottom of the graph. The red and blue colored loops show the flow of color charge in each part of

the diagram.

Figure 8. Two longitudinally polarized infrared gluons, one collinear to hadron A and one collinear to hadron B.

Contributions to scattering cross sections from graphs like these are generally non-zero. The red and blue lines show

one possible path of color flow through the graph. Note that non-singlet color is carried by the gluons.

4. Conclusions
In this article, we have remarked upon several places where the problem of QCD factorization
overlaps with topics that are more commonly found in discussions about the fundamentals of
quantum mechanics. The original factorization pictures formulated by Feynman and others are
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Figure 9. For Fig. 8 to factorize as in Eq. (3.7), it must be possible to re-express the color flow as a product of two

color loops associated with Wilson loops, as shown here. But each factor would involve an unphysical color singlet gluon

exchange, so both factors must vanish. Meanwhile, the original contribution in Fig. 8 is non-vanishing. Therefore, the

product above is not equal to Fig. 8 and the factorization fails.

heavily motivated by classical intuition. Many of their features carry over to the quantum field
theory case, provided that the physical processes under consideration average over the many
interactions possible across large distance scales. We have emphasized the analogy between
this and standard descriptions of quantum mechanical decoherence, and we have seen that the
decoherence in QCD is necessary to give meaning to questions about the partonic structure of
hadrons.

Some of the examples we gave above are suggestive of ways to test or probe quantum
mechanical features in QCD. We noted, for example, the entanglement exhibited by the Collins
effect in Sec. 2, and the similarity to the scenario of the EPR theorem. It is plausible that, with care,
measurements could be formulated to test Bell inequalities. We note some recent proposals to test
Bell inequalities in higher energy collisions [11,12].
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