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Abstract

Since its initial release in 2000, the human reference genome has covered only the euchromatic
fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the
remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete
3.055 billion base pair (bp) sequence of a human genome, T2T-CHM13, that includes gapless
assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces
nearly 200 million bp of sequence containing 1,956 gene predictions, 99 of which are predicted to
be protein coding. The completed regions include all centromeric satellite arrays, recent segmental
duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex
regions of the genome to variational and functional studies.

One-Sentence Summary:

Twenty years after the initial drafts, a truly complete sequence of a human genome reveals what

has been missing.

The current human reference genome was released by the Genome Reference Consortium
(GRC) in 2013 and most recently patched in 2019 (GRCh38.p13) (1). This reference traces
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its origin to the publicly funded Human Genome Project (2) and has been continually
improved over the past two decades. Unlike the competing Celera effort (3) and most
modern sequencing projects based on “shotgun” sequence assembly (4), the GRC assembly
was constructed from sequenced bacterial artificial chromosomes (BACs) that were ordered
and oriented along the human genome via radiation hybrid, genetic linkage, and fingerprint
maps. However, limitations of BAC cloning led to an underrepresentation of repetitive
sequences, and the opportunistic assembly of BACs derived from multiple individuals
resulted in a mosaic of haplotypes. As a result, several GRC assembly gaps are unsolvable
due to incompatible structural polymorphisms on their flanks, and many other repetitive and
polymorphic regions were left unfinished or incorrectly assembled (5).

The GRCh38 reference assembly contains 151 Mbp of unknown sequence distributed
throughout the genome, including pericentromeric and subtelomeric regions, recent
segmental duplications, ampliconic gene arrays, and ribosomal DNA (rDNA) arrays, all

of which are necessary for fundamental cellular processes (Fig. 1A). Some of the largest
reference gaps include human satellite (HSat) repeat arrays and the short arms of all five
acrocentric chromosomes, which are represented in GRCh38 as multi-megabase stretches

of unknown bases (Figs. 1B and 1C). In addition to these apparent gaps, other regions of
GRCh38 are artificial or are otherwise incorrect. For example, the centromeric alpha satellite
arrays are represented as computationally generated models of alpha satellite monomers to
serve as decoys for resequencing analyses (6), while sequence assigned to the short arm of
Chromosome 21 appears falsely duplicated and poorly assembled (7). When compared to
other human genomes, GRCh38 also shows a genome-wide deletion bias that is indicative of
incomplete assembly (8). Despite finishing efforts from both the Human Genome Project (9)
and GRC (1) that improved the quality of the reference, there was limited progress towards
closing the remaining gaps in the years that followed (Fig. 1D).

Long-read shotgun sequencing overcomes the limitations of BAC-based assembly and
bypasses the challenges of structural polymorphism between genomes. PacBio’s multi-
kilobase, single-molecule reads (10) proved capable of resolving complex structural
variation and gaps in GRCh38 (8, 11), while Oxford Nanopore’s >100 kbp “ultra-long”
reads (12), enabled complete assemblies of a human centromere (ChrY) (13) and, later, an
entire chromosome (ChrX) (14). However, the high error rate (>5%) of these technologies
posed challenges for the assembly of long, near-identical repeat arrays. PacBio’s most recent
“HiFi” circular consensus sequencing offers a compromise of 20 kbp read lengths with an
error rate of 0.1% (15). Whereas ultra-long reads are useful for spanning repeats, HiFi reads
excel at differentiating subtly diverged repeat copies or haplotypes (16).

To finish the last remaining regions of the genome, we leveraged the complementary aspects
of PacBio HiFi and Oxford Nanopore ultra-long read sequencing to assemble the uniformly
homozygous CHM13hTERT cell line (hereafter, CHM13) (17). The resulting T2T-CHM13
reference assembly removes a 20-year-old barrier that has hidden 8% of the genome from
sequence-based analysis, including all centromeric regions and the entire short arms of five
human chromosomes. Here we describe the construction, validation, and initial analysis of a
truly complete human reference genome and discuss its potential impact on the field.
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Cell line and sequencing

As with many prior reference genome improvement efforts (1, 8, 17-20), including the

T2T assemblies of human chromosomes X (14) and 8 (21), we targeted a complete
hydatidiform mole for sequencing. Most CHM genomes arise from the loss of the maternal
complement and duplication of the paternal complement postfertilization and are, therefore,
homozygous with a 46,XX karyotype (22). Sequencing of CHM13 confirmed nearly
uniform homozygosity, with the exception of a few thousand heterozygous variants and a
megabase-scale heterozygous deletion within the rDNA array on Chromosome 15 (23) (figs.
S1 to S2). Local ancestry analysis shows the majority of the CHM13 genome is of European
origin, including regions of Neanderthal introgression, with some predicted admixture (23)
(Fig. 1A). Compared to diverse samples from the 1000 Genomes Project (1KGP) (24),

CHM 13 possesses no apparent excess of singleton alleles or loss-of-function variants (25).

We extensively sequenced CHM 13 with multiple technologies (23), including 30x PacBio
circular consensus sequencing (HiFi) (16, 20), 120x Oxford Nanopore ultra-long read
sequencing (ONT) (14, 21), 100x Illumina PCR-Free sequencing (ILMN) (1), 70x
[llumina / Arima Genomics Hi-C (Hi-C) (14), BioNano optical maps (14), and Strand-seq
(20) (table S1). To enable assembly of the highly repetitive centromeric satellite arrays and
closely related segmental duplications, we developed methods for assembly, polishing, and
validation that better utilize these available datasets.

Genome assembly

The basis of the T2T-CHM13 assembly is a high-resolution assembly string graph (26)

built directly from HiFi reads. In a bidirected string graph, nodes represent unambiguously
assembled sequences and edges correspond to the overlaps between them, due to either
repeats or true adjacencies in the underlying genome. The CHM13 graph was constructed
using a purpose-built method that combines components from existing assemblers (16, 27)
along with specialized graph processing (23). Most HiFi errors are small insertions or
deletions within homopolymer runs and simple sequence repeats (16), so homopolymer runs
were first “compressed” to a single nucleotide (e.g., [A], becomes [A]; for n>1). All
compressed reads were then aligned to one another to identify and correct small errors, and
differences within simple sequence repeats were masked. After compression, correction, and
masking, only exact read overlaps were considered during graph construction, followed by
iterative graph simplification (23).

In the resulting graph, most components originate from a single chromosome and have an
almost linear structure (Fig. 2A), which suggests few perfect repeats greater than roughly

10 kbp exist between different chromosomes or distant loci. Two notable exceptions are

the five acrocentric chromosomes, which form a single connected component in the graph,
and a recent multi-megabase HSat3 duplication on Chromosome 9, consistent with the 9gh+
karyotype of CHM13 (fig. S3). Minor fragmentation of the chromosomes into multiple
components resulted from a lack of HiFi sequencing coverage across GA-rich sequences
(16). These gaps were later filled with a prior ONT-based assembly (CHM13v0.7) (14).
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Ideally, the complete sequence for each chromosome should exist as a walk through the
string graph where some nodes may be traversed multiple times (repeats) and some not at all
(errors and heterozygous variants). To help identify the correct walks, we estimated coverage
depth and multiplicity of the nodes (23), which allowed most tangles to be manually
resolved as unique walks visiting each node the appropriate number of times (Figs. 2B

and fig. S4). In the remaining cases, the correct path was ambiguous and required integration
of ONT reads (Figs. 2C and 2D). Where possible, ONT reads were aligned to candidate
traversals or directly to the HiFi graph (28) to guide the correct walk (fig. S5), but more
elaborate strategies were required for recent satellite array duplications on chromosomes 6
and 9 (23). Only the five rDNA arrays, constituting approximately 10 Mbp of sequence,
could not be resolved with the string graph and required a specialized approach (described
below). An accurate consensus sequence for the selected graph walks was computed from
the uncompressed HiFi reads (23), resulting in the CHM13v0.9 draft assembly.

For comparative genomics of the centromere (29, 30), we repeated this process on an
additional X chromosome from the Coriell GM24385 cell line (NIST ID: HG002). The
resulting T2T-HG002-ChrX assembly shows comparable accuracy to T2T-CHM13 (23)
(figs. S6 to S8).

rDNA assembly

The most complex region of the CHM13 string graph involves the human ribosomal DNA
arrays and their surrounding sequence (Fig. 2D). Human rDNAs are 45 kbp near-identical
repeats that encode the 45S rRNA and are arranged in large, tandem repeat arrays embedded
within the short arms of the acrocentric chromosomes. The length of these arrays varies
between individuals (36), and even somatically, especially with aging and certain cancers
(37). A typical diploid human genome has an average of 315 rDNA copies, with a standard
deviation of 104 copies (36). We estimate that the diploid CHM13 genome contains
approximately 400 rDNA copies based on ILMN depth of coverage (23) (fig. S9), or 409 + 9
(mean =+ s.d.) rDNA copies by ddPCR (fig. S10).

To assemble these highly dynamic regions of the genome, and overcome limitations of the
string graph construction (23) (fig. S11), we constructed sparse de Bruijn graphs for each

of the five rDNA arrays (38) (fig. S12). ONT reads were aligned to the graphs to identify

a set of walks, which were converted to sequence, segmented into individual rDNA units,
and clustered into “morphs” according to their sequence similarity. The copy number of each
morph was estimated from the number of supporting ONT reads, and consensus sequences
were polished with mapped HiFi reads. ONT reads spanning two or more rDNA units were
used to build a morph graph representing the structure of each array (fig. S12).

The shorter arrays on Chromosomes 14 and 22 consist of a single primary morph arranged
in a head-to-tail array, whereas the longer arrays on Chromosomes 13, 15, and 21 exhibit
a more mosaic structure involving multiple, interspersed morphs. In these cases, the ONT
reads were not long enough to fully resolve the ordering, and the primary morphs were
artificially arranged in consecutive blocks reflecting their estimated copy number. These
three arrays capture the chromosome-specific morphs but should be treated as model
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sequences. The final T2T-CHM13 assembly contains 219 complete rDNA copies, totaling
9.9 Mbp of sequence.

Assembly validation and polishing

To evaluate concordance between the reads and the assembly we mapped all available
primary data, including HiFi, ONT, ILMN, Strand-seq, and Hi-C, to the CHM13v0.9 draft
assembly to identify both small and structural variants (see reference (31) for a complete
description). Manual curation corrected 4 large and 993 small errors, resulting in the
CHM13v1.0 assembly, and identified 44 large and 3,901 small heterozygous variants (31).
Further telomere polishing and addition of the rDNA arrays (23) resulted in a complete,
telomere-to-telomere assembly of a human genome, T2T-CHM13vl1.1.

The T2T-CHM13 assembly is consistent with previously validated assemblies of
chromosomes X (14) and 8 (21), and the sizes of assembled satellite arrays match ddPCR
copy-number estimates for those tested (fig. S10 and tables S2 and S3). Mapped Strand-
seq (figs. S13 and S14) and Hi-C (fig. S15) data show no signs of misorientations or
other large-scale structural errors. The assembly correctly resolves 644 of 647 previously
sequenced CHM13 BACs at >99.99% identity, with the 3 others reflecting errors in the
BACs themselves (figs. S16 to S19).

Mapped sequencing read depth shows uniform coverage across all chromosomes (Fig. 3A),
with 99.86% of the assembly within three standard deviations of the mean coverage for
either HiFi or ONT (HiFi coverage 34.70 + 7.03, ONT coverage 116.16 = 16.96, excluding
the mitochondrial genome). Ignoring the 10 Mbp of rDNA sequence, where most of the
coverage deviation resides, 99.99% of the assembly is within three standard deviations (23).
Alignment-free analysis of ILMN and HiFi copy number data also show concordance with
the assembly (figs. S20 and S21). This is consistent with uniform coverage of the genome
and confirms both the accuracy of the assembly and the absence of aneuploidy in the
sequenced CHM13 cells.

Coverage increases or decreases were observed across multiple satellite arrays (Figs. 3B

to 3D). However, given the uniformity of coverage across these arrays, association with
specific satellite classes, and the sometimes opposite effect observed for HiFi and ONT, we
hypothesize that these anomalies are related to biases introduced during sample preparation,
sequencing, or basecalling, rather than assembly error (23) (figs. S22 to S26 and table S4).
While the specific mechanisms require further investigation, prior studies have noted similar
biases within certain satellite arrays and sequence contexts for both ONT and HiFi (32, 33).

Being the most difficult regions of the genome to assemble, we performed targeted
validation of long tandem repeats to identify any errors missed by the genome-wide
approach. The assembled rDNA morphs, being only 45 kbp each, were manually validated
via inspection of the read alignments used for polishing. Alpha satellite higher-order
repeats (HOR) were validated using a purpose-built method (34) (fig. S27 and table S5)
and compared to independent ILMN-based HOR copy number estimates (fig. S28). All
centromeric satellite arrays, including beta satellite (BSat) and human satellite (HSat)
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repeats, were further validated by measuring the ratio of primary to secondary variants
identified by HiFi reads (35) (fig. S29).

The consensus accuracy of the T2T-CHM13 assembly is estimated to be approximately 1
error per 10 Mbp (23, 31), which exceeds the historical standard of “finished” sequence by
orders of magnitude. However, regions of low HiFi coverage were found to be associated
with an enrichment of potential errors, as estimated from both HiFi and ILMN data (31).

To guide future use of the assembly, we have cataloged all low-coverage, low-confidence,
and known heterozygous sites identified by the above validation procedures (31). The total
number of bases covered by potential issues in the T2T-CHM 13 assembly is just 0.3% of the
total assembly length compared to 8% for GRCh38 (Fig. 3A).

A truly complete genome

T2T-CHM13 includes gapless telomere-to-telomere assemblies for all 22 human autosomes
and Chromosome X, comprising 3,054,815,472 bp of nuclear DNA, plus a 16,569 bp
mitochondrial genome. This complete assembly adds or corrects 238 Mbp of sequence that
does not co-linearly align to GRCh38 over a 1 Mbp interval (i.e., is non-syntenic), primarily
comprising centromeric satellites (76%), non-satellite segmental duplications (19%), and
rDNAs (4%) (Fig. 1C). 182 Mbp of sequence has no primary alignments to GRCh38 and is
exclusive to T2T-CHM13. As a result, T2T-CHM13 increases the number of known genes
and repeats in the human genome (Table 1).

To provide an initial annotation, we used both the Comparative Annotation Toolkit (CAT)
(39) and Liftoff (40) to project the GENCODE v35 (41) reference annotation onto the
T2T-CHM13 assembly. Additionally, CHM13 Iso-Seq transcriptome reads were assembled
into transcripts and provided as complementary input to CAT. A comprehensive annotation
was built by combining the CAT annotation with genes identified only by Liftoff (23).

The draft T2T-CHM13 annotation totals 63,494 genes and 233,615 transcripts, of which
19,969 genes (86,245 transcripts) are predicted to be protein coding, with 683 predicted
frameshifts in 385 genes (469 transcripts) (Table 1, fig. S30, tables S6 to S8). Only 263
GENCODE genes (448 transcripts) are exclusive to GRCh38 and have no assigned ortholog
in the CHM13 annotation (tables S9 and S10). Of these, 194 are due to a lower copy
number in the CHM 13 annotation (fig. S31), 46 do not align well to CHM13, and 23
correspond to known false-duplications in GRCh38 (25) (fig. S32). The majority of these
genes are non-coding and associated with repetitive elements. Only 4 are annotated as being
medically relevant (CFHR 1, CFHR3, OR51A2, UGT2B2S), all of which are due to lower
copy number, and the only protein coding genes that align poorly are immunoglobulin and
T-cell receptor genes, which are known to be highly diverse.

In comparison, a total of 3,604 genes (6,693 transcripts) are exclusive to CHM13 (tables S11
and S12). Most of these genes represent putative paralogs and localize to pericentromeric
regions and the short arms of the acrocentrics, including 876 rRNA transcripts. Only 48 of
the CHM 13-exclusive genes (56 transcripts) were predicted solely from de novo assembled
transcripts. Of all genes exclusive to CHM 13, 140 are predicted to be protein coding based
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on their GENCODE paralogs and have a mean of 99.5% nucleotide and 98.7% amino acid
identity to their most similar GRCh38 copy (table S13). While some of these additional
paralogs may be present (but unannotated) in GRCh38 (23), 1,956 of the genes exclusive

to CHM 13 (99 protein coding) are in regions with no primary alignment to GRCh38 (table
S11). A broader set of 182 multi-exon protein coding genes fall within non-syntenic regions,
36% of which were confirmed to be expressed in CHM13 (42).

Compared to GRCh38, T2T-CHM 13 is a more complete, accurate, and representative
reference for both short- and long-read variant calling across human samples of all
ancestries (25). Reanalysis of 3,202 short-read datasets from the |KGP showed that T2T-
CHM 13 simultaneously reduces both false-negative and false-positive variant calls due to
the addition of 182 Mbp of missing sequence and the exclusion of 1.2 Mbp of falsely
duplicated sequence in GRCh38. These improvements, combined with a lower frequency
of rare variants and errors in T2T-CHM 13, eliminate tens of thousands of spurious variants
per 1IKGP sample (25). In addition, the T2T-CHM13 reference was found to be more
representative of human copy number variation than GRCh38 when compared against 268
human genomes from the Simons Genome Diversity Project (SGDP) (42, 43). Specifically,
within non-syntenic segmentally duplicated regions of the genome, T2T-CHM13 is nine
times more predictive of SGDP copy number than GRCh38 (42). These results underscore
both the quality of the assembly and the genomic stability of the cell line from which it was
derived.

Acrocentric chromosomes

T2T-CHM13 uncovers the genomic structure of the short arms of the five acrocentric
chromosomes, which, despite their importance for cellular function (44), have remained
largely unsequenced to date. This omission has been due to their enrichment for satellite
repeats and segmental duplications, which has prohibited sequence assembly and limited
their characterization to cytogenetics, restriction mapping, and BAC sequencing (45—47).
All five of CHM13’s short arms follow a similar structure consisting of an rDNA array
embedded within distal and proximal repeat arrays (Fig. 4). From telomere to centromere,
the short arms vary in size from 10.1 Mbp (Chr14) to 16.7 Mbp (Chr15), with a combined
length of 66.1 Mbp.

Compared to other human chromosomes, the short arms of the acrocentrics are unusually
similar to one another. Specifically, we find that 5 kbp windows align with a median

identity of 98.7% between the short arms, creating many opportunities for interchromosomal
exchange (Fig. 4). This high degree of similarity is presumably due to recent non-allelic

or ectopic recombination stemming from their colocalization in the nucleolus (46).
Additionally, considering an 80% identity threshold, no 5 kbp window on the short arms

is unique and 96% of the non-rDNA sequence can be found elsewhere in the genome,
suggesting the acrocentrics are dynamic sources of segmental duplication.

CHM13’s rDNA arrays vary in size from 0.7 Mbp (Chr14) to 3.6 Mbp (Chr13) and
are in the expected arrangement, organized as head-to-tail tandem arrays with all 45S
transcriptional units pointing towards the centromere. No inversions were noted within
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the arrays and nearly all rDNA units are full length, in contrast to some prior studies

that reported embedded inversions and other non-canonical structures (47, 48). Each array
appears highly homogenized, and there is more variation between rDNA units on different
chromosomes than within chromosomes (fig. S33), suggesting that intra-chromosomal
exchange of rDNA units via non-allelic homologous recombination is more common than
inter-chromosomal exchange.

Many 45S gene copies on the same chromosome are identical to one another, while

the identity of the most frequent 45S morphs between chromosomes ranges from 99.4—
99.7%. A Chromosome 15 rDNA morph shows the highest identity (98.9%) to the current
KY962518.1 rDNA reference sequence, originally derived from a human Chromosome 21
BAC clone (47). As expected, the 13 kbp 45S is more conserved than the intergenic spacer
(IGS), with all major 45S morphs aligning between 99.4-99.6% identity to KY962518.1.
Certain rDNA variants appear chromosome-specific, including single-nucleotide variants
within the 458 and its upstream promoter region (fig. S34). The most evident variants are
repeat expansions and contractions within the tandem “R” repeat that immediately follows
the 458 and the CT-rich “Long” repeat located in the middle of the IGS. The most frequent
morph in each array can be uniquely distinguished by these two features (fig. S35).

From the telomere to the rDNA array, the structure of all five distal short arms follows

a similar pattern involving a symmetric arrangement of inverted segmental duplications
and ACRO, HSat3, BSat, and HSat1 repeats (Fig. 4); however, the sizes of these repeat
arrays varies among chromosomes. Chromosome 13 is missing the distal half of the inverted
duplication and has an expanded HSat1 array relative to the others. Despite their variability
in size, all satellite arrays share a high degree of similarity (typically >90% identity) both
within and between acrocentric chromosomes. Chromosomes 14 and 22 also feature the
expansion of a 64-bp Alu-associated satellite repeat (““Walu”) within the distal inverted
duplication (49), the location of which was confirmed via FISH (fig. S36). The distal
junction (DJ) immediately prior to the rDNA array includes centromeric repeats (CER) and
a highly conserved and actively transcribed 200 kbp palindromic repeat, which agrees with
previous characterizations of the rDNA flanking sequences (46, 50).

Extending from the rDNA array to the centromere, the proximal short arms are larger in

size and show a higher diversity of structures including shuffled segmental duplications (42),
composite transposable element arrays (49), satellite arrays (including HSat3, BSat, HSat1,
HSat5), and alpha satellite arrays (both monomeric and HORs) (30). Some proximal BSat
arrays show a mosaic inversion structure that was also observed in HSat arrays elsewhere

in the genome (30) (fig. S37). The proximal short arms of chromosomes 13, 14, and 21
appear to share the highest degree of similarity with a large region of segmental duplication
including similar HOR subsets and a central and highly methylated SST1 array (Fig. 4). This
coincides with these three chromosomes being most frequently involved in Robertsonian
translocations (51). Alpha satellite HORs on chromosomes 13/21 and chromosomes 14/22
also share high similarity within each pair, but not between them (52, 53). Non-satellite
sequences within these segmental duplications often exceed 99% identity and show evidence
of transcription (29, 42, 49). Using the T2T-CHM 13 reference as a basis, further study
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of additional genomes is now needed to understand which of these features are conserved
across the human population.

Analyses and resources

A number of companion studies were carried out to characterize the complete sequence of a
human genome, including comprehensive analyses of centromeric satellites (30), segmental
duplications (42), transcriptional (49) and epigenetic profiles (29), mobile elements (49),
and variant calls (25). Up to 99% of the complete CHM 13 genome can be confidently
mapped with long-read sequencing, opening these regions of the genome to functional

and variational analysis (23) (fig. S38 and table S14). We have produced a rich collection
of annotations and omics datasets for CHM 13, including RNA-Seq (30), Iso-Seq (21),
PRO-Seq (49), CUT&RUN (30), and ONT methylation (29) experiments, and have made
these datasets available via a centralized UCSC Assembly Hub genome browser (54).

To highlight the utility of these genetic and epigenetic resources mapped to a complete
human genome, we provide the example of a segmentally duplicated region of the
Chromosome 4q subtelomere that is associated with facioscapulohumeral muscular
dystrophy (FSHD) (55). This region includes FSHD region gene 1 (FRGI), FSHD region
gene 2 (FRG2), and an intervening D474 macrosatellite repeat containing the double
homeobox 4 (DUX4) gene that has been implicated in the etiology of FSHD (56). Numerous
duplications of this region throughout the genome have complicated past genetic analyses of
FSHD.

The T2T-CHM13 assembly reveals 23 paralogs of FRG1 spread across all acrocentric
chromosomes as well as chromosomes 9 and 20 (Fig. 5A). This gene appears to have
undergone recent amplification in the great apes (57), and approximate locations of FRG/
paralogs were previously identified by fluorescence in situ hybridization (58). However, only
9 FRGI paralogs are found in GRCh38, hampering sequence-based analysis.

One of the few FRGI paralogs included in GRCh38, FRGIDP, is located in the centromeric
region of Chromosome 20 and shares high identity (97%) with several paralogs (FRG!BP4-
10) (23) (fig. S39 and tables S15 and S16). When mapping HiFi reads, absence of the
additional FRG1 paralogs in GRCh38 causes their reads to incorrectly align to FRGIDP
resulting in many false-positive variants (Fig. 5B). Most FRG/ paralogs appear present in
other human genomes (Fig. 5C), and all except FRGIKP2 and FRG1KP3 have upstream
CpG islands and some degree of expression evidence in CHM13 (Fig. 5D, table S17). Any
variants within these paralogs, and others like them, will be overlooked when using GRCh38
as a reference.

Future of the human reference genome

The T2T-CHM13 assembly adds five full chromosome arms and more additional sequence
than any genome reference release in the past 20 years (Fig. 1D). This 8% of the genome
has not been overlooked due to its lack of importance, but rather due to technological
limitations. High accuracy long-read sequencing has finally removed this technological
barrier, enabling comprehensive studies of genomic variation across the entire human
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genome, which we expect to drive future discovery in human genomic health and disease.
Such studies will necessarily require a complete and accurate human reference genome.

CHM13 lacks a Y chromosome, and homozygous Y-bearing CHMs are non-viable, so

a different sample type will be required to complete this last remaining chromosome.
However, given its haploid nature, it should be possible to assemble the Y chromosome from
a male sample using the same methods described here, and supplement the T2T-CHM13
reference assembly with a Y chromosome as needed.

Extending beyond the human reference genome, large-scale resequencing projects have
revealed genomic variation across human populations. Our reanalyses of 1KGP (25) and
SGDP (42) datasets have already shown the advantages of T2T-CHM13, even for short-read
analyses. However, these studies give only a glimpse of the extensive structural variation
that lies within the most repetitive regions of the genome assembled here. Long-read
resequencing studies are now needed to comprehensively survey polymorphic variation and
reveal any phenotypic associations within these regions.

Although CHM13 represents a complete human haplotype, it does not capture the full
diversity of human genetic variation. To address this bias, the Human Pangenome Reference
Consortium (HPRC) (59) has joined with the T2T Consortium to build a collection of
high-quality reference haplotypes from a diverse set of samples. Ideally, all genomes

could be assembled at the quality achieved here, but automated T2T assembly of diploid
genomes presents a difficult challenge that will require continued development. Until this
goal is realized, and any human genome can be completely sequenced without error, the
T2T-CHM13 assembly represents a more complete, representative, and accurate reference
than GRCh38.
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Fig. 1. Summary of the complete T2T-CHM13 human genome assembly.
(A) Ideogram of T2T-CHM13v1.1 assembly features. Bottom to top: gaps/issues in GRCh38

fixed by CHM13 overlaid with the density of genes exclusive to CHM13 in red; segmental
duplications (SDs) (42) and centromeric satellites (CenSat) (30); and CHM 13 ancestry
predictions (EUR, European; SAS, South Asian; EAS, East Asian; AMR, Ad Mixed
American). (B) Additional (non-syntenic) bases in the CHM 13 assembly relative to GRCh38
per chromosome, with the acrocentrics highlighted in black, and (C) by sequence type (note
that the CenSat and SD annotations overlap). (D) Total non-gap bases in UCSC reference
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genome releases dating back to September 2000 (hg4) and ending with T2T-CHM13 in
2021.
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Fig. 2. High-resolution assembly string graph of the CHM13 genome.
(A) Bandage (60) visualization, where nodes represent unambiguously assembled sequences

scaled by length, and edges correspond to the overlaps between node sequences. Each
chromosome is both colored and numbered on the short (p) arm. Long (q) arms are labeled
where unclear. The five acrocentric chromosomes (bottom right) are connected due to
similarity between their short arms, and the rDNA arrays form five dense tangles due to
their high copy number. The graph is partially fragmented due to HiFi coverage dropout
surrounding GA-rich sequence (black triangles). Centromeric satellites (30) are the source
of most ambiguity in the graph (gray highlights). (B) The ONT-assisted graph traversal for
the 2p11 locus is given by numerical order. Based on low depth-of-coverage, the unlabeled
light gray node represents an artifact or heterozygous variant and was not used. (C) The
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multi-megabase tandem HSat3 duplication (9gh+) at 9q12 requires two traversals of the
large loop structure (the size of the loop is exaggerated because graph edges are of constant
size). Nodes used by the first traversal are in dark purple and the second traversal in light
purple. Nodes used by both traversals typically have twice the sequencing coverage. (D)
Enlargement of the distal short arms of the acrocentrics, showing the colored graph walks
and edges between highly similar sequences in the distal junctions (DJs) adjacent to the
rDNA arrays.
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Fig. 3. Sequencing coverage and assembly validation.
(A) Uniform whole-genome coverage of mapped HiFi and ONT reads is shown with

primary alignments in light shades and marker-assisted alignments overlaid in dark shades.
Large HSat arrays (30) are noted by triangles, with inset regions are marked by arrowheads
and the location of the rDNA arrays marked with asterisks. Regions with low unique marker
frequency (light green) correspond to drops in unique marker density, but are recovered

by the lower-confidence primary alignments. Annotated assembly issues are compared for
T2T-CHM13 and GRCh38. (B-D) Enlargements corresponding to regions of the genome
featured in Fig. 2. Uniform coverage changes within certain satellites are reproducible and
likely caused by sequencing bias. Identified heterozygous variants and assembly issues are
marked below and typically correspond with low coverage of the primary allele (black) and
elevated coverage of the secondary allele (red). % microsatellite repeats for every 128 bp
window is shown at the bottom.
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Fig. 4. Short arms of the acrocentric chromosomes.
Each short arm is shown along with annotated genes, percent of methylated CpGs (29),

and a color-coded satellite repeat annotation (30). The rDNA arrays are represented by a
directional arrow and copy number due to their high self-similarity, which prohibits ONT
mapping. Percent identity heatmaps versus the other four arms were computed in 10 kbp
windows and smoothed over 100 kbp intervals. Each position shows the maximum identity
of that window to any window in the other chromosome. The distal short arms include
conserved satellite structure and inverted repeats (thin arrows), while the proximal short
arms show a diversity of structures. The proximal short arms of Chromosomes 13, 14, and
21 share a segmentally duplicated core, including small alpha satellite HOR arrays and

a central, highly methylated, SST1 array (thin arrows with teal block). Yellow triangles
indicate hypomethylated centromeric dip regions (CDRs), marking the sites of kinetochore
assembly (29).
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Fig. 5. Resolved FRG1 paralogs.
(A) Protein-coding gene FRGI and its 23 paralogs in CHM13. Only 9 are found in GRCh38.

Genes are drawn larger than their actual size and the “FRG1” prefix is omitted for brevity.
All paralogs are found near satellite arrays. Most copies exhibit evidence of expression,

including CpG islands present at the 5 start site with varying degrees of methylation.

(B) Reference (gray) and variant (colored) allele coverage is shown for four human HiFi
samples mapped to the paralog FRG1DP. When mapped to GRCh38, the region shows
excessive HiFi coverage and variants, indicating that reads from the missing paralogs are
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mis-mapped to FRGIDP (variants with >80% coverage shown). When mapped to CHM13,
HiFi reads show the expected coverage and a typical heterozygous variation pattern for

the three non-CHM13 samples (variants >20% coverage shown). These non-reference
alleles are also found in other populations from 1KGP ILMN data. (C) Mapped HiFi read
coverage for other FRG/ paralogs, with an extended context shown for Chromosome 20.
Coverage of HiFi reads that mapped to FRG/DPin GRCh38 are highlighted (dark gray),
showing the paralogous copies they originate from (FRGIBP4—-10, FRGIGP, FRGIGP2,
and FRGIKP4). Background coverage is variable for some paralogs, suggesting copy
number polymorphism in the population. (D) Methylation and expression profiles suggest
transcription of FRGI1DPin CHM13. In the copy number display (bottom), each length &
sequence (k~mer) of the CHM13 assembly is painted with a color representing the copy
number of that &~-mer sequence in an SGDP sample. The CHM13 and GRCh38 tracks show
the copy number of these same &-mers in the respective assemblies. CHM13 copy number
resembles all samples from the SGDP, whereas GRCh38 underrepresents the true copy
number.
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Comparison of GRCh38 and T2T-CHM13v1.1 human genome assemblies.

Table 1.

Summary GRCh38 T2T-CHM13 +%

Assembled bases (Gbp) 2.92 3.05 +4.5%

Unplaced bases (Mbp) 11.42 0 -100.0%

Gap bases (Mbp) 120.31 0 -100.0%

# Contigs 949 24 -97.5%

Ctg NG50 (Mbp) 56.41 15426  +173.5%

# Issues 230 46 -80.0%

Issues (Mbp) 230.43 8.18 -96.5%

Gene Annotation

# Genes 60,090 63,494 +5.7%
protein coding 19,890 19,969 +0.4%

# Exclusive genes 263 3,604
protein coding 63 140

# Transcripts 228,597 233,615 +2.2%
protein coding 84,277 86,245 +2.3%

# Exclusive transcripts 1,708 6,693
protein coding 829 2,780

Segmental duplications (SDs)

% SDs 5.00% 6.61%

SD bases (Mbp) 151.71 201.93 +33.1%

# SDs 24097 41528  +72.3%

RepeatMasker

% Repeats 51.89% 53.94%

Repeat bases (Mbp) 1,516.37 1,647.81 +8.7%
LINE 626.33 631.64 +0.8%
SINE 386.48 390.27 +1.0%
LTR 267.52 269.91 +0.9%
Satellite 76.51 15042  +96.6%
DNA 108.53 109.35 +0.8%
Simple repeat 36.5 77.69  +112.9%
Low complexity 6.16 6.44 +4.6%
Retroposon 4.51 4.65 +3.3%
rRNA 0.21 1.71  +730.4%

Page 30

GRCh38 summary statistics exclude “alts” (110 Mbp), patches (63 Mbp), and Chromosome Y (58 Mbp). Assembled bases: all non-N bases.
Unplaced bases: not assigned or positioned within a chromosome. # Contigs: GRCh38 scaffolds were split at three consecutive Ns to obtain
contigs. NG50: half of the 3.05 Gbp human genome size contained in contigs of this length or greater. # Exclusive genes/transcripts: for GRCh38,
GENCODE genes/transcripts not found in CHM13; for CHM13, extra putative paralogs that are not in GENCODE. Segmental duplication analysis
is from (42). RepeatMasker analysis is from (49).
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