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ABSTRACT Convolutional neural networks (CNNs) have developed to become powerful models for various
computer vision tasks ranging from object detection to semantic segmentation. However, most of the state-of-
the-art CNNs cannot be deployed directly on edge devices such as smartphones and drones, which need low
latency under limited power and memory bandwidth. One popular, straightforward approach to compressing
CNN s is network slimming, which imposes ¢; regularization on the channel-associated scaling factors via
the batch normalization layers during training. Network slimming thereby identifies insignificant channels
that can be pruned for inference. In this paper, we propose replacing the ¢; penalty with an alternative
nonconvex, sparsity-inducing penalty in order to yield a more compressed and/or accurate CNN architecture.
We investigate £,(0 < p < 1), transformed ¢; (T¢;), minimax concave penalty (MCP), and smoothly
clipped absolute deviation (SCAD) due to their recent successes and popularity in solving sparse optimization
problems, such as compressed sensing and variable selection. We demonstrate the effectiveness of network
slimming with nonconvex penalties on three neural network architectures — VGG-19, DenseNet-40, and
ResNet-164 — on standard image classification datasets. Based on the numerical experiments, T preserves
model accuracy against channel pruning, £1,2 3,4 yield better compressed models with similar accuracies
after retraining as £1, and MCP and SCAD provide more accurate models after retraining with similar com-
pression as £1. Network slimming with T¢; regularization also outperforms the latest Bayesian modification
of network slimming in compressing a CNN architecture in terms of memory storage while preserving its
model accuracy after channel pruning.

INDEX TERMS Convolutional neural networks (CNN), machine learning, deep learning, network pruning,

nonconvex optimization.

I. INTRODUCTION

In the past years, convolutional neural networks (CNNs) have
evolved into superior models for various computer vision
tasks, such as image classification [1]-[3], image segmen-
tation [4]-[6], and object detection [7]-[9]. Unfortunately,
training a highly accurate CNN is computationally demand-
ing. State-of-the-art CNNs such as ResNet [1] can have up
to at least a hundred layers and thus require millions of
parameters to train and billions of floating-point-operations
to execute. Consequently, deploying CNNs in low-memory
devices, such as mobile smartphones, is difficult, making
their real-world applications limited.
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To make CNNs more practical, many works suggest
several different directions to compress large CNNs or to
learn smaller, more efficient models from scratch. Low-rank
approximation [10]-[14] minimizes network redundancy
by approximating the network’s weight matrices with
low-rank matrices. Weight quantization [15]-[19] replaces
the floating-point weights with quantized weights, such as
binary weights {—1, +1} and ternary weights {—1, 0, +1}.
Pruning [20]-[23] determines which weights, filters, and/or
channels are unnecessary and removes them from the net-
work. Lastly, another popular direction is to sparsify the
CNN while training it [24]-[27]. Sparsity can be imposed on
various types of structures existing in CNNss, such as filters
and channels [27].

One interesting yet straightforward approach in sparsify-
ing CNNs is network slimming [28]. This method imposes
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£ regularization on the scaling factors in the batch nor-
malization layers. Due to £ regularization, scaling factors
corresponding to insignificant channels are pushed towards
zeroes, narrowing down the important channels to retain,
while the CNN model is being trained. Once the insignificant
channels are pruned, the compressed model may need to
be retrained since pruning can degrade its original accu-
racy. Overall, network slimming yields a compressed model
with low run-time memory and number of computing oper-
ations. Since its inception, network slimming helps develop
lightweight CNNs for various image classification tasks, such
as traffic sign classification [29], facial expression recogni-
tion [30], and semantic segmentation. [31].

To improve the performance of network slimming,
we propose replacing ¢ regularization with an alternative
regularization that promotes better sparsity and/or accuracy.
Typically, better sparsity-promoting regularizers are noncon-
vex. Hence, we examine the ¢, penalty [32]-[34], trans-
formed ¢; (T¢;) penalty [35], [36], the minimax concave
penalty (MCP) [37], and the smoothly clipped absolute devi-
ation (SCAD) penalty [38] due to their recent successes and
popularity. These four regularizers have explicit formulas
for their subgradients, which allow us to directly perform
subgradient descent [39] when training CNNs.

Preliminary work in the conference version [40] of
this paper demonstrated that T¢; regularization preserves
the CNN’s accuracy after pruning, and £, regularization
yields a more compressed CNN than ¢; with similar
accuracy after retraining. This extended work includes dis-
cussion on the application of MCP and SCAD as additional
regularization options for network slimming. Moreover,
we provide more numerical results and analyses to validate
the improvement in network slimming by using nonconvex
regularization.

Il. RELATED WORKS

A. COMPRESSION TECHNIQUES FOR CNN

1) LOW-RANK DECOMPOSITION

Low-rank decomposition aims to reduce weight matrices to
their low-rank structures for faster computation and more
efficient storage. One set of methods focuses on decomposing
pre-trained weight tensors. Denton ef al. [10] compressed the
weight tensors of convolutional layers using singular value
decomposition to approximate them. Jaderberg et al. [11]
exploited the redundancy between different feature channels
and filters to approximate a full-rank filter bank in CNNs by
combinations of a rank-one filter basis. On the other hand,
there are methods that train CNNs with low-rank weight
matrices from scratch. Tai et al. [41] incorporated low-rank
tensor decomposition into their CNN training algorithm.
Wen et al. [12] proposed force regularization to train a CNN
towards having a low-rank representation. Xu et al. [13],
[14] developed trained rank pruning, an optimization scheme
that incorporates low-rank decomposition into the training
process. Trained rank pruning was further strengthened by
nuclear norm regularization.
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2) WEIGHT QUANTIZATION

Quantization aims to represent weights with low-precision
values (<8 bits arithmetic). The simplest form of quan-
tization is binarization, constraining weights to only two
values. Courbariaux et al. [16] proposed BinaryConnect,
a method that trains deep neural networks (DNNs) with
strictly binary weights. Neural networks with ternary weights
have also been developed and investigated. Li et al. [17]
created ternary weight networks, where the weights are only
—1,0, or +1. Zhu et al. [18] proposed Trained Ternary
Quantization that constrains the weights to more general
values —W", 0, and W”, where W" and WP are parameters
learned through the training process. For more general quanti-
zation, Yin et al. [19] developed BinaryRelax, which relaxes
the quantization constraint into a continuous regularizer for
the optimization problem needed to be solved in CNNs.
Later, Bai et al. [42] proposed Proxquant, a stochastic prox-
imal gradient method for quantizing networks while training
them.

3) PRUNING

Pruning methods identify which weights, filters, and/or chan-
nels in CNNs are redundant and remove them from the net-
works. Early works focus on pruning weights. Han et al. [21]
proposed a three-step framework to first train a CNN, prune
weights if their norms are below a fixed threshold, and retrain
the compressed CNN. Aghasi et al. [20], [43] proposed using
convex optimization to determine which weights to prune
while preserving model accuracy. For CNNs, channel or
filter pruning is preferred over individual weight pruning
since the former significantly eliminates more unnecessary
weights. Li et al. [22] calculated the sum of absolute weights
for each filter of the CNN and pruned the filters with the
lowest sums. On the other hand, Hu et al. [23] proposed a
metric that measures the redundancies in channels to deter-
mine which to prune. Network slimming [28] is also another
method of channel pruning since it prunes channels with the
smallest associated scaling factors. Zhao et al. [44] improved
network slimming by incorporating a variational Bayesian
framework.

4) SPARSE OPTIMIZATION

Sparse optimization methods introduce a sparse regularizer
term to the loss function of the CNN so that the CNN
is trained to have a compressed structure from scratch.
BinaryRelax [19] and network slimming [28] are exam-
ples of sparse optimization methods for CNNs. Alvarez
and Salzmann [24] and Scardapane et al. [26] applied
group lasso [45] and sparse group lasso [26] to CNNs
to obtain group-sparse networks. Nonconvex regularizers
have also been examined recently. Xue and Xin [46] used
Lo and T¢; regularization in three-layer CNNs that clas-
sify shaky vs. normal handwriting. Both Ma er al. [47]
and Pandit et al. [48] proposed a regularizer that com-
bines group sparsity and T¢; and applied it to CNNs for
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FIGURE 1. Contour plots of sparse regularizers.

image classification. Bui et al. [49] generalized sparse group
lasso to incorporate nonconvex regularizers and applied
it to various CNN architectures. Li et al. [S0] introduced
sparsity-inducing matrices into CNNs and imposed group
sparsity on the rows or columns via £ or other nonconvex
regularizers to prune filters and/or channels.

B. REGULARIZATION PENALTY
Letz = (z1,...,2s) € R". The ¢ penalty is described by

n
lzlh =) lail. (1
i=1

while the £ penalty is described by

1 ifz;#0
0 ifz;=0.
(2

Although ¢; regularization is popular in sparse optimization
in various applications such as compressed sensing [51]-[53]
and compressive imaging [54], [55], it may not actually
yield the sparsest solution [32], [34], [36], [56], [57]. More-
over, it is sensitive to outliers and it may yield biased
solutions [38].

A nonconvex alternative to the £ penalty is the £, penalty

n 1/p
lzll, = (Z |Zi|1’> 3)
i=1

for p € (0, 1). The £, penalty interpolates £y and £1 because
asp — 07, we have £y — Lyg,andasp — 17, wehave £, —
£1. It recovers sparser solution than £; for certain compressed
sensing problems [33], [58]. Empirical studies [33], [59]

n
lzllo = Z Liz;20p, Wwhere 10 =

i=1
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demonstrate that for p € [1/2, 1), as p decreases, the solution
becomes sparser by ¢, minimization, but for p € (0, 1/2),
the performance becomes no longer significant. Moreover,
it is used in image deconvolution [60], [61], hyperspectral
unmixing [62], computed topography reconstruction [63],
and image segmentation [64], [65]. Numerically, in com-
pressed sensing, a small value € is added to z; to avoid blowup
in the subgradient when z; = 0. In this work, we will examine
across different values of p since £, regularization may work
differently in deep learning than in other areas.

Although ¢, may yield sparser solutions than £y, it is
still biased because parameters with large weights could be
overpenalized [66]. Hence, a better regularizer should also be
unbiased. In fact, Fan and Li [38] suggested three properties
that a regularizer should have: (1) continuity to avoid model
instability; (2) sparsity to reduce model complexity; and
(3) unbiasedness to avoid modeling bias due to overpenal-
ization of large parameters. Hence, we consider regularizers
that have all three properties, such as T¢;, MCP, and SCAD.

The T¢; penalty is formulated as

n

Dz
Puo) = Y E D )

~ a+ |zl
i=1

for a > 0. T¢; interpolates ¢y and ¢; because as a —
0t, we have T¢; — ¥y, and as a — oo, we have
T¢y — £,. It was validated to have the three aforemen-
tioned properties [67]. The T¢; penalty outperforms £; and
£, in compressed sensing problems with both coherent and
incoherent sensing matrices [35], [36]. Additionally, the T¢;
penalty yields satisfactory, sparse solutions in matrix comple-
tion [68] and deep learning [47].
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The MCP penalty [37] is provided by

DPa,a(2)

" 2-2 ar?
=, 1 AIZ[I—Z Ligizan + = Ligizan |- )
=

where A > 0 and a > 1. The parameter A acts as a
regularization parameter while the parameter a controls the
level of sparsity, where the smaller a is, the sparser the
solution becomes. In fact, a allows MCP to roughly inter-
polate between ¢y and £;. Originally, MCP is developed for
variable selection [37], but it has been utilized in various
other applications such as image restoration [69] and matrix
completion [70].
Lastly, the SCAD penalty [38] is given by

ﬁk,a(Z)
n s R
2aklzil —z; — A
= ; [Alallnmsx} + ZZa — i) 1< |5 <an)
22a+1)
+ Tﬂ{lmlnﬂ»} ) 6)

where A > 0 is the regularization parameter and a > 2
controls the level of sparsity similarly to MCP. In both lin-
ear and logistic regression problems, SCAD outperforms ¢
in variable selection [38]. Beyond variable selection, it is
applied in compressed sensing [71], bioinformatics [72], [73],
image processing [74], and wavelet approximation [75].

Figure 1 displays the contour plots of the aforemen-
tioned regularizers. With £ regularization, the solution tends
towards one of the corners of the rotated squares, making it
sparse. Compared with £;, the level lines of the nonconvex
regularizers bend more inward towards the axes, encouraging
the solutions to coincide with one of the corners. In addition,
the contour plots of the nonconvex regularizers appear more
similar to the contour plot of £y. Therefore, solutions tend
to be sparser with nonconvex regularization than with ¢;
regularization.

For further discussion on the aforementioned nonconvex
regularizers, [76] and [77] provide detailed survey, applica-
tion, and analysis.

Throughout the rest of the paper, we define Ap; 4(-) :=
Pra(?) and Ap1 4(-) := P a().

ill. PROPOSED METHOD

A. BATCH NORMALIZATION LAYER

Batch normalization [78] has been instrumental in speeding
the convergence and improving generalization of many deep
learning models, especially CNNs [1], [79]. In most state-
of-the-arts CNNs, a convolutional layer is always followed
by a batch normalization layer. Within a batch normalization
layer, features generated by the preceding convolutional layer
are normalized by their mean and variance within the same
channel. Afterward, a linear transformation is applied to com-
pensate for the loss of their representative abilities.
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FIGURE 2. Visualization of batch normalization on a feature map. The
mean and variance of the values of the pixels of the same colors
corresponding to the channels are computed and are used to normalize
these pixels.

We mathematically describe the process of the batch nor-
malization layer. First we suppose that we are working with
2D images. Let x’ be a feature computed by a convolu-
tional layer. Each entry of x” is denoted by x/, where i =
(in, ic, ig, iw) indexes the features in (N, C, H, W) order.
Here, N is the batch axis, C is the image channel axis, H is the
image height axis, and W is the image width axis. We define
the index set S; = {k = (kn, k¢, kg, kw) : k¢ = ic}, where
kc and ic are the respective subindices of k and i along the
C axis. In other words, the index set consists of pixels that
belong to the same channel. The mean p; and variance aiz
are computed as follows:

1 1
Hi= o Yo%, o= o D g — ) +e (D)
" kes; " kes;

for some small value € > 0, where |.A| denotes tbe cardinality
of the set A. Then we normalize x] by X; = x’%[“’ for each
index i. In short, the mean and variance are computed from
pixels of the same channel index and are used to normalize
them. Visualization is provided in Figure 2. Lastly, the output
of the batch normalization layer is computed as a linear
transformation of the normalized features:

Zi = Yicki + Bic» (8)

where y;., Bi. € R are trainable parameters. Additionally,
Vic 1s defined to be the scaling factor related to the channel ic.

B. NETWORK SLIMMING WITH NONCONVEX

SPARSE REGULARIZATION

Since the scaling factors y;.’s in (8) are associated with the
channels of a convolutional layer, we aim to penalize them
with a sparse regularizer in order to identify which channels
are irrelevant to the compressed CNN model. Suppose we
have a training dataset that consists of N input-output pairs
{(xi, y,-)}i.V: ; and a CNN with L convolutional layers, where
each is followed by a batch normalization layer. Then we
have two sets of vectors {y;}i-, and {B;}}—,, where y; =
Wi1s - ve)and B = (Bra1, - .., Bi,c;) with C; being the
number of channels in the /th convolutional layer. Let W
be the weight parameters that include {y;}lL: , and {,BI}ZL: 1
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TABLE 1. Sparse regularizers and their (limiting) subgradients.

Name R(z) OR(z)
n )
sgn(z;) ifz; #0
) = ; - R™: ¢; =
1 =l ;lzﬂ ollz(l1 {C € ¢ {CL €L1,1] ifz =0
n p-sgn(zi) .
, —  ifz; 0
o 1212 = S Jzil” ozl = ¢ erm i ={ Jmpie 7
i=1 G EeR ifz; =0
a(a + 1)sgn(z;) .
" a1z , LT LA itz #£0
T4y P,(z) =Z(7)H OP,(z2) =S CER™: ¢ = (a + |zi])?
= a+tlaul ¢ € [—“T“,“T“] ifz; =0
" 2 a2 0 . if |z;] > aX
i T .
MCP Pralz) =D KWH - g) L{jzi1<an) + =~ 1{\zi\>ax)} Opxa(z) = QCER™: ¢ = g Asgn(z) — —  if0 < |zi| <A
i=1 i €[N ifz; =0
] n 2a>\|2i|—2i2—>\2 0 if |z;] > aX
m,a,(z)=z [Mzi\ﬂ{\zi\gx}+W1{A<\mia/\} adsgn(zi) — zi ifA < |z;] < aX
SCAD i=1 2 OPx,a(z) = JCER™ : (i = a—1 e
A (a+1) Asgn(z;) if0 < |z <A
+t——S " L{z1zan i
2 GE-MA ifzi=0

Hence, the trainable parameters V' of the CNN are learned
by minimizing the following objective function:

1 N L
~ 2 LG W,y + 53 3 R, ©)

i=1 I=1
where A(-, -) is the output of the CNN used for prediction,
L(-, -) is a loss function, R(-) is a sparse regularizer, and A >
0 is a regularization parameter for R(-). When R(-) = || - ||1,
we have the original network slimming method. As men-
tioned earlier, since £ regularization may not yield the spars-
est solution and it could potentially be biased, we investigate
the method with a nonconvex regularizer, where R(-) is || - ||§,
Pu(-), Pl,a('), or ﬁl,a(')~

To minimize (9), stochastic gradient descent is applied to
the loss function term while subgradient descent is applied
to the regularizer term [39]. The algorithm is summarized
in Algorithm 1. Subgradient descent is applicable to the
nonconvex regularizers R(z) for z € R" asitis for £;. Like 1,
the nonconvex regularizers are of the form Z?:l r(z;), where
r : R — R has the following properties:

@ r0) =0;
(i1) r is an even, proper, and continuous function;
(iii) r is increasing on [0, +00);
(iv) r is differentiable on (—oo, 0) U (0, 4+-00).
These properties ensure that r is differentiable everywhere
except at 0 and O is the global minimum of » while being
its only local minimum. As a result, the regularizers are
differentiable when z; # 0 for all i = 1,...,n. Hence,
subgradient descent becomes gradient descent at these points.
If z; = O for at least one index i, then we need to compute
its (limiting) subgradient [80, Definition 6.1] and decide a
candidate descent direction. Fortunately, because R(z) =
>, r(zi), we have

0R(z) = (0r(z1), 0r(z2), ..., 0r(zy))
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Algorithm 1 Algorithm for Minimizing (9)
Input: Regularization parameter A, learning rate n, sparse
regularizer R
Initialize WP, excluding {y;}lel, with random values.
Initialize {y }-_, with entries 0.5.
1: for eachepochr=1,...,T do

N
Wt = w1 —1% Z V L(h(xj, W'™Y), y;) by stochas-

2:
i=1
tic gradient descent or variant.
3yl =y =Ry, Hfori=1,...,L.
4: end for

by [80, Proposition 6.17(e)]. This means that at each compo-
nent r(z;), we can compute its subgradient dr(z;) individually
and select a descent direction from the set. Since 0 is a local
minimum of r, we have 0 € 9r(0), so we can select 0
as a descent direction for simplicity. Table 1 presents the
subgradients of the regularizers.

After the CNN is trained with (9) using Algorithm 1,
we prune the channels whose scaling factors are small
in magnitude, giving us a compressed model. How-
ever, the compressed model may lose its original accu-
racy, so it may need to be retrained but without the
sparse regularizer in order to attain its original accuracy
or better.

IV. EXPERIMENTAL RESULTS
We apply the proposed nonconvex network slimming using
£,(0 < p < 1), T¢y, MCP, and SCAD regularization
on various networks and datasets and compare their results
against the original network slimming with £; regularization
as the baseline.

Code for the experiments is available at
https://github.com/kbuil 993/NonconvexNetworkSlimming.
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TABLE 2. Effect of channel pruning on the mean pruned parameter / FLOPs percentages (%) on VGG-19 trained on (a) CIFAR 10, (b) CIFAR 100, and
(c) SVHN. The mean is computed from five runs for each regularizer. For each channel pruning ratio, bold indicates outperforming ¢,; * indicates best
value; and NA indicates at least one of the five models is over-pruned.

@ CIFAR 10
Cham;fi:;“m“g 0.0 020 030 040 050 0.60 0.70 080 090
7 L10%/1183% | 934%/2018% | SA88%/3100% | G6156%/38351% | TI55% 478% | S471%/4968% | 8881%/5195% NA NA
[ 14% [12.01% | 3955% /2071% | 55.13% /30.06% | 61.96% 13997% | 7199% /46.08% | S5.24% [5137% | 89.69% /54.96% NA NA
L 02% 112.38% | 39.62% /20.65% | 55.29% 13006% | GRN0% [39.75% | 78.00% 4645% | 8543% /52.02% | 9001%/56.12% | 93.66%/6552% NA
T/ 1995% 1 1549%* | 37.66% 12982% | 5299% 42.93%* | 66.20%/5439%* | T7.07% GA4T%* | $5.76% 7344% | 9L14%* [S1.89%* | 9654%+ [9L07%* | 99.05%* /98.32%"
T0(a=100) | 2LI5%/1192% | 3941%/22.59% | 5495%/3185% | 6171% O0% | T1.69% /45.77% | 84.89% /5047% | $9.06% /5275% NA NA
T(a=10) | 2116%/12.12% | 935% /B.13% | 5494% /30.60% | 61.88%140.69% | 78.06% /4794% | $555% /5340% | 90.34%/57.43% NA NA
Th(a=05) | 2099%/1259% | 39.29%123.66% | 5492% /3361% | 67.83% 142.34% | 78239 [49.58% | 85929 /55.36% | 90.88% 59.84% NA NA
MCP(a = 15000) | 2LI8%/1156% | 3948%/2143% | 54.96% [3031% | 61.62% [3175% | T153%/8376% | S458%/4805% | 88.38%750.69% NA NA
MCP(a = 10000) | 2099%/1104% | 3935% [2103% | 5497% 99%% | G164% [3171% | T1.55% [4340% | S461%/4188% | 88.63%75049% NA NA
MCP(a = 5000) | 2120%/1097% | 39.71%% [2092% | 35.4%2931% | 61.87% [3632% | 7T161% [4197% | 84.53%/46.08% | 88.56%/49.49% NA NA
SCAD(a = 15000) | 2110%/11.70% | 39.42%/2183% | S497% [3075% | 6168% [3183% | T156% [4362% | SA66%/4809% | 88.71%/50.70% NA NA
SCAD(a = 10000) | 2121%/1123% | 3945%/2095% | 5495%12989% | 61.60% /3133% | T144%14323% | SA53%[4750% | 88.57%1504%% NA NA
SCAD(a = 5000) | 2124%%/1125% | 39.65% 12108% | 55.16% [ 9.64% | G171% [%6.71% | T1.58%142.69% | S458%74696% | 98.62%750.19% NA NA
® CIFAR 100
Cha“‘gg"mng 0.0 020 030 040 050 0.60 0.70 080 090
7 3101% /1243% | 4036% 12289%" | 5583% 128.19% | G1A5%/3175% | 75.35%136.05% NA NA NA NA
[ 2098% /1092% | 40.64% 12075% | 5604% /28.64% | 6801% 34.71% | 76.54% /38.40% NA NA NA NA
T2 22.02% [1089% | d085% /2004% | 56.29% 12785% | G841% /4.23% | T9.19% /3940% | 83.07%/4382% NA NA NA
4 22.00% [1080% | 40.71% 12050% | 5621% /29.00% | 68.53%*/3659% | 78.16%* [4.28% | 85.71% [54.15%" | 9148%" [ 68.94%" | 96.54%" [86.86%" NA
T0(a=100) | 2183%/1241% | 4034%/20.60% | 5562%12971% | 6180% /297% | 7607% /37.00% NA NA NA NA
0 (a = 1.0) A8I%/1121% | 4047% [2085% | 5599% [29.04% | 68.2%13622% | T1.18% [4047% | 8290% /43.94% NA NA NA
0 (a = 0.5) 6% 11420 | W033%/2150% | 5597% /30.06%" | 6849% /37520 | 7T1.99% [43.24% | 84.09% /47.15% NA NA NA
MCP(a = 15000) | 2186%/1237% | H028% 240% | S560%128.07% | 6109%/3162% | 75.38% 13591% NA NA NA NA
MCP(a = 10000) | 2190%/12.40% | M024% /22.60% | 5573%2194% | 61.08%13160% | 75.20% [ 35.95% NA NA NA NA
MCP(a = 5000) | 22.03%% [1190% | M0.09% [2145% | 55.94% 12646% | 6135%/3043% | 715.03%34.78% NA NA NA NA
SCAD(a = 15000) | 2196% / 1248%* | 40.42%/2236% | 5583%/2804% | 6150% [3170% | 75.34%13591% NA NA NA NA
SCAD(a = 10000) | 21.90%/11.76% | 4028%/2182% | 5571%/2734% | GL.18%/31.07% | 75.00%135.56% NA NA NA NA
SCAD(a = 5000) | 2201%/11.59% | 4049% 12060% | 5575%12563% | 6691%72991% | 74.50% 447% NA NA NA NA
© SVAN
Channel Pruning
Rato 0.10 020 030 040 050 060 070 080 090
0 1992% 11590% | 3751%73099% | S291%/4385% | 66.08%/5525% | 7698%765.06% | 85.60%/7363% | 92.00%/8080% | 96.12%/%6.39% NA
Toa 1996% /1604% | 37.60% /3091% | 5296% [4380% | 66.00%/55.74% | 7684% [6393% | 85509 7449% | 9200%/8153% | 9623% /81.23% NA
T2 19.80% 1 1680% | 3135%/3170% | S074% 4489% | 6384%/%6.70% | 76.79%/6700% | 8550% T5.75% | 92.01%/83.04% | 9631%/88.36% | 98.94% /95.45%
711 1936% 1 T7.72%~ | 36.77% 13296%" | S207% [ 4T02%* | 65.13% 1 9.07%" | 7601%/7057%" | 8486% T992%* | 91.59%/87.85%" | 96.36% /93.72%" | 99.08%" [98.15%"
Th{a=100) | D94%/1500% | 3139%3001% | SL71%/4418% | 6394% [5564% | 7683% /65.68% | 8555%77399% | 9196%/8096% | 96.19% /86.70% | 98.60% /93.10%
6 (a = 1.0) 1971% (T701% | 37.07%132.34% | 52550 [ 9.78% | 65.70% /5743% | 7670%/6721% | 8544%/76.19% | 9202%" [83.11% | 96.38%/88.58% NA
Th(a=05) | 1999%71620% | 37.52% [3127% | S010% [ 495% | 65.10%/57.9% | 7668%67.60% | 8540%/7666% | O1.98%/8379% | 9643% [8953% | 98.13%19441%
MCP(a = 15000) | 20.14% [1543% | 37.86% /29.50% | 53.05% /4246% | 6623%/5376% | TI01%16340% | 85.67%/T168% | 9192%77898% | O581%/8433% | 98.61% /93.64%
MCP(a = 10000) | 20.13% /1560% | 3191%/29.60% | 5341%/4185% | G6640%/5296% | T1.00%624T% | 85.72% T084% | 9188%/7191% | 95.68%/8363% NA
MCP(a = 5000) | 20.34%*/1491% | 3820%% [28.64% | 53.63% [4096% | 66.72%/5197% | 7T146% 61.03% | 85.76% [6851% | 9L.68%/D5.01% | 9541%/82.19% NA
SCAD(a = 15000) | 1992%71625% | 3755%/3027% | S31%02.75% | 66.19% [5423% | TI06%/6381% | $57%17241% | 9191%/7938% | 9588%/8481% NA
SCAD(a = 10000) | 1997%/1532% | 37.60% /941% | 53.22%/4188% | 6631%/5280% | 77.05%/62.58% | 8566%10.73% | O181%/77.63% | 95.65%/8385% NA
SCAD(a = 5000) | 2028% /15.07% | 38.10% 28.72% | 53.66%* 14075% | 66820 [5156% | T7.50% 61.09% | 85.19%169.09% | 91.73%/7580% | 9541%83.12% NA

A. DATASETS

1) CIFAR 10/100

The CIFAR 10/100 dataset [81] consists of 50k training color
images and 10k test color images with 10/100 classes total.
The resolution of each image is 32 x 32. To preprocess
the dataset, we apply the data augmentation techniques
(horizontal flipping and translation by 4 pixels) that have
been standard in practice [1], [28], [82]-[84] followed by
global contrast normalization and ZCA whitening [84]. These
preprocessing techniques help improve the classification
accuracy of CNNs on CIFAR 10 and 100 as demonstrated
in [83], [84].

2) SVHN

The SVHN dataset [85] consists of 32 x 32 color images.
The entire training set has 604,388 images and the test set has
26,032 images. Before training on the dataset, each image is
normalized by the channel means and standard deviations.

VOLUME 9, 2021

We evaluate the proposed methods on VGG-19 [3],
DenseNet-40 [86], and ResNet-164 [1], three networks that
were examined in [28]. More specifically, we use a variation
of VGG-19 from https://github.com/szagoruyko/cifar.torch,
a40-layer DenseNet with a growth rate of 12, and a 164-layer
pre-activation ResNet with a bottleneck structure.

B. IMPLEMENTATION DETAILS

1) TRAINING THE NETWORK

To perform a fair comparison between the original network
slimming and the proposed nonconvex network slimming,
we emulate most of the training settings in the original work
[28]. All networks are trained from scratch using stochastic
gradient descent. The initial learning rate is set at 0.1, and it
is reduced by a factor of 10 at the 50% and 75% of the total
number of epochs. In addition, we use weight decay of 10~*
and Nesterov momentum [87] of 0.9 without dampening.
On CIFAR 10/100, we train for 160 epochs, while on SVHN,
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FIGURE 3. Effect of channel pruning on the mean test accuracy of five runs of VGG-19 on CIFAR 10/100 and SVHN. Baseline refers to the mean test
accuracy of the unregularized model that is not pruned. Baseline accuracies are 93.83% for CIFAR 10, 72.73% for CIFAR 100, and 97.91% for SVHN.

we train for 20 epochs. On both datasets, the training batch
size is 64. Weight initialization is based on [88] and scaling
factor initialization is set to 0.5 as done in [28]. We exam-
ine the following regularizers for network slimming: ¢,
£y(p = 0.25,0.5,0.75), T¢1(a = 0.5, 1.0, 10.0), MCP (a =
5000, 10000, 15000), and SCAD (a = 5000, 10000, 15000).
The examined parameter values for these regularizers are
chosen because they attain similar model accuracy as the
baseline model without scaling factor regularization and they
can prune a model by at least 40% of its channels. Lastly,
we have the regularization parameter A = 10~ for VGG-19
and DenseNet-40 and A = 5 x 107> for ResNet-164. The reg-
ularization parameter is chosen by trying to balance between
model accuracy and channel sparsity.

2) PRUNING THE NETWORK
After a model is trained, its channels are pruned globally. For
example, we specify a channel pruning ratio to be 0.35 or
a channel pruning percentage to be 35% and determine the
35th percentile among all magnitudes of the scaling factors
of the model. The 35th percentile is set as the threshold. Any
channels whose scaling factors are below the threshold in
magnitude are pruned.

Since the channels are pruned globally, there is a threshold
specific for each model: if the pruning ratio is above a certain
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value, a model becomes over-pruned. That is, the model
cannot be used for inference because at least one of its layers
has all of its channels removed.

3) RETRAINING THE NETWORK

We retrain the pruned model without regularization on the
scaling factors with the same optimization setting as the
first time training it. The purpose of retraining is to at least
recover the compressed model’s original accuracy prior to
pruning.

4) PERFORMANCE METRICS

We compare the regularizers’ performances based on test
accuracy and compression of their respective models.

After pruning a network by its channels, we measure its
compression by the remaining number of parameters and
floating point operations (FLOPs). The number of parameters
relates to the storage cost while the number of FLOPS relates
to the computational cost. In our experiments, we report the
following percentages:

Percentage of parameters pruned

2(1

# parameters remaining

— x 100%
total # network parameters
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and

Percentage of FLOPs pruned
(i # FLOPs remaining
N total # network FLOPs

Since CNNs are highly nonconvex, each run of the same
model and regularizer with the same hyperparameters will
give a different result. Hence, we train each model of one
regularizer five times and compute the mean. Therefore,
the mean test accuracies and mean ratios/percentages of
parameters/FLOPs pruned are computed from five runs each.

) x 100%.

C. CHANNEL PRUNING RESULTS

1) VGG-19

VGG-19 has about 20 million parameters and 7.97 x 103
FLOPs. Table 2 shows the relationships between channel
pruning ratios and mean percentages of parameters/FLOPs
pruned. Figure 3 shows the effect of channel pruning on mean
test accuracies.

On CIFAR 10, according to Table 2a, most of the non-
convex regularizers prune more parameters than ¢; up to
channel pruning ratio 0.50. Although more parameters are
pruned, MCP and SCAD require more FLOPs in general
compared to £1. On the other hand, £, and T¢; outperform
£1 with respect to percentages of parameters/FLOPs pruned
for channel pruning ratio at least 0.60. Additionally, the mod-
els trained with £1,, and £3/4 can have at least 80% of its
channels pruned and still be used for inference even though
their test accuracies are low. However, their test accuracies
can be improved if the models were retrained. According to
Figure 3, £3/4, T¢1, MCP, and SCAD are more robust than
£1 to channel pruning since their accuracies drop at higher
channel pruning ratios. Although both £; /> and £1 /4 compress
the model significantly compared to other regularizers, they
are very sensitive to channel pruning.

On CIFAR 100, according to Table 2b, £, and T¢i(a =
0.5, 1.0) require less parameters and FLOPs compared to ¢
when the channel pruning ratios are at least 0.40. MCP and
SCAD have comparable number of parameters and FLOPs
pruned as ¢;. Figure 3 shows that T¢; is robust against chan-
nel pruning, especially when a = 0.5. At channel pruning
ratio 0.6, the accuracy for T¢j(a = 0.5) does not drop as
much compared to other values of a and also other nonconvex
regularizers. For the other regularizers, £ is outperformed by
£3/4, 12, MCP, and SCAD (a = 10000, 15000). Like for
CIFAR 10, models trained with either £1,2 or £1,4 are still
sensitive to channel pruning.

Lastly, for SVHN, according to Table 2¢, MCP and SCAD
generally outperform ¢ in parameter pruning percentages for
channel pruning ratios up to 0.60, but they do not save more
on FLOPs. However, FLOPs are reduced more by £, and
T¢; in general across all channel pruning ratios. By Figure 3,
€34, £1/2, and T have higher test accuracies than £; when
the channel pruning ratio is at 0.85.

In general, nonconvex regularizers save more on param-
eters, FLOPs, or both. It is important to note that T¢p,
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especially a = 0.5, helps preserve model accuracy against
channel pruning, and £1,4 is very sensitive to channel pruning.

2) DENSENET-40

DenseNet-40 has about 1 million parameters and 5.33 x 103
FLOPs. Table 3 shows the relationships between channel
pruning ratios and mean percentages of parameters/FLOPs
pruned. Figure 4 shows the effect of channel pruning on mean
test accuracies.

On CIFAR 10, by Table 3a, £, and T£; compress the model
more in terms of number of parameters and FLOPs than ¢
after channel pruning across the various levels of channel
pruning ratios. In general, MCP and SCAD require slightly
more FLOPS than ¢, but they require similar number of
parameters as £1. According to Figure 4, £,(p = 1/2,3/4)
and T¢; are more robust to channel pruning than ¢; since their
accuracies drop at higher channel pruning ratios, while MCP
and SCAD are worse.

For CIFAR 100, Table 3b demonstrates that £, and T¢;
generally reduce more parameters and FLOPs required than
£ after channel pruning. At channel pruning ratios 0.60 and
above, MCP and SCAD reduce only more FLOPs than ;.
In addition, models with MCP and SCAD regularization
remain usable for inference after 90% of their channels are
pruned, unlike models with ¢ regularization. However, their
test accuracies are unacceptable so that the models will need
to be retrained to recover its original accuracies. According
to Figure 4, £,(p = 1/2,3/4), T¢;, and MCP (a = 15000)
are more robust to channel pruning than ¢; because their test
accuracies drop at higher channel pruning ratios than £;’s.

For SVHN, Table 3c shows that £, and T¢; have larger
parameter/FLOPs pruning percentages than £; across differ-
ent levels of the channel pruning ratios. In general, MCP also
saves more on parameters and FLOPs for channel pruning
ratio up to 0.50. After 0.50, MCP saves more on only FLOPs.
SCAD also generally saves more on FLOPs than £. Accord-
ing to Figure 4, the test accuracy remains nearly constant for
channel pruning ratio up to 0.90 for all regularizers except for
£1/4 and £1,5. We also observe that across different channel
pruning ratios, T has slightly worse test accuracy than ¢;
while MCP and SCAD mostly have better test accuracies
than £;.

In summary, we observe that £, and T¢; reduce more
parameters and FLOPs required than ¢; after channel
pruning, while MCP and SCAD save more on only FLOPs
specifically for CIFAR 100 and SVHN. Like for VGG-19,
T¢i(a = 0.5) is the most robust against channel pruning,
whereas {14 is the most sensitive to it.

3) RESNET-164

ResNet-164 has about 1.70 million parameters and requires
5.00 x 108 FLOPs. Table 4 records the mean percentages
of parameters/FLOPs pruned for different channel pruning
ratios. Figure 5 shows the effect of channel pruning on the
test accuracies of the regularized models.
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TABLE 3. Effect of channel pruning on the mean pruned parameter / FLOPs percentages (%) on DenseNet-40 trained on (a) CIFAR 10, (b) CIFAR 100, and
(c) SVHN. The mean is computed from five runs for each regularizer. For each channel pruning ratio, bold indicates outperforming ¢,; * indicates best
value; and NA indicates at least one of the five models is over-pruned.

@ CIFAR 10
Chmr;f:“f;““mg 0.10 020 030 040 050 060 0.70 080 090
) ON%840% | BRGI1663% | 2757% 9% | 36B%/B0% | BO%IA% | DD%I0T% | GR%I810% | BR%IGBI8% | 8376%119.05%
[ 030%1853% | 1864%/1619% | 2181% /2562% | 3T04% 13410% | 4642% 14285% | 5562% 5121% | GA90%/N71% | T425%/68.63% | 8402%I8007%
) 033% 1865% | 1859% [T108% | 2197% /2596% | 31.26% 3471% | d662%/4333% | S88%/5185% | G.2%/6032% | TAAT% 69.04% | B4.36%/80.13%
T/ 9035%7 [883%* | 1871% /T7.63%" | 28.3% 12639%" | 31.50% [35.01% | 41.05% [4T4%" | 56.60% /5433%* | 66.56%" 164.34%* | TI02%* [75.40%" NA
Th(a=100) | 920%/831% | 1834%71683% | 21.99% /B.0% | 368%/365% | 608%/4197% | S2%/90.07% | 6454%/58.19% | 73.89%/6301% | 83.89%/79.72%
Th(a=10) | 935%/861% | B863%/T1.09% | 2785%/2539% | 3.07%340M% | 4641% 20% | S1%/9093% | 6.14%/970% | 7446% /6857% | S4.23%780.19%
Th(a=05) | 935% /845% | 18.12% /1699% | 2808% /3582% | 31.9% [3447% | 4673% [43.03% | 5616%/5218% | 6549% 60.60% | 74.88% /69.28% | S445%/80.10%
MCP(a = 15000) | O.19%/801% | 18371%/1621% | 2189% [2447% | 3619%13296% | 4597%[4097% | $.15%/092%% | G35%/5160% | BI%[6813% | 83.72%11937%
MCP(a = 10000) | 9.29%/823% | 1845%/1628% | 2171%/2460% | 3693%/33.05% | 4607%/4126% | 55.22%/9930% | 6440%/5T57% | 7T391%/68.3% | 83.85%/7939%
MCP(a = 5000) | 9.17%/8.19% | 825%/1611% | 2145%/2425% | 3657%13002% | 45.75%/4039% | S494%/4856% | G4.13%/56.10% | 1375%/6159% | 8392% [10.17%
SCAD(a = 15000) | 921%/811% | 1836%/1621% | 2154%/2443% | 3675% 3057% | 4599%74000% | S5.00%/80.18% | 6441%/5768% | T385%68.10% | 83.80% /1942%
SCAD(a = 10000) | 9.18%/816% | 1836%/1650% | 27.60%2483% | 36T1% [0.71% | B99%/4105% | 55.10%/0004% | GA30%/5121% | T1%167198% | 8375%/D2T%
SCAD(a = 5000) | 9.06%/778% | 1820%/158%% | 21A0%12397% | 3654%132.01% | 4566%/987% | SA87%/48.00% | GA08%/5601% | T3I%16725% | 8384% [78.76%
) CIFAR 100
Cha““Re;[f:’“mg 0.0 020 030 040 0.0 060 0.70 080 090
7 O18% /746% | T834%/1521% | 2753%/2291% | 3660%/3044% | 58A%I3T8% | A98%[4536% | GI%I540% | T339%16592%
[ 019% /820% | 1839%/1612% | 2157% /2404% | 3676%/3188% | 4595%/%991% | .13%/4774% | 433%155.84% | 73.56%/6630% | 83.34% 19.89%
T2 920% /8.3% | 1841%/1641% | 27.62% /2431% | 3685%/3234% | 4606% 4058% | 55.26% /4891% | GA44%15697% | T3.61% 1 6698% NA
[ 936%" [8.33%" | 1853%7 11676%" | 2785%° 15500%" | 31.07% [33.10%" | 4651% [43.03%" | 55.94% [5275%" | 65.13% [63.59%" | 76.28%" [76.02%" NA
Th(a=100) | 9.09%/780% | 1835%/15.19% | 21.55%/23301% | 36.12%/3060% | 4592%13842% | 5508% /45.82% | 6424%15394% | 73.49% 165.90% NA
Th{a=10) | 926% /800% | 1846%/1592% | 2772%/23.9% | 3691% 3149% | 46.15%/3949% | 5535%/4734% | 6455%/5562% | 7T3.18% 16624% | 83.48% /80.01%
0 (a = 0.5) 9255 /8.11% | 1849%/1598% | 2775% /2413% | 3698%/R222% | 4624% W% | 546%4833% | 6AT1%15639% | 7T392% /6620% | 83.60%" /80.15%
MCP(a = 15000) | 9.19%/7.72% | 18.35%/1552% | 2150%123.9% | 3667%13099% | 4581%/3842% | 5499%/4602% | 64.14%/55.07% | 73.46% /6630% | 83.35%/19.12%
MCP(a = 10000) | 9.16%/750% | 1831%71509% | 2746%/2284% | 3661%/3061% | 45.19%/3836% | S494% 4592% | GA10%/55.76% | T331%/6694% | 83.19% /79.68%
MCP(a = 5000) | 0.16%/753% | 830%/1500% | 2146%12251% | 3664%73001% | 458%/3181% | S4903%/46M% | G10%75681% | T3A2%/6134% | 8346%/1952%
SCAD(a = 15000) | 9.9%/7.85% | 18.36%/1550% | 2750%/23.12% | 3668%30.65% | 4580%/3833% | 5499% 74603% | 6416%/531% | T345%/6681% | $333%/DT2%
SCAD(a = 10000) | O0.15%/772% | 1830%71546% | 2747%12315% | 3663%/3066% | 4576%/3843% | S404%/46.14% | 64.14%/%6.10% | T3M%/612% | $336%/961%
SCAD(a = 5000) | 90.05%/737% | 1831%/1496% | 2144%12227% | 3659%/2.9% | 4576%/3750% | 491%/450% | GA11%/593% | BA%/6119% | $353%/19.75%
© SVEN
Channel Pruning
Rato 0.10 020 030 040 050 060 070 030 090
0 031%7929% | 1910%71886% | 2861%/2783% | 3805%/3138% | 4184%/4682% | SI48%15588% | 6109%16550% | T667%17530% | 86.15%7%506%
Taa 063% 1969% | 1927%/1942% | 2879% /2888% | BA2%/B5% | B04%4195% | 0% /5% | 615%16111% | 7619%/7651% | 86.38% /83.87%
T2 0625 198% | 1921%/1920% | 2881% /28.68% | 38.44%/3846% | 48.08% 4785% | S13% /5754% | G143%16740% | TI05%/7696% | 86.68%/8641%
T 9.68%" [988%* | 19.34% /1946%" | 2905%° 1040%" | B74% 19.33% | BA2%" [0.00%" | B.12%" [811%" | 6192%" [68.69%" | T181%* [7896%" | ST81%" [89.44%"
Th(a=100) | 957%/948% | D.13%/1905% | B72%/2873% | 3836%/38.13% | 81%/4T00% | 5751% /5691% | GI06%/6632% | T664%/7574% | 86.29%/85.54%
0 (a = 1.0) 058 /933% | 1924% /1926% | 2892% /28.77% | 38.38%/3859% | 48.20%/4803% | S182% 15766% | GTA4%16697% | TI01%/7650% | 8657%86.17%
Tl (a = 0.5) 062%1929% | 19.9%[188% | 2881%/2837% | 3851%/31.98% | 48.16% 1 41.64% | 5183% /57.76% | G146%/61.21% | TI03%/T101% | 86.70% /8655%
MCP(a = 15000) | 965%/9.52% | D931%/19.09% | 2889%/28.73% | A0%/3803% | 41.88% 4753% | ST04%/%681% | G61.05%/6662% | 76.60%/7605% NA
MCP(a = 10000) | 951%/942% | 1000%/1892% | 2860%/2836% | B2%I361% | T 1%/415% | 5726%/%659% | 6695%/6399% | 7661%/T571% | 86.14%/85.9%
MCP(a = 5000) | 955%/944% | 19.04%/18.89% | 28.0%/28.36% | W8.05%737166% | 47.89% 4726% | STA8%/%657% | G6100%/6600% | 76.58%/T5.69% | $6.10%/%497%
SCAD(a = 15000) | 955%7931% | 19.09%/1875% | 28.71%/2852% | 38.26%/3802% | 4180%/4130% | S141%/5609% | G1.13%/6621% | 7657%175.62% NA
SCAD(a = 10000) | 9.66%7983% | 19.31%%/1925% | 28.88%/2899% | 3846%/3836% | 48.06%/4787% | S153%/5131% | G61.13%6695% | 7661%17655% NA
SCAD(a = 5000) | 955%/931% | 1909%/1875% | 28.71%/28.52% | 38.26% 13802% | 4188%/4T0% | S141%/5609% | 61.13% 6627% | 7657% 1 15.62% NA

On CIFAR 10, Table 4a shows a quite noticeable difference
in the numbers of parameters and FLOPs pruned between £
and £, or T¢(a = 0.5, 1.0). For example, £; 7 saves at least
10% more weight parameters and at least 8% more FLOPs
than £; at channel pruning ratio 0.40 and above. On the other
hand, SCAD and MCP are outperformed by ¢ in percentages
of parameters/FLOPs pruned. According to Figure 5, most
of the regularizers do not suffer a significant drop in test
accuracy when large number of channels are pruned.

On CIFAR 100, according to Table 4b, £,(p = 1/4,1/2)
and T¢(a = 0.5, 1.0) prune at least 3% more parameters and
at least 1% more FLOPs than £;. However, MCP and SCAD
are outperformed by ¢; again for percentages of parameters
and FLOPs pruned. In Figure 5, we observe that most of the
regularizers are robust against channel pruning since the test
accuracies do not drop severely at higher channel pruning
ratios.
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On SVHN, Table 4c reports that £, and T¢; save more
parameters and FLOPs than ¢ for channel pruning ratio at
least 0.20, while that MCP and SCAD do not. Like for CIFAR
10 and CIFAR 100, most regularizers yield models whose test
accuracies are robust against channel pruning according to
Figure 5.

In general, the test accuracies of ResNet-164 models with
any regularizers, except for £;,4, are stable against channel
pruning. In addition, £, and T¢;(a = 0.5, 1.0) prune more
parameters and FLOPs than £;. Overall, MCP and SCAD do
not perform well on ResNet-164.

D. RETRAINING AFTER PRUNING

Because the test accuracy drops after channel pruning
for VGG-19 and DenseNet-40 trained on CIFAR 10/100,
we retrain the models without regularization on the scaling
factors and examine whether or not the original test accuracy
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TABLE 4. Effect of channel pruning on the mean pruned parameter / FLOPs percentages (%) on ResNet-164 trained on (a) CIFAR 10, (b) CIFAR 100, and
(c) SVHN. The mean is computed from five runs for each regularizer. For each channel pruning ratio, bold indicates outperforming ¢,; * indicates best

value; and NA indicates at least one of the five models is over-pruned.

@ CIFAR 10
Channel Pruning
Ratio 0.10 020 030 0.40 0.50 0.60 0.70
2 857%1831% 16.67% 1 16.62% 74.44% ] 24.29% 31.39% 1 31.57% 38.50% / 38.31% 36.43% 145 54% NA
29 10.87% /10.07% 21.51% /19.54% 31.23% 1 28.32% 30.07% 1 36.66% 47.86% 1 43.96% 55.15% /50.71% | 62.88% /58.36%
71/ 12.13% /10.96% 22.88% 1 2141% 33.23% 1 31.09% 42.54% 1 39.81% 50.88% / 48.02% 58.07% /55.12% | 64.88% /61.46%
714 14.26%* [ 13.00%* | 2644%* [ 24.50%* | 37.64%*34.93%* | 47.82%"44.89%* | 57.10%"/5447%* | 65.58%" /64.27%" NA
T01(a = 10.0) 8.99% /8.56% 17.92% /16.88% 25.80% / 24.18% 33.26% /31.14% 40.50% /3827% 47.52% [ 44.38% NA
Tl1(a = 1.0) 11.99% /10.74% 22.86% / 20.72% 33.08% /29.61% 12.64% 1 38.44% 51.03% /46.02% 58.52% /53.03% NA
Tli(a =05) 1251% /11.29% 23.95% / 21.61% 34.43% /31.01% 4.10% /39.82% 52.93% 1 47.65% 60.81% /54.86% | 67.15% /61.20%
MCP(a = 15000) 8.07% 17.90% 16.00% 7 15.54% 23.46% 1 22.69% 30.50% / 20.08% 36.84% 1 35.05% 47.73% 1 45.63% NA
MCP(a = 10000) 710% 17.61% 13.90% / 14.43% 20.58% 1 21.06% 26.87% 1 27.32% 32.74% 1 33.29% NA NA
MCP(a = 5000) 119%75.55% 8.64% 1 10.97% 12.85% / 16.08% 17.06% 7 21.00% 73.89% 129.34% NA NA
SCAD(a = 15000) T71% 17.65% 15.53% 1 1544% 22.58% 1 22.83% 720.51% / 20.44% 36.44% 1 35.82% 7.47% 146.15% NA
SCAD(a = 10000) 719% 17.33% 13.99% / 14.30% 20.51% / 20.88% 26.71% 1 27.26% 32.79% 1 33.21% NA NA
SCAD(a = 5000) 1.62%75.68% 8.98% / 11.00% 13.24% 1 16.23% 17.45% 1 21.35% 23.94% 1 947% NA NA
) CIFAR 100
Channel Pruning
Ratio 0.10 020 0.30 0.40 0.50 0.60 0.70
7 401%/7.42% 7.98% 1 14.48% 11.88% /20.94% 15.72% 1 26.88% NA NA NA
2 495% /7.55% 9.84% /14.90% 14.70% /22.08% 19.15% /28.15% 24.58% 1 35.33% NA NA
29 5.72% 18.53% 11.35% /1651% 16.66% /23.82% 21.86% /30.73% 26.64% 1 36.87% NA NA
714 T1.13%% /11.46%* | 20.98%%/21.85%* | 30.00% /31.48%* | 37.85% /41.10%* NA NA NA
T01(a = 10.0) 4.08% /7.07% 8.29% 1 13.87% 12.36% 1 20.03% 16.36% 1 25.92% NA NA NA
T/ (a = 1.0) 6.08% /8.09% 11.96% /15.67% 17.38% /22.93% 22.99% ] 29.81% 28.27% 1 36.36% NA NA
Tl1(a = 0.5) 6.37% 19.25% 12.68% /17.30% 18.82% /25.19% 24.87% 1 31.89% | 30.54%" ] 38.63%* NA NA
MCP(a = 15000) 3.64% 1 6.64% 725% 1 12.89% 10.92% / 18.99% 15.22% 1 25.05% NA NA NA
MCP(a = 10000) 351%76.65% 701%712.53% 10.42% / 1848% 14.45% 1 24.81% NA NA NA
MCP(a = 5000) 332%1631% 6.52% 1 12.13% 9.67% 1 17.58% NA NA NA NA
SCAD(a = 15000) 3.62% 1 6.56% 720% 1 13.01% 10.88% / 19.36% 15.16% 1 25.19% NA NA NA
SCAD(a = 10000) 353% 1 6.36% 6.99%712.61% 10.36% / 18.46% 14.54% 1 25.33% NA NA NA
SCAD(a = 5000) 331%75.92% 6.59% 7 11.83% 9.77% 1 1733% 14.15%12551% NA NA NA
© SVAN
Chan’gtl;?‘m“g 0.10 020 030 0.40 0.50 0.60 0.70
0 12.32% / 17.00%* 22.70% 1 29.19% 32.63% 1 41.26% 41.88% /52.39% 50.14% ] 62.14% NA NA
754 13.09% / 15.50% 25.49%  29.87% 36.84% 1 42.16% 47.02% 1 53.46% 55.77% 163.07% NA NA
712 13.80% / 15.21% 26.62% 129.57% 38.20% /42.21% 48.80% /53.60% | 58.45%/6391%* | 66.65% /72.62% NA
/4 15.16% [ 1561% | 29.05%*/29.13% | 41.52%* [42.43% | 52.47%% /53.13%* | 62.39%%/63.68% | TL.50%" 72.19%" NA
T71(a = 10.0) 12.13% 1 16.66% | 23.13%/30.10%* | 33.11% /41.50% 270% 152.97% 50.87% 1 62.07% 58.16% / 69.81% NA
T (a = 1.0) 13.45% / 15.39% 25.82% 29.90% 37.29% 1 42.59% 47.70% 153.87% 56.79% 1 63.43% NA NA
Tl (a = 0.5) 14.35% / 15.83% 26.94% /29.53% | 38.69% /42.68%* | 48.83% /53.10% 58.31% 1 63.81% 66.44% 1 72.28% NA
MCP(a = 15000) 12.07% 1 15.25% 23.19% / 28.99% 32.89% 40.96% 41.67% 751.50% 49.89% ] 60.89% 57.23% 1 68.84% NA
MCP(a = 10000) 11.39% 7 15.19% 72.09% 1 28 56% 32.33% 1 40.67% 4132% 751.23% 49.08% 1 60.14% NA NA
MCP(a = 5000) 9.90% 7 13.98% 19.13% / 26.99% 7785% 1 3851% 35.80% 1 48.73% 43.23% 157.77% NA NA
SCAD(a = 15000) | 1145%715.70% 22.01% 1 28 82% 32.14% 1 40.65% 41.05% 751.61% 4947% 1 61.02% 56.76% 1 68.83% NA
SCAD(a = 10000) | 1230%716.86% 72.63%129.36% 32.39% 1 40.89% 41.23% 151.75% NA NA NA
SCAD(a = 5000) 10.42% 7 15.04% 19.82% 1 27.80% 7852% 1 38 81% 36.76% 1 49.44% NA NA NA

is recovered. For brevity, we analyze ¢; and the nonconvex
regularizers whose possible channel pruning percentages are
at least the same as £;’s.

1) VGG-19

The results for VGG-19 on CIFAR 10/100 are presented
in Table 5. Generally, we observe that the test accuracy after
retraining is better than the original test accuracy before
channel pruning and retraining. For CIFAR 10, after the
models are retrained with 70% of their channels pruned, only
Ly €34, Ti(a = 1.0,10.0), MCP (¢ = 10000, 15000),
and SCAD (a = 10000, 15000) exceed the baseline test
accuracy of 93.83%. Among the nonconvex regularizers, £3/4
and T¢;(@ = 1.0,10.0) yield more compressed models
in terms of both parameters and FLOPS but have slightly
lower test accuracies than £1. On the other hand, MCP (a =
15000, 10000) and SCAD (a¢ = 15000) are slightly less
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compressed than ¢; but have better test accuracies. When
75% of the channels are pruned, their retrained test accura-
cies decrease slightly due to compressing the models further.
Among the nonconvex regularizers, the test accuracy for
SCAD (a = 15000) is better than the baseline. Moreover,
SCAD (a = 15000) with 75% of its channels pruned requires
less parameters and FLOPS than £; with 70% of its channels
pruned. For £1,4, when 90% of the channels are pruned,
at least 98% of parameters and FLOPs are pruned, but the
test accuracy after retraining is 81.57%. For CIFAR 100, with
45% of the channels pruned, all of the regularizers except for
£1/4 and T¢1(a = 0.5) attain better test accuracies than the
baseline accuracy of 72.73%. Similar to CIFAR 10, £34, £12,
and T¢1(a = 1.0, 10.0) have slightly lower test accuracies
than £; but have better compression. MCP and SCAD have
better test accuracies than ¢; with similar parameter and
FLOP compression. When more channels are pruned, most
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FIGURE 4. Effect of channel pruning on the mean test accuracy of five runs of DenseNet-40 on CIFAR 10/100 and SVHN. Baseline refers to the mean test
accuracy of the unregularized model that is not pruned. Baseline accuracies are 94.25% for CIFAR 10, 74.58% for CIFAR 100, and 98.16% for SVHN.

of the regularizers suffer a slight decrease in retrained test
accuracies. Only £3/,4 with 55% channels pruned and T¢(a =
0.5, 1.0) with 60% channels pruned experience a modest
improvement in test accuracy, but their test accuracies exceed
the baseline test accuracy and £;’s test accuracy with 55%
channels pruned.

Overall, for £,(p = 1/2,3/4) and T¢;(a = 0.5, 1.0),
the retrained models, despite being more compressed than
their £; counterparts, have slightly lower test accuracies.
However, MCP and SCAD have similar compression as {1
but with better test accuracies after retraining.

2) DENSENET-40

Table 6 reports the results for DenseNet-40 on CIFAR
10/100. Overall, the baseline accuracy is better than all of
the retrained test accuracies, but the differences are at most
3.07% for CIFAR 10 and at most 6.82% for CIFAR 100.
For CIFAR 10, when 82.5% of the channels are pruned, only
MCP (a = 10000) and SCAD (a = 10000) have better test
accuracies than £; with similar compression in parameters
and FLOPs. For £,(p = 1/2,3/4) and T¢;(a = 1.0), their
retrained test accuracies are only slightly lower by at most
0.20%, but this is at the cost of better compression. When
90% of the channels are pruned, the retrained test accuracies
decrease slightly more into the range of 91%-92%. Only £3,4
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and T¢i(a = 0.5,1.0) have better test accuracies than £
with much better compression. For CIFAR 100, when 75%
of the channels are pruned, ¢3,4, T¢1(a = 10.0), MCP, and
SCAD have at least the same test accuracies as £; with better
compression in parameters and FLOPs. However, increasing
the channel pruning percentage to 90% causes their retrained
test accuracies to deteriorate. As a result, none of the models
is able to exceed the test accuracy of the ¢;-regularized
models retrained with 85% of their channels pruned. For £,
and T¢;(a = 10.0), when 85% of the channels are pruned,
their test accuracies exceed ;.

In general, pruning channels for DenseNet at the highest
percentage possible can be detrimental to the retrained test
accuracy. When channels are pruned at intermediate levels,
the nonconvex regularizers can have better retrained test
accuracies and/or better compression than £;.

E. SCALING FACTOR ANALYSIS

In order to better understand how ¢; and the nonconvex
regularizers affect the scaling factors y, we plot histograms
of the counts of the log;((|y|) averaged from the five models
trained for each model and regularizer. Figures 6-14 provide
the histograms while Table 7 records the average number
of scaling factors whose magnitudes are less than 10~ and
more than 107°. The value 10~ is chosen because generally,
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FIGURE 5. Effect of channel pruning on the mean test accuracy of five runs of ResNet-164 on CIFAR 10/100 and SVHN. Baseline refers to the mean test
accuracy of the unregularized model that is not pruned. Baseline accuracies are 95.04% for CIFAR 10, 77.10% for CIFAR 100, and 98.21% for SVHN.

any value below it has negligible effect on the numerical
computation [89].

For CIFAR 10, Figures 6-8 show the histograms while
Table 7a provides the average counts of the scaling factors
based on their magnitudes. For all three networks, we observe
the following phenomena. MCP and SCAD have similar
scaling factor distributions as £ across all given values of a.
Moreover, MCP, SCAD, and £; have similar number of scal-
ing factors whose magnitudes are less than 107 as verified
by Table 7a. This may explain why their compression rates
are similar to £; in our earlier analyses. For £,, we see
that £3,4 has most of its scaling factors within the interval
(107%,1073). As p decreases, the values of the scaling factors
tend farther away from 0. In fact, majority of the scaling
factors for €1/, and £1/4 are at least 107% in magnitude.
Specifically for £1 /4, most of the scaling factors have absolute
values at least 0.10. Hence, we can see why £; 4 is sensitive
to channel pruning. Lastly, for T¢{, more scaling factors
decrease towards 0 in magnitude as a decreases. Moreover,
we observe that most of the scaling factors are accumulated
within the interval (107, 10~%). Because T¢; causes more
scaling factors to decrease towards 0 in magnitude, this might
explain why T¥; is robust against channel pruning.

For CIFAR 100, Figures 9-11 show the histograms of the
scaling factors while Table 7b records the average counts by
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magnitudes. Because CIFAR 100 is a more difficult classi-
fication dataset compared to CIFAR 10, most of the scaling
factors appear to be within the interval (10!, 1). However,
DenseNet-40 shows bimodal distributions for T¢{, MCP, and
SCAD. Table 7b shows that more than half of the scaling
factors are less than 107 in magnitudes in DenseNet-40 for
most regularizers, but they are more than 10~ in magnitudes
in VGG-19 and ResNet-164 for all regularizers. The distri-
butions of the scaling factors convey why DenseNet-40 can
be pruned at higher channel pruning ratios than VGG-19 and
ResNet-164, as indicated by the middle rows of Figures 3-5.
Across the three networks, MCP and SCAD have similar
distributions with £;. For £3,4, a considerable amount of
scaling factors are within the interval (107, 1073), but as p
decreases, the magnitudes of most scaling factors increase.
Hence, less than a few hundred scaling factors are below
107% in magnitudes. As a result, models regularized with
£1/2 and £1,4 become more sensitive to channel pruning as
demonstrated earlier. For T¢{(a = 10.0), its distribution of
scaling factors is similar to £1. However, when a = 0.5, 1.0,
more scaling factors have magnitudes less than 107>, which
demonstrates TZ;’s robustness to channel pruning when a is
small enough.

Figures 12-14 and Table 7c provide statistics about SVHN.
For all three networks, T¢1(a 10.0), SCAD, and MCP
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TABLE 5. Results from five retrained VGG-19 on CIFAR 10/100 after pruning. Baseline refers to the VGG-19 model trained without regularization on the
scaling factors.

. Mean Test A Mean Test Acci
Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%) b et%?; stlr a0 :ﬁ:g?g) affearnR eetiainihr:;???)/
Baseline 20.04M/7.97 X 10 0.00/0.00 93.83 N/A
£1 (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.63 N/A
£1 (70% Pruned) 2.24M/3.83 x 108 88.81/51.93 28.28 93.91
23/4 (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.53 N/A
23/4 (70% Pruned) 2.07M/3.59 x 108 89.69/54.96 88.87 93.90
£3 /4 (75% Pruned) 1.79M/3.43 x 108 91.06/57.00 16.18 93.79
£1 /2 (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.57 N/A
£1 /2 (70% Pruned) 2.00M/3.50 x 108 90.01/56.12 40.07 93.77
£1 /5 (75% Pruned) 1.66M/3.25 x 108 91.70/59.20 13.65 93.82
£y /4 (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 86.97 N/A
£y /4 (70% Pruned) 1.58M/1.44 x 108 92.14/81.89 47.59 92.15
L1 /4 (90% Pruned) 0.19M/0.13 x 108 99.05/98.32 10.00 81.57
T41 (a = 10.0) (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.64 N/A
T¢1 (a = 10.0) (70% Pruned) 2.19M/3.77 x 108 89.06/52.75 47.70 93.86
T¢1(a = 10.0) (75% Pruned) 1.84M/3.49 x 108 90.82/56.19 10.00 93.72
T¢1(a = 1.0) (0% Pruned) 20.04M/7.97 X 10 0.00/0.00 93.55 N/A
T41 (a = 1.0) (70% Pruned) 1.93M/3.39 x 108 90.35/57.43 93.54 93.86
T¢1 (a = 1.0) (75% Pruned) 1.66M/3.24 x 10% 91.71/59.29 86.83 93.82
T£¢1 (a = 0.5) (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.15 N/A
T41(a = 0.5) (70% Pruned) 1.83M/3.20 x 108 90.88/59.84 93.14 93.75
T4¢1 (a = 0.5) (75% Pruned) 1.53M/3.05 x 108 92.38/61.74 92.38 93.77
MCP (a = 15000) (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.65 N/A
MCP (a = 15000) (70% Pruned) 2.29M/3.93 x 108 88.58/50.69 47.18 93.97
MCP (a = 15000) (75% Pruned) 1.89M/3.58 x 103 90.58/55.04 10.00 93.68
MCP (a = 10000) (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.69 N/A
MCP (a = 10000) (70% Pruned) 2.28M/3.95 x 108 88.63/50.49 40.24 94.12
MCP (a = 10000) (75% Pruned) 1.89M/3.62 x 108 90.56/54.54 10.00 93.73
SCAD (a = 15000) (0% Pruned) 20.04M/7.97 x 10 0.00/0.00 93.64 N/A
SCAD (a = 15000) (70% Pruned) 2.26M/3.93 x 108 88.71/50.70 5272 93.94
SCAD (a = 15000) (75% Pruned) 1.87M/3.59 x 108 90.65/54.97 10.00 93.91
SCAD (a = 10000) (0% Pruned) 20.04M/7.97 X 10 0.00/0.00 93.60 N/A
SCAD (a = 10000) (70% Pruned) 2.29M/3.95 x 108 88.57/50.43 55.25 93.88
(a) CIFAR 10
Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%) h]\c/lfiarg -lgecstf';? r? lcnugrez%) Z/:‘te;_nRT:;;l/:]C: ; 22}7?)/
Baseline 20.08M/7.97 X 10 0.00/0.00 72.73 N/A
21 (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.57 N/A
£1 (45% Pruned) 5.67M/5.26 x 108 71.78/34.00 51.16 73.44
21 (55% Pruned) 431M/4.89 x 108 78.53/38.66 1.00 72.98
23/4 (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.14 N/A
23/4 (45% Pruned) 5.49M/5.04 x 108 72.68/36.75 71.76 73.24
£3 /4 (55% Pruned) 4.10M/4.76 x 108 79.59/40.28 3.40 73.26
£1 /2 (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.06 N/A
£y /2 (45% Pruned) 5.38M/5.03 x 108 73.21/36.95 71.27 73.34
£1 /5 (60% Pruned) 3.40M/4.48 x 108 83.07/43.82 1.08 71.59
41/4 (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 70.95 N/A
41/4 (45% Pruned) 5.30M/4.76 x 108 73.59/40.26 22.70 72.50
£q /4 (80% Pruned) 0.69M/1.05 x 108 96.54/86.86 1.00 46.97
T41 (a = 10.0) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.36 N/A
T4 (a = 10.0) (45% Pruned) 5.53M/5.18 x 108 72.45/34.95 69.35 73.39
T¢1(a = 10.0) (55% Pruned) 421M/4.85 x 108 79.05/39.19 1.46 73.17
T¢1(a = 1.0) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.07 N/A
T¢1(a = 1.0) (45% Pruned) 5.39M/4.87 x 108 73.16/38.89 72.07 73.03
T¢1 (a = 1.0) (60% Pruned) 3.43M/4.47 x 108 82.90/43.94 1.84 73.06
T4¢1 (a = 0.5) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 71.63 N/A
T41(a = 0.5) (45% Pruned) 5.20M/4.74 x 108 73.66/40.48 71.63 72.69
T¢1(a = 0.5) (60% Pruned) 3.19M/4.21 x 108 84.09/47.15 66.50 72.81
MCP (a = 15000) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.26 N/A
MCP (a = 15000) (45% Pruned) 5.66M/5.27 x 108 71.82/33.87 66.14 73.68
MCP (a = 15000) (55% Pruned) 4.30M/4.92 x 108 78.58/38.21 1.00 72.94
SCAD (a = 15000) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 72.50 N/A
SCAD (a = 15000) (45% Pruned) 5.64M/5.26 x 108 71.89/33.99 65.72 73.61
SCAD (a = 15000) (55% Pruned) 4.32M/4.90 x 108 78.48/38.49 1.00 72.67
SCAD (a = 10000) (0% Pruned) 20.08M/7.97 x 10 0.00/0.00 7233 N/A
SCAD (a = 10000) (45% Pruned) 5.72M/5.32 x 108 71.50/33.21 64.98 73.52
SCAD (a = 10000) (55% Pruned) 437M/4.94 x 108 78.22/37.99 1.00 71.98
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(b) CIFAR 100
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TABLE 6. Results from five retrained DenseNet-40 on CIFAR 10/100 after pruning. Baseline refers to the DenseNet-40 model trained without
regularization on the scaling factors.

. . Mean Test Accura Mean Test Accurac;
Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%) be&;’; Ri::rui;;]‘g?%) afleelr“R:l:ainich;?:;-)),
Baseline 1.02M/5.33 X 10 0.00/0.00 94.25 N/A
£7 (0 % Pruned) 1.02M/5.33 X 10 0.00/0.00 93.46 N/A
21 (82.5% Pruned) 0.24M/1.54 x 108 76.21/71.20 78.27 93.46
£7 (90% Pruned) 0.17M/1.08 x 108 83.76/79.75 17.47 91.42
23/4 (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.19 N/A
£3/4 (82.5% Pruned) 0.24M/1.53 x 108 76.57/71.34 90.17 93.33
£3/4 (90% Pruned) 0.16M/1.06 x 108 84.02/80.07 15.06 91.54
£1/2 (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.28 N/A
61/2 (82.5% Pruned) 0.25M/1.51 x 108 76.84/71.76 83.17 93.43
£1 /o (90% Pruned) 0.16M/1.06 x 108 84.36/80.13 13.76 91.31
£1/4 (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 89.48 N/A
214 (82.5% Pruned) 0.21M/1.14 x 108 79.81/78.63 11.29 91.68
49 /4 (85% Pruned) 0.18M/0.98 x 108 82.57/81.64 10.05 91.44
T2 (a = 10.0) (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.30 N/A
T¢q (a = 10.0) (82.5% Pruned) 0.24M/1.54 x 108 76.33/71.10 83.24 93.38
T¢1 (a = 10.0) (90% Pruned) 0.16M/1.08 x 108 83.89/79.72 15.35 91.37
T¢q (a = 1.0) (0% Pruned) 1.02M/5.33 X 10 0.00/0.00 93.16 N/A
T2y (a = 1.0) (82.5% Pruned) 0.24M/1.53 x 108 76.80/71.35 93.17 93.26
T¢q (a = 1.0) (90% Pruned) 0.16M/1.06 x 108 84.23/80.19 18.91 91.70
Téy (a = 0.5) (0% Pruned) 1.02M/5.33 x 108 0.00/0.00 92.78 N/A
T¢q (a = 0.5) (82.5% Pruned) 0.23M/1.50 x 108 77.21/71.83 92.74 93.05
T4y (a = 0.5) (90% Pruned) 0.16M/1.03 x 108 84.45/80.70 18.12 91.69
MCP(a = 15000) (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.48 N/A
MCP(a = 15000)(82.5% Pruned) 0.24M/1.55 x 108 76.23/71.00 92.74 93.44
MCP(a = 15000) (90% Pruned) 0.17M/1.10 x 108 83.72/79.37 12.92 91.31
MCP(a = 10000) (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.41 N/A
MCP(a = 10000) (82.5% Pruned) 0.24M/1.53 x 108 76.37/71.23 67.36 93.53
MCP(a = 10000) (90% Pruned) 0.16M/1.10 x 108 83.85/79.39 15.08 91.24
SCAD(a = 15000) (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.48 N/A
SCAD(a = 15000) (82.5% Pruned) 0.24M/1.54 x 108 76.28/71.02 71.33 93.42
SCAD(a = 15000) (90% Pruned) 0.17M/1.10 x 108 83.80/79.42 14.21 91.26
SCAD(a = 10000) (0% Pruned) 1.02M/5.33 x 10 0.00/0.00 93.52 N/A
SCAD(a = 10000) (82.5% Pruned) 0.24M/1.55 x 108 76.25/70.93 71.49 93.49
SCAD(a = 10000) (90% Pruned) 0.17M/1.10 x 108 83.75/79.27 12.27 91.18

(a) CIFAR 10

. . Mean Test Accurac; Mean Test Accurac;
Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%) be ff) :2 Reesl:”an:lcnugri;z ) aﬂeedrnR;;;iniLr:gm(‘:;g
Baseline 1.06M/5.33 x 10 0.00/0.00 74.58 N/A
£1 (0% Pruned) 1.06M/5.33 x 10 0.00/0.00 73.24 N/A
21 (75% Pruned) 0.35M/2.14 x 108 68.73/59.89 54.68 73.73
£1 (85% Pruned) 0.23M/1.46 x 108 78.08/72.60 2.94 72.40
63/4 (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 72.97 N/A
1{3/4 (75% Pruned) 0.33M/2.11 x 108 68.93/60.40 68.60 73.75
£3 74 (90% Pruned) 0.18M/1.07 x 108 83.34/79.89 1.23 69.33
@1/2 (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 72.98 N/A
21/2 (75% Pruned) 0.33M/2.06 x 108 69.03/61.41 68.05 73.39
£1 /o (85% Pruned) 0.23M/1.42 x 108 78.42/73.43 5.05 72.52
1/,1/4 (0% Pruned) 1.06M/5.33 x 10 0.00/0.00 69.02 N/A
21/4 (75% Pruned) 0.31M/1.62 x 108 70.81/69.59 1.45 71.62
£1 /4 (85% Pruned) 0.19M/0.88 x 108 82.28/83.54 1.00 67.76
T¢1 (a = 10.0) (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 73.18 N/A
T£1 (a = 10.0) (75% Pruned) 0.33M/2.12 x 108 68.84/60.18 66.62 73.78
T¢1 (a = 10.0) (85% Pruned) 0.23M/1.47 x 108 78.21/72.37 3.17 72.69
T€1 (a = 1.0) (0% Pruned) 1.06M/5.33 x 10 0.00/0.00 72.63 N/A
T¢1 (a = 1.0) (75% Pruned) 0.33M/2.12 x 108 69.16/60.24 72.60 73.42
T41 (a = 1.0) (90% Pruned) 0.18M/1.07 x 108 83.48/80.01 1.24 69.98
T¢1 (a = 0.5) (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 72.57 N/A
T¢1 (a = 0.5) (75% Pruned) 0.33M/2.10 x 108 69.33 /60.56 72.59 73.23
T¢q (a = 0.5) (90% Pruned) 0.17M/1.06 x 108 83.61/80.16 1.37 70.16
MCP(a = 15000) (0% Pruned) 1.06M/5.33 x 10 0.00/0.00 73.64 N/A
MCP(a = 15000)(75% Pruned) 0.33M/2.10 x 108 68.80/60.61 58.12 73.73
MCP(a = 15000) (90% Pruned) 0.18M/1.08 x 108 83.35/79.73 1.27 69.94
MCP(a = 10000) (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 73.40 N/A
MCP(a = 10000) (75% Pruned) 0.33M/2.06 x 108 68.73/61.36 40.76 73.95
MCP(a = 10000) (90% Pruned) 0.18M/1.08 x 108 83.19/79.68 1.10 69.10
SCAD(a = 15000) (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 73.41 N/A
SCAD(a = 15000) (75% Pruned) 0.33M/2.09 x 108 68.79/60.83 54.71 73.97
SCAD(a = 15000) (90% Pruned) 0.18M/1.08 x 108 83.33/79.72 1.42 69.87
SCAD(a = 10000) (0% Pruned) 1.06M/5.33 x 108 0.00/0.00 73.37 N/A
SCAD(a = 10000) (75% Pruned) 0.33M/2.04 x 108 68.80/61.66 47.70 73.75
SCAD(a = 10000) (90% Pruned) 0.18M/1.09 x 108 83.36/79.61 1.08 69.73

(b) CIFAR 100
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TABLE 7. Counts of scaling factors that are averaged across five runs per model and regularizer.

VGG-19 DenseNet-40 ResNet-164
M <107° [H[>107° [ W[ <107° [ 5[ >107° [ Z[ <107° [ [y[> 10"
I 3483 2021 7309.2 2050.8 7321.4 4790.6
l3/4 3244.8 2259.2 6261.4 3098.6 7944.2 4167.8
410 263.4 5240.6 490.6 8869.4 898 11214
0y /4 3 5501 4 9356 11.6 12100.4
T¢1(a = 10.0) 3559.6 1944.4 7372.8 1987.2 7466.6 4645.4
T¢1(a = 1.0) 4021.2 1482.8 7731.4 1628.6 8757.2 3354.8
T¢1(a = 0.5) 4216 1288 7839 1521 9192 2920
MCP (a = 15000) 34724 2031.6 7180.6 2179.4 6805.8 5306.2
MCP (a = 10000) 3485 2019 7123.6 2236.4 6438.4 5673.6
MCP (a = 5000) 34404 2063.6 6880.2 2479.8 5542.6 6569.4
SCAD (a = 15000) 3492.6 2011.4 7204.4 2155.6 6818.4 5293.6
SCAD (a = 10000) 3460.2 2043.8 7121.4 2238.6 6484.6 5627.4
SCAD (a = 5000) 3518.2 1985.8 6947.8 2412.2 5514.6 6597.4
(a) CIFAR 10
VGG-19 DenseNet-40 ResNet-164
<107 TIHI>I0° [[ WM SI07° [ 9[> 107° [ W[<107° [ 4[> 107°
1 1417.2 4086.8 6382 2978 5030.4 7081.6
l3/4 1895.8 3608.2 2208.6 7151.4 5584.6 6527.4
41/ 151.6 5352.4 94.4 9265.6 430 11682
ly/4 1.6 5502.4 6 9354 6.6 12105.4
T¢1(a = 10.0) 1629.6 3874.4 6555.4 2804.6 5192.8 6919.2
T¢1(a = 1.0) 2555.6 2948.4 6919.8 2440.2 6250 5862
T¢1(a = 0.5) 2802 2702 6889.6 2470.4 6739 5373
MCP (a = 15000) 1495 4009 6192.2 3167.8 4521.8 7590.2
MCP (a = 10000) 1440.4 4063.6 6055.6 3304.4 4191.8 7920.2
MCP (a = 5000) 1378 4126 5627.4 3732.6 3541.8 8570.2
SCAD (a = 15000) 1514.4 3989.6 6190.4 3169.6 4481.6 7630.4
SCAD (a = 10000) 1481.6 4022.4 6034.6 33254 4211.6 7900.4
SCAD (a = 5000) 1262 4242 5595.6 3764.4 3484.6 8627.4
(b) CIFAR 100
CIFAR 10 CIFAR 100 SVHN
W <107° [H[>107° [ Z[<107° [ [H[>107° [[ [ <10=° [ H[>10~°
I 4447.6 1056.4 8447.4 912.6 10058.8 2053.2
l3/4 3862.2 1641.8 7079 2281 10130.4 1981.6
410 292 5212 543.4 8816.6 1070.4 11041.6
014 34 5500.6 7.2 9352.8 12.6 12099.4
T¢1(a = 10.0) 4505.4 998.6 8497.4 862.6 10184.8 1927.2
T¢1(a = 1.0) 4796.8 707.2 8674 686 10813.2 1298.8
T¢1(a = 0.5) 4874 630 8746.4 613.6 11002.4 1109.6
MCP (a = 15000) 4365.6 1138.4 8419.8 940.2 9930.4 2181.6
MCP (a = 10000) 4356.6 1147.4 8390.4 969.6 9841 2271
MCP (a = 5000) 4242.6 1261.4 8330 1030 9333.6 2778.4
SCAD (a = 15000) 4378.2 1125.8 8405.6 954.4 9894.8 2217.2
SCAD (a = 10000) 4361.4 1142.6 8407 953 9858.8 2253.2
SCAD (a = 5000) 4244.4 1259.6 8330.2 1029.8 9353.8 2758.2
(c) SVHN

have similar distributions as £;. Similar to CIFAR 10 and
100, £3/4 has most of its scaling factors to be in the interval
(10_6, 10_5), but as p decreases for £, the magnitudes of
the scaling factors increase, resulting in at least 90% of the
scaling factors to be at least 107 in magnitudes as shown
in Table 7c. For T¢;(a = 0.5, 1.0) on the other hand, most of
the scaling factors are in the interval (1077, 1079).

F. COMPARISON WITH VARIATIONAL CNN PRUNING

We have shown that network slimming with nonconvex regu-
larizers can outperform the original with £; regularization.
Now we compare our proposed method with variational
CNN pruning (VCP) proposed in [44], a Bayesian version
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of network slimming. VCP is designed to be robust against
channel pruning, so we compare it with T¢;(a = 0.5, 1.0),
which is proven to also be robust against channel pruning in
our earlier analyses. The comparisons between the two meth-
ods are shown in Table 8, using results from DenseNet-40 and
ResNet-164 trained on CIFAR 10/100.

For DenseNet-40 trained on CIFAR 10, T¢; has a min-
imally better accuracy with less parameters pruned than
VCP with 60% channels pruned. However, we can increase
the percentage of channels pruned to 80% for T¢; so that
the number of parameters are reduced while maintaining the
same accuracy. On CIFAR 100, with similar percentages of
channels pruned, T£; has a much better accuracy than VCP
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FIGURE 6. Histogram of scaling factors y in VGG-19 trained on CIFAR 10. The x-axis is log;o(l¥|)-
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FIGURE 7. Histogram of scaling factors y in DenseNet-40 trained on CIFAR 10. The x-axis is log;o (/¥ ).
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TABLE 8. Comparisons between network slimming with T¢; (@ = 0.5, 1.0) and variational channel pruning. The results are immediately obtained after

channel pruning.

Model Dataset Method Test Accuracy Percentage of Channels Pruned Percentage of Parameters Pruned
VCP [44] 93.16% 60% 59.67%
T¢1(a = 1.0) 93.17% 60% 55.73%
CIFAR 10 T¢1(a = 1.0) 93.17% 80% 74.46%
T¢1(a = 0.5) 92.78% 60% 56.16%
T¢1(a = 0.5) 92.78% 80% 74.88%
DenseNet-40 VCP ] 72.19% 37% 3T73%
T¢1(a = 1.0) 72.63% 40% 36.91%
CIFAR 100 | T¢;(a = 1.0) 72.63% 60% 55.35%
T¢1(a = 0.5) 72.57% 40% 36.98%
T¢1(a = 0.5) 72.58% 60% 55.46%
VCP [44] 93.16% 74% 56.70%
CIFAR 10 | 1y (4 — 0.5) 93.41% 75% 70.39%
ResNet-164 VCP [44] 73.76% 47% 17.59%
CIFAR 100 | T¢;(a = 1.0) 74.89% 45% 25.56%
T¢1(a = 0.5) 74.72% 45% 27.74%

but again with less parameters pruned. Nevertheless, we can
increase the percentage of channels pruned to 60% and the
accuracy will remain the same with more parameters pruned.

On ResNet-164, with similar percentages of channels
pruned, T¢; outperforms VCP by a large margin for both
test accuracy and percentage of parameters pruned. For
CIFAR 10, only T¢;(a = 0.5) is able to have 75% of the
channels pruned, and it saves more parameters by almost
24% with test accuracy better by 0.25%. For CIFAR 100%,
with 2% less channels pruned, T¢; prunes at least 7.97%
more parameters than VCP while having better accuracy of
at least 0.96%.

VOLUME 9, 2021

Overall, network slimming with T¢; is competitive against
the latest variant of network slimming.

V. CONCLUSION
We improve network slimming by replacing the £; reg-

ularizer with a sparse, nonconvex regularizer for penaliz-
ing the scaling factors in the batch normalization layers.
In particular, we investigate £,(0 < p < 1), T¢;, MCP,
and SCAD. We apply the proposed methods onto VGG-19,
DenseNet-40, and ResNet-164 trained on CIFAR 10/100 and
SVHN. We observe that £, and T£; save more on parameters
and FLOPs than ¢; with a slight decrease in test accuracy.

115311



IEEE Access

K. Bui et al.: Improving Network Slimming With Nonconvex Regularization

In addition, T, especially a = 0.5, preserves model accu-
racy against channel pruning. Network slimming with T¢; is
competitive against VCP, another network slimming variant
robust against channel pruning. To attain better accuracy than
£1 while having similar compression, MCP and SCAD per-
form the best job after their models are pruned and retrained,
especially for VGG-19 and DenseNet-40.

For future directions, we plan to develop an optimization
algorithm based on the relaxed variable splitting method [90]
in order to use other nonconvex regularizers such as £; — af>
[56], [91]. Additionally, we aim to generalize nonconvex
network slimming to layer normalization [92] and group
normalization [93]. Last, we will adapt nonconvex network
slimming to the state-of-the-art compact CNNSs, such as
MobileNetv2 [94] and ShuffleNet [95].

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
two anonymous referees for their careful reading and helpful
feedback, which improved the presentation of the paper.

REFERENCES

[11 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770-778.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2017.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431-3440.

[6] O.Ronneberger, P. Fischer, and T. Brox, ‘“‘U-Net: Convolutional networks

for biomedical image segmentation,” in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,

pp. 234-241.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.

[8] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 7310-7311.

[9] S.Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2015, pp. 91-99.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting

linear structure within convolutional networks for efficient evaluation,” in

Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269-1277.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolu-

tional neural networks with low rank expansions,” 2014, arXiv:1405.3866.

[Online]. Available: http://arxiv.org/abs/1405.3866

W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li, “Coordinating filters

for faster deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis.,

Oct. 2017, pp. 658-666.

Y. Xu, Y. Li, S. Zhang, W. Wen, B. Wang, Y. Qi, Y. Chen,

W. Lin, and H. Xiong, “Trained rank pruning for efficient deep neu-

ral networks,” 2018, arXiv:1812.02402. [Online]. Available: http://arxiv.

org/abs/1812.02402

[7

[10]

[11]

[12]

[13]

115312

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

Y. Xu, Y. Li, S. Zhang, W. Wen, B. Wang, Y. Qi, Y. Chen, W. Lin, and
H. Xiong, ‘““TRP: Trained rank pruning for efficient deep neural networks,”
in Proc. Int. Joint Conf. Artif. Intell., Jul. 2020, pp. 1-7.

W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing
neural networks with the hashing trick,” in Proc. Int. Conf. Mach. Learn.,
2015, pp. 2285-2294.

M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123-3131.

F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016,
arXiv:1605.04711. [Online]. Available: http://arxiv.org/abs/1605.04711
C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quanti-
zation,” 2016, arXiv:1612.01064. [Online]. Available: http://arxiv.org/
abs/1612.01064

P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin, “BinaryRelax:
A relaxation approach for training deep neural networks with quantized
weights,” STAM J. Imag. Sci., vol. 11, no. 4, pp. 2205-2223, Jan. 2018.
A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex
pruning of deep neural networks with performance guarantee,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3177-3186.

S. Han, J. Pool, J. Tran, and W. J. Dally, “‘Learning both weights and con-
nections for efficient neural network,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135-1143.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient ConvNets,” 2016, arXiv:1608.08710. [Online]. Available:
http://arxiv.org/abs/1608.08710

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming:
A data-driven neuron pruning approach towards efficient deep archi-
tectures,” 2016, arXiv:1607.03250. [Online]. Available: http://arxiv.
org/abs/1607.03250

J. M. Alvarez and M. Salzmann, “Learning the number of neurons in deep
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2270-2278.
S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity
in convolutional neural networks,” 2017, arXiv:1702.06257. [Online].
Available: http://arxiv.org/abs/1702.06257

S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group sparse
regularization for deep neural networks,” Neurocomputing, vol. 241,
pp- 81-89, Jun. 2017.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2074-2082.

Z.Liu,J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proc. IEEE Int.
Conf. Comput. Vis., Oct. 2017, pp. 2736-2744.

J. Zhang, W. Wang, C. Lu, J. Wang, and A. K. Sangaiah, “Lightweight
deep network for traffic sign classification,” Ann. Telecommun., vol. 75,
nos. 7-8, pp. 369-379, Aug. 2020.

H. Ma, T. Celik, and H.-C. Li, “Lightweight attention convolutional neural
network through network slimming for robust facial expression recogni-
tion,” Signal, Image Video Process., pp. 1-9, Apr. 2021.

W. He, M. Wu, M. Liang, and S.-K. Lam, “CAP: Context-aware pruning
for semantic segmentation,” in Proc. IEEE/CVF Winter Conf. Appl. Com-
put. Vis., Jan. 2021, pp. 960-969.

R. Chartrand, “Exact reconstruction of sparse signals via nonconvex
minimization,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710,
Oct. 2007.

R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compres-
sive sensing,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Mar. 2008, pp. 3869-3872.

Z.Xu, X. Chang, F. Xu, and H. Zhang, *“L, 5 regularization: A thresholding
representation theory and a fast solver,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 7, pp. 1013-1027, Jul. 2012.

S. Zhang and J. Xin, “Minimization of transformed L; penalty: Closed
form representation and iterative thresholding algorithms,” Commun.
Math. Sci., vol. 15, no. 2, pp. 511-537, 2017.

S. Zhang and J. Xin, “Minimization of transformed L; penalty: Theory,
difference of convex function algorithm, and robust application in com-
pressed sensing,” Math. Program., vol. 169, no. 1, pp. 307-336, 2018.
C.-H. Zhang, ““Nearly unbiased variable selection under minimax concave
penalty,” Ann. Statist., vol. 38, no. 2, pp. 894-942, 2010.

J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood
and its Oracle properties,” J. Amer. Statist. Assoc., vol. 96, no. 456,
pp. 1348-1360, 2001.

VOLUME 9, 2021



K. Bui et al.: Improving Network Slimming With Nonconvex Regularization

IEEE Access

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

N. Z. Shor, Minimization Methods for Non-Differentiable Functions, vol. 3.
Berlin, Germany: Springer, 2012.

K. Bui, F. Park, S. Zhang, Y. Qi, and J. Xin, “Nonconvex regularization for
network slimming: Compressing CNNs even more,” in Proc. Int. Symp.
Vis. Comput. Cham, Switzerland: Springer, 2020, pp. 39-53.

C. Tai, T. Xiao, Y. Zhang, and X. Wang, “Convolutional neural networks
with low-rank regularization,” 2015, arXiv:1511.06067. [Online]. Avail-
able: http://arxiv.org/abs/1511.06067

Y. Bai, Y.-X. Wang, and E. Liberty, ‘“ProxQuant: Quantized neural net-
works via proximal operators,” 2018, arXiv:1810.00861. [Online]. Avail-
able: http://arxiv.org/abs/1810.00861

A. Aghasi, A. Abdi, and J. Romberg, ‘“‘Fast convex pruning of deep neural
networks,” SIAM J. Math. Data Sci., vol. 2, no. 1, pp. 158-188, Jan. 2020.
C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, ‘““Variational
convolutional neural network pruning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2019, pp. 2780-2789.

M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc. B, Statist. Methodol., vol. 68, no. 1,
pp. 49-67, 2006.

F. Xue and J. Xin, “Learning sparse neural networks via o and T¢; by
a relaxed variable splitting method with application to multi-scale curve
classification,” in Proc. World Congr. Global Optim. Cham, Switzerland:
Springer, 2019, pp. 800-809.

R. Ma, J. Miao, L. Niu, and P. Zhang, “Transformed ¢; regulariza-
tion for learning sparse deep neural networks,” Neural Netw., vol. 119,
pp. 286-298, Nov. 2019.

M. K. Pandit, R. Naaz, and M. A. Chishti, “Learning sparse neural net-
works using non-convex regularization,” IEEE Trans. Emerg. Topics Com-
put. Intell., early access, Mar. 8, 2021, doi: 10.1109/TETCI.2021.3058672.
K. Bui, F. Park, S. Zhang, Y. Qi, and J. Xin, “Structured sparsity of
convolutional neural networks via nonconvex sparse group regularization,”
Frontiers Appl. Math. Statist., vol. 6, p. 62, Feb. 2021.

Y. Li, S. Gu, C. Mayer, L. Van Gool, and R. Timofte, “Group sparsity:
The Hinge between filter pruning and decomposition for network compres-
sion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020.

E. J. Candés, J. K. Romberg, and T. Tao, ““Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207-1223, 2006.

E.J. Candes, J. Romberg, and T. Tao, ““Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

W. Yin, S. Osher, D. Goldfarb, and J. Darbon, ‘“Bregman iterative algo-
rithms for ¢;-minimization with applications to compressed sensing,”
SIAM J. Imag. Sci., vol. 1, no. 1, pp. 143-168, 2008.

H. Jung, J. C. Ye, and E. Y. Kim, “Improved k—t BLAST and k—t SENSE
using FOCUSS,” Phys. Med. Biol., vol. 52, no. 11, p. 3201, 2007.

M. Lustig, D. Donoho, and J. M. Pauly, ‘“Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magn. Reson. Med., Off. J.
Int. Soc. Magn. Reson. Med., vol. 58, no. 6, pp. 1182-1195, 2007.

Y. Lou, P. Yin, Q. He, and J. Xin, “Computing sparse representation in
a highly coherent dictionary based on difference of L; and Lp,” J. Sci.
Comput., vol. 64, no. 1, pp. 178-196, 2015.

Y. Lou, S. Osher, and J. Xin, “Computational aspects of constrained L;-L,
minimization for compressive sensing,” in Modelling, Computation and
Optimization in Information Systems and Management Sciences. Cham,
Switzerland: Springer, 2015, pp. 169-180.

R. Chartrand and V. Staneva, “Restricted isometry properties and non-
convex compressive sensing,” Inverse Problems, vol. 24, no. 3, 2008,
Art. no. 035020.

Z.Xu, H. Guo, Y. Wang, and Z. Hai, “Representative of L/, regularization
among Ly (0 < g < 1) regularizations: An experimental study based on
phase diagram,” Acta Autom. Sinica, vol. 38, no. 7, pp. 1225-1228, 2012.
D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1033-1041.

W. Cao, J. Sun, and Z. Xu, “Fast image deconvolution using closed-
form thresholding formulas of L,(¢ = 1/2,2/3) regularization,” J. Vis.
Commun. Image Represent., vol. 24, no. 1, pp. 31-41, 2013.

Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “Hyperspectral unmixing via
Ly > sparsity-constrained nonnegative matrix factorization,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.

VOLUME 9, 2021

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

(72]

(73]

[74]

(751

[76]

(771

(78]

[79]

(80]
(81]

[82]

(83]

(84]

(85]

(86]

(87]

C. Miao and H. Yu, “A general-thresholding solution for [,(0 < p < 1)
regularized CT reconstruction,” IEEE Trans. Image Process., vol. 24,
no. 12, pp. 5455-5468, Dec. 2015.

Y. Li, C. Wu, and Y. Duan, “The TVp regularized Mumford—Shah model
for image labeling and segmentation,” IEEE Trans. Image Process.,
vol. 29, pp. 7061-7075, 2020.

T. Wu, J. Shao, X. Gu, M. K. Ng, and T. Zeng, ““Two-stage image segmen-
tation based on nonconvex £, — £, approximation and thresholding,” Appl.
Math. Comput., vol. 403, Aug. 2021, Art. no. 126168.

J. Fan and H. Peng, “Nonconcave penalized likelihood with a diverg-
ing number of parameters,” Ann. Statist., vol. 32, no. 3, pp. 928-961,
Jun. 2004.

J. Lv and Y. Fan, “A unified approach to model selection and sparse
recovery using regularized least squares,” Ann. Statist., vol. 37, no. 6A,
pp. 3498-3528, 2009.

S. Zhang, P. Yin, and J. Xin, “Transformed Schatten-1 iterative thresh-
olding algorithms for low rank matrix completion,” Commun. Math. Sci.,
vol. 15, no. 3, pp. 839-862, 2017.

J. You, Y. Jiao, X. Lu, and T. Zeng, ““A nonconvex model with minimax
concave penalty for image restoration,” J. Sci. Comput., vol. 78, no. 2,
pp. 1063-1086, Feb. 2019.

Z.-F. Jin, Z. Wan, Y. Jiao, and X. Lu, “An alternating direction method
with continuation for nonconvex low rank minimization,” J. Sci. Comput.,
vol. 66, no. 2, pp. 849-869, 2016.

A. Mehranian, H. S. Rad, A. Rahmim, M. R. Ay, and H. Zaidi, “Smoothly
clipped absolute deviation (SCAD) regularization for compressed sensing
MRI using an augmented Lagrangian scheme,” Magn. Reson. Imag.,
vol. 31, no. 8, pp. 1399-1411, Oct. 2013.

P. Breheny and J. Huang, “Coordinate descent algorithms for nonconvex
penalized regression, with applications to biological feature selection,”
Ann. Appl. Statist., vol. 5, no. 1, p. 232, 2011.

L. Wang, G. Chen, and H. Li, “Group SCAD regression analysis for
microarray time course gene expression data,” Bioinformatics, vol. 23,
no. 12, pp. 1486-1494, Jun. 2007.

G. Gu, S. Jiang, and J. Yang, A TVSCAD approach for image deblurring
with impulsive noise,” Inverse Problems, vol. 33, no. 12, Dec. 2017,
Art. no. 125008.

A. Antoniadis and J. Fan, “Regularization of wavelet approximations,”
J. Amer: Stat. Assoc., vol. 96, no. 455, pp. 939-967, Sep. 2001.

M. Ahn, J.-S. Pang, and J. Xin, “Difference-of-convex learning: Direc-
tional stationarity, optimality, and sparsity,” STAM J. Optim., vol. 27, no. 3,
pp. 1637-1665, Jan. 2017.

F. Wen, L. Chu, P. Liu, and R. C. Qiu, “A survey on nonconvex
regularization-based sparse and low-rank recovery in signal processing,
statistics, and machine learning,” IEEE Access, vol. 6, pp. 69883—69906,
2018.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448-456.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818-2826.

J.-P. Penot, Calculus Without Derivatives, vol. 266. New York, NY, USA:
Springer, 2012.

A. Krizhevsky and G. Hinton, “‘Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, ““Deep networks
with stochastic depth,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzer-
land: Springer, 2016, pp. 646—661.

M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
arXiv:1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1319-1327.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” in Proc. NIPS
Workshop Deep Learn. Unsupervised Feature Learn., 2011, pp. 1-9.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700-4708.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1139-1147.

115313


http://dx.doi.org/10.1109/TETCI.2021.3058672

IEEE Access

K. Bui et al.: Improving Network Slimming With Nonconvex Regularization

[88] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1026-1034.

[89] C.C. Aggarwal, Neural Networks and Deep Learning. Cham, Switzerland:
Springer, 2018.

[90] T. Dinh and J. Xin, “Convergence of a relaxed variable splitting method
for learning sparse neural networks via £1,¢p, and transformed-¢; penal-
ties,” in Proc. SAI Intell. Syst. Conf. Cham, Switzerland: Springer, 2020,
pp. 360-374.

[91] P. Yin, Y. Lou, Q. He, and J. Xin, “Minimization of £;_, for compressed
sensing,” SIAM J. Sci. Comput., vol. 37, no. 1, pp. A536-A563, 2015.

[92] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[93] Y. Wuand K. He, “Group normalization,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 3-19.

[94] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4510-4520.

[95] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6848-6856.

KEVIN BUI received the B.S. degree in math-
ematics of computation from the University of
California at Los Angeles, in 2015, the M.S.
degree in industrial engineering and management
sciences from Northwestern University, in 2016,
and the M.S. degree in mathematics from the Uni-
versity of California at Irvine, in 2021, where he is
currently pursuing the Ph.D. degree in nonconvex
optimization for image processing and deep learn-
ing. From 2016 to 2018, he was a Research Tech-
nologist specializing in healthcare engineering at the Center for Engineering
Health, Northwestern University. His research interests include healthcare
engineering, image processing, and deep learning.

FREDRICK PARK received the Ph.D. degree
in applied mathematics from the University of
California at Los Angeles, in 2006. His thesis
work is in image processing, specializing in total
variation and duality for blind image deconvolu-
tion, staircase reduction, and texture extraction.
He worked as a Postdoctoral Scholar with the
University of Michigan, Ann Arbor, and Univer-
sity of California at Irvine. His postdoctoral work
included shape prior segmentation, shape model-
ing, and 3-D point cloud surface reconstruction. He is currently an Associate
Professor of mathematics at Whittier College and a Lecturer at Paul Merage
School of Business, University of California at Irvine. His current research
interests include computer vision and machine learning.

115314

SHUAI ZHANG received the Ph.D. degree in
mathematics from UC Irvine. His research inter-
ests include numerical optimization, computer
vision, and neural networks, especially on edge Al

YINGYONG QI received the Ph.D. degree in
speech and hearing sciences from Ohio State Uni-
versity, in 1989, and the Ph.D. degree in electrical
and computer engineering from the University of
Arizona, in 1993. He held a faculty position at the
University of Arizona, from 1989 to 1999. He was
a Visiting Scientist at the Research Laboratory of
Electronics, Massachusetts Institute of Technol-
ogy, from 1995 to 1996, and a Visiting Scientist
at the Visual Computing Laboratory of Hewlett
Packard, Palo Alto, in 1998. He is currently a Senior Director of technology
at Qualcomm and a Researcher of the Department of Mathematics, Univer-
sity of California at Irvine. He has published over 100 scientific articles
and U.S. patents during his tenure at university and industry. His research
interests include speech processing, computer vision, and machine learning.
He received Klatt Memorial Award in Speech Science from the Acoustical
Society of America, in 1991, the First Award from the National Institute
of Health, in 1992, and the AASFAA Outstanding Faculty Award from the
University of Arizona, in 1998. More recently, he led a team winning the 3rd
Place of IEEE Low Power Image Recognition Competition, sponsored by
Google at CVPR 2019.

JACK XIN received the Ph.D. degree in mathe-
matics from New York University’s Courant Insti-
tute of Mathematical Sciences, in 1990. He was a
Faculty at the University of Arizona, from 1991 to
1999, and the University of Texas at Austin, from
1999 to 2005. He is currently the Chancellor’s
Professor of mathematics at UC Irvine. His
research interests include applied analysis and
computational methods, and their applications in
multi-scale problems and data science. He is a fel-
low of Guggenheim Foundation, American Mathematical Society, American
Association for the Advancement of Science, and the Society of Industrial
and Applied Mathematics. He was a recipient of Qualcomm Faculty Award
(2019-2021).

VOLUME 9, 2021



