PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Rosenbaum R (2022) On the relationship
between predictive coding and backpropagation.
PLoS ONE 17(3): e0266102. https://doi.org/
10.1371/journal.pone.0266102

Editor: Gennady S. Cymbalyuk, Georgia State
University, UNITED STATES

Received: June 29, 2021
Accepted: March 14, 2022
Published: March 31, 2022

Copyright: © 2022 Robert Rosenbaum. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All code and data to
reproduce the results in the paper have been
uploaded to figshare (https://doi.org/10.6084/m9.
figshare.19387409.v2).

Funding: This work was supported by National
Science Foundation grants NSF DMS 1654268,
NSF Neuronex DBI 1707400, and the Air Force
Office of Scientific Research (ASOFR) award
number FA9550-21-1-0223. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

RESEARCH ARTICLE

On the relationship between predictive
coding and backpropagation

Robert Rosenbauma® *

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre
Dame, IN, United States of America

* Robert.Rosenbaum@nd.edu

Abstract

Artificial neural networks are often interpreted as abstract models of biological neuronal
networks, but they are typically trained using the biologically unrealistic backpropagation
algorithm and its variants. Predictive coding has been proposed as a potentially more biolog-
ically realistic alternative to backpropagation for training neural networks. This manuscript
reviews and extends recent work on the mathematical relationship between predictive cod-
ing and backpropagation for training feedforward artificial neural networks on supervised
learning tasks. Implications of these results for the interpretation of predictive coding and
deep neural networks as models of biological learning are discussed along with a repository
of functions, Torch2PC, for performing predictive coding with PyTorch neural network
models.

Introduction

The backpropagation algorithm and its variants are widely used to train artificial neural net-
works. While artificial and biological neural networks share some common features, a direct
implementation of backpropagation in the brain is often considered biologically implausible
in part because of the nonlocal nature of parameter updates: The update to a parameter in one
layer depends on activity in all deeper layers. In contrast, biological neural networks are
believed to learn largely through local synaptic plasticity rules for which changes to a synaptic
weight depend on neural activity local to that synapse. While neuromodulators can have non-
local impact on synaptic plasticity, they are not believed to be sufficiently specific to implement
the precise, high-dimensional credit assignment required by backpropogation. However, some
work has shown that global errors and neuromodulators can work with local plasticity to
implement effective learning algorithms [1, 2]. Backpropagation can be performed using local
updates if gradients of neurons’ activations are passed upstream through feedback connec-
tions, but this interpretation implies other biologically implausible properties of the network,
like symmetric feedforward and feedback weights. See previous work [3, 4] for a more com-
plete review of the biological plausibility of backpropagation.

Several approaches have been proposed for achieving or approximating backpropagation
with ostensibly more biologically realistic learning rules [2-14]. One such approach [11-14] is

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022

1/27

https://orcid.org/0000-0003-2105-9282
https://doi.org/10.1371/journal.pone.0266102
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266102&domain=pdf&date_stamp=2022-03-31
https://doi.org/10.1371/journal.pone.0266102
https://doi.org/10.1371/journal.pone.0266102
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.19387409.v2
https://doi.org/10.6084/m9.figshare.19387409.v2

PLOS ONE

On the relationship between predictive coding and backpropagation

Competing interests: The authors have declared
that no competing interests exist.

derived from the theory of “predictive coding” or “predictive processing” [15-23]. A relation-
ship between predictive coding and backpropagation was first discovered by Whittington and
Bogacz [11] who showed that, when predictive coding is used to train a feedforward neural
network on a supervised learning task, it can produce parameter updates that approximate
those computed by backpropagation. These original results have since been extended to more
general network architectures and to show that modifying predictive coding by a “fixed predic-
tion assumption” leads to an algorithm that produces the exact same parameter updates as
backpropagation [12-14].

This manuscript reviews and extends previous work [11-14] on the relationship between
predictive coding and backpropagation, as well as some implications of these results on the
interpretation of predictive coding and artificial neural networks as models of biological learn-
ing. The main results in this manuscript are as follows,

1. Accounting for covariance or precision matrices in hidden layers does not affect parameter
updates (learning) for predictive coding under the “fixed prediction assumption” used in
previous work.

2. Predictive coding under the fixed prediction assumption is algorithmically equivalent to a
direct implementation of backpropagation, which raises the question of whether it should
be interpreted as more biologically plausible than backpropagation.

3. Empirical results show that the magnitude of prediction errors do not necessarily corre-
spond to surprising features of inputs.

In addition, a public repository of Python functions, Torch2PC, is introduced. These
functions can be used to perform predictive coding on any PyTorch Sequential model (see
Materials and methods).

Results

A review of the relationship between backpropagation and predictive
coding from previous work

For completeness, let us first review the backpropagation algorithm. Consider a feedforward
deep neural network (DNN) defined by

Vy=x

X X (1)
V[:.ﬁ(vé—];gf)? é = 1) . 'aL

where each ¥, is a vector or tensor of activations, each 60, is a set of parameters for layer ¢, and
L is the network’s depth. In supervised learning, one seeks to minimize a loss function £(7, y)
where y is a label associated with input, x, and

y=fx0)="7,

is the network’s output, which depends on parameters 0 = {0,};_,. The loss is typically mini-
mized using gradient-based optimization methods with gradients computed using automatic
differentiation tools based on the backpropagation algorithm. For completeness, backpropaga-
tion is reviewed in the pseudocode below.

Algorithm 1 A standard implementation of backpropagation.
Given: Input (x) and label (y)
forward pass
Vy=x
for ¢ =1, ..., L

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 2/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

Ve =f(¥,1;0,)
backward pass
5 — 2Ly
L vy,
for ¢t =L-1, ..., 1
Oy (0: 0p01)
S, = 5“1 fz+1(0é/ 1
Afp(7o_1: Op
d@[— 75[fe(Z)t); 0)
A direct application of the chain rule and mathematical induction shows that backpropaga-
tion computes the gradients,

_0L0,y) _0LO.y)
0, = o, and d0, = a0,

The negative gradients, df, are then used to update parameters, either directly for stochastic
gradient descent or indirectly for other gradient-based learning methods [24]. For the sake of
comparison, I used backpropagation to train a 5-layer convolutional neural network on the
MNIST data set (Fig 1A and 1B; blue curves). I next review algorithms derived from the theory
of predictive coding and their relationship to backpropagation, as originally derived in previ-
ous work [11-14].

A strict interpretation of predictive coding does not accurately compute gradients. I
begin by reviewing supervised learning under a strict interpretation of predictive coding. The
formulation in this section is equivalent to the one first studied by Whittington and Bogacz
[11], except that their results are restricted to the case in which fo(v,_1; 0p) = 0,gs(ve_1) for some
point-wise-applied activation function, g, and connectivity matrix, 8,. Our formulation
extends this formulation to arbitrary vector-valued differentiable functions, f,. For the sake of

A B
0.100 1.00 oot y
0.075 > 0.75 PC (tra?n)
a © BP (train)
o 0.050 3 0.50 —— PC (test)
® —— BP (test)
0.025 0.25
0.000 0.00
0 100 200 300 400 0 100 200 300 400
step number step number
C o D
c —~
F 100 | T o s 880 — layer1
©g0.75 © 560 —— layer2
ST SS9 —— layer 3
= 02
o 5050 = 40 — layer 4
Ye W«W 5_5 — layer 5
-g S 0.25 ﬁ'o 20
D= QL
2 0.00 2o o
0 100 200 300 400 © 0 100 200 300 400
step number step number

Fig 1. Comparing backpropagation and predictive coding in a convolutional neural network trained on MNIST. A,B) The loss (A) and
accuracy (B) on the training set (pastel) and test set (dark) when a 5-layer network was trained using a strict implementation of predictive
coding (Algorithm 2 with 7 = 0.1 and n = 20; red) and backpropagation (blue). C,D) The relative error (C) and angle (B) between the parameter
update, df, computed by Algorithm 2 and the negative gradient of the loss at each layer. Predictive coding and backpropagation give similar
accuracies, but the parameter updates are less similar.

https://doi.org/10.1371/journal.pone.0266102.9001

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 3/27

https://doi.org/10.1371/journal.pone.0266102.g001
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

continuity with later sections, I also use the notational conventions from [12] which differ
from those in [11].

Predictive coding can be derived from a hierarchical, Gaussian probabilistic model in
which each layer, ¢, is associated with a Gaussian random variable, V,, satisfying

p(Vo=v|V, = v) = N filv.1;0,), Z)) (2)

where NV (v; 1, Z) o< exp(—[v — u] "X [v — u/2) is the multivariate Gaussian distribution
with mean, g, and covariance matrix, X, evaluated at v. Following previous work [11-14],
take X = I to be the identity matrix, but later relax this assumption [21].

If we condition on an observed input, V,, = x, then a forward pass through the network
described by Eq (1) corresponds to setting 7, = x and then sequentially computing the condi-
tional expectations or, equivalently, maximizing conditional probabilities,

v, =E[V|V,_, =7V,

= argmaxp(V, =v,|V, , =V,)
Ve

=fi(V,130,)

until reaching an inferred output, y = ;. Note that this forward pass does not necessarily
maximize the global conditional probability, p(V, = ¥ | v, = x) and it does not account for a
prior distribution on V, which arises in related work on predictive coding for unsupervised
learning [15, 21]. One interpretation of a forward pass is that each ¥, is the network’s “belief”
about the state of V,, when only V} = x has been observed.

Now suppose that we condition on both an observed input, V = x, and its label, V; = y. In
this case, generating beliefs about the hidden states, V,, is more difficult because we need to
account for potentially conflicting information at each end of the network. We can proceed by
initializing a set of beliefs, v,, about the state of each V,, and then updating our initial beliefs to
be more consistent with the observations, x and y, and parameters, 6,.

The error made by a set of beliefs, {v,},_,, under parameters, {0,}; ,, can be quantified by
& =fi(vii:0,) — v,

for¢=1,...,L —1where vy =V, =x1is observed. It is not so simple to quantify the error, ¢,
made at the last layer in a way that accounts for arbitrary loss functions. In the special case of a
squared-Euclidean loss function,

. 1,
LGy =515 =1

where ||u]|* = u” u. Standard formulations of predictive coding [20, 21] use

€ :fL(VL—l;HL) -y (3)
where recall that y is the label. In this case, €7 satisfies
OL(V,,y)
— 4
L 817]_ ()

where
v, :fL(VL—l; HL)'

We use the * to emphasize that v, is different from ¥, (which is defined by a forward pass start-
ing at ¥, = x) and is defined in a fundamentally different way from the v, terms (which do not

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 4/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

necessarily satisty vy = fo(v,_1; 6,)). We can then define the total summed magnitude of errors
as

1 L
2
F=35" el
(=1

More details on the derivation of F in terms of variational Bayesian inference can be found in
previous work [12, 16, 20, 21] where F is known as the variational free energy of the model.
Essentially, minimizing F produces a model that is more consistent with the observed data.
Minimizing F by gradient descent on v, and 6, produce the inference and learning steps of pre-
dictive coding, respectively.

Under a more heuristic interpretation, v, represents the network’s “belief” about V,, and
fe(ve_1; Bp) is the “prediction” of v, made by the previous layer. Under this interpretation, ¢, is
the error made by the previous layer’s prediction, so €, is called a “prediction error.” Then F
quantifies the total magnitude of prediction errors given a set of beliefs, v, parameters, 6,, and
observations, V= xand V; = y.

In predictive coding, beliefs, v, are updated to minimize the error, F. This can be achieved
by gradient descent, i.e., by making updates of the form

v, — v, +ndv,

where 7 is a step size and

OF

R (5)
aful (Vé; 91+1)

= €, —
14 (+1
ov,

In this expression, Ofp.1(vVe; 0p11)/0v, is a Jacobian matrix and e, ; is a row-vector to simplify
notation, but a column-vector interpretation is similar. If x is a mini-batch instead of one data
point, then v, is an m x n, matrix and derivatives are tensors. These conventions are used
throughout the manuscript. The updates in Eq (5) can be iterated until convergence or approx-
imate convergence. Note that the prediction errors, €, = v, — fo(v,_;; 8,), should also be updated
on each iteration.

Learning can also be phrased as minimizing F with gradient descent on parameters. Specifi-
cally,

0, =0, +n,do,

where
o
00,

— ¢ (v 6,)
¢ 00, '

o, = -

Note that some previous work uses the negative of the prediction errors used here, i.e., they
use €, = v, — fo(ve_1; 0). While this choice changes some of the expressions above, the value of
Fand its dependence on 6, is not changed because F is defined by the norms of the ¢, terms.
The complete algorithm is defined more precisely by the pseudocode below:

Algorithm 2 A direct interpretation of predictive coding.
Given: Input (x), label (y), and initial beliefs (v,)

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 5/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

error and belief computation

for i =1, ..., n
v =f(v,1;0,)
¢ — 0Ly
L

7,

for ¢ =L-1, ..., 1

€, = Vv, = £,(vy1i 64)

dv, = —€¢,+€, %

v, = v, + ndv,
parameter update computation
for ¢ =1, ..., L

a0, = —egw

Here and elsewhere, n denotes the number of iterations for the inference step. The choice
of initial beliefs is not specified in the algorithm above, but previous work [11-14] uses the
results from a forward pass, v, = ¥,, as initial conditions and I do the same in all numerical
examples.

I tested Algorithm 2 on MNIST using a 5-layer convolutional neural network. To be consis-
tent with the definitions above, I used a mean-squared error (squared Euclidean) loss function,
which required one-hot encoded labels [24]. Algorithm 2 performed similarly to backpropaga-
tion (Fig 1A and 1B) even though the parameter updates did not match the true gradients (Fig
1C and 1D). Algorithm 2 was slower than backpropagation (31s for Algorithm 2 versus 8s for
backpropagation when training metrics were not computed on every iteration) in part because
Algorithm 2 requires several inner iterations to compute the prediction errors (n = 20 itera-
tions used in this example). Algorithm 2 failed to converge on a larger model. Specifically, the
loss grew consistently with iterations when trying to use Algorithm 2 to train the 6-layer
CIFAR-10 model described in the next section. S1 Fig shows the same results from Fig 1
repeated across 30 trials with different random seeds to quantify the mean and standard devia-
tion across trials.

Fig 1C and 1D shows that predictive coding does not update parameters according to the
true gradients, but it is not immediately clear whether this would be resolved by using more
iterations (larger ») or different values of the step size, 7. I next compared the parameter
updates, df,, to the true gradients, 9L/00, for different values of n and n (Fig 2). For the
smaller values of 7 tested (7 = 0.1 and 17 = 0.2) and larger values of n (n > 100), parameter
updates were similar to the true gradients in the last two layers, but they differed substantially
in the first two layers. The largest values of 77 tested (7 = 0.5 and 1 = 1) caused the iterations in
Algorithm 2 to diverge.

Some choices in designing Algorithm 2 were made arbitrarily. For example, the three
updates inside the inner for-loop over € could be performed in a different order or the outer
for-loop over i could be changed to a while-loop with a convergence criterion. For any initial
conditions and any of these design choices, if the iterations over i are repeated until conver-
gence or approximate convergence of each v, to a fixed point, v;, then the increments must sat-
isfy dve = 0 at the fixed point and therefore the fixed point values of the prediction errors, €],
must satisfy

€ :WGPA (7)

for£=1,..., L - 1. By the definition of 7, we have

. _O0L(v,y)

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 6/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

d6 and gradient
o o =
o 3] o

ey
N O
(S]

gradient (degrees)
N 18,1
w o

angle between d6 and re|ative error between
o

1.0

0.5

80

40
20

100 101 102
number of iterations (n)

=0.2 =0.5 =1
n 100 1 100
80 — layer1 80
— layer 2
60 —— layer 3 60
40 — layer 4 40
— layer 5
20 20
0.0 0 0
150
150
60 100 100
50 50
0 0 0
10° 10! 102 10° 101 102 100 10! 102
number of iterations (n) number of iterations (n) number of iterations (n)

Fig 2. Comparing parameter updates from predictive coding to true gradients in a network trained on MNIST. Relative error and angle between df, produced by
predictive coding (Algorithm 2) as compared to the exact gradients, 0£/00, computed by backpropagation (relative error defined by ||d6,. — d0y,||/||d6y,||). Updates
were computed as a function of the number of iterations, #, used in Algorithm 2 for various values of the step size, 7, using the model from Fig 1 applied to one mini-
batch of data. Both models were initialized identically to the pre-trained parameter values from the trained model in Fig 1. Parameter updates converge near the gradients
after many iterations for smaller values of 7, but diverge for larger values.

https://doi.org/10.1371/journal.pone.0266102.9002

where
vy = £V 00)-
Combining Eqs (7) and (8) gives the fixed point prediction errors of the penultimate layer
_9L(1,y) 0f(v 15 0,)
ov; ov;_,
_9L(y)

T ov

L-1

.
€1

where we used the fact that ¥; = f,(v;_; 0,) and the chain rule. The error in layer L — 2 is

given by
& = 0LV}, y) Of, (v _5;0,)

vy i,

Note that we cannot apply the chain rule to reduce this product (like we did for Eq (9)) because
it is not necessarily true that v | =f, (v ,;0, ;). I revisit this point below. We can continue

this process to derive

. 0LV, y) Of, (v 430, 1) Of, »(v 40, ,)
ov: ov:

-3 .
o, 12 -3

and continue for =L -4, .., 1. In doing so, we see (by induction) that €; can be written as

v: L_2a ' 10,
6* _ a‘C(VL7y) ﬁ+1(vé’ Z+1) (10)

! T v, '

for€=1,..., L - 2. Therefore, if the inference loop converges to a fixed point, then the

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 7127

https://doi.org/10.1371/journal.pone.0266102.g002
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

subsequent parameter update obeys

_ OL(V,y) T W (Vi3 01) | Ofi(v_150,) (11)
ov? v, a0,

L-1

do, =

=t

by Eq (6). It is not clear whether there is a simple mathematical relationship between these
parameter updates and the negative gradients, df, = —9L/90,, computed by
backpropagation.

It is tempting to assume that v; = f,(v;_,; 0,), in which case the product terms would be
reduced by the chain rule. Indeed, this assumption would imply that v; = ¥, and ¥; = ¥, and,
finally, that e, = OL/0V, and df, = —0L/D0,, identical to the values computed by backpropa-
gation. However, we cannot generally expect to have v; = f,(v;_,; 0,) because this would imply
that €; = 0 and therefore 9L /0v; = 9L/06, = 0. In other words, Algorithm 2 is only equiva-
lent to backpropagation in the case where parameters are at a critical point of the loss function,
so all updates are zero. Nevertheless, this thought experiment suggests a modification to Algo-
rithm 2 for which the fixed points do represent the true gradients [11, 12]. I review that modifi-
cation in the next section.

Note also that the calculations above rely on the assumption of a Euclidean loss function,
L(3,y) = |ly — y|I’ /2. If we want to generalize the algorithm to different loss functions, then
Egs (3) and (4) could not both be true, and therefore Eqgs (7) and (8) could not both be true.
This leaves open the question of how to define ¢; when using loss functions that are not pro-
portional to the squared Euclidean norm. If we were to define ¢; by (3), at the expense of losing
(4), then the algorithm would not account for the loss function at all, so it would effectively
assume a Euclidean loss, i.e., it would compute the same values that are computed by Algo-
rithm 2 with a Euclidean loss. If we instead were to define ¢; by Eq (4) at the expense of (3),
then Eqs (5) and (7) would no longer be true for £ = L — 1 and Eq (6) would no longer be true
for € = L. Instead, all three of these equations would involve second-order derivatives of the
loss function, and therefore the fixed point Eqs (10) and (11) would also involve second order
derivatives. The interpretation of the parameter updates is not clear in this case. One might
instead try to define €7 by the result of a forward pass,

6 =f0,50)—y
= f’L -y
but then €; would be a constant with respect to v;_;, so we would have de;/0v;_, = 0, and
therefore Eq (5) at £ = L — 1 would become

OF
ov,_,

€11

dv, |, =

*

which has a fixed point at €; , = 0. This would finally imply that all the errors converge to
¢, = 0 and therefore d0, = 0 at the fixed point.

I next discuss a modification of Algorithm 2 that converges to the same gradients computed
by backpropagation, and is applicable to general loss functions [11, 12].

Predictive coding modified by the fixed prediction assumption converges to the gradi-
ents computed by backpropagation. Previous work [11, 12] proposed a modification of the
predictive coding algorithm described above called the “fixed prediction assumption” which I
now review. Motivated by the considerations in the last few paragraphs of the previous section,
we can selectively substitute some terms of the form v, and fy(v,_; 6,) in Algorithm 2 with ¥,

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 8/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

(or, equivalently, f,(¥,_,; 0,)) where 7, are the results of the original forward pass starting from
¥, = x. Specifically, the following modifications are made to the quantities computed by Algo-
rithm 2

€ =V, =V
o 0LGLy)
t o,
Of (7,10, (12)
dv, =¢ —¢, 2O G
14 L +1 aV[
of, (V45 6,)
d@ = —¢ (\"i=10 Y1
! 00,
for¢=1,...,L - 1. This modification can be interpreted as “fixing” the predictions at the val-

ues computed by a forward pass and is therefore called the “fixed prediction assumption” [11,
12]. Additionally, the initial conditions of the beliefs are set to the results from a forward pass,
v,="¥,forf=1,...,L— 1. The complete modified algorithm is defined by the pseudocode
below:

Algorithm 3 Supervised learning with predictive coding modified by the fixed prediction

assumption. Adapted from the algorithm in [12] and similar to the algorithm from [11].
Given: Input (x) and label (y)
forward pass
V=X
for ¢+ =1, ..., L
v :Jf;(i)%—l; 91)
Ve ="y
error and belief computation
€ = Mg&"{ ”)
for i =1, ..., n
for ¢ =L-1, ..., 1
§=v,—
dW = — € afé,JA%’é;oﬂ»l)
v, = v, + ndv,
parameter update computation
for ¢ =1, ..., L

0, = —e, Ofé,(vé,;)l; 0,)
: N 4
Note, again, that some choices in Algorithm 3 were made arbitrarily. The three updates
inside the inner for-loop over € could be performed in a different order or the outer for loop
over i could be changed to a while-loop with a convergence criterion. Regardless of these

choices, the fixed points, €;, can again be computed by setting dv, = 0 to obtain

£ gt o (93 0,.1) '

€, =
¢ = € -
ov,

Now note that ¢; is fixed, so

OL(3,.y)

t ov,

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 9/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

and we can combine these two equations to compute

* _ aﬁ(f’uy) afL(f/L—l;eL)

LT o, o,
OL,,y)

ov, 4

where we used the chain rule and the fact that ¥, = f,(¥,_,; 0,). Continuing this approach we
have,

* * aferl (flé’ 02+1)

€ =e€
¢ t41 -
ov,

9L(J,y)

oW,

forall £=1, ..., L (where recall that y = 7, is the output from the feedfoward pass). Combin-
ing this with the modified definition of df,, we have

o (v,1;0,)
di, =-—-¢———"-
¢ ‘ a0,
0L, y) 0V,

v, 90,
OL(y,y)

B 00,

where we use the chain rule and the fact that 7, = f,(¥,_,; 0,). We may conclude that, if the
inference step converges to a fixed point (dv, = 0), then Algorithm 3 computes the same values
of d0, as backpropagation and also that the prediction errors, €, converge to the gradients,

0, = OL/0V,, computed by backpropagation. As long as the inference step approximately con-
verges to a fixed point (dv, ~ 0), then we should expect the parameter updates from Algorithm
3 to approximate those computed by backpropagation. In the next section, I extend this result
to show that a special case of the algorithm computes the true gradients in a fixed number of
steps.

I next tested Algorithm 3 on MNIST using the same 5-layer convolutional neural network
considered above. I used a cross-entropy loss function, but otherwise used all of the same
parameters used to test Algorithm 2 in Fig 1. The modified predictive coding algorithm (Algo-
rithm 3) performed similarly to backpropagation in terms of the loss and accuracy (Fig 3A
and 3B). Parameter updates computed by Algorithm 3 did not match the true gradients, but
pointed in a similar direction and provided a closer match than Algorithm 2 (compare Fig 3C
and 3D to Fig 1C and 1D). Algorithm 3 was similar to Algorithm 2 in terms of training time
(29s for Algorithm 3 versus 31s for Algorithm 2 and 8s for backpropagation). S2 Fig shows the
same results from Fig 3 repeated across 30 trials with different random seeds to quantify the
mean and standard deviation across trials.

I next compared the parameter updates computed by Algorithm 3 to the true gradients for
different values of n and n (Fig 4). When 1 < 1, the parameter updates, df,, appeared to con-
verge, but did not converge exactly to the true gradients. This is likely due to numerical float-
ing point errors accumulated over iterations. When 7 = 1, the parameter updates at each layer
remained constant for the first few iterations, then immediately jumped to become very near
the updates from backpropagation. In the next section, I provide a mathematical analysis of

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 10/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE On the relationship between predictive coding and backpropagation

A B
1.00 . oA
ah i] aa
=0 > 0.75 PC (train)
w 1.5 § BP (train)
810 5 0.50 — PC (test)
. o —— BP (test)
0.5 0.25
0.0 0.00
0 100 200 300 400 0 100 200 300 400
step number step number
C o D
D N c i
ko)] — layer1
— = @ ¢ 20
0 5 075 | At bt T 5 —— layer 2
k-] co —— layer 3
£ ©0.50 gz Y
Vo 2410 — layer 4
ve 5 —— layer5
= 0.25 Qx5
0w 9 ©
2 o0.00 2o 0
0 100 200 300 400 © 0 100 200 300 400
step number step number

Fig 3. Predictive coding modified by the fixed prediction assumption compared to backpropagation in a convolutional neural network
trained on MNIST. Same as Fig 1 except Algorithm 3 was used (with 7 = 0.1 and n = 20) in place of Algorithm 2. The accuracy of predictive
coding with the fixed prediction assumption is similar to backpropagation, but the parameter updates are less similar for these
hyperparameters.

https://doi.org/10.1371/journal.pone.0266102.9003

this behavior and show that when 7 = 1, Algorithm 3 computes the true gradients in a fixed
number of steps.

To see how well these results extend to a larger model and more difficult benchmark, I next
tested Algorithm 3 on CIFAR-10 [25] using a six-layer convolutional network. While the

S n=0.1 n=0.2 n=1
o ,, 1.00 1.00 1.00 1.00
£5
8 5 0.75 0.75 0.75 0.75
o O
g © 0.50 0.50 0.50 0.50
o2
CI>J © 0.25 0.25 0.25 0.25
23
% 0.00 0.00 0.00 0.00
©
c o~
o
o 980 80 80 80
S5
5 O 60 60 60 60
0l
2 w40 40 40 40
— C
[oRT}
Q520 20 20 20
2o
2o 0 0 0 0
© 100 10! 102 100 10! 102 100 10! 102 10° 2 345 10! 102
number of iterations (n) number of iterations (n) number of iterations (n) number of iterations (n)

Fig 4. Comparing parameter updates from predictive coding modified by the fixed prediction assumption to true gradients in a network trained on MNIST.
Relative error and angle between df produced by predictive coding modified by the fixed prediction assumption (Algorithm 3) as compared to the exact gradients
computed by backpropagation (relative error defined by ||d6,. — d,||/||d6},||). Updates were computed as a function of the number of iterations, 7, used in Algorithm 3
for various values of the step size, 1, using the model from Fig 3 applied to one mini-batch of data. Both models were initialized identically to the pre-trained parameter
values from the backpropagation-trained model in Fig 3. In the rightmost panels, some lines are not visible where they overlap at zero. Parameter updates quickly
converge to the true gradients when 7 is larger.

https://doi.org/10.1371/journal.pone.0266102.9004

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 11/27

https://doi.org/10.1371/journal.pone.0266102.g003
https://doi.org/10.1371/journal.pone.0266102.g004
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

3 A B
0.6
PC (train)
2 o BP (train)
v © 0.4
§ 3 —— PC (test)
1 3 0.2 —— BP (test)
0 0.0
0 250 500 750 1000 0 250 500 750 1000
step number step number
© C o _ — layer1
S 1.00 | wr g o layer 2
s c o —
8.9 0.75 'S o layer 3
©T o2 — layer 4
=0 (]JE
30,050 £ — layer 5
[} —— layer 6
25025 a2 y
o= o
2 0.00 =S ; i
0 250 500 750 1000 © 0 250 500 750 1000

step number step number

Fig 5. Predictive coding modified by the fixed prediction assumption compared to backpropagation in convolutional neural networks
trained on CIFAR-10. Same as Fig 3 except a larger network was trained on the CIFAR-10 data set. The accuracy of predictive coding with the
fixed prediction assumption is similar to backpropagation and parameter updates are similar to the true gradients.

https://doi.org/10.1371/journal.pone.0266102.9005

network only had one more layer than the MNIST network used above, it had 141 times more
parameters (32,695 trainable parameters in the MNIST model versus 4,633,738 in the CIFAR-
10 model). Algorithm 3 performed similarly to backpropagation in terms of loss and accuracy
during learning (Fig 5A and 5B) and produced parameter updates that pointed in a similar
direction, but still did not match the true gradients (Fig 5C and 5D). Algorithm 3 was substan-
tially slower than backpropagation (848s for Algorithm 3 versus 58s for backpropagation when
training metrics were not computed on every iteration).

Predictive coding modified by the fixed prediction assumption using a step size of n =1
computes exact gradients in a fixed number of steps. A major disadvantage of the approach
outlined above—when compared to standard backpropagation—is that it requires iterative
updates to v, and ¢,. Indeed, previous work [12] used n = 100-200 iterations, leading to sub-
stantially slower performance compared to standard backpropagation. Other work [11] used
n = 20 iterations as above. In general, there is a tradeoff between accuracy and performance
when choosing n, as demonstrated in Fig 4. However, more recent work [13, 14] showed that,
under the fixed prediction assumption, predictive coding can compute the exact same gradi-
ents computed by backpropagation in a fixed number of steps. That work used a more specific
formulation of the neural network which can implement fully connected layers, convolutional
layers, and recurrent layers. They also used an unconventional interpretation of neural net-
works in which weights are multiplied outside the activation function, i.e., f,(x; 8,) = 0,g,(x),
and inputs are fed into the last layer instead of the first. Next, I show that their result holds for
arbitrary feedforward neural networks as formulated in Eq (1) (with arbitrary functions, f;)
and this result has a simple interpretation in terms of Algorithm 3. Specifically, the following
theorem shows that taking a step size of 7 = 1 yields an exact computation of gradients using
just n = L iterations (where L is the depth of the network).

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 12/27

https://doi.org/10.1371/journal.pone.0266102.g005
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

Theorem 1. If Algorithm 3 is run with step size n =1 and at least n = L iterations then the
algorithm computes

. _9LGy)
‘ o,
and
0L, y)
0, =——7
40 00,
foralle=1,...,LwhereV, = f,(V,_,;0,) are the results from a forward pass with v, = x and

y =, = f(x; 0) is the output.

Proof. For the sake of notational simplicity within this proof, define 6, = 0L(V,, y)/07,.
Therefore, we first need to prove that €, = &,. First, rewrite the inside of the error and belief
loop from Algorithm 3 while explicitly keeping track of the iteration number in which each
variable was updated,

i—1 5

i _
€ =, v,
. . o Of,,(v,;0,
1 — A - 4
d i Ui (030,0)
Vo =€ =€ S
v,
i i1 i
v, =v, 4 dv,.

Here, v/, €, and dv} denote the values of v/, €/, and dv} respectively at the end of the ith itera-
tion, vJ = ¥, corresponds to the initial value, and all terms without superscripts are constant
inside the inference loop. There are some subtleties here. For example, we have v/ in the first
line because v, is updated after €, in the loop. More subtly, we have €|, in the second equation
instead of €| because the for loop goes backwards from £ =L — 1to £ = 1, 50 €, is updated

before €,. First note that

1_
e =0
foré=1,...,L—1because 1! = 7,. Now compute the change in €, across one step,
i ¢)
O N S A |
€ & =Vi=V
— i
=dv,

—¢ —¢ aﬁ+1(f/£;0£+l).

= €, —
¢~ € ~
ov,

Note that this equation is only valid for i > 1 due to the i — 1 term (v, ' is not defined). Adding
€} to both sides of the resulting equation gives

el — ¢ U1 (V0,,,)
4 +1 af}[

We now use induction to prove that e, = §, after n = L iterations. Indeed, we prove a stronger

claim that €, = J, ati = L — € + 1. First note that €, = ¢, for all i because €} is initialized to &,

and then never changed. Therefore, our claim is true for the base case £ = L.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 13/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE On the relationship between predictive coding and backpropagation

Now suppose that €}, | = J,,, fori=L - (€+1) + 1 = L — £. We need to show that €' = 0,.

41
From above, we have

i1 i 8f[+1 (‘A’b Qéﬂ)
€ =€ T
-5 afiﬂ(f’[;@zﬂ)

+1 8175
_ LY, y) Ofpy (V3 0,.,)
0V, o,

LY y) OV

My OV,

_9LG.y)

o9,
=3,

This completes our induction argument. It follows that €, = J, at iteration i = L — £ + 1 at all
layers € =1, ..., L. The last layer to be updated to the correct value is € = 1, which is updated
on iteration numberi=L — 1+ 1= L. Hence, ¢,=d,forall £ =1, ..., L after n = L iterations.
This proves the first statement in our theorem. The second statement then follows from the

definition of d6,,

— e U (V130,)
! 00,

__OLG.y) 0h(3,.1:0,)
o, 0,
IL(p,y) 0,

oy, 00,
0Ly, y)

a0,

do,

This completes the proof.

This theorem ties together the implementation and formulation of predictive coding from
[12] (i.e., Algorithm 3) to the results in [13, 14]. As noted in [13, 14], this result depends criti-
cally on the assumption that the values of v, are initialized to the activations from a forward
pass, v, = ¥, initially. The theoretical predictions from Theorem 1 are confirmed by the fact
that all of the errors in the rightmost panels of Fig 4 converge to zero after n = L = 5 iterations.

To further test the result empirically, I repeated Figs 3 and 5 using 7 =1 and n = L (in con-
trast to Figs 3 and 5 which used 7 = 0.1 and n = 20). The loss and accuracy closely matched
those computed by backpropagation (Figs 6A and 6B and 7A and 7B). More importantly, the
parameter updates closely matched the true gradients (Figs 6C and 6D and 7C and 7D), as pre-
dicted by Theorem 1. The differences between predictive coding and backpropagation in Fig 6
were due floating point errors and the non-determinism of computations performed on
GPUs. For example, similar differences to those seen in Fig 6A and 6B were present when the
same training algorithm was run twice with the same random seed. The smaller number of
iterations (n = L in Figs 6 and 7 versus n = 20 in Figs 3 and 5) resulted in a shorter training
time (13s for MNIST and 300s for CIFAR-10 for Figs 6 and 7, compare to 29s and 848s in Figs
3 and 5, and compare to 8s and 58s for backpropagation).

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 14/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE On the relationship between predictive coding and backpropagation

A B
1.00 AP
=0 > 0.75 PC (tra?n)
@ 1.5 E BP (train)
S0 3 0.50 —— PC (test)
% —— BP (test)
05 0.25
0.0 0.00
0 100 200 300 400 0 100 200 300 400
step number step number
g D
3 " g] — layer1
G S ° %0'6 \ — layer 2
s \
S Y — 3
£ 8304 Il aver
v o E — layer 4
Ye °o | i ‘ ‘ —— layer5s
cLEITT
o= QLo W R o W'“mluﬂ“ il
g 25,0 | il
0 100 200 300 400 © 0 100 200 300 400
step number step number

Fig 6. Predictive coding modified by the fixed prediction assumption with 77 = 1 compared to backpropagation in convolutional neural
networks trained on MNIST. Same as Fig 3 except 7 = 1 and n = L. Predictive coding with the fixed prediction assumption approximates
true gradients accurately when 7= 1.

https://doi.org/10.1371/journal.pone.0266102.9006

A B
3
0.6
5 - PC (tra!n)
0 E 0.4 BP (train)
5 3 —— PC (test)
1 0.2 — BP (test)
0 0.0
0 250 500 750 1000 0 250 500 750 1000
step number step number
° D — layer 1
% % 0 — layer 2
« & 0.001 © 901
S] -g 5 — layer 3
g ° g g —— layer 4
T 5 v —— layer 5
e ol —— layer 6
= O Keo) .6
o & 9©
[7] oo
= 0.000 % 0.0
0 250 500 750 1000 0 250 500 750 1000
step number step number

Fig 7. Predictive coding modified by the fixed prediction assumption with 77 = 1 compared to backpropagation in convolutional neural
networks trained on CIFAR-10. Same as Fig 5 except 77 = 1 and n = L. Predictive coding with the fixed prediction assumption approximates
true gradients accurately when 7 = 1.

https://doi.org/10.1371/journal.pone.0266102.9007

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 15/27

https://doi.org/10.1371/journal.pone.0266102.g006
https://doi.org/10.1371/journal.pone.0266102.g007
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

In summary, a review of the literature shows that a strict interpretation of predictive coding
(Algorithm 2) does not converge to the true gradients computed by backpropagation. To com-
pute the true gradients, predictive coding must be modified by the fixed prediction assumption
(Algorithm 2). Further, I proved that Algorithm 2 computes the exact gradients when 7 =1
and n > L, which ties together results from previous work [12-14].

Predictive coding with the fixed prediction assumption and 77 =1 is
functionally equivalent to a direct implementation of backpropagation

The proof of Theorem 1 and the last panel of Fig 4 give some insight into a how Algorithm 3
works. First note that the values of v, in Algorithm 3 are only used to compute the values of

€0 and are not otherwise used in the computation of d0, or any other quantities. Therefore, if
we only care about understanding parameter updates, df,, we can ignore the values of v, and
only focus on how ¢, is updated on each iteration, i. Secondly, note that when 17 = 1, each ¢, is
updated only once: €, = O fori < L - €+ land €, = €., 0f,,,(¥,;0,,,)/0V,fori > L - £+ 1, s0
€¢1s only changed on iteration number i = L — € + 1. In other words, the error computation in

Algorithm 3 when 7 =1 and n = L is equivalent to

error computation
for i =1, ..., L
for ¢ =L-1, ..., 1
if ¢t ==L -1i+1
N aful(;;i Op41)
The two computations are equivalent in the sense that they compute the same values of the
errors, €, on every iteration. The formulation above makes it clear that the nested loops are
unnecessary because for each value of i, ¢, is only updated at one value of €. Therefore, the
nested loops and if-statement can be replaced by a single for-loop. Specifically, the error com-

putation in Algorithm 3 when 7 = 1 is equivalent to

error computation

__ 9L0. y)
&L= ",

for v =1L-1, ..., 1
€ =€ [)ﬂvl(fv;é; o)
This is exactly the error computation from the standard backpropagation algorithm, i.e.,
Algorithm 1. Hence, if we use n = 1, then Algorithm 3 is just backpropagation with extra steps
and these extra steps do not compute any non-zero values. If we additionally want to compute

the fixed point beliefs, then they can still be computed using the relationship
v, =€+ 7V,

We may conclude that, when 1 = 1, Algorithm 3 can be replaced by an exact implementation
of backpropagation without any effect on the results or effective implementation of the algo-
rithm. This raises the question of whether predictive coding with the fixed prediction assump-
tion should be considered any more biologically plausible than a direct implementation of
backpropagation.

Accounting for covariance or precision matrices in hidden layers does not
affect learning under the fixed prediction assumption
Above, I showed that predictive coding with the fixed prediction assumption is functionally

equivalent to backpropagation. However, the predictive coding algorithm was derived under
an assumption that covariance matrices in the probabilistic model are identity matrices, X, = I.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 16/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

This raises the question of whether relaxing this assumption could generalize backpropagation
to account for the covariances, as suggested in previous work [11, 12, 26].

We can account for covariances by returning to the calculations starting from the probabi-
listic model in Eq (2) and omit the assumption that X, = I. To this end, it is helpful to define
the precision-weighted prediction errors [20, 21, 26],

€ =€¢P,

foré=1,...,L—-1whereP, = Z;l is the inverse of the covariance matrix of V,, which is called
“precision matrix.” Recall that we treat €, as a row-matrix, which explains the right-multiplica-
tion in this definition.

Modifying the definition of €; to account for covariances is not so simple because the
Gaussian model for V, is not justified for non-Euclidean loss functions such as categorical loss
functions. Moreover, it is not clear how to define the covariance or precision matrix of the out-
put layer when labels are observed. As such, I restrict to accounting for precision matrices in
hidden layers only, and leave the question of accounting for covariances in the output layer for
future work with some comments on the issue provided at the end of this section. To this end,
let us not modify the last layer’s precision and instead define

IL(y,y)

9y

€, =¢ =
The free energy is then defined as [20, 21]

1 L
~ 112
F=3> Il
=1

Performing gradient descent on F with respect to v, therefore gives

: _¢ Ny (v;0,,1)
1

dv, = ¢, —
[14 0+ o
vy

and performing gradient descent on F with respect to 6, gives

Of,(v,; 0
d@(— _6[fl(alol Z).
¢

These expressions are identical to Eqs (5) and (6) derived above except that €, takes the place
of €.

The precision matrices themselves can be learned by performing gradient descent on F
with respect to P, or, as suggested in other work [21], by parameterizing the model in terms of
X, = P;' and performing gradient descent with respect to X,. Alternatively, one could use
techniques from the literature on Gaussian graphical models to learn a sparse or low-rank
representation of P,. I circumvent the question of estimating P, by instead just asking how an
estimate of P, (however it is obtained) would affect learning. I do assume that P, is symmetric.
I also simplify the calculations by restricting the analysis to predictive coding with the fixed
prediction assumption, leaving the analysis of fixed point prediction errors and parameter
updates under strict predictive coding with precisions matrices for future work. Some analysis
has been performed in this direction [21], but not for the supervised learning scenario consid-
ered here.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 17/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

Putting this together, predictive coding under the fixed prediction assumption while
accounting for precision matrices in hidden layers is defined by the following equations

€ =1V, —vlP,
L6,y

L ov,

- . Of (0,
dv, :Q_EMW
¢
of,(v,,;0,
d@i :_6[%
¢

The only difference between these equations and Eq (12) is that they use €, in place of

€, = v, — v,. Following the same line of reasoning, therefore, if the updates to v, are repeated
until convergence, then fixed point precision-weighted prediction errors satisfy

— i (V50,,,)

~%

€ =€

¢ = € -
ov,

Notably, this is the same equation derived for €, under the fixed prediction assumption with
>, =1, so fixed point precision-weighted prediction errors are also the same,

L _0L(y)

/ ~
ov,
and, therefore, parameter updates are the same as well,

L0,
deiz—#.
l

In conclusion, accounting for precision matrices in hidden layers does not affect learning
under the fixed prediction assumption. Fixed point parameter updates are still the same as
those computed by backpropagation. This conclusion is independent of how the precision
matrices are estimated, but it does rely on the assumption that fixed points for v, exist and are
unique.

Above, we only considered precision matrices in the hidden layers because accounting for
precision matrices in the output layer is problematic for general loss functions. The use of a
precision matrix in the output implies the use of a Gaussian model for the output layer and
labels, which is inconsistent with some types of labels and loss functions. If we focus on the
case of a squared-Euclidean loss function,

) 1,
LGy) =57 -l

then the use of precision matrices in the output layer is more parsimonious and we can define

c 7 9LG,y)

€ =, —yP, 23—pr
in place of the definition above (recalling that y = ¥,). Following the same calculations as
above, gives fixed points of the form

L _0LGy) , O

Ty ho,

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 18/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

and, therefore, weight updates take the form

IL(y.y) , O
40, = — =22 p 2
‘ 95 oo,

at the fixed point. Hence, accounting for precision matrices at the output layer can affect learn-
ing by re-weighting the gradient of the loss function according to the precision matrix of the
output layer. Note that the precision matrices of the hidden layers still have no effect on learn-
ing in this case. Previous work relates the inclusion of the precision matrix in output layers
with the use of natural gradients [26, 27].

Prediction errors do not necessarily represent surprising or unexpected
features of inputs

Deep neural networks are often interpreted as abstract models of cortical neuronal networks.
To this end, the activations of units in deep neural networks are compared to the activity (typi-
cally firing rates) of cortical neurons [3, 28, 29]. This approach ignores the representation of
errors within the network. More generally, the activations in one particular layer of a feedfor-
ward deep neural network contain no information about the activations of deeper layers, the
label, or the loss. On the other hand, the activity of cortical neurons can be modulated by
downstream activity and information believed to be passed upstream by feedback projections.
Predictive coding provides a precise model for the information that deeper layers send to shal-
lower layers, specifically prediction errors.

Under the fixed prediction assumption (Algorithm 3), prediction errors in a particular
layer are approximated by the gradients of that layers’ activations with respect to the loss func-
tion,e, = 0, = %, but under a strict interpretation of predictive coding (Algorithm 2), predic-

tion errors do not necessarily reflect gradients. We next empirically explored how the
representations of images differ between the activations from a feedforward pass, ¥, the pre-
diction errors under the fixed prediction assumption, €, = &, as well as the beliefs, v,, and pre-
diction errors, €, under a strict interpretation of predictive coding (Algorithm 2). To do so, we
computed each quantity in VGG-19 [30], which is a large, feedforward convolutional neural
network (19 layers and 143,667,240 trainable parameters) pre-trained on ImageNet [31].

The use of convolutional layers allowed us to visualize the activations and prediction errors
in each layer. Specifically, we took the Euclidean norm of each quantity across all channels and
plotted them as two-dimensional images for layers £ = 1 and £ = 10 and for two different input
images (Fig 8). For each image and each layer (each row in Fig 8), we computed the Euclidean
norm of four quantities. First, we computed the activations from a forward pass through the
network (¥,, second column). Under predictive coding with the fixed prediction assumption
(Algorithm 3), we can interpret the activations, ¥,, as “beliefs” and the gradients, &,, as “predic-
tion errors.” Strictly speaking, there is a distinction between the beliefs, ¥,, from a feedforward
pass and the beliefs, v, = ¥, + ¢, when labels are provided. Either could be interpreted as a
“belief.” However, we found that the difference between them was negligible for the examples
considered here.

Next, we computed the gradients of the loss with respect to the activations (&, third column
in Fig 8). The theory and simulations above and from previous work confirms that these gradi-
ents approximate the prediction errors from predictive coding with the fixed prediction
assumption (Algorithm 3). Indeed, for the examples considered here, the differences between
the two quantities were negligible. Next, we computed the beliefs (v,, fourth column in Fig 8)
computed by strict predictive coding (Algorithm 2). Finally, we computed the prediction
errors (e, last column in Fig 8) computed by strict predictive coding (Algorithm 2).

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 19/27

https://doi.org/10.1371/journal.pone.0266102

PLOS ONE On the relationship between predictive coding and backpropagation

activation gradient belief prediction error
(eIief under FPA) (pred. err. under FPA) under strict PC under strict PC

layer 1
label=guess
Irish wolfhound

layer 10
label=guess
Irish wolfhound

layer 1
guess=

label

triceratops

layer 10
=guess=

label
triceratops

Fig 8. Magnitude of activations, beliefs, and prediction errors in a convolutional neural network pre-trained on ImageNet. The Euclidean norm of feedforward
activations (¥, interpreted as beliefs under the fixed prediction assumption), gradients of the loss with respect to activations (6, = 9L/, interpreted as prediction errors
under the fixed prediction assumption), beliefs (v) under strict predictive coding, and prediction errors (¢,)) under strict predictive coding computed from the VGG-19
network [30] pre-trained on ImageNet [31] with two different photographs as inputs at two different layers. The vertical labels on the left (“triceratops” and “Irish
wolfhound”) correspond to the guessed label which was also used as the “true” label (y) used to compute the gradients.

https://doi.org/10.1371/journal.pone.0266102.9g008

Note that we used a VGG-19 model that was pre-trained using backpropagation. Hence,
the weights were not necessarily the same as the weights that would be obtained if the model
were trained using predictive coding, particularly strict predictive coding (Algorithm 2) which
does not necessarily converge to the true gradients. Training a large ImageNet model like
VGG-19 with predictive coding is extremely computationally expensive. Regardless, future
work should address the question of whether using pre-trained weights (versus weights trained
by predictive coding) affects the conclusions reached here.

Overall, the activations, ¥,, from a feedforward pass were qualitatively very similar to the
beliefs, vy, computed under a strict interpretation of predictive coding (Algorithm 2). To a
slightly lesser degree, the gradients, 8,, from a feedforward pass were qualitatively similar to
the prediction errors computed under a strict interpretation of predictive coding (Algorithm
2). Since ¥, and &, approximate beliefs and prediction errors under the fixed prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 20/27

https://doi.org/10.1371/journal.pone.0266102.g008
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE On the relationship between predictive coding and backpropagation

assumption, these observations confirmed that the fixed prediction assumption does not make
large qualitative changes to the representation of beliefs and errors in these examples. There-
fore, in the discussion below, we used “beliefs” and “prediction errors” to refer to the quantities
from both models.

Interestingly, prediction errors were non-zero even when the image and the network’s
“guess” was consistent with the label (no “mismatch”). Indeed, the prediction errors were larg-
est in magnitude at pixels corresponding to the object predicted by the label, i.e., at the most
predictable regions. While this observation is an obvious consequence of the fact that predic-
tion errors are approximated by the gradients, §, = g—é, it is contradictory to the heuristic or

intuitive interpretation of prediction errors as measurements of “surprise” in the colloquial
sense of the word [16].

As an illustrative example from Fig 8, it is not surprising that an image labeled by “tricera-
tops” contains a triceratops, but this does not imply a lack of prediction errors because the
space of images containing a triceratops is large and any one image of a triceratops is not
wholly representative of the label. Moreover, the pixels to which the loss is most sensitive are
those pixels containing the triceratops. Therefore those pixels give rise to larger values of
€, = 0, = 0L/07,. Hence, in high-dimensional sensory spaces, predictive coding models do
not necessarily predict that prediction error units encode “surprise” in the colloquial sense of
the word.

In both examples in Fig 8, we used an input, y, that matched the network’s “guessed” label,
i.e., the label to which the network assigned the highest probability (argmax(y)). Prediction
errors are often discussed in the context of mismatched stimuli in which top-down input is
inconsistent with bottom-up predictions [32-37]. Mismatches can be modeled by taking a
label that is different from the network’s guess. In Fig 9, we visualized the prediction errors in
response to matched and mismatched labels. The network assigned a probability of p = 0.9991

gradient prediction error
(pred. err. under FPA) (under strict PC)

le-5 le-5
P
0
038 1.0 3
— 9= '
LfUS
ST
— W0
ST n 0.5 2
oo
o 2D
- O
L3
D
© >
OGJe
S
o oY
KCHn
[OR]
olie]
[CRS)

Fig 9. Magnitude of activations, beliefs, and prediction errors in response to matched and mismatched inputs and labels. Same as Fig 8, but for the bottom row
the label did not match the network’s guess.

https://doi.org/10.1371/journal.pone.0266102.9g009

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 21/27

https://doi.org/10.1371/journal.pone.0266102.g009
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

to the label “carousel” and a probability of p = 3.63 x 107® to the label “bald eagle”. The low
probability assigned to “bald eagle” is, at least in part, a consequence of the network being
trained with a softmax loss function, which implicitly assumes one label per input. When we
applied the mismatched label “bald eagle,” prediction errors were larger in pixels that are
salient for that label (e.g., the bird’s white head, which is a defining feature of a bald eagle).
Moreover, the prediction errors as a whole are much larger in magnitude in response to the
mismatched label (see the scales of the color bars in Fig 9).

In summary, the relationship between prediction errors and gradients helped demonstrate
that prediction errors sometimes, but do not always conform to their common interpretation
as unexpected features of a bottom-up input in the context of a top-down input. Also, beliefs
and prediction errors were qualitatively similar with and without the fixed prediction assump-
tion for the examples considered here.

Discussion

We reviewed and extended previous work [11-14] on the relationship between predictive cod-
ing and backpropagation for learning in neural networks. Our results demonstrated that a
strict interpretation of predictive coding does not accurately approximate backpropagation,
but is still capable of learning (Figs 1 and 2). Previous work proposed a modification to predic-
tive coding called the “fixed prediction assumption” which causes predictive coding to con-
verge to the same parameter updates produced by backpropagation, under the assumption
that the predictive coding iterations converge to fixed points. Hence, the relationship between
predictive coding and backpropagation identified in previous work relies critically on the fixed
prediction assumption. Formal derivations of predictive coding in terms of variational infer-
ence [20] do not produce the fixed prediction assumption. It is possible that an alternative
probabilistic model or alternative approaches to the variational formulation could help formal-
ize a model of predictive coding under the fixed prediction assumption.

We proved analytically and verified empirically that taking a step size of 7 = 1 in the modi-
fied predictive coding algorithm computes the exact gradients computed by backpropagation
in a fixed number of steps (modulo floating point numerical errors). This result is consistent
with similar, but slightly less general, results in previous work [13, 14].

A closer inspection of the the fixed prediction assumption with n = 1 showed that it is algo-
rithmically equivalent to a direct implementation of backpropagation. As such, any potential
neural architecture and machinery that could be to implement predictive coding with the fixed
prediction assumption could also implement backpropagation directly. This result calls into
question whether predictive coding with the fixed prediction assumption is any more biologi-
cally plausible than a direct implementation of backpropagation.

Visualizing the beliefs and prediction errors produced by predictive coding models applied
to a large convolutional neural network pre-trained on ImageNet showed that beliefs and pre-
diction errors were activated by distinct parts of input images, and the parts of the images that
produced larger prediction errors were not always consistent with an intuitive interpretation
of prediction errors as representing surprising or unexpected features of inputs. These obser-
vations are consistent with the fact that prediction errors approximate gradients of the loss
function in backpropagation [11-14]. Gradients are large for input features that have a larger
impact on the loss. While surprising features can have a large impact on the loss, unsurprising
features can as well. We only verified this finding empirically on a few examples. The reader
can try additional examples by inserting the URL of any image into the file PredErrsFro-
mURLimage . ipynb contained in the directories linked in Materials and Methods, and can
also be accessed directly at https://bit.ly/3JwGUMO9. Future work should attempt to quantify

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 22/27

https://bit.ly/3JwGUM9
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

the relationship between prediction errors and surprising features more systematically across
many inputs. In addition, prediction errors could be computed for learning tasks associated
with common experimental paradigms so they can be used to make experimentally testable
predictions.

When interpreting artificial deep neural networks as models of biological neuronal net-
works, it is common to compare activations in the artificial network to biological neurons’ fir-
ing rates [28, 29]. However, under predictive coding models and other models in which errors
are propagated upstream by feedback connections, many biological interpretations posit the
existence of “error neurons” that encode the errors sent upstream. In most such models
(including predictive coding), error neurons reflect or approximate the gradient of the loss
function with respect to artificial neurons’ activations, d,. Any model that hypothesizes the
neural representation of backpropagated errors would predict that some recorded neural activ-
ity should reflect these errors. Therefore, if we want to draw analogues between artificial and
biological neural networks, the activity of biological neurons should be compared to both the
activations and the gradients of artificial neurons.

Following previous work [11, 12], we took the covariance matrices underlying the probabi-
listic model to be identity matrices, X, = I, when deriving the predictive coding model. We
also showed that relaxing this assumption by allowing for arbitrary precision matrices in hid-
den layers does not affect learning under the fixed prediction assumption. Future work should
consider the utility of accounting for covariance (or precision) matrices in models without the
fixed prediction assumption (i.e., under the “strict” model) and accounting for precisions or
covariances in the output layer. Moreover, precision matrices could still have benefits in other
settings such as recurrent network models, unsupervised learning, or active inference.

Predictive coding and deep neural networks (trained by backpropagation) are often viewed
as competing models of brain function. Better understanding their relationship can help in the
interpretation and implementation of each algorithm as well as their mutual relationships to
biological neuronal networks.

Materials and methods

All numerical examples were performed on GPUs using Google Collaboratory with custom-
written PyTorch code. The networks trained on MNIST used two convolutional and three
fully connected layers with rectified linear activation functions using 2 epochs, a learning
rate of 0.002, and a batch size of 300. The networks trained on CIFAR-10 used three convolu-
tional and three fully connected layers with rectified linear activation functions using 5
epochs, a learning rate of 0.01, and a batch size of 256. All networks were trained using the
Adam optimizer with gradients replaced by the output of the respective algorithm. All of the
code to produce the figures in the manuscript can be found at https://doi.org/10.6084/m9.
figshare.19387409.v2 A Google Drive folder with Colab notebooks that produce all figures in
this text can be found at https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_
sysWtlnvRvHYzX0 An additional copy of the same code is also stored at https://github.com/
RobertRosenbaum/PredictiveCodingVsBackProp Full details of the neural network architec-
tures and metaparameters can be found in this code.

Torch2PC software for predictive coding with PyTorch models

The figures above were all produced using PyTorch [38] models combined with custom writ-
ten functions for predictive coding. Functions for predictive coding with PyTorch models are
collected in the Github Repository Torch2PC. Currently, the only available functions are

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 23/27

https://doi.org/10.6084/m9.figshare.19387409.v2
https://doi.org/10.6084/m9.figshare.19387409.v2
https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_sysWt1nvRvHYzX0
https://drive.google.com/drive/folders/1m_y0G_sTF-pV9pd2_sysWt1nvRvHYzX0
https://github.com/RobertRosenbaum/PredictiveCodingVsBackProp
https://github.com/RobertRosenbaum/PredictiveCodingVsBackProp
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

intended for models built using the Sequential class, but more general functions will be added
to Torch2PC in the future. The functions can be imported using the following commands

!git clonehttps://github.com/RobertRosenbaum/Torch2PC.git

from Torch2PC import TorchSeg2PC as T2PC

The primary function in TorchSeq2PC is PCInfer, which performs one predictive cod-
ing step (computes one value of df) on a batch of inputs and labels. The function takes an
input ErrType, which is a string that determines whether to use a strict interpretation of pre-
dictive coding (Algorithm 2; ErrType="Strict”), predictive coding with the fixed predic-
tion assumption (Algorithm 3; “FixedPred”), or to compute the gradients exactly using
backpropagation (Algorithm 1; “Exact”). Algorithm 2 can be called as follows,

vhat, Loss,dLdy, v,epsilon=

T2PC.PCInfer (model, LossFun,X,Y,“Strict”,eta,n,vinit)

where model is a Sequential PyTorch model, LossFun is a loss function, X is a mini-
batch of inputs, Y is a mini-batch of labels, et a is the step size, n is the number of iterations to
use, and vinit is the initial value for the beliefs. If vinit is not passed, it is set to the result
from a forward pass, vinit = vhat. The function returns a list of activations from a for-
ward pass at each layer as vhat, the loss as Loss, the gradient of the output with respect to
the loss as dLdy, a list of beliefs, v,, at each layer as v, and a list of prediction errors, €,, at each
layer as epsilon. The values of the parameter updates, d0,, are stored in the grad attributes
of each parameter, model . param. grad. Hence, after a call to PCInfer, gradient descent
could be implemented by calling

with torch.no grad() :

for p in modelPC.parameters () :
p-=eta*p.grad

Alternatively, an arbitrary optimizer could be used by calling

optimizer.step ()

where optimizer is an optimizer created using the PyTorch optim class, e.g., by calling

optimizer = optim.Adam(model.parameters ()) before the call to T2PC.
PCInfer.

The input model should be a PyTorch Sequential model. Each layer is treated as a single
predictive coding layer. Multiple functions can be included within the same layer by wrapping
them in a separate call to Sequential. For example the following code:

model = nn.Sequential (

nn.Conv2d(1,10,3),
nn.RelLU(),
nn.MaxPool2d (2),
nn.Conv2d (10,10, 3),
nn.ReLU())

will treat each item as its own layer (5 layers in all). To treat each “convolutional block” as a
separate layer, instead do

model = nn.Sequential (

nn.Sequential (
nn.Conv2d(1l,10,3),
nn.RelLU(),
nn.MaxPool2d (2)),

nn.Sequential (
nn.Conv2d (10,10, 3),
nn.ReLU()))

which has just 2 layers.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 24/27

https://github.com/RobertRosenbaum/Torch2PC.git
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

Algorithm 3 can be called as follows,
vhat, Loss,dLdy,v,epsilon=
T2PC.PCInfer (model, LossFun, X,Y, “FixedPred”,eta,n)

The input vinit is not used for Algorithm 3, so it does not need to be passed in. The exact
values computed by backpropagation can be obtained by calling

vhat, Loss,dLdy, v,epsilon=

T2PC.PCInfer (model, LossFun, X, Y, “Exact”)

The inputs vinit, eta, and n are not used for computing exact gradients, so they do not
need to be passed in. Theorem 1 says that

T2PC.PCInfer (model, LossFun, X, Y, “FixedPred”,eta = 1,n = len
(model))

computes the same values as

T2PC.PCInfer (model, LossFun, X, Y, “Exact”)

up to numerical floating point errors. The inputs eta, n, and vinit are optional. If they
are omitted by calling

T2PC.PCInfer (model, LossFun,X,Y,ErrType)

then they defaulttoeta=.1,n = 20, vinit = None whichproducesvinit = vhat
when

ErrType="Strict”. More complete documentation and a complete example is pro-
vided as

SimpleExample.ipynb in the GitHub repository and in the code accompanying this
paper. More examples are provided by the code accompanying each figure above.

Supporting information

S1 Fig. Comparing backpropagation and predictive coding in a convolutional neural net-
work trained on MNIST across multiple trials. Same as Fig 1 except the model was trained
30 times with different random seeds. Dark curves show the mean values and shaded regions
show * one standard deviation across trials.

(EPS)

$2 Fig. Comparing backpropagation and predictive coding modified by the fixed predic-
tion assumption in a convolutional neural network trained on MNIST across multiple
trials. Same as Fig 3 except the model was trained 30 times with different random seeds.
Dark curves show the mean values and shaded regions show + one standard deviation across
trials.

(EPS)

Author Contributions
Conceptualization: Robert Rosenbaum.
Formal analysis: Robert Rosenbaum.
Funding acquisition: Robert Rosenbaum.
Investigation: Robert Rosenbaum.
Methodology: Robert Rosenbaum.
Software: Robert Rosenbaum.

Visualization: Robert Rosenbaum.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 25/27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266102.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266102.s002
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

Writing - original draft: Robert Rosenbaum.

Writing - review & editing: Robert Rosenbaum.

References

1.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.
20.

21.

Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cerebral cortex. 2007; 17(10):2443-2452. https://doi.org/10.1093/cercor/bhl152 PMID: 17220510

Clark DG, Abbott L, Chung S. Credit Assignment Through Broadcasting a Global Error Vector. arXiv
preprint arXiv:210604089. 2021;.

Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. Backpropagation and the brain. Nature
Reviews Neuroscience. 2020; 21(6):335-346. https://doi.org/10.1038/s41583-020-0277-3 PMID:
32303713

Whittington JC, Bogacz R. Theories of error back-propagation in the brain. Trends in Cognitive Sci-
ences. 2019; 23(8):235-250. https://doi.org/10.1016/j.tics.2018.12.005 PMID: 30704969

Urbanczik R, Senn W. Learning by the dendritic prediction of somatic spiking. Neuron. 2014; 81
(8):521-528. https://doi.org/10.1016/j.neuron.2013.11.030 PMID: 24507189

Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random synaptic feedback weights support error
backpropagation for deep learning. Nature Communications. 2016; 7(1):1-10. https://doi.org/10.1038/
ncomms13276 PMID: 27824044

Scellier B, Bengio Y. Equilibrium propagation: Bridging the gap between energy-based models and
backpropagation. Frontiers in computational neuroscience. 2017; 11:24. https://doi.org/10.3389/fncom.
2017.00024 PMID: 28522969

Aljadeff J, D’amour J, Field RE, Froemke RC, Clopath C. Cortical credit assignment by Hebbian, neuro-
modulatory and inhibitory plasticity. arXiv preprint arXiv:191100307. 2019;.

Kunin D, Nayebi A, Sagastuy-Brena J, Ganguli S, Bloom J, Yamins D. Two routes to scalable credit
assignment without weight symmetry. In: International Conference on Machine Learning. PMLR; 2020.
p. 5511-5521.

Payeur A, Guerguiev J, Zenke F, Richards BA, Naud R. Burst-dependent synaptic plasticity can coordi-
nate learning in hierarchical circuits. Nature Neuroscience. 2021; p. 1-10.

Whittington JC, Bogacz R. An approximation of the error backpropagation algorithm in a predictive cod-
ing network with local hebbian synaptic plasticity. Neural Computation. 2017; 29(5):1229-1262. https://
doi.org/10.1162/NECO_a_00949 PMID: 28333583

Millidge B, Tschantz A, Buckley CL. Predictive coding approximates backprop along arbitrary computa-
tion graphs. arXiv preprint arXiv:200604182. 2020;.

Song Y, Lukasiewicz T, Xu Z, Bogacz R. Can the brain do backpropagation?—exact implementation of
backpropagation in predictive coding networks. Advances in Neural Information Processing Systems.
2020; 33:22566. PMID: 33840988

Salvatori T, Song Y, Lukasiewicz T, Bogacz R, Xu Z. Predictive Coding Can Do Exact Backpropagation
on Convolutional and Recurrent Neural Networks. arXiv preprint arXiv:210303725. 2021;.

Rao RP, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature Neuroscience. 1999; 2(1):79-87. https://doi.org/10.1038/4580
PMID: 10195184

Friston K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 2010; 11
(2):127—-138. PMID: 20068583

Huang Y, Rao RP. Predictive Coding. Wiley Interdisciplinary Reviews: Cognitive Science. 2011; 2
(5):580-593. PMID: 26302308

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predic-
tive coding. Neuron. 2012; 76(4):695-711. https://doi.org/10.1016/j.neuron.2012.10.038 PMID:
23177956

Clark A. Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press; 2015.

Buckley CL, Kim CS, McGregor S, Seth AK. The free energy principle for action and perception: A math-
ematical review. Journal of Mathematical Psychology. 2017; 81:55-79. https://doi.org/10.1016/j.jmp.
2017.09.004

Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. Journal of
Mathematical Psychology. 2017; 76:198-211. https://doi.org/10.1016/j.jmp.2015.11.003 PMID:
28298703

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 26/27

https://doi.org/10.1093/cercor/bhl152
http://www.ncbi.nlm.nih.gov/pubmed/17220510
https://doi.org/10.1038/s41583-020-0277-3
http://www.ncbi.nlm.nih.gov/pubmed/32303713
https://doi.org/10.1016/j.tics.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30704969
https://doi.org/10.1016/j.neuron.2013.11.030
http://www.ncbi.nlm.nih.gov/pubmed/24507189
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
http://www.ncbi.nlm.nih.gov/pubmed/27824044
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.3389/fncom.2017.00024
http://www.ncbi.nlm.nih.gov/pubmed/28522969
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1162/NECO_a_00949
http://www.ncbi.nlm.nih.gov/pubmed/28333583
http://www.ncbi.nlm.nih.gov/pubmed/33840988
https://doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://www.ncbi.nlm.nih.gov/pubmed/20068583
http://www.ncbi.nlm.nih.gov/pubmed/26302308
https://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1016/j.jmp.2017.09.004
https://doi.org/10.1016/j.jmp.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/28298703
https://doi.org/10.1371/journal.pone.0266102

PLOS ONE

On the relationship between predictive coding and backpropagation

22,

23.

24,
25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Spratling MW. A review of predictive coding algorithms. Brain and cognition. 2017; 112:92-97. https://
doi.org/10.1016/j.bandc.2015.11.003 PMID: 26809759

Keller GB, Mrsic-Flogel TD. Predictive processing: a canonical cortical computation. Neuron. 2018; 100
(2):424—-435. https://doi.org/10.1016/j.neuron.2018.10.003 PMID: 30359606

Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning. MIT press Cambridge; 2016.
Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. Citeseer. 2009;.

Millidge B, Seth A, Buckley CL. Predictive Coding: a Theoretical and Experimental Review. arXiv pre-
print arXiv:210712979. 2021;.

Amari Si. Information geometry of the EM and em algorithms for neural networks. Neural networks.
1995; 8(9):1379-1408. https://doi.org/10.1016/0893-6080(95)00003-8

Schrimpf M, Kubilius J, Hong H, Majaj NJ, Rajalingham R, Issa EB, et al. Brain-Score: Which Atrtificial
Neural Network for Object Recognition is most Brain-Like? bioRxiv preprint. 2018;.

Schrimpf M, Kubilius J, Lee MJ, Murty NAR, Ajemian R, DiCarlo JJ. Integrative Benchmarking to
Advance Neurally Mechanistic Models of Human Intelligence. Neuron. 2020;. https://doi.org/10.1016/j.
neuron.2020.07.040 PMID: 32918861

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:14091556. 2014;.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision. 2015; 115(3):211-252. https://doi.org/10.
1007/s11263-015-0816-y

Hertag L, Sprekeler H. Learning prediction error neurons in a canonical interneuron circuit. Elife. 2020;
9:e57541. https://doi.org/10.7554/eLife.57541 PMID: 32820723

Gillon CJ, Pina JE, Lecoq JA, Ahmed R, Billeh Y, Caldejon S, et al. Learning from unexpected events in
the neocortical microcircuit. bioRxiv. 2021;.

Keller GB, Bonhoeffer T, Hibener M. Sensorimotor mismatch signals in primary visual cortex of the
behaving mouse. Neuron. 2012; 74(5):809-815. https://doi.org/10.1016/j.neuron.2012.03.040 PMID:
22681686

Zmarz P, Keller GB. Mismatch receptive fields in mouse visual cortex. Neuron. 2016; 92(4):766—772.
https://doi.org/10.1016/j.neuron.2016.09.057 PMID: 27974161

Attinger A, Wang B, Keller GB. Visuomotor coupling shapes the functional development of mouse visual
cortex. Cell. 2017; 169(7):1291-1302. https://doi.org/10.1016/j.cell.2017.05.023 PMID: 28602353

Homann J, Koay SA, Glidden AM, Tank DW, Berry MJ. Predictive coding of novel versus familiar stimuli
in the primary visual cortex. BioRxiv. 2017; p. 197608.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. Advances in Neural Information Processing Systems. 2019;
32:8026-8037.

PLOS ONE | https://doi.org/10.1371/journal.pone.0266102 March 31, 2022 27/27

https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.1016/j.bandc.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26809759
https://doi.org/10.1016/j.neuron.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30359606
https://doi.org/10.1016/0893-6080(95)00003-8
https://doi.org/10.1016/j.neuron.2020.07.040
https://doi.org/10.1016/j.neuron.2020.07.040
http://www.ncbi.nlm.nih.gov/pubmed/32918861
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.7554/eLife.57541
http://www.ncbi.nlm.nih.gov/pubmed/32820723
https://doi.org/10.1016/j.neuron.2012.03.040
http://www.ncbi.nlm.nih.gov/pubmed/22681686
https://doi.org/10.1016/j.neuron.2016.09.057
http://www.ncbi.nlm.nih.gov/pubmed/27974161
https://doi.org/10.1016/j.cell.2017.05.023
http://www.ncbi.nlm.nih.gov/pubmed/28602353
https://doi.org/10.1371/journal.pone.0266102

