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Abstract

The brain is believed to operate in part by making predictions about sensory stimuli and encoding deviations from these
predictions in the activity of “prediction error neurons.” This principle defines the widely influential theory of predictive
coding. The precise circuitry and plasticity mechanisms through which animals learn to compute and update their predictions
are unknown. Homeostatic inhibitory synaptic plasticity is a promising mechanism for training neuronal networks to perform
predictive coding. Homeostatic plasticity causes neurons to maintain a steady, baseline firing rate in response to inputs that
closely match the inputs on which a network was trained, but firing rates can deviate away from this baseline in response to
stimuli that are mismatched from training. We combine computer simulations and mathematical analysis systematically to
test the extent to which randomly connected, unstructured networks compute prediction errors after training with homeo-
static inhibitory synaptic plasticity. We find that homeostatic plasticity alone is sufficient for computing prediction errors for
trivial time-constant stimuli, but not for more realistic time-varying stimuli. We use a mean-field theory of plastic networks
to explain our findings and characterize the assumptions under which they apply.

Keywords Spiking network models - Homeostatic plasticity - Inhibitory synaptic plasticity - Predictive coding - Prediction
errors

1 Introduction

Cortical neuronal networks can make predictions about sen-
sory stimuli and detect errors about these predictions. For
example, in the visuomotor system, head movements produce
predictable flows of an animal’s visual scene. Visual corti-
cal circuits learn predictable associations between bottom-up
input from the visual stream and top-down input from the
motor system. Violations of the learned predictions, known
as “mismatched stimuli” or “prediction errors”, produce dis-
tinct responses in visual cortical neurons, which can help the
animal distinguish between self-driven and externally driven
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movements of its visual scene (Keller et al., 2012; Leinweber
et al., 2017; Attinger et al., 2017; Homann et al., 2022).
The idea that the brain uses predictions and prediction
errors to encode and interpret sensory information dates
back to 19th century work by Helmholz (Von Helmholtz,
1867; Keller & Mrsic-Flogel, 2018) and underlies more gen-
eral theories of neural function such as predictive coding,
predictive processing, active inference, and the free energy
principle (Rao & Ballard, 1999; Friston, 2010; Clark, 2015;
Keller & Mrsic-Flogel, 2018). The question of how neural
circuits compute prediction errors and how they learn pre-
dictions through biologically plausible synaptic plasticity
rules is not settled, but some theories have been put for-
ward (Wacongne et al., 2012; Bastos et al., 2012; Rao &
Sejnowski, 2002; Bogacz, 2017; Whittington & Bogacz,
2019; Hertig & Sprekeler, 2020; Schulz et al., 2021).
Cortical neurons are highly interconnected, even within
a single cortical area and layer. This dense, recurrent, and
intralaminar connectivity shapes the intrinsic dynam-
ics and stimulus responses of local cortical circuits. The
nonlinear firing rate dynamics that arise from this recur-
rent connectivity can interact with the slower dynamics of
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synaptic plasticity in complex ways. Homeostatic inhibi-
tory synaptic plasticity is a widely observed and widely
studied type of synaptic plasticity (Castillo et al., 2011;
Vogels et al., 2011, 2013; Luz & Shamir, 2012; Hennequin
et al., 2017; Schulz et al., 2021; Capogna et al., 2021) in
which the strength of inhibitory synapses are adjusted in
an activity-dependent manner that tends to push the post-
synaptic neurons’ firing rates toward a homeostatic baseline
targets. Simulations and theoretical analyses of mathemati-
cal models of homeostatic inhibitory plasticity show that,
while firing rates are near their targets in response to stimuli
on which the network has been trained, firing rates deviate
from their targets in response to unfamiliar stimuli in these
models Vogels et al. (2011); Baker et al. (2020); Hertig and
Sprekeler (2020); Hertdg and Clopath (2021); Schulz et al.
(2021); Akil et al. (2021).

As in related computational work (Hertdg & Sprekeler,
2020; Hertidg & Clopath, 2021; Schulz et al., 2021), we con-
jectured that homeostatic inhibitory plasticity could learn
to perform some type of predictive coding. In particular, if
the external input to a neural population were formed from
bottom-up and top-down stimuli, then homeostatic plastic-
ity in the network would naturally learn to produce baseline
activity in response to “matched” top-down and bottom-up
pairings (i.e., pairings that are similar to those on which
the network was trained). On the other hand, “mismatched”
pairings (i.e., pairings from outside the training distribution)
would produce firing rate responses that are further from
the homeostatic baseline. In this sense, the network should
learn to encode prediction errors (i.e., errors in the abil-
ity to predict top-down input from bottom-up input or vice
versa) in the deviation of the firing rates from their base-
line. Importantly, and in contrast to previous work (Hertdg
& Sprekeler, 2020; Hertdg & Clopath, 2021; Schulz et al.,
2021), we conjectured that the network should not need to be
imparted with any special structure or architecture to learn
this computation since homeostatic plasticity should natu-
rally achieve this result due to its tendency to produce base-
line responses to stimuli on which the network was trained,
but not in response to novel stimuli.

To test our conjecture, we used an unstructured, recurrent,
spiking neuronal network model endowed with a homeostatic
inhibitory plasticity rule receiving two sources of external
input, modeling top-down and bottom-up stimuli. We trained
the network with given patterns of top-down and bottom-up
pairings, interpreted as “matched” stimuli, before presenting
a “mismatched” stimulus that deviated from the pairings used
during training. Numerical simulations showed that the net-
work reliably produced baseline firing rates for a fixed pair
of bottom-up and top-down inputs during training, and devi-
ated from baseline in response to a mismatched stimulus. A
mean-field, firing rate model and a mathematical analysis
using a separation of timescales helped reveal the dynamics
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underlying these numerical simulations. Hence, homeostatic
plasticity learned to compute prediction errors whenever top-
down and bottom-up stimuli are fixed during training. How-
ever, useful predictive coding algorithms should learn to detect
relationships between time-varying top-down and bottom-up
inputs. We generalized our input model to vary the intensity
of top-down and bottom-up inputs in unison. An effective
learning algorithm should learn to detect a prediction error
whenever the intensity changes out of unison. To our surprise,
our spiking network with homeostatic synaptic plasticity was
unable to learn to detect this type of prediction error, even in
a relatively simple (time-varying) setting. Going back to our
mean-field analysis helped to clarify how and why the model
failed to perform predictive coding in this setting after suc-
ceeding in the simpler (time-constant) setting.

We conclude that homeostatic inhibitory synaptic plas-
ticity alone is not sufficient to learn and perform non-trivial
predictive coding in unstructured neuronal network models.
Previous theoretical work shows that network models that
carefully account for the connectivity structure of multiple
inhibitory subtypes are able to learn prediction errors using
homeostatic plasticity, even for inputs where top-down and
bottom-up input co-vary in intensity (Hertdg & Sprekeler,
2020; Hertdg & Clopath, 2021). Hence, the failure of our
model in this scenario implies that network structure is criti-
cal for successfully learning predictive coding tasks with
homeostatic plasticity.

2 Results
2.1 Spiking network model description

We consider a computational model of a local cortical cir-
cuit composed of N = 5000 randomly connected exponential
integrate-and-fire (EIF) spiking neuron models (N, = 4000
of which are excitatory and N; = 1000 inhibitory) (Brette
& Gerstner, 2005; Gerstner et al., 2014). The membrane
potentials of neuron j in population a = e, i obeys
avy a Ve=Vp)/Dy | a

rm7=—(vj —Ep)+Dpe T 4+ I(D) (D
with the added condition that each time V() crosses a
threshold at V,,, it is reset to V,,, and a spike is recorded. The
synaptic input to neuron j in population a is modeled by

N
I4(6) = X°(0) + > Jbayt =10
b=e,i k=1
where Xf(t) models external synaptic input, JJ‘Z’ is a synaptic
weight, tZ . 1s the time of the nth spike of neuron & in popula-
tion b, and a,(t) = (1/7,)e”"/™ H(t) is a synaptic filter with
H(¢) the Heaviside step function.



Journal of Computational Neuroscience (2022) 50:357-373

359

Initial connectivity in the model is random (connection
probability p = 0.1) with initial weights, Jﬁf, determined
only by pre- and post-synaptic neuron type (J;;(” =j, for
connected neurons). Excitatory connectivity, J;f, remained
fixed, but inhibitory connectivity evolves according to a
homeostatic, inhibitory spike-timing-dependent plasticity
(iSTDP) rule (Vogels et al., 2011, 2013; Hennequin et al.,
2017; Akil et al., 2021). Specifically, each time that neuron
Jj in population a = e, i spikes (which occurs at times ti}.),
the inhibitory synaptic weights targeting that neuron are
updated according to

ai __ yai ic.a
T = T =%, (5,)

where 7, is a learning rate and recall that £ is the time of

the nth spike of neuron j in population a = e, i. Additionally,
each time inhibitory neuron k spikes, its outgoing synaptic
weights are updated according to

=g = (3 - 21

where t;; , is the time of the nth spike of inhibitory neuron k.
The time series, x;‘(t) are defined by the differential

equation

a

dx}
Estop = = 7Y

in addition to the rule that xj‘?(t) is incremented each time that
neuron j in population a = e, i spikes according to,

1
dx;‘(tj‘.fn) «— dx;.‘(t‘.‘ )+ . )

jn
TsTDP

As aresult, x;.‘(t) estimates the firing rate of neuron j in
population a by performing an exponentially-weighted
sliding average of the spike density. This plasticity rule
tends to push excitatory and inhibitory firing rates toward
their target rates, r¢ and rf), respectively (see (Vogels et al.,
2011, 2013; Hennequin et al., 2017; Baker et al., 2020;
AKkil et al., 2021) and the mean-field theory presented
below).

We are interested in understanding the extent to which
such networks can learn to perform predictive coding (Rao
& Ballard, 1999; Bogacz, 2017; Keller & Mrsic-Flogel,
2018). More specifically, we reasoned that neurons would
spike close to their target rates in response to stimulus pat-
terns similar to those on which they were trained, but devi-
ate from the target rates in response to stimuli that deviate
from the from the training stimuli. In other words, the
deviation of firing rates from their targets should encode
a “prediction error,” i.e., a deviation of the inputs from the
patterns that appeared during training.

2.2 Prediction errors after training
on time-constant inputs to multiple
sub-populations

For illustrative purposes, we first considered a simple input
model for which the excitatory population was divided into
two sub-populations, e, and e,, with N, = N, = 2000 neu-
rons in each sub-popuation (Fig. 1A, B). Recurrent connec-
tivity did not depend on sub-population membership, so the
network was completely unstructured. During training, each
neuron in populations e, and e, received external stimuli of
the form (Fig. 1A)

X, =X)+U hed
matche 3
X, =X'+V ®

where XS is a baseline input that assures neurons spike at
reasonable rates, U is a perturbation modeling bottom-up
input, and V is a perturbation modeling top-down input. We
used positive bottom-up input and negative top-down input,

U=Xx’/5

v X )

but our results are not sensitive to this specific choice of
inputs. We refer to this as a “matched” stimulus because it
defines the matching of bottom-up with top-down stimuli
that the network is trained on. After training on matched
stimuli, we modeled mismatched stimuli by the absence of
top-down input (Fig. 1B),

X, =X'+U
X, =X

e

} mismatched. 5)

We refer to these stimuli as “mismatched” because the
top-down and bottom-up inputs are mismatched when com-
pared to the “matched” pairings used to train the network.
Mismatched stimuli could also be modeled by an absence
of bottom-up input, or any other deviation from the inputs
used for training.

We hypothesized that, after training on matched stimuli,
the network would produce firing rates close to the target
rates in response to matched stimuli and produce firing
rates further from the target rates in response to mismatched
stimuli.

At the beginning of the simulation mean excitatory and
inhibitory firing rates deviated from their targets, but inhib-
itory plasticity pushed them toward their targets over the
course of tens of seconds (Fig. 1C). After 100s of training
on matched stimuli, we tested a mismatched stimulus for 1s.
Consistent with our hypothesis, mean firing rates of each
population were further from their targets in response to the
mismatched stimulus (Fig. 1C).
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Fig. 1 Prediction errors after training on time-constant inputs to mul-
tiple sub-populations. A, B Network diagram with “training” and
“mismatch” stimuli respectively. A randomly connected, recurrent
spiking neural network of N = 5000 neurons consisted of two excit-
atory sub-populations (e, and e,) and one inhibitory (i) population.
During the first 100s of the simulation, the network received a “train-
ing” stimulus in which e, and e, received extra external input mod-
eling bottom-up and top-down stimuli respectively (A). Then a “mis-
match” stimulus was introduced for 1s by removing the top-down

We quantified the distance of the firing rates from their
targets from spiking network simulations using two methods.
For the first method, we computed the MSE of the population-
averaged firing rates (Fig. 1D, light green),

MSEmean = Z qa(ra - r(a))z

a=e,e,,i

where rg is the target rate and r, the mean firing rate of each
population averaged over neurons in that population and
averaged over time windows of size T = 1s. The coefficients
g, = N,/N represent the proportion of the network con-
tained in each population (¢, = g,, = 0.4 and ¢; = 0.2 for
our network). Hence, MSE,, ,,, weights the errors of larger
sub-populations more heavily.

The MSE,,,,, measures how far the population-average
rates differ from their target rates, but does not measure the
deviation of individual neurons’ firing rates. Despite the fact
that external input was constant across time and the simula-
tions were deterministic (with the exception of “quenched”
randomness from the random connectivity), neurons exhib-
ited substantial variability in their spike timing and mem-
brane potential dynamics (Fig. 1E, F). These dynamics
are characteristic of an asynchronous-irregular state (van

Vreeswijk & Sompolinsky, 1996, 1998, 2005; Amit &
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stimulus to population e,. C Homeostatic inhibitory synaptic plastic-
ity caused population-averaged firing rates to converge to their targets
during training, but they deviated from their targets in response to the
mismatch stimulus. D The deviation of the mean firing rates from
their targets (MSE,,,,,,,) and the mean deviation of individual neurons’
firing rates (MSE,,,,,) quantify the deviation of firing rates from their
targets. E, F Raster plots (top) and membrane potential (bottom) of a
random subset of neurons from population e

Brunel, 1997; Brunel & Hakim, 1999; Brunel, 2000; Renart
et al., 2010).

To account for the deviation of individual neurons’ fir-
ing rates from spike-timing variability in spiking network
simulations, we also computed the MSE across the entire
network (Fig. 1D, dark green),

N
1 0\2
MSE,,, = Z(rj —r)
j=1
where r; is the firing rate of neuron j =1, ..., N and rj(.) is its

target rate. Both measures of MSE show a decrease during
training and a sharp increase in response to the mismatched
stimulus, but MSE),,, is larger overall due to the spike-timing
variability of each neuron.

The results from the spiking network can be understood
using a simpler dynamical mean-field model in which mean
firing rates of each population are approximated by a system
of differential equations,

TO%:—r+f(Wr+X) (6)

rl-]T is a vector of time constants, © rep-
r]t

where 7 = [7, 7,

resents element-wise multiplication, and r = [r, r,,
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is a vector approximating the mean firing rates of the two
excitatory sub-populations and the inhibitory population.
Mean external input to each population is given by the vector

and the recurrent connectivity matrix is defined by

w,
W= Wezel Wezez Wezi

Wie, Wie, Wii

ee We]ez Weli

where (Pyle & Rosenbaum, 2016, 2017; Ebsch & Rosenbaum,
2018; Baker et al., 2019, 2020; Akil et al., 2021)

Wab = thabjah

Here, N, is the number of neurons in population
b=e,ei(soN, =N, =N,/2=2000 and N; = 1000),
D 18 the connection probability from population b to popu-
lation a, and j,, is the mean non-zero synaptic weight (mean
of J{l IZ between connected neurons). The inhibitory entries,
w,; for a = e, e,, i, are negative and evolve according to

dw .

d:' = =N (ry =TT )

where 7, sets the timescale of plasticity and g is the target
rate of population a = e, e,, i. For simplicity, we consider
a rectified-linear f-I curve,

_JelI>0
f(l)‘{o 1<0° ®

The gain, g, was fit to spiking network simulations (see
Sect. 4).

Simulating this model shows excellent agreement with
the firing rates from the spiking network simulations
(Fig. 2) and the mean-field simulations are computation-
ally more efficient than the spiking network simulations by
a factor of 70 (6.0s for the mean-field simulation compared
to 435.0s for the spiking network simulation). The devia-
tion of the firing rates in the mean-field rate model from
their targets can be quantified by

MSE,, = Z qu(ry — 1) ©)

a=ey,e,,i

which is identical to MSE,,,,, above except that r, represents
the rate from the mean-field simulations instead of the mean
firing rates from the spiking net simulations. Indeed, MSE,,,
closely matches MSE,,, ., from the spiking network simula-

tions (Fig. 2B, compare to Fig. 1C), demonstrating that the
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Fig.2 A mean-field firing rate model captures the dynamics of the
spiking network model. A Firing rates of the mean-field firing rate
model defined by Egs. (6) and (7). Compare to Fig. 1C. B MSE devi-
ation of the firing rates from their targets (MSE,; light green) and
the MSE with a Poisson correction (MSEjp,;q,,,; dark green). Compare
to Fig. 1D

two models have similar mean-field dynamics. The value
of MSE,,, from the spiking network simulations does not
have a direct analogue in the mean-field model, but under
an assumption of Poisson-like spike-timing variability in
the spiking network, MSE,,, can be approximated by (see
Materials and Methods for derivation)

1
MSEPoisson = MSEmf + ? Z 9a’a (10)

where r, is the firing rate of population a = e, e,, i from the
mean-field model and 7 is length of the time window over
which firing rates are computed in the spiking network simu-
lations. Specifically, MSEp,;,, represents the population-
level MSE (i.e., MSE,,,) that would be produced by popu-
lations of Poisson spike trains with firing rates r,. Indeed,
MSEp, ., sShows close agreement with MSE,,, (Fig. 2B,
compare to Fig. 1D), demonstrating that the deviation of
MSE,,, away from the values of MSE,,,,, is consistent with
Poisson-like spike-timing variability.
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This example shows that homeostatic inhibitory syn-
aptic plasticity can train a network to detect mismatched
stimuli, which is a form of predictive coding. To better
understand how and why the network is able to detect mis-
matched stimuli, we consider a fixed point analysis via a
separation of timescales.

In the absence of plasticity (W fixed, e.g., n, =5, = 0),
fixed point firing rates would satisfy r, = f(Wr, + X). Tak-
ing the rectified linear f-I curve from the dynamical mean-
field model, if there were a fixed point with positive rates
(r, > 0 for all a) then it would be unique and given (as a
function of W) by

r(W)=[D-W]|'X = AX (1)

where D = (1/g)Id is a diagonal matrix, / is the identity
matrix, and A = [D — W]~!. With W fixed, the Jacobian
matrix for the firing rate equation, Eq. (6), would be given by

(We]el - 1)/Te Welez/fe Weli/Te
J=g We,ez/Te (Wele, - 1)/Te We,i/Te
Wi, T; Wie, Ti w;; = D/7;

ie; “i iey Vi

If the eigenvalues of this matrix have negative real part,
then the fixed point given by Eq. (11) is stable and globally
attracting.

Due to plasticity, Witself is time-dependent, so this fixed
point analysis does not tell the full story. When plasticity
is much slower than the firing rate dynamics (# sufficiently
small and 7 sufficiently large, but # should not be com-
pared directly to = because they have different dimensions),
we can perform a separation of timescales under which r
relaxes to the quasi-steady-state value given by evaluating
Eq. (11) at the current value of W, while W evolves more
slowly according to Eq. (7). Putting this together, the sepa-
ration of timescales approximation is defined by

dW [00 — i’/e(rel - r§)ri
o= 00 —n.r, - I?O)ri
00 —nr—- r’o)ri
- (12)
re,
r=|r, |=ID- W1TlX = AX
T

Note that this is a 3-dimensional dynamical system because
7 is defined by a functional relationship instead of a differential
equations. Solving Eq. (12) directly gives similar results to the
full mean-field model and is 482 times more computation-
ally efficient than the full mean-field simulations (Fig. 3A, B;
12.5 x 1073s to simulate Eq. (12) versus 6.0s for the full mean-
field model) primarily because the slower dynamics allow for
a larger time discretization (we used dt = 0.1ms for the full
mean-field and df = T = Is to simulate Eq. (12)). Simulat-
ing Eq. (12) was 34751 times faster than the spiking network
simulations. This speedup is not surprising given the lower
dimension (2 versus 5000 dimensions) as well as the larger
time discretization.

During training, X is fixed to the “matched” value given
by Eq. (3). During this phase, the slow-timescale system
described by Eq. (12) has a fixed point for which r = r° where

N'\ON\ON‘O

is a vector of the target rates from the plasticity rule. How-
ever, this expression gives the fixed point in terms of r
whereas the dynamical system is described by the dynam-
ics of the entries of W. If the network converges to the tar-
get rates during training, then the weight matrix, W, for the
slow system converges to a value, W (or, equivalently, A
converges to a value of A®) that satisfies

A . mismatch B C
! ‘ '\L\ with Poisson g% — Weyj
= 10 ---- itarget 5L 20 correction w o 02 o
c = . =3
L | T SS9 no Poisson ¢
Qo T = correction TE 1
s 3 = ZE
o> 0 - T E qo [SHe]
F == e 2 “ w E c “|_
= - n ¥ oo 00
= e1 @ = 0
e T e target = % .gg
0 i 3 -01
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
time (s) time (s) time (s)

Fig.3 Slow dynamics are captured by a separation-of-timescales
approximation. A Firing rates of the model defined by Eq. (12). Com-
pare to Figs. 1C and 2A. B MSE deviation of the firing rates from
their targets (MSE,; light green) and the MSE with a Poisson cor-
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rection (MSEp,;.,,; dark green) from the model defined by Eq. (12).
Compare to Figs. 1D and 2B. C Deviation of the inhibitory weights,
w,;, from the fixed point values given in Eq. (14)
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[D— W] 7' x" = A°X" = ° (13)
where
X0+ U
X"=|X0+V
XV

is the value of X for matched stimuli. Eq. (13) is a system of

three equations for three unknowns (w, ;, w, ;, w;) and its
solution is given by
r0—2gr%,, — g(U +X?)
Welz = 0
8r;
)= 28w, — g(V + X))
Wei = o (14)
87;
0 0 0
r; = 2r;wi, + X;
Wy = ——

123 gr?

Indeed, the weights converged toward these fixed point
values during the training period (before the mismatch stim-
ulus; Fig. 30).

When the input is changed by a mismatched stimulus (so
X changes away from its value during training), firing rates
deviate from their targets. Using the same quasi-steady state
approximation, we can quantify the magnitude of this devia-
tion as

dr =" —p°
— AOXle _ rO
(15)
— AO(Xmm _Xm)
= A%dX

where " is the vector of firing rates during a mismatched
trial, r9 = [rg r?]T is the vector of target rates, and

0
dX =X"" - X" =| -V
0

is the perturbation of the external stimulus away from its
training value during the mismatched trial. This deriva-
tion makes it clear that larger perturbations of the stimulus
(larger values of ||dX||) generally lead to larger deviations
of the firing rates from their targets (larger values of ||dr|)).
Here and elsewhere, || - || refers to the Euclidean norm.
Firing rate perturbations, ||dr||, are especially large if
the input perturbations, dX, point in a direction in which
A%X is large. Such directions correspond to the direc-
tions indicated by the largest eigenvalue(s) of A°. Since
A’ =[D- WO]_l, when W? is much larger than D in mag-
nitude, these directions correspond to directions indicated

by the smallest eigenvalue(s) of W°. This phenomenon is
an instance of “imbalanced amplification” in which a per-
turbation that points toward the nullspace or “approximate
nullspace” of the connectivity matrix, W°, is amplified by
the network, see (Ebsch & Rosenbaum, 2018) for more in-
depth explanations.

Temporarily ignoring the direction of the perturbation,
we can make the rough approximation that ||dr|| is approxi-
mately proportional to ||dX]||. This rough approximation
provides the intuition for mismatched responses shown in
the simulations above. Put simply, mismatched responses
are caused by the deviation of a stimulus away from its
“matched” training value and the magnitude of the mis-
matched response increases with the magnitude of the input
perturbation. While this intuition may seem trivial for this
example, its extensions will help explain some non-trivial,
counterintuitive results below.

2.3 Prediction errors after training on distributed,
time-constant inputs

The example above modeled a stimulus that was homogene-
ous across each neural population, i.e., every neuron in pop-
ulation e, received the same input and every neuron in popu-
lation e, received the same input. Stimulus representations in
cortical circuits can be distributed in an inhomogeneous way
across neural populations (Saxena & Cunningham, 2019).

We next considered a spiking network model with dis-
tributed bottom-up and top-down inputs (Fig. 4A). As
above, matched and mismatched stimuli were defined by
the presence and absence of top-down input to population
e, (Egs. (3) and (5)) to match the bottom-up input to popula-
tion e, but these inputs are heterogeneous vectors (17 and
\7) instead of homogeneous scalars (U and V). Specifically,
matched and mismatched stimuli to excitatory neurons were
defined by

X, =X"+U+V } matched (16)
and
X, = XS +U } mismatched. (17)

where U and V are normally distributed N,-dimensional
vectors,

U~ o,NO,1)
- (18)
4

~ o, N(0, 1).

Here, N(O, 1) is a standard multivariate normal distri-
bution and ¢, = Xg /5 controls the strength of the stimuli.
Importantly, this means that each neuron receives a different
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Fig.4 Prediction errors after training on distributed time-constant inputs. Same as Fig. 1 except bottom-up and top-down inputs were modeled
as distributed stimuli using multivariate Gaussian inputs vectors (Eq. (18))

value of top-down and bottom-up input, in contrast to the
previous example (Eq. (4) and Figs. 1-3) in which every
neuron in the same excitatory sub-population received the
same input.

Simulating this spiking network model shows that population-
averaged firing rates converge to their targets during training on
matched stimuli, as expected, but only deviate slightly from their
targets in response to a mismatched stimulus (Fig. 4C).

We suspected that the deviation of mean excitatory and
inhibitory firing rates was small because some neurons
increased their firing rates and some neurons decreased
their firing rates in response to mismatched stimuli, so the
increases and decreases cancelled at the level of population
averages. Another way to see this is to note that the expected
value of U and V is zero, so the absence of V does not affect
the population-averaged value of the inputs and (under a lin-
ear approximation) we should not expect a change in mean
firing rates by removing V. Under this reasoning, the firing
rates of individual neurons would still change in response to
a mismatched stimulus because individual elements of V are
non-zero. This line of reasoning implies that MSE,,,,, should
not increase much for a mismatched stimulus, but MSE,,,
should increase more for a mismatched stimulus. Indeed,
this is exactly what we observed in simulations (Fig. 4D).

In summary, our network model with iSTDP learned
to adjust inhibitory weights in such a way to “match” or
“cancel” top-down input with bottom-up input in the sense
that the firing rates approach their target rates in response
to matched stimuli after sufficient training. Moreover, the
network responded to mismatched stimuli with deviations
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of the firing rates away from their target values. Note that
the deviation of firing rates from their targets is not a con-
sequence of the mismatch alone, but is due to the network
being trained on matched stimuli. In this sense, the network
is simply detecting deviations of its input patterns from the
input patterns on which it was trained.

2.4 Alack of detectable prediction errors
after training with time-varying stimuli

While instructive, the examples above were restricted to
input patterns that were held fixed during training. In other
words, the network only learned to associate one bottom-
up input, U, with one top-down input, V (as schematized
in Fig. 3D). Since animals are exposed to multiple stimuli,
a more realistic model would be trained on multiple pair-
ings of top-down and bottom-up inputs. For example, in the
visuomotor system, head motion (which we can interpret
as top-down input, V) is coupled with movement of an ani-
mal’s visual stimulus (which we can interpret as bottom-up
input, U). But head motion varies in direction and speed,
and the movement of a visual scene covaries with it. Predic-
tion errors arise whenever the learned covariation between
head motion and visual stimulus is violated, i.e., when-
ever there is a mismatch between top-down and bottom-up
input (Keller et al., 2012; Attinger et al., 2017; Leinweber
et al., 2017; Jordan & Keller, 2020).

We next considered a simple extension of the first input
model from Figs. 1-3 to account for top-down and bottom-up
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inputs with time-varying intensity. Specifically, the excita-
tory neurons were again broken into two sub-populations, e,
and e,. During training, each neuron in populations e, and e,
received external stimuli of the form (Fig. 1A)

X, =X +c(t)U

matched
X, =X +c)V

19

where c(¢) is a scalar time-series that changes on each trial.
Specifically, c(#) is drawn independently from a uniform
distribution on [0, 2] at the start of each 1s trial. Hence, the
expected value of ¢(?) is 1 and therefore, the expected values
of X, and X, are the same as in the example from Figs. 1-3,
but they vary around this expectation across time. We used
similar top-down and bottom-up, but needed to make the
inputs weaker to avoid very large rate deviations,

U=X/20

vV =-Xx%/20. 20)

Hence, bottom-up input, c(#)U, is matched by top-down
input, c¢(f)V, during training. After training on matched stim-
uli, we again modeled mismatched stimuli by the absence
of top-down input

X, =X'+U
X, =X

€ e

mismatched. 1)

The input to e, is not out of the ordinary during a mis-
matched stimulus (it corresponds to the value when c(r) = 1

is equal to its expectation) and the input to e, is not out of the
ordinary either (it corresponds to the value when c(¢) = 0),
the joint value of the inputs to e, and e, together is out of the
ordinary because the inputs are not matched (see Fig. SA
for a schematic).

We reasoned that if our iSTDP rule could learn the rela-
tionship between top-down and bottom-up input during
training, then it would detect the mismatch between them
by evoking a larger deviation of firing rates from their tar-
gets. In other words, the network should detect the out-of-
distribution input represented by a mismatch. However, our
spiking network simulations contradicted this prediction.
Firing rates deviated from the targets even during matched
stimuli and the deviation in response to a mismatched stimu-
lus was similar in magnitude (Fig. 5SB-F). Hence, the the
response to a mismatched stimulus was not detectable in the
sense that it could not be distinguished from the response to
matched stimuli.

2.5 A mean-field explanation for the absence
of mismatch responses after training
on time-varying inputs.

We now return to our mean-field theory to better under-
stand why we do not see mismatch responses after training
on time-varying inputs, but we do see them after training
on time-constant inputs. We first simulated dynamical rate
model from Egs. (6)—(8) with the time-dependent stimuli
defined by Eqgs. (19)-(21). As above, the dynamical mean-
field rate model captured the general trends from the spiking
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Fig.5 A lack of detectable prediction errors in a model with time-
varying stimuli. A, B Network schematic. Same as Fig. 1A except the
magnitude of the top-down and bottom-up stimuli were multiplied by

the same time-varying signal, c(f). C-F Same as Fig. 1C-F except we
additionally plotted the mean excitatory firing rates (black curve in C)
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mismatch Now we can transition to the slower timescale dynamics
A —_— of Wby re-writing Eqgs. (12) as
10 . )
. I target w 00 —n,(r, (1) = ro)r(o)
E _______________ “ ar =00 - ﬂe(re2(f) - tS)ri(f)
E’ | 00 —n,(ry(®) — r)ri®) 3
g s | W 0
3 fﬂ#“i rt)=|r, (0 |=[D-WI"'X(t) = AX(r)
E —k = | rj(t)
0 €2 ---- etarget where we have only added the explicit time-dependence.
0 20 40 60 80 100 Simulating this system shows general agreement with
time (s) the trends from the spiking networks simulations and

the dynamical mean-field model (Fig. 7A, B, compare to
Figs. 5C, D and 6A, B).

with Poisson . .
B — correction Due to the time-dependence of X(7) in the current exam-
e no Poisson ple, Eqs. 23) df) not have a ﬁx.ed point, §o we cannot pro-
5 I8 correction ceed directly with the fixed point analysis from above. To
c = perform a fixed point analysis on W, we must assume that
-(..% qé) 6 plasticity is slower than the stimulus, i.e., that W() changes
=S 8 much more slowly than X(#). This assumption is valid for our
S e4 simulations and even more so for biological neural circuits.
|(-})J .,8 Under this assumption, the slow timescale dynamics of W
=S 3 2 evolve based on the mean value of X(¢). Specifically, we can
E use the approximation
0
0 20 40 60 80 100 aw |00 =nGe =197
time (S) d_ =loo = neGez _ "8)71‘
Fig.6 Mean-field rate model with time-varying stimuli. A, B Same t 00 —n—rr
as Fig. 2 except using the time-varying stimuli from Fig. 5 - o 07 24)
rel
= _ - _ _1_ _ ~r
network simulations (compare Fig. 6A, B to Fig. 5C, D). F=17, |= [D-W]"X=AX
Eq. (11) for the quasi steady-state firing rates generalizes to | T
r(W) = [D - W] X(1) = AX(?) (22)  where

An assumption underlying Eq. (22) is that X(¢) changes X= E,[)_f(t)]
more slowly than the timescales (7, for a = e, i) at which fir-
ing rates evolve. This assumption is valid in our case because
X(1) switches every 1s while 7, < 6ms.

and E, denotes the expectation over time during training, i.e.,
during matched stimuli.
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Fig.7 Slow dynamics captured by a separation of timescales in a time-dependent stimuli during training are represented by multiple
model with time-dependent stimuli. A-B Same as Fig. 3 except using dots (each one representing the inputs on one trial) and the mean is

the time-varying stimuli from Fig. 5B-C. C Same as Fig. 5D except represented by a purple x
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During training (for matched stimuli), we have from
Eq. (19) that

X0+ c(nU
X"(0) = | XO + c(o)V (25)
X0

1

Since E,[c(t)] = 1, we have that

[ xX0+uU
X=|X'+V (26)
X0

which is the same as the model from Figs. 1-3. Hence, under
this approximation, W should converge to the same fixed
point in Eq. (14). Notably, this implies that the time-averaged
rates should be equal to the target rates, 7 = r°. As predicted,
simulations show that average firing rates are close to their
targets (Fig. 7A) and the weights do converge to the given
fixed point with the addition of some noise (Fig. 7C) coming
from the noisy time-dependence of X(¢) and r(z).

Therefore, the state of the network (as represented by W)
after training is similar for the networks with time-constant and
time-dependent stimuli. As a result, the deviation, dr(t), of the
firing rates from their targets on any given trial takes the same
form derived in Eq. (15),

ar(t) :=r@t)—r°

=A'X()-r°

_ X))
=A%X(1) - X)
= A%X (1)

where dX () = X(t) — X is the deviation of the stimulus
from the mean value it takes during training and A° is the
fixed point of A = [D — W]~! after training (see Eq. (13) and
surrounding discussion). This conclusion assumes that the
mean-field approximation in Eq. (22) is approximately accu-
rate or, more specifically, that the firing rate response to a
perturbation is approximately a linear function of the input
perturbation. This, in turn, requires that the input perturba-
tion is not too strong.

As a heuristic, we can ignore the effect of A?in Eq. (27) and
make the approximation that dr(¢) is larger whenever dX () is
larger. In other words,

ldr)l = |A%X )|
~ 1A%l dX @)l (28)
o ||[dX()]l.
where ||A°|| denotes the induced Euclidean norm on A°. In
other words, stimuli that are further from the mean train-

ing stimuli evoke larger firing rates. Note that we neces-
sarily have [|[A%X(1)|| < ||A°||||dX(¢)]}, so this assumption is

saying that ||[A°dX(#)||is not much smaller than ||A?||||dX(¢)]|.
This approximation assumes that dX(¢) is not close to being
orthogonal to the rows of A°.

During matched stimuli, combining Egs. (25) and (26)
gives the perturbation for training stimuli

(I —cnU
dX"@® =| (1 =c@)V |
0

Since |U| = | V|, we have

ldX™(0)))* = 2(1 = c(0)*|V|
= 212(1)|V|

where u(t) = 1 — ¢(¢) is uniformly distributed on [—1, 1].
Hence, the squared distance of X(¢) from its mean varies
between O and 2|VI. During the mismatched stimulus, we
have from Eq. (21), that

Combining this with Eq. (26) shows that, during a mis-
matched stimulus, the input perturbation is

0
ax" =| -v
0

and therefore
ldX™™ > = [V].

Hence, the deviation of the external input, X(7), from its
mean value during training is similar in magnitude during
matched and mismatched stimuli. As a result, the deviation
of the firing rates from their targets is also similar during
matched and mismatched stimuli, so the mismatch is not
detectable based on the deviation of firing rates from their
targets alone.

This intuition, and how it differs from the time-constant
model of Figs. 1-3, is illustrated in Fig. 8. For the model
with time-constant inputs, there is only one stimulus during
matched, training trials (Fig. 8 A, purple dot). Since the mis-
match stimulus is far from this matched stimulus, the firing
rate deviates from its target in response to the mismatched
stimulus (as demonstrated in Figs. 1-3). For the model with
time-varying stimuli, there are multiple training stimuli that
lie along a line (Fig. 8B, purple dots). While the mismatch
stimulus is clearly away from this line (Fig. 8B, orange dot),
the deviation of the firing rates from their targets is approxi-
mately proportional to how far an input is from the mean
training stimulus (Fig. 8B, purple x). Since this distance
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time-constant inputs time-dependent inputs
(as in Figures 1-3) (as in Figures 5-7)
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Fig.8 Schematic illustrating why mismatch responses are detect-
able after training on time-constant, but not time-dependent stimuli.
A Schematic representing inputs to the network in a model with
time-constant stimuli. Training stimuli occupy a single point in
(U, V) space (purple dot). The deviation of firing rates from their
targets on any particular trial is approximately proportional to the
distance of the input from its value during training (Eq. (15)). Since
the mismatch stimulus (orange dot) is far from the matched, train-
ing stimulus, firing rates deviate from their target in response to the
mismatched stimulus (as seen in Figs. 1-3). B Schematic represent-
ing inputs to the network in a model with time-varying stimuli. Train-
ing stimuli (purple dots) vary in (U, V) space along a predictable line.
The mismatched stimulus lies far from this line. However, the devia-
tion of firing rates from their targets on any particular trial is approxi-
mately proportional to the distance of the input from its mean value
during training (Eq. (15)). Since the distance between the mismatch
input (orange dot) and the mean training stimulus (purple x) is similar
to the typical distance between the individual training stimuli (purple
dots) and the mean training stimulus (purple x), the deviation of the
firing rates from their targets is similar for matched and mismatched
stimuli

is similar for the mismatch stimulus and a typical training
stimulus, the deviation of the firing rates from their targets
is also similar during matched and mismatched stimuli (as

demonstrated in Figs. 5-7). While this intuition might seem
obvious in hindsight, the complexity of dynamics in recur-
rent spiking neural network models can make this conclu-
sion difficult to foresee without the benefit of the mean-field
analysis provided here.

For the sake of completeness, we also considered a model
with distributed, time-varying stimuli. Specifically, we com-
bined the time-varying stimuli from the example in Fig. 7
with the distributed stimuli from the example in Fig. 4 to get
inputs of the form (Fig. 9A, B)

X, = X0 + e + ct)V } matched 29)
and
X, = XS +U } mismatched. (30)

where c¢(¢) is a scalar drawn from a uniform distribution on
[0, 2] on each trial, and U and V are normally distributed N,
-dimensional vectors as in Eq. (18). Unsurprisingly, given
the failure on the simpler example discussed above, the
spiking network model did not produce an easily detectable
response to mismatched stimuli (Fig. 9C-F). Specifically,
the deviation of the firing rates away from their targets was
similar in matched and mismatched trials (Fig. 9C, D).

2.6 How do our conclusions generalize to other
network models?

The mean-field analysis above relied on several assumptions
that were used to derive approximations. This raises the
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Fig.9 Prediction errors after training on distributed time-dependent inputs. Same as Fig. 4 except bottom-up and top-down inputs were time-

dependent, as described by Egs. (29)—(30)
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question of how general our conclusions are. Specifically,
for which network models does the argument above imply
an absence of noticeable mismatch responses? To answer
this question, we can distill the argument above into three
fundamental assumptions:

1. The linear approximation in Eq. (27) should be approxi-
mately accurate,

dr(t) ~ A%dX (1)

While this assumption is strong, it should be satis-
fied when dX(¢) is sufficiently small. In addition, bal-
anced excitation and inhibition linearize the firing rate
responses of networks to external input (van Vreeswijk
& Sompolinsky, 1998; Rosenbaum & Doiron, 2014;
Lim & Goldman, 2014; Landau et al., 2016; Ebsch &
Rosenbaum, 2018; Ahmadian & Miller, 2021), so this
assumption should hold in networks with balanced exci-
tation and inhibition, which is encouraged by inhibitory
synaptic plasticity (Vogels et al., 2011; Hennequin et al.,
2017; Baker et al., 2020; Akil et al., 2021).

2. The approximation in Eq. (28) should be accurate, spe-
cifically

A%X @Il = [A°][ldX @)l

which requires that dX(¢) not be close to orthogonal to
the rows of A°,

3. The magnitude of the input perturbations for a mis-
matched stimulus should be similar to a typical value
during matched stimuli,

laX™ || = [ldX" @)l

In general, if a model satisfies these three assumptions
then dr(¢) is similar in magnitude during matched and mis-
matched stimuli. Note that these assumptions are sufficient,
but not necessary for a lack of mismatch responses. For
example, if assumption 1 is violated because the rate per-
turbations are nonlinear, then the nonlinear model might still
not compute mismatch responses.

Strictly speaking, assumption 2 is stronger than needed.
Instead, we only need that the relationship between A® and
dX is similar for matched and mismatched stimuli, i.e., that

A%X" DI [|A%X™™|
1A°HlaX™ Ol A°]HllaX™ |

which is a weaker assumption because it allows for dX to
be aligned with the rows of A° so long as the alignment is
similar for matched and unmatched stimuli.

For our examples in which the network is trained on

time-constant input (Figs. 1-4), we have that X" (r) = X, so

dX"(t) = 0 whereas dX™" # 0, so assumption 3 above is
not met. This explains why our examples trained on time-
constant were able to produce robust mismatch responses.

In previous work (Hertdg & Sprekeler, 2020), a network
with homeostatic plasticity successfully computed predic-
tion errors after training on time-varying stimuli. In that
work, the weights of the connectivity matrix were carefully
chosen so that A was singular and the directions of the input
perturbation during matched stimuli (the “feedback’ stimu-
lus condition) was in the nullspace of A°. See equation 28
in their appendix and note that A° was called W in their
analysis. As a result, the model studied there does not satisfy
assumption 2 above. This explains how Hertig and Sprekeler
(2020) were able to compute prediction errors with time-
varying inputs.

In all of the examples we have considered so far, external
input was provided to excitatory neurons only. However, our
analysis implies that our overall results should still hold if
input is provided to inhibitory neurons as well. Specifically,
in Egs. (27) and the surrounding equations and analysis,
there is nothing preventing dX(¢) from having a non-zero
component for the inhibitory population(s). To verify this
prediction, we repeated all of the spiking network simu-
lations (those in Figs. 1, 4, 5, and 9) in models in which
external input was also added to the inhibitory population.
Our results show the same overall conclusions for all figures
(see Supplementary Materials Sect. 1 and Supplementary
Figs. 1-2). Specifically, in all examples, a noticeable mis-
match response was observed after training on time-constant
inputs, but not after training on time-varying inputs.

Assumption 3 above implies that mismatch responses
could be possible after training on time-varying stimuli if the
mismatch stimulus is larger in magnitude than the matched
stimuli used during training. While this is not necessarily a
surprising finding (a larger stimulus should evoke a larger
response), we decided to test it in a simulation. Specifically,
we repeated the simulation from Fig. 5, but we scaled the
magnitude of the mismatched input by a factor of six. These
simulations confirm that a mismatch response was produced
in this case (Supplementary Fig. 3).

In all of the examples above, we considered only a
single inhibitory population and at most two excitatory
populations. In reality, there are multiple inhibitory neu-
ron subtypes in the cortex and previous work on mismatch
responses with inhibitory plasticity accounts for this (Hertdag
& Sprekeler, 2020; Hertidg & Clopath, 2021). Our analysis
above implies that increasing the number of neuron popu-
lations alone should not affect our overall conclusions. To
test our findings empirically on a model with several neural
populations, we performed a simulation that was identical to
the simulation in Fig. 5 except we used three inhibitory and
three excitatory populations. Consistent with our theoretical
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predictions, the results were qualitatively similar to those
in Fig. 5: After training on time-dependent stimuli, there
was no noticeable deviation of firing rates in response to a
mismatched stimulus (see Supplementary Fig. 4).

3 Discussion

We combined numerical simulations of spiking networks
and mean-field rate models with mathematical analysis to
evaluate the extent to which homeostatic inhibitory synaptic
plasticity can train an unstructured network to compute pre-
diction errors. We found that the networks successfully learn
to compute prediction errors when training stimuli are static.
Specifically, if top-down and bottom-up inputs are fixed in
time during training, then firing rates in the trained network
will maintain a baseline firing rates in response to stimuli
that match the training stimuli, but firing rates will deviate
from their baseline levels in response to mismatched stimuli.
This result holds when stimuli are uniform (with each of a
few sub-populations receiving homogeneous external input)
or when stimuli are distributed (with each neuron receiving
distinct, but time-constant levels of external input during
training).

To our surprise, simulations showed that even under a
simple model of time-varying stimuli, in which bottom-
up and top-down inputs are modulated by the same time-
varying factor, the same networks fail to produce reliable
mismatch responses after training. Specifically, firing rates
deviate from their baseline levels by a similar amount in
response to stimuli that are matched (a shared modulation,
as in training) or mismatched (one input is modulated dif-
ferently than the other). We used a mean-field approxima-
tion to explain these empirical findings and elucidate a set
of conditions under which robust mismatch responses do
not occur. Our results therefore help to clarify the extent to
which homeostatic inhibitory synaptic plasticity is sufficient
to train a network to compute mismatch responses.

For networks trained on time-varying inputs, our results
show a lack of mismatch responses in the sense that firing
rates do not deviate from their baseline (when deviation is
measured by mean-squared error) more during mismatched
inputs than they do for matched stimuli. However, mismatch
responses could potentially be detected by some linear pro-
jection of the firing rates and this linear projection could be
fed as input to a readout neuron that would be able to detect
mismatch responses. However, our main goal was to under-
stand the situations under which a natural homeostatic plas-
ticity rule would spontaneously produce elevated responses
to mismatched stimuli. Training a separate linear projection
is outside the scope of this goal.

Inhibitory homeostatic synaptic plasticity is only one of
many homeostatic mechanisms in the brain (Turrigiano,
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2011). While homeostatic plasticity is one candidate mecha-
nism for predictive coding, other homeostatic mechanisms
could play a role as well. Future work should consider the
potential role of other homeostatic mechanisms in predictive
coding and mismatch detection.

Previous work (Hertdg & Sprekeler, 2020; Hertdg &
Clopath, 2021) found that networks with homeostatic plas-
ticity can learn to compute mismatch responses in models
with time-varying stimuli that are similar to the time-varying
stimuli that we used (in the cases where our networks failed).
They used a more biologically detailed network model with
multiple inhibitory subtypes and multi-compartment excita-
tory neurons. Importantly, connectivity in their model was
constrained so that matched stimuli were in the nullspace of
the effective connectivity matrix (A in our work, W in theirs).
Our theoretical analysis agrees with their analysis showing
that this assumption is necessary for their overall results. We
additionally provided a set of conditions under which more
general classes of models will not produce robust mismatch
responses, which generalizes some of the theoretical results
in Hertdg and Sprekeler (2020) to more general classes of
networks. The requirement that matched stimuli are in the
nullspace of the effective connectivity matrix is a strong
assumption because it implies that the connectivity matri-
ces must be precisely tuned. Moreover, the dimension of the
nullspace of the connectivity matrix must match the dimen-
sionality of the training stimuli, which could make it difficult
to train a network to maintain baseline firing rates on a higher
dimensional space of training stimuli.

Our study and the previous work described above (Hertdg
& Sprekeler, 2020; Hertdg & Clopath, 2021) incorporates
homeostatic synaptic plasticity, but does not account for
any other of the wide variety of synaptic plasticity rules
observed in neural recordings. Other work has shown that
predictive coding can be learned in carefully constructed
networks using learning rules that are not exclusively home-
ostatic (Bogacz, 2017). Indeed, our approach of learning
prediction errors in unstructured, randomly connected net-
works could potentially be made successful if the target
rates, rg, were effectively modulated by the top-down or
bottom-up input. Future work should consider the possibil-
ity of learning prediction errors in unstructured, random
networks by combining these approaches.

4 Materials and methods

All simulations were performed by numerically solving the
corresponding differential equations using the forward Euler
method in custom written Python code. Code to produce all
figures can be found at https://github.com/RobertRosenbaum/
PCISP.


https://github.com/RobertRosenbaum/PCISP
https://github.com/RobertRosenbaum/PCISP
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For spiking network simulations (Egs. (1)—(2); Figs. 1, 4,
and 5) and mean-field rate network simulations (Egs. (6)—(7);
Figs. 2 and 6) we used a time step size of df = 0.1ms. For the
slow-timescale model (Eqs. (24); Figs. 3 and 7) we used a
time step size of df = 1s.

For all spiking network simulations (Egs. (1)—(2); Figs. 1,
4, and 5), we used N, = 4000 and N, = 1000 excitatory and
inhibitory neurons. All neurons were connected with proba-
bility p,, = p,; = p;, = P = 0.1. Connected neurons had ini-
tial synaptic weights j,, = 7.07mV/ms, j,; = —49.5mV/ms,
Jie = 31.8mV/ms, and j; = —70.7mV/ms. EIF neuron param-
eters were 7,, = 15ms, E; = =72mV,V,, = =73mV, D, =2
mV, V; = =55mV, V,, = OmV, and a reflecting lower bound-
ary on the membrane potential was placed atV,, = —80mV to
approximate an inhibitory reversal potential. Synaptic time-
scales were 7, = 6ms and 7; = 4ms. Baseline external input
to excitatory and inhibitory neurons was XS =42.4mV and

. = 28.3mV. Parameters for the inhibitory plasticity rule
were 7, = 56.6mV, x; = 28.3mV, and z¢;;p = 200ms with
target rates at rj = 4Hz and rf) = 8Hz. For mean-field rate
network simulations (Eqgs. (6)—(7); Figs. 2 and 6), we used a
gain of g = 0.00Ims/mV, which was derived by simulating
the spiking network model without plasticity and then fitting
the f-I curve r = f(I) = gIH(I) (where H is the Heaviside
step function) to the time-averaged firing rates and input cur-
rents of all neurons in the simulation. Learning rates for rate
network simulations were 7, = 8944mV and #; = 4472mV.
All other parameters were the same as those used in spiking
network simulations or their derivations are given in Results.
Python code to simulate the networks reproduce the figures
can be found on the last author’s academic webpage.

4.1 Derivation of Eq. (10) for MSE,;.,,

Here, we derive Eq. (10) for MSEj,, .. Consider a popula-
tion of N neurons divided into M sub-populations where
sub-population a contains N, neurons fora=1,..., M
(M =3 and a = e, e,, i for the models considered in this
paper). Assume that each neuron in population a spikes like
a Poisson process with a rate of r,. Let nj“ be the number of

spikes emitted by neuron j=1,...,N, in population

a=1,...,M during a time interval of duration 7 and let
na
a_
iTr

be the sample firing rate of neuron j. Then each nj“ has expec-
tation and variance

E[nj‘.‘] = Var(nj‘f) =r,T

so each sample rate has expectation

n¢
E[rjfl] =F l%] =r,

and variance

n r

a J a
var(r!) = var| — | = —.

J T T

Now suppose we have a target rates of rg for each neuron
in population a and we would like to compute the population-
wide MSE deviation of the sample rates from their targets.
This can be written as

N
1 0\2
MSE,,, = = Z(rj =)

2

1 M N,
=52 Z(”f -1’
a=1 j=1
M 1 N,
_ - a _ .02
- Z an (Vj V )
a=1 a j=1

where g, = N, /N is the proportion of neurons in population
a,r; is the sample rate, and r;) is the rate parameter for neuron

., N. The inner sum can be written as
R
4 — 0% = (° 2

a_rﬂ)

N,
1 - a a

20 =) =200 = )6t =7y,
a j=1

The first term in the sum is the sample variance of rjf’, SO

=

1 ¥ r
N 2.0 - r)? ® var(rf) = T

a

.
Il
—_

when N, is large. The last term in the sum can be ignored
when N, is large because

N(I
= 20— =) = —r°)<r ——Z )

a j=1 aj—
~ 0

since r, is the expected value of rj‘?. Putting this altogether
gives

M
-
MSE,,, ~ Z q, [(ru - rg)2 + ?a]
a=1

M
1
= MSE,; + T Z q.r,
a=1
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where

M
MSE, . = Z qu(r, — 1)

a=1

is the mean-field MSE defined in Eq. (9). This calculation
motivates the definition of the Poisson-corrected MSE,

4a’q
T

M
MSEPaisson = MSEmf + Z
a=1

as defined in Eq. (10). Specifically, our calculations above
show that MSEp, .., approximates the population-level MSE
(i.e., MSE,,,) that would be produced if all of the spike
trains in each sub-populations were Poisson processes. The
approximation becomes exact as N, — oo.
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tary material available at https://doi.org/10.1007/s10827-022-00820-0.
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