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Abstract
The brain is believed to operate in part by making predictions about sensory stimuli and encoding deviations from these 
predictions in the activity of “prediction error neurons.” This principle defines the widely influential theory of predictive 
coding. The precise circuitry and plasticity mechanisms through which animals learn to compute and update their predictions 
are unknown. Homeostatic inhibitory synaptic plasticity is a promising mechanism for training neuronal networks to perform 
predictive coding. Homeostatic plasticity causes neurons to maintain a steady, baseline firing rate in response to inputs that 
closely match the inputs on which a network was trained, but firing rates can deviate away from this baseline in response to 
stimuli that are mismatched from training. We combine computer simulations and mathematical analysis systematically to 
test the extent to which randomly connected, unstructured networks compute prediction errors after training with homeo-
static inhibitory synaptic plasticity. We find that homeostatic plasticity alone is sufficient for computing prediction errors for 
trivial time-constant stimuli, but not for more realistic time-varying stimuli. We use a mean-field theory of plastic networks 
to explain our findings and characterize the assumptions under which they apply.

Keywords  Spiking network models · Homeostatic plasticity · Inhibitory synaptic plasticity · Predictive coding · Prediction 
errors

1  Introduction

Cortical neuronal networks can make predictions about sen-
sory stimuli and detect errors about these predictions. For 
example, in the visuomotor system, head movements produce 
predictable flows of an animal’s visual scene. Visual corti-
cal circuits learn predictable associations between bottom-up 
input from the visual stream and top-down input from the 
motor system. Violations of the learned predictions, known 
as “mismatched stimuli” or “prediction errors”, produce dis-
tinct responses in visual cortical neurons, which can help the 
animal distinguish between self-driven and externally driven 

movements of its visual scene (Keller et al., 2012; Leinweber 
et al., 2017; Attinger et al., 2017; Homann et al., 2022).

The idea that the brain uses predictions and prediction 
errors to encode and interpret sensory information dates 
back to 19th century work by Helmholz (Von Helmholtz, 
1867; Keller & Mrsic-Flogel, 2018) and underlies more gen-
eral theories of neural function such as predictive coding, 
predictive processing, active inference, and the free energy 
principle (Rao & Ballard, 1999; Friston, 2010; Clark, 2015; 
Keller & Mrsic-Flogel, 2018). The question of how neural 
circuits compute prediction errors and how they learn pre-
dictions through biologically plausible synaptic plasticity 
rules is not settled, but some theories have been put for-
ward (Wacongne et al., 2012; Bastos et al., 2012; Rao & 
Sejnowski, 2002; Bogacz, 2017; Whittington & Bogacz, 
2019; Hertäg & Sprekeler, 2020; Schulz et al., 2021).

Cortical neurons are highly interconnected, even within 
a single cortical area and layer. This dense, recurrent, and 
intralaminar connectivity shapes the intrinsic dynam-
ics and stimulus responses of local cortical circuits. The 
nonlinear firing rate dynamics that arise from this recur-
rent connectivity can interact with the slower dynamics of 
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synaptic plasticity in complex ways. Homeostatic inhibi-
tory synaptic plasticity is a widely observed and widely 
studied type of synaptic plasticity (Castillo et al., 2011; 
Vogels et al., 2011, 2013; Luz & Shamir, 2012; Hennequin 
et al., 2017; Schulz et al., 2021; Capogna et al., 2021) in 
which the strength of inhibitory synapses are adjusted in 
an activity-dependent manner that tends to push the post-
synaptic neurons’ firing rates toward a homeostatic baseline 
targets. Simulations and theoretical analyses of mathemati-
cal models of homeostatic inhibitory plasticity show that, 
while firing rates are near their targets in response to stimuli 
on which the network has been trained, firing rates deviate 
from their targets in response to unfamiliar stimuli in these 
models Vogels et al. (2011); Baker et al. (2020); Hertäg and 
Sprekeler (2020); Hertäg and Clopath (2021); Schulz et al. 
(2021); Akil et al. (2021).

As in related computational work (Hertäg & Sprekeler, 
2020; Hertäg & Clopath, 2021; Schulz et al., 2021), we con-
jectured that homeostatic inhibitory plasticity could learn 
to perform some type of predictive coding. In particular, if 
the external input to a neural population were formed from 
bottom-up and top-down stimuli, then homeostatic plastic-
ity in the network would naturally learn to produce baseline 
activity in response to “matched” top-down and bottom-up 
pairings (i.e., pairings that are similar to those on which 
the network was trained). On the other hand, “mismatched” 
pairings (i.e., pairings from outside the training distribution) 
would produce firing rate responses that are further from 
the homeostatic baseline. In this sense, the network should 
learn to encode prediction errors (i.e., errors in the abil-
ity to predict top-down input from bottom-up input or vice 
versa) in the deviation of the firing rates from their base-
line. Importantly, and in contrast to previous work (Hertäg 
& Sprekeler, 2020; Hertäg & Clopath, 2021; Schulz et al., 
2021), we conjectured that the network should not need to be 
imparted with any special structure or architecture to learn 
this computation since homeostatic plasticity should natu-
rally achieve this result due to its tendency to produce base-
line responses to stimuli on which the network was trained, 
but not in response to novel stimuli.

To test our conjecture, we used an unstructured, recurrent, 
spiking neuronal network model endowed with a homeostatic 
inhibitory plasticity rule receiving two sources of external 
input, modeling top-down and bottom-up stimuli. We trained 
the network with given patterns of top-down and bottom-up 
pairings, interpreted as “matched” stimuli, before presenting 
a “mismatched” stimulus that deviated from the pairings used 
during training. Numerical simulations showed that the net-
work reliably produced baseline firing rates for a fixed pair 
of bottom-up and top-down inputs during training, and devi-
ated from baseline in response to a mismatched stimulus. A 
mean-field, firing rate model and a mathematical analysis 
using a separation of timescales helped reveal the dynamics 

underlying these numerical simulations. Hence, homeostatic 
plasticity learned to compute prediction errors whenever top-
down and bottom-up stimuli are fixed during training. How-
ever, useful predictive coding algorithms should learn to detect 
relationships between time-varying top-down and bottom-up 
inputs. We generalized our input model to vary the intensity 
of top-down and bottom-up inputs in unison. An effective 
learning algorithm should learn to detect a prediction error 
whenever the intensity changes out of unison. To our surprise, 
our spiking network with homeostatic synaptic plasticity was 
unable to learn to detect this type of prediction error, even in 
a relatively simple (time-varying) setting. Going back to our 
mean-field analysis helped to clarify how and why the model 
failed to perform predictive coding in this setting after suc-
ceeding in the simpler (time-constant) setting.

We conclude that homeostatic inhibitory synaptic plas-
ticity alone is not sufficient to learn and perform non-trivial 
predictive coding in unstructured neuronal network models. 
Previous theoretical work shows that network models that 
carefully account for the connectivity structure of multiple 
inhibitory subtypes are able to learn prediction errors using 
homeostatic plasticity, even for inputs where top-down and 
bottom-up input co-vary in intensity (Hertäg & Sprekeler, 
2020; Hertäg & Clopath, 2021). Hence, the failure of our 
model in this scenario implies that network structure is criti-
cal for successfully learning predictive coding tasks with 
homeostatic plasticity.

2 � Results

2.1 � Spiking network model description

We consider a computational model of a local cortical cir-
cuit composed of N = 5000 randomly connected exponential 
integrate-and-fire (EIF) spiking neuron models ( Ne = 4000 
of which are excitatory and Ni = 1000 inhibitory) (Brette 
& Gerstner, 2005; Gerstner et al., 2014). The membrane 
potentials of neuron j in population a = e, i obeys

with the added condition that each time Vk(t) crosses a 
threshold at Vth , it is reset to Vre and a spike is recorded. The 
synaptic input to neuron j in population a is modeled by

where Xa
j
(t) models external synaptic input, Jab

jk
 is a synaptic 

weight, tb
n,k

 is the time of the nth spike of neuron k in popula-
tion b, and �b(t) = (1∕�b)e

−t∕�bH(t) is a synaptic filter with 
H(t) the Heaviside step function.

(1)�m

dVa
j

dt
= −(Va

j
− EL) + DTe

(Va
j
−VT )∕DT + Ia

j
(t)

Ia
j
(t) = Xa

j
(t) +

∑
b=e,i

N∑
k=1

Jab
jk
�b(t − tb

n,k
)
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Initial connectivity in the model is random (connection 
probability p = 0.1 ) with initial weights, Jab

jk
 , determined 

only by pre- and post-synaptic neuron type ( Jab
jk

= jab for 
connected neurons). Excitatory connectivity, Jae

jk
 , remained 

fixed, but inhibitory connectivity evolves according to a 
homeostatic, inhibitory spike-timing-dependent plasticity 
(iSTDP) rule (Vogels et al., 2011, 2013; Hennequin et al., 
2017; Akil et al., 2021). Specifically, each time that neuron 
j in population a = e, i spikes (which occurs at times ta

n,j
 ), 

the inhibitory synaptic weights targeting that neuron are 
updated according to

where �a is a learning rate and recall that ta
j,n

 is the time of 
the nth spike of neuron j in population a = e, i . Additionally, 
each time inhibitory neuron k spikes, its outgoing synaptic 
weights are updated according to

where ti
k,n

 is the time of the nth spike of inhibitory neuron k. 
The time series, xa

j
(t) are defined by the differential 

equation

in addition to the rule that xa
j
(t) is incremented each time that 

neuron j in population a = e, i spikes according to,

As a result, xa
j
(t) estimates the firing rate of neuron j in 

population a by performing an exponentially-weighted 
sliding average of the spike density. This plasticity rule 
tends to push excitatory and inhibitory firing rates toward 
their target rates, re

0
 and ri

0
 , respectively (see (Vogels et al., 

2011, 2013; Hennequin et al., 2017; Baker et al., 2020; 
Akil et al., 2021) and the mean-field theory presented 
below).

We are interested in understanding the extent to which 
such networks can learn to perform predictive coding (Rao 
& Ballard, 1999; Bogacz, 2017; Keller & Mrsic-Flogel, 
2018). More specifically, we reasoned that neurons would 
spike close to their target rates in response to stimulus pat-
terns similar to those on which they were trained, but devi-
ate from the target rates in response to stimuli that deviate 
from the from the training stimuli. In other words, the 
deviation of firing rates from their targets should encode 
a “prediction error,” i.e., a deviation of the inputs from the 
patterns that appeared during training.

Jai
jk
= Jai

jk
− �ax

i
k
(ta
j,n
)

Jai
jk
= Jai

jk
− �a

(
xa
j
(ti
k,n
) − 2ra

0

)

�STDP

dxa
j

dt
= −xa

j

(2)dxa
j
(ta
j,n
) ← dxa

j
(ta
j,n
) +

1

�STDP
.

2.2 � Prediction errors after training 
on time‑constant inputs to multiple 
sub‑populations

For illustrative purposes, we first considered a simple input 
model for which the excitatory population was divided into 
two sub-populations, e1 and e2 , with Ne1

= Ne2
= 2000 neu-

rons in each sub-popuation (Fig. 1A, B). Recurrent connec-
tivity did not depend on sub-population membership, so the 
network was completely unstructured. During training, each 
neuron in populations e1 and e2 received external stimuli of 
the form (Fig. 1A)

where X0
e
 is a baseline input that assures neurons spike at 

reasonable rates, U is a perturbation modeling bottom-up 
input, and V is a perturbation modeling top-down input. We 
used positive bottom-up input and negative top-down input,

but our results are not sensitive to this specific choice of 
inputs. We refer to this as a “matched” stimulus because it 
defines the matching of bottom-up with top-down stimuli 
that the network is trained on. After training on matched 
stimuli, we modeled mismatched stimuli by the absence of 
top-down input (Fig. 1B),

We refer to these stimuli as “mismatched” because the 
top-down and bottom-up inputs are mismatched when com-
pared to the “matched” pairings used to train the network. 
Mismatched stimuli could also be modeled by an absence 
of bottom-up input, or any other deviation from the inputs 
used for training.

We hypothesized that, after training on matched stimuli, 
the network would produce firing rates close to the target 
rates in response to matched stimuli and produce firing 
rates further from the target rates in response to mismatched 
stimuli.

At the beginning of the simulation mean excitatory and 
inhibitory firing rates deviated from their targets, but inhib-
itory plasticity pushed them toward their targets over the 
course of tens of seconds (Fig. 1C). After 100s of training 
on matched stimuli, we tested a mismatched stimulus for 1s. 
Consistent with our hypothesis, mean firing rates of each 
population were further from their targets in response to the 
mismatched stimulus (Fig. 1C).

(3)
Xe1

= X0

e
+ U

Xe2
= X0

e
+ V

}
matched

(4)
U = X0

e
∕5

V = −X0

e
∕5,

(5)
Xe1

= X0

e
+ U

Xe2
= X0

e

}
mismatched.
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We quantified the distance of the firing rates from their 
targets from spiking network simulations using two methods. 
For the first method, we computed the MSE of the population-
averaged firing rates (Fig. 1D, light green),

where r0
a
 is the target rate and ra the mean firing rate of each 

population averaged over neurons in that population and 
averaged over time windows of size T = 1 s. The coefficients 
qa = Na∕N  represent the proportion of the network con-
tained in each population ( qe1 = qe2 = 0.4 and qi = 0.2 for 
our network). Hence, MSEmean weights the errors of larger 
sub-populations more heavily.

The MSEmean measures how far the population-average 
rates differ from their target rates, but does not measure the 
deviation of individual neurons’ firing rates. Despite the fact 
that external input was constant across time and the simula-
tions were deterministic (with the exception of “quenched” 
randomness from the random connectivity), neurons exhib-
ited substantial variability in their spike timing and mem-
brane potential dynamics (Fig.  1E, F). These dynamics 
are characteristic of an asynchronous-irregular state (van 
Vreeswijk & Sompolinsky, 1996, 1998,  2005;  Amit & 

MSEmean =
∑

a=e1,e2,i

qa(ra − r0
a
)2

Brunel, 1997; Brunel & Hakim, 1999; Brunel, 2000; Renart 
et al., 2010).

To account for the deviation of individual neurons’ fir-
ing rates from spike-timing variability in spiking network 
simulations, we also computed the MSE across the entire 
network (Fig. 1D, dark green),

where rj is the firing rate of neuron j = 1,… ,N and r0
j
 is its 

target rate. Both measures of MSE show a decrease during 
training and a sharp increase in response to the mismatched 
stimulus, but MSEpop is larger overall due to the spike-timing 
variability of each neuron.

The results from the spiking network can be understood 
using a simpler dynamical mean-field model in which mean 
firing rates of each population are approximated by a system 
of differential equations,

where � = [�e1 �e2 �i]
T is a vector of time constants, ⊙ rep-

resents element-wise multiplication, and � = [re1 re1 ri]
T 

MSEpop =
1

N

N∑
j=1

(rj − r0
j
)2

(6)𝜏 ⊙
d�

dt
= −� + f (W� + �)

A

B

C

D

E

F

Fig. 1   Prediction errors after training on time-constant inputs to mul-
tiple sub-populations. A, B  Network diagram with “training” and 
“mismatch” stimuli respectively. A randomly connected, recurrent 
spiking neural network of N = 5000 neurons consisted of two excit-
atory sub-populations ( e

1
 and e

2
 ) and one inhibitory (i) population. 

During the first 100s of the simulation, the network received a “train-
ing” stimulus in which e

1
 and e

2
 received extra external input mod-

eling bottom-up and top-down stimuli respectively (A). Then a “mis-
match” stimulus was introduced for 1s by removing the top-down 

stimulus to population e
2
 . C Homeostatic inhibitory synaptic plastic-

ity caused population-averaged firing rates to converge to their targets 
during training, but they deviated from their targets in response to the 
mismatch stimulus. D  The deviation of the mean firing rates from 
their targets ( MSEmean ) and the mean deviation of individual neurons’ 
firing rates ( MSEpop ) quantify the deviation of firing rates from their 
targets. E, F Raster plots (top) and membrane potential (bottom) of a 
random subset of neurons from population e

1
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is a vector approximating the mean firing rates of the two 
excitatory sub-populations and the inhibitory population. 
Mean external input to each population is given by the vector

and the recurrent connectivity matrix is defined by

where (Pyle & Rosenbaum, 2016, 2017; Ebsch & Rosenbaum,  
2018; Baker et al., 2019, 2020; Akil et al., 2021)

Here, Nb is the number of neurons in population 
b = e1, e2, i (so Ne1

= Ne2
= Ne∕2 = 2000 and Ni = 1000 ), 

pab is the connection probability from population b to popu-
lation a, and jab is the mean non-zero synaptic weight (mean 
of Jjk

ab
 between connected neurons). The inhibitory entries, 

wai for a = e1, e2, i , are negative and evolve according to

where �a sets the timescale of plasticity and ra
0
 is the target 

rate of population a = e1, e2, i . For simplicity, we consider 
a rectified-linear f-I curve,

The gain, g, was fit to spiking network simulations (see 
Sect. 4).

Simulating this model shows excellent agreement with 
the firing rates from the spiking network simulations 
(Fig. 2) and the mean-field simulations are computation-
ally more efficient than the spiking network simulations by 
a factor of 70 (6.0s for the mean-field simulation compared 
to 435.0s for the spiking network simulation). The devia-
tion of the firing rates in the mean-field rate model from 
their targets can be quantified by

which is identical to MSEmean above except that ra represents 
the rate from the mean-field simulations instead of the mean 
firing rates from the spiking net simulations. Indeed, MSEmf  
closely matches MSEmean from the spiking network simula-
tions (Fig. 2B, compare to Fig. 1C), demonstrating that the 

� =

⎡
⎢⎢⎣

Xe1

Xe2

Xi

⎤
⎥⎥⎦

W =

⎡
⎢⎢⎣

we1e1
we1e2

we1i

we2e1
we2e2

we2i

wie1
wie2

wii

⎤
⎥⎥⎦

wab = Nbpabjab

(7)
dwai

dt
= −�a(ra − ra

0
)ri

(8)f (I) =

{
gI I > 0

0 I ≤ 0
.

(9)MSEmf =
∑

a=e1,e2,i

qa(ra − r0
a
)2

two models have similar mean-field dynamics. The value 
of MSEpop from the spiking network simulations does not 
have a direct analogue in the mean-field model, but under 
an assumption of Poisson-like spike-timing variability in 
the spiking network, MSEpop can be approximated by (see 
Materials and Methods for derivation)

where ra is the firing rate of population a = e1, e2, i from the 
mean-field model and T is length of the time window over 
which firing rates are computed in the spiking network simu-
lations. Specifically, MSEPoisson represents the population-
level MSE (i.e., MSEpop ) that would be produced by popu-
lations of Poisson spike trains with firing rates ra . Indeed, 
MSEPoisson shows close agreement with MSEpop (Fig. 2B, 
compare to Fig. 1D), demonstrating that the deviation of 
MSEpop away from the values of MSEmean is consistent with 
Poisson-like spike-timing variability.

(10)MSEPoisson = MSEmf +
1

T

∑
a

qara

A

B

Fig. 2   A mean-field firing rate model captures the dynamics of the 
spiking network model. A  Firing rates of the mean-field firing rate 
model defined by Eqs. (6) and (7). Compare to Fig. 1C. B MSE devi-
ation of the firing rates from their targets ( MSEmf  ; light green) and 
the MSE with a Poisson correction ( MSEPoisson ; dark green). Compare 
to Fig. 1D
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This example shows that homeostatic inhibitory syn-
aptic plasticity can train a network to detect mismatched 
stimuli, which is a form of predictive coding. To better 
understand how and why the network is able to detect mis-
matched stimuli, we consider a fixed point analysis via a 
separation of timescales.

In the absence of plasticity (W fixed, e.g., �e = �i = 0 ), 
fixed point firing rates would satisfy �0 = f (W�0 + �) . Tak-
ing the rectified linear f-I curve from the dynamical mean-
field model, if there were a fixed point with positive rates 
( ra > 0 for all a) then it would be unique and given (as a 
function of W) by

where D = (1∕g)Id is a diagonal matrix, I is the identity 
matrix, and A = [D −W]−1 . With W fixed, the Jacobian 
matrix for the firing rate equation, Eq. (6), would be given by

If the eigenvalues of this matrix have negative real part, 
then the fixed point given by Eq. (11) is stable and globally 
attracting.

Due to plasticity, W itself is time-dependent, so this fixed 
point analysis does not tell the full story. When plasticity 
is much slower than the firing rate dynamics ( � sufficiently 
small and � sufficiently large, but � should not be com-
pared directly to � because they have different dimensions), 
we can perform a separation of timescales under which r 
relaxes to the quasi-steady-state value given by evaluating 
Eq. (11) at the current value of W, while W evolves more 
slowly according to Eq. (7). Putting this together, the sepa-
ration of timescales approximation is defined by

(11)�(W) = [D −W]−1X = AX

� = g

⎡⎢⎢⎣

(we1e1
− 1)∕�e we1e2

∕�e we1i
∕�e

we1e2
∕�e (we1e1

− 1)∕�e we1i
∕�e

wie1
�i wie2

�i (wii − 1)∕�i

⎤⎥⎥⎦

Note that this is a 3-dimensional dynamical system because 
r⃗ is defined by a functional relationship instead of a differential 
equations. Solving Eq. (12) directly gives similar results to the 
full mean-field model and is 482 times more computation-
ally efficient than the full mean-field simulations (Fig. 3A, B; 
12.5 × 10−3 s to simulate Eq. (12) versus 6.0s for the full mean-
field model) primarily because the slower dynamics allow for 
a larger time discretization (we used dt = 0.1 ms for the full 
mean-field and dt = T = 1 s to simulate Eq. (12)). Simulat-
ing Eq. (12) was 34751 times faster than the spiking network 
simulations. This speedup is not surprising given the lower 
dimension (2 versus 5000 dimensions) as well as the larger 
time discretization.

During training, X is fixed to the “matched” value given 
by Eq. (3). During this phase, the slow-timescale system 
described by Eq. (12) has a fixed point for which r = r

0 where

is a vector of the target rates from the plasticity rule. How-
ever, this expression gives the fixed point in terms of r 
whereas the dynamical system is described by the dynam-
ics of the entries of W. If the network converges to the tar-
get rates during training, then the weight matrix, W, for the 
slow system converges to a value, W0 (or, equivalently, A 
converges to a value of A0 ) that satisfies

(12)

dW

dt
=

⎡
⎢⎢⎣

0 0 − �e(re1 − re
0
)ri

0 0 − �e(re2 − re
0
)ri

0 0 − �i(ri − ri
0
)ri

⎤
⎥⎥⎦

r =

⎡
⎢⎢⎣

re1
re2
ri

⎤
⎥⎥⎦
= [D −W]−1X = AX

r
0 =

⎡⎢⎢⎣

r0
e

r0
e

r0
i

⎤⎥⎥⎦

A B C

Fig. 3   Slow dynamics are captured by a separation-of-timescales 
approximation. A Firing rates of the model defined by Eq. (12). Com-
pare to Figs.  1C and 2A. B  MSE deviation of the firing rates from 
their targets ( MSEmf  ; light green) and the MSE with a Poisson cor-

rection ( MSEPoisson ; dark green) from the model defined by Eq. (12). 
Compare to Figs. 1D and 2B. C Deviation of the inhibitory weights, 
wai , from the fixed point values given in Eq. (14)
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where

is the value of X for matched stimuli. Eq. (13) is a system of 
three equations for three unknowns ( we1i

 , we2i
 , wii ) and its 

solution is given by

Indeed, the weights converged toward these fixed point 
values during the training period (before the mismatch stim-
ulus; Fig. 3C).

When the input is changed by a mismatched stimulus (so 
X changes away from its value during training), firing rates 
deviate from their targets. Using the same quasi-steady state 
approximation, we can quantify the magnitude of this devia-
tion as

where rmm is the vector of firing rates during a mismatched 
trial, r0 = [r0

e
r0
i
]T is the vector of target rates, and

is the perturbation of the external stimulus away from its 
training value during the mismatched trial. This deriva-
tion makes it clear that larger perturbations of the stimulus 
(larger values of ‖dX‖ ) generally lead to larger deviations 
of the firing rates from their targets (larger values of ‖dr‖ ). 
Here and elsewhere, ‖ ⋅ ‖ refers to the Euclidean norm.

Firing rate perturbations, ‖dr‖ , are especially large if 
the input perturbations, dX , point in a direction in which 
A0dX is large. Such directions correspond to the direc-
tions indicated by the largest eigenvalue(s) of A0 . Since 
A0 =

[
D −W0

]−1 , when W0 is much larger than D in mag-
nitude, these directions correspond to directions indicated 

(13)
[
D −W0

]−1
X
m = A0

X
m = r

0

X
m =

⎡
⎢⎢⎣

X0
e
+ U

X0
e
+ V

X0

i

⎤
⎥⎥⎦

(14)

we1i
=

r0
e
− 2gr0

e
wee − g(U + X0

e
)

gr0
i

we2i
=

r0
e
− 2gr0

e
wee − g(V + X0

e
)

gr0
i

wii =
r0
i
− 2r0

e
wie + X0

i

gr0
i

(15)

dr ∶= r
mm − r

0

= A0
X
mm − r

0

= A0(Xmm − X
m)

= A0dX

dX = X
mm − X

m =

⎡⎢⎢⎣

0

−V

0

⎤⎥⎥⎦

by the smallest eigenvalue(s) of W0 . This phenomenon is 
an instance of “imbalanced amplification” in which a per-
turbation that points toward the nullspace or “approximate 
nullspace” of the connectivity matrix, W0 , is amplified by 
the network, see (Ebsch & Rosenbaum, 2018) for more in-
depth explanations.

Temporarily ignoring the direction of the perturbation, 
we can make the rough approximation that ‖dr‖ is approxi-
mately proportional to ‖dX‖ . This rough approximation 
provides the intuition for mismatched responses shown in 
the simulations above. Put simply, mismatched responses 
are caused by the deviation of a stimulus away from its 
“matched” training value and the magnitude of the mis-
matched response increases with the magnitude of the input 
perturbation. While this intuition may seem trivial for this 
example, its extensions will help explain some non-trivial, 
counterintuitive results below.

2.3 � Prediction errors after training on distributed, 
time‑constant inputs

The example above modeled a stimulus that was homogene-
ous across each neural population, i.e., every neuron in pop-
ulation e1 received the same input and every neuron in popu-
lation e2 received the same input. Stimulus representations in 
cortical circuits can be distributed in an inhomogeneous way 
across neural populations (Saxena & Cunningham, 2019).

We next considered a spiking network model with dis-
tributed bottom-up and top-down inputs (Fig.  4A). As 
above, matched and mismatched stimuli were defined by 
the presence and absence of top-down input to population 
e2 (Eqs. (3) and (5)) to match the bottom-up input to popula-
tion e1 , but these inputs are heterogeneous vectors ( ⃗U and 
V⃗  ) instead of homogeneous scalars (U and V). Specifically, 
matched and mismatched stimuli to excitatory neurons were 
defined by

and

where U⃗ and V⃗  are normally distributed Ne-dimensional 
vectors,

Here, N(0, 1) is a standard multivariate normal distri-
bution and �s = X0

e
∕5 controls the strength of the stimuli. 

Importantly, this means that each neuron receives a different 

(16)Xe = X0

e
+ U⃗ + V⃗

}
matched

(17)Xe = X0

e
+ U⃗

}
mismatched.

(18)
U⃗ ∼ 𝜎sN(0, 1)

V⃗ ∼ 𝜎sN(0, 1).
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value of top-down and bottom-up input, in contrast to the 
previous example (Eq. (4) and Figs. 1–3) in which every 
neuron in the same excitatory sub-population received the 
same input.

Simulating this spiking network model shows that population- 
averaged firing rates converge to their targets during training on 
matched stimuli, as expected, but only deviate slightly from their 
targets in response to a mismatched stimulus (Fig. 4C).

We suspected that the deviation of mean excitatory and 
inhibitory firing rates was small because some neurons 
increased their firing rates and some neurons decreased 
their firing rates in response to mismatched stimuli, so the 
increases and decreases cancelled at the level of population 
averages. Another way to see this is to note that the expected 
value of U⃗ and V⃗  is zero, so the absence of V⃗  does not affect 
the population-averaged value of the inputs and (under a lin-
ear approximation) we should not expect a change in mean 
firing rates by removing V⃗  . Under this reasoning, the firing 
rates of individual neurons would still change in response to 
a mismatched stimulus because individual elements of V⃗  are 
non-zero. This line of reasoning implies that MSEmean should 
not increase much for a mismatched stimulus, but MSEpop 
should increase more for a mismatched stimulus. Indeed, 
this is exactly what we observed in simulations (Fig. 4D).

In summary, our network model with iSTDP learned 
to adjust inhibitory weights in such a way to “match” or 
“cancel” top-down input with bottom-up input in the sense 
that the firing rates approach their target rates in response 
to matched stimuli after sufficient training. Moreover, the 
network responded to mismatched stimuli with deviations 

of the firing rates away from their target values. Note that 
the deviation of firing rates from their targets is not a con-
sequence of the mismatch alone, but is due to the network 
being trained on matched stimuli. In this sense, the network 
is simply detecting deviations of its input patterns from the 
input patterns on which it was trained.

2.4 � A lack of detectable prediction errors 
after training with time‑varying stimuli

While instructive, the examples above were restricted to 
input patterns that were held fixed during training. In other 
words, the network only learned to associate one bottom-
up input, U, with one top-down input, V (as schematized 
in Fig. 3D). Since animals are exposed to multiple stimuli, 
a more realistic model would be trained on multiple pair-
ings of top-down and bottom-up inputs. For example, in the 
visuomotor system, head motion (which we can interpret 
as top-down input, V) is coupled with movement of an ani-
mal’s visual stimulus (which we can interpret as bottom-up 
input, U). But head motion varies in direction and speed, 
and the movement of a visual scene covaries with it. Predic-
tion errors arise whenever the learned covariation between 
head motion and visual stimulus is violated, i.e., when-
ever there is a mismatch between top-down and bottom-up 
input (Keller et al., 2012; Attinger et al., 2017; Leinweber 
et al., 2017; Jordan & Keller, 2020).

We next considered a simple extension of the first input 
model from Figs. 1–3 to account for top-down and bottom-up 

A C E

B
D F

Fig. 4   Prediction errors after training on distributed time-constant inputs. Same as Fig. 1 except bottom-up and top-down inputs were modeled 
as distributed stimuli using multivariate Gaussian inputs vectors (Eq. (18))
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inputs with time-varying intensity. Specifically, the excita-
tory neurons were again broken into two sub-populations, e1 
and e2 . During training, each neuron in populations e1 and e2 
received external stimuli of the form (Fig. 1A)

where c(t) is a scalar time-series that changes on each trial. 
Specifically, c(t) is drawn independently from a uniform 
distribution on [0, 2] at the start of each 1s trial. Hence, the 
expected value of c(t) is 1 and therefore, the expected values 
of Xe1

 and Xe2
 are the same as in the example from Figs. 1–3, 

but they vary around this expectation across time. We used 
similar top-down and bottom-up, but needed to make the 
inputs weaker to avoid very large rate deviations,

Hence, bottom-up input, c(t)U, is matched by top-down 
input, c(t)V, during training. After training on matched stim-
uli, we again modeled mismatched stimuli by the absence 
of top-down input

The input to e1 is not out of the ordinary during a mis-
matched stimulus (it corresponds to the value when c(t) = 1 

(19)
Xe1

= X0

e
+ c(t)U

Xe2
= X0

e
+ c(t)V

}
matched

(20)
U = X0

e
∕20

V = −X0

e
∕20.

(21)
Xe1

= X0

e
+ U

Xe2
= X0

e
.

}
mismatched.

is equal to its expectation) and the input to e2 is not out of the 
ordinary either (it corresponds to the value when c(t) = 0 ), 
the joint value of the inputs to e1 and e2 together is out of the 
ordinary because the inputs are not matched (see Fig. 5A 
for a schematic).

We reasoned that if our iSTDP rule could learn the rela-
tionship between top-down and bottom-up input during 
training, then it would detect the mismatch between them 
by evoking a larger deviation of firing rates from their tar-
gets. In other words, the network should detect the out-of-
distribution input represented by a mismatch. However, our 
spiking network simulations contradicted this prediction. 
Firing rates deviated from the targets even during matched 
stimuli and the deviation in response to a mismatched stimu-
lus was similar in magnitude (Fig. 5B–F). Hence, the the 
response to a mismatched stimulus was not detectable in the 
sense that it could not be distinguished from the response to 
matched stimuli.

2.5 � A mean‑field explanation for the absence 
of mismatch responses after training 
on time‑varying inputs.

We now return to our mean-field theory to better under-
stand why we do not see mismatch responses after training 
on time-varying inputs, but we do see them after training 
on time-constant inputs. We first simulated dynamical rate 
model from Eqs. (6)–(8) with the time-dependent stimuli 
defined by Eqs. (19)–(21). As above, the dynamical mean-
field rate model captured the general trends from the spiking 

A C E

B
D F

Fig. 5   A lack of detectable prediction errors in a model with time-
varying stimuli. A, B Network schematic. Same as Fig. 1A except the 
magnitude of the top-down and bottom-up stimuli were multiplied by 

the same time-varying signal, c(t). C-F Same as Fig. 1C-F except we 
additionally plotted the mean excitatory firing rates (black curve in C)
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network simulations (compare Fig. 6A, B to Fig. 5C, D). 
Eq. (11) for the quasi steady-state firing rates generalizes to

An assumption underlying Eq. (22) is that X(t) changes 
more slowly than the timescales ( �a for a = e, i ) at which fir-
ing rates evolve. This assumption is valid in our case because 
X(t) switches every 1s while �a ≤ 6ms.

(22)�(W) = [D −W]−1X(t) = AX(t)

Now we can transition to the slower timescale dynamics 
of W by re-writing Eqs. (12) as

where we have only added the explicit time-dependence. 
Simulating this system shows general agreement with 
the trends from the spiking networks simulations and 
the dynamical mean-field model (Fig. 7A, B, compare to 
Figs. 5C, D and 6A, B).

Due to the time-dependence of X(t) in the current exam-
ple, Eqs. (23) do not have a fixed point, so we cannot pro-
ceed directly with the fixed point analysis from above. To 
perform a fixed point analysis on W, we must assume that 
plasticity is slower than the stimulus, i.e., that W(t) changes 
much more slowly than X(t) . This assumption is valid for our 
simulations and even more so for biological neural circuits. 
Under this assumption, the slow timescale dynamics of W 
evolve based on the mean value of X(t) . Specifically, we can 
use the approximation

where

and Et denotes the expectation over time during training, i.e., 
during matched stimuli.

(23)

dW

dt
=

⎡
⎢⎢⎣

0 0 − �e(re1 (t) − re
0
)ri(t)

0 0 − �e(re2 (t) − re
0
)ri(t)

0 0 − �i(ri(t) − ri
0
)ri(t)

⎤
⎥⎥⎦

r(t) =

⎡
⎢⎢⎣

re1 (t)

re2 (t)

ri(t)

⎤
⎥⎥⎦
= [D −W]−1X(t) = AX(t)

(24)

dW

dt
=

⎡
⎢⎢⎣

0 0 − �e(re1 − re
0
)ri

0 0 − �e(re2 − re
0
)ri

0 0 − �i(ri − ri
0
)ri

⎤
⎥⎥⎦

r =

⎡⎢⎢⎣

re1
re2
ri

⎤⎥⎥⎦
= [D −W]−1X = AX

X = Et[X⃗(t)]

A

B

Fig. 6   Mean-field rate model with time-varying stimuli. A, B  Same 
as Fig. 2 except using the time-varying stimuli from Fig. 5

A B C

Fig. 7   Slow dynamics captured by a separation of timescales in a 
model with time-dependent stimuli. A-B Same as Fig. 3 except using 
the time-varying stimuli from Fig. 5B-C. C Same as Fig. 5D except 

time-dependent stimuli during training are represented by multiple 
dots (each one representing the inputs on one trial) and the mean is 
represented by a purple x
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During training (for matched stimuli), we have from 
Eq. (19) that

Since Et[c(t)] = 1 , we have that

which is the same as the model from Figs. 1–3. Hence, under 
this approximation, W should converge to the same fixed 
point in Eq. (14). Notably, this implies that the time-averaged  
rates should be equal to the target rates, r = r

0 . As predicted, 
simulations show that average firing rates are close to their 
targets (Fig. 7A) and the weights do converge to the given 
fixed point with the addition of some noise (Fig. 7C) coming 
from the noisy time-dependence of X(t) and r(t).

Therefore, the state of the network (as represented by W) 
after training is similar for the networks with time-constant and 
time-dependent stimuli. As a result, the deviation, dr(t) , of the 
firing rates from their targets on any given trial takes the same 
form derived in Eq. (15),

where dX(t) = X(t) − X is the deviation of the stimulus 
from the mean value it takes during training and A0 is the 
fixed point of A = [D −W]−1 after training (see Eq. (13) and 
surrounding discussion). This conclusion assumes that the 
mean-field approximation in Eq. (22) is approximately accu-
rate or, more specifically, that the firing rate response to a 
perturbation is approximately a linear function of the input 
perturbation. This, in turn, requires that the input perturba-
tion is not too strong.

As a heuristic, we can ignore the effect of A0 in Eq. (27) and 
make the approximation that dr(t) is larger whenever dX(t) is 
larger. In other words,

where ‖A0‖ denotes the induced Euclidean norm on A0 . In 
other words, stimuli that are further from the mean train-
ing stimuli evoke larger firing rates. Note that we neces-
sarily have ‖A0dX(t)‖ ≤ ‖A0‖‖dX(t)‖ , so this assumption is 

(25)X
m(t) =

⎡
⎢⎢⎣

X0
e
+ c(t)U

X0
e
+ c(t)V

X0

i

⎤
⎥⎥⎦

(26)X =

⎡
⎢⎢⎣

X0
e
+ U

X0
e
+ V

X0

i

⎤
⎥⎥⎦

(27)

dr(t) ∶= r(t) − r
0

= A0
X(t) − r

0

= A0(X(t) − X)

= A0dX(t)

(28)
‖dr(t)‖ = ‖A0dX(t)‖

≈ ‖A0‖‖dX(t)‖
∝ ‖dX(t)‖.

saying that ‖A0dX(t)‖ is not much smaller than ‖A0‖‖dX(t)‖ . 
This approximation assumes that dX(t) is not close to being 
orthogonal to the rows of A0.

During matched stimuli, combining Eqs. (25) and (26) 
gives the perturbation for training stimuli

Since |U| = |V| , we have

where u(t) = 1 − c(t) is uniformly distributed on [−1, 1] . 
Hence, the squared distance of X(t) from its mean varies 
between 0 and 2|V|. During the mismatched stimulus, we 
have from Eq. (21), that

Combining this with Eq. (26) shows that, during a mis-
matched stimulus, the input perturbation is

and therefore

Hence, the deviation of the external input, X(t) , from its 
mean value during training is similar in magnitude during 
matched and mismatched stimuli. As a result, the deviation 
of the firing rates from their targets is also similar during 
matched and mismatched stimuli, so the mismatch is not 
detectable based on the deviation of firing rates from their 
targets alone.

This intuition, and how it differs from the time-constant 
model of Figs. 1–3, is illustrated in Fig. 8. For the model 
with time-constant inputs, there is only one stimulus during 
matched, training trials (Fig. 8A, purple dot). Since the mis-
match stimulus is far from this matched stimulus, the firing 
rate deviates from its target in response to the mismatched 
stimulus (as demonstrated in Figs. 1–3). For the model with 
time-varying stimuli, there are multiple training stimuli that 
lie along a line (Fig. 8B, purple dots). While the mismatch 
stimulus is clearly away from this line (Fig. 8B, orange dot), 
the deviation of the firing rates from their targets is approxi-
mately proportional to how far an input is from the mean 
training stimulus (Fig. 8B, purple x). Since this distance 

dXm(t) =

⎡
⎢⎢⎣

(1 − c(t))U

(1 − c(t))V

0

⎤
⎥⎥⎦
.

‖dXm(t)‖2 = 2(1 − c(t))2�V�
= 2u2(t)�V�

X
mm =

⎡⎢⎢⎣

X0
e
+ U

X0
e

X0

i

⎤⎥⎥⎦

dXmm =

⎡⎢⎢⎣

0

−V

0

⎤⎥⎥⎦

‖dXmm‖2 = �V�.
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is similar for the mismatch stimulus and a typical training 
stimulus, the deviation of the firing rates from their targets 
is also similar during matched and mismatched stimuli (as 

demonstrated in Figs. 5–7). While this intuition might seem 
obvious in hindsight, the complexity of dynamics in recur-
rent spiking neural network models can make this conclu-
sion difficult to foresee without the benefit of the mean-field 
analysis provided here.

For the sake of completeness, we also considered a model 
with distributed, time-varying stimuli. Specifically, we com-
bined the time-varying stimuli from the example in Fig. 7 
with the distributed stimuli from the example in Fig. 4 to get 
inputs of the form (Fig. 9A, B)

and

where c(t) is a scalar drawn from a uniform distribution on 
[0, 2] on each trial, and U⃗ and V⃗  are normally distributed Ne

-dimensional vectors as in Eq. (18). Unsurprisingly, given 
the failure on the simpler example discussed above, the 
spiking network model did not produce an easily detectable 
response to mismatched stimuli (Fig. 9C-F). Specifically, 
the deviation of the firing rates away from their targets was 
similar in matched and mismatched trials (Fig. 9C, D).

2.6 � How do our conclusions generalize to other 
network models?

The mean-field analysis above relied on several assumptions 
that were used to derive approximations. This raises the 

(29)Xe = X0

e
+ c(t)U⃗ + c(t)V⃗

}
matched

(30)Xe = X0

e
+ U⃗

}
mismatched.

A B

Fig. 8   Schematic illustrating why mismatch responses are detect-
able after training on time-constant, but not time-dependent stimuli. 
A  Schematic representing inputs to the network in a model with 
time-constant stimuli. Training stimuli occupy a single point in 
(U,  V) space (purple dot). The deviation of firing rates from their 
targets on any particular trial is approximately proportional to the 
distance of the input from its value during training (Eq. (15)). Since 
the mismatch stimulus (orange dot) is far from the matched, train-
ing stimulus, firing rates deviate from their target in response to the 
mismatched stimulus (as seen in Figs. 1–3). B Schematic represent-
ing inputs to the network in a model with time-varying stimuli. Train-
ing stimuli (purple dots) vary in (U, V) space along a predictable line. 
The mismatched stimulus lies far from this line. However, the devia-
tion of firing rates from their targets on any particular trial is approxi-
mately proportional to the distance of the input from its mean value 
during training (Eq.  (15)). Since the distance between the mismatch 
input (orange dot) and the mean training stimulus (purple x) is similar 
to the typical distance between the individual training stimuli (purple 
dots) and the mean training stimulus (purple x), the deviation of the 
firing rates from their targets is similar for matched and mismatched 
stimuli

A C E

B
D F

Fig. 9   Prediction errors after training on distributed time-dependent inputs. Same as Fig. 4 except bottom-up and top-down inputs were time-
dependent, as described by Eqs. (29)–(30)
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question of how general our conclusions are. Specifically, 
for which network models does the argument above imply 
an absence of noticeable mismatch responses? To answer 
this question, we can distill the argument above into three 
fundamental assumptions: 

1.	 The linear approximation in Eq. (27) should be approxi-
mately accurate, 

 While this assumption is strong, it should be satis-
fied when dX(t) is sufficiently small. In addition, bal-
anced excitation and inhibition linearize the firing rate 
responses of networks to external input (van Vreeswijk 
& Sompolinsky, 1998; Rosenbaum & Doiron, 2014; 
Lim & Goldman, 2014; Landau et al., 2016; Ebsch & 
Rosenbaum, 2018; Ahmadian & Miller, 2021), so this 
assumption should hold in networks with balanced exci-
tation and inhibition, which is encouraged by inhibitory 
synaptic plasticity (Vogels et al., 2011; Hennequin et al., 
2017; Baker et al., 2020; Akil et al., 2021).

2.	 The approximation in Eq. (28) should be accurate, spe-
cifically 

 which requires that dX(t) not be close to orthogonal to 
the rows of A0.

3.	 The magnitude of the input perturbations for a mis-
matched stimulus should be similar to a typical value 
during matched stimuli, 

In general, if a model satisfies these three assumptions 
then dr(t) is similar in magnitude during matched and mis-
matched stimuli. Note that these assumptions are sufficient, 
but not necessary for a lack of mismatch responses. For 
example, if assumption 1 is violated because the rate per-
turbations are nonlinear, then the nonlinear model might still 
not compute mismatch responses.

Strictly speaking, assumption 2 is stronger than needed. 
Instead, we only need that the relationship between A0 and 
dX is similar for matched and mismatched stimuli, i.e., that

which is a weaker assumption because it allows for dX to 
be aligned with the rows of A0 so long as the alignment is 
similar for matched and unmatched stimuli.

For our examples in which the network is trained on 
time-constant input (Figs. 1–4), we have that Xm(t) = X , so 

dr(t) ≈ A0dX(t)

‖A0dX(t)‖ ≈ ‖A0‖‖dX(t)‖

‖dXmm‖ ≈ ‖dXm(t)‖

‖A0dXm(t)‖
‖A0‖‖dXm(t)‖ ≈

‖A0dXmm‖
‖A0‖‖dXmm‖

dXm(t) = 0 whereas dXmm
≠ 0 , so assumption 3 above is 

not met. This explains why our examples trained on time-
constant were able to produce robust mismatch responses.

In previous work (Hertäg & Sprekeler, 2020), a network 
with homeostatic plasticity successfully computed predic-
tion errors after training on time-varying stimuli. In that 
work, the weights of the connectivity matrix were carefully 
chosen so that A was singular and the directions of the input 
perturbation during matched stimuli (the “feedback” stimu-
lus condition) was in the nullspace of A0 . See equation 28 
in their appendix and note that A0 was called W in their 
analysis. As a result, the model studied there does not satisfy 
assumption 2 above. This explains how Hertäg and Sprekeler 
(2020) were able to compute prediction errors with time-
varying inputs.

In all of the examples we have considered so far, external 
input was provided to excitatory neurons only. However, our 
analysis implies that our overall results should still hold if 
input is provided to inhibitory neurons as well. Specifically, 
in Eqs. (27) and the surrounding equations and analysis, 
there is nothing preventing dX(t) from having a non-zero 
component for the inhibitory population(s). To verify this 
prediction, we repeated all of the spiking network simu-
lations (those in Figs. 1, 4, 5, and 9) in models in which 
external input was also added to the inhibitory population. 
Our results show the same overall conclusions for all figures 
(see Supplementary Materials Sect. 1 and Supplementary 
Figs. 1–2). Specifically, in all examples, a noticeable mis-
match response was observed after training on time-constant 
inputs, but not after training on time-varying inputs.

Assumption 3 above implies that mismatch responses 
could be possible after training on time-varying stimuli if the 
mismatch stimulus is larger in magnitude than the matched 
stimuli used during training. While this is not necessarily a 
surprising finding (a larger stimulus should evoke a larger 
response), we decided to test it in a simulation. Specifically, 
we repeated the simulation from Fig. 5, but we scaled the 
magnitude of the mismatched input by a factor of six. These 
simulations confirm that a mismatch response was produced 
in this case (Supplementary Fig. 3).

In all of the examples above, we considered only a 
single inhibitory population and at most two excitatory 
populations. In reality, there are multiple inhibitory neu-
ron subtypes in the cortex and previous work on mismatch 
responses with inhibitory plasticity accounts for this (Hertäg 
& Sprekeler, 2020; Hertäg & Clopath, 2021). Our analysis 
above implies that increasing the number of neuron popu-
lations alone should not affect our overall conclusions. To 
test our findings empirically on a model with several neural 
populations, we performed a simulation that was identical to 
the simulation in Fig. 5 except we used three inhibitory and 
three excitatory populations. Consistent with our theoretical 
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predictions, the results were qualitatively similar to those 
in Fig. 5: After training on time-dependent stimuli, there 
was no noticeable deviation of firing rates in response to a 
mismatched stimulus (see Supplementary Fig. 4).

3 � Discussion

We combined numerical simulations of spiking networks 
and mean-field rate models with mathematical analysis to 
evaluate the extent to which homeostatic inhibitory synaptic 
plasticity can train an unstructured network to compute pre-
diction errors. We found that the networks successfully learn 
to compute prediction errors when training stimuli are static. 
Specifically, if top-down and bottom-up inputs are fixed in 
time during training, then firing rates in the trained network 
will maintain a baseline firing rates in response to stimuli 
that match the training stimuli, but firing rates will deviate 
from their baseline levels in response to mismatched stimuli. 
This result holds when stimuli are uniform (with each of a 
few sub-populations receiving homogeneous external input) 
or when stimuli are distributed (with each neuron receiving 
distinct, but time-constant levels of external input during 
training).

To our surprise, simulations showed that even under a 
simple model of time-varying stimuli, in which bottom-
up and top-down inputs are modulated by the same time-
varying factor, the same networks fail to produce reliable 
mismatch responses after training. Specifically, firing rates 
deviate from their baseline levels by a similar amount in 
response to stimuli that are matched (a shared modulation, 
as in training) or mismatched (one input is modulated dif-
ferently than the other). We used a mean-field approxima-
tion to explain these empirical findings and elucidate a set 
of conditions under which robust mismatch responses do 
not occur. Our results therefore help to clarify the extent to 
which homeostatic inhibitory synaptic plasticity is sufficient 
to train a network to compute mismatch responses.

For networks trained on time-varying inputs, our results 
show a lack of mismatch responses in the sense that firing 
rates do not deviate from their baseline (when deviation is 
measured by mean-squared error) more during mismatched 
inputs than they do for matched stimuli. However, mismatch 
responses could potentially be detected by some linear pro-
jection of the firing rates and this linear projection could be 
fed as input to a readout neuron that would be able to detect 
mismatch responses. However, our main goal was to under-
stand the situations under which a natural homeostatic plas-
ticity rule would spontaneously produce elevated responses 
to mismatched stimuli. Training a separate linear projection 
is outside the scope of this goal.

Inhibitory homeostatic synaptic plasticity is only one of 
many homeostatic mechanisms in the brain (Turrigiano, 

2011). While homeostatic plasticity is one candidate mecha-
nism for predictive coding, other homeostatic mechanisms 
could play a role as well. Future work should consider the 
potential role of other homeostatic mechanisms in predictive 
coding and mismatch detection.

Previous work  (Hertäg & Sprekeler, 2020; Hertäg & 
Clopath, 2021) found that networks with homeostatic plas-
ticity can learn to compute mismatch responses in models 
with time-varying stimuli that are similar to the time-varying 
stimuli that we used (in the cases where our networks failed). 
They used a more biologically detailed network model with 
multiple inhibitory subtypes and multi-compartment excita-
tory neurons. Importantly, connectivity in their model was 
constrained so that matched stimuli were in the nullspace of 
the effective connectivity matrix (A in our work, W in theirs). 
Our theoretical analysis agrees with their analysis showing 
that this assumption is necessary for their overall results. We 
additionally provided a set of conditions under which more 
general classes of models will not produce robust mismatch 
responses, which generalizes some of the theoretical results 
in Hertäg and Sprekeler (2020) to more general classes of 
networks. The requirement that matched stimuli are in the 
nullspace of the effective connectivity matrix is a strong 
assumption because it implies that the connectivity matri-
ces must be precisely tuned. Moreover, the dimension of the 
nullspace of the connectivity matrix must match the dimen-
sionality of the training stimuli, which could make it difficult 
to train a network to maintain baseline firing rates on a higher 
dimensional space of training stimuli.

Our study and the previous work described above (Hertäg 
& Sprekeler, 2020; Hertäg & Clopath, 2021) incorporates 
homeostatic synaptic plasticity, but does not account for 
any other of the wide variety of synaptic plasticity rules 
observed in neural recordings. Other work has shown that 
predictive coding can be learned in carefully constructed 
networks using learning rules that are not exclusively home-
ostatic (Bogacz, 2017). Indeed, our approach of learning 
prediction errors in unstructured, randomly connected net-
works could potentially be made successful if the target 
rates, ra

0
 , were effectively modulated by the top-down or 

bottom-up input. Future work should consider the possibil-
ity of learning prediction errors in unstructured, random 
networks by combining these approaches.

4 � Materials and methods

All simulations were performed by numerically solving the 
corresponding differential equations using the forward Euler 
method in custom written Python code. Code to produce all 
figures can be found at https://​github.​com/​Rober​tRose​nbaum/​
PCISP.
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For spiking network simulations (Eqs. (1)–(2); Figs. 1, 4, 
and 5) and mean-field rate network simulations (Eqs. (6)–(7); 
Figs. 2 and 6) we used a time step size of dt = 0.1ms. For the 
slow-timescale model (Eqs. (24); Figs. 3 and 7) we used a 
time step size of dt = 1s.

For all spiking network simulations (Eqs. (1)–(2); Figs. 1, 
4, and 5), we used Ne = 4000 and Ni = 1000 excitatory and 
inhibitory neurons. All neurons were connected with proba-
bility pee = pei = pie = pii = 0.1 . Connected neurons had ini-
tial synaptic weights jee = 7.07mV/ms, jei = −49.5mV/ms, 
jie = 31.8mV/ms, and jii = −70.7mV/ms. EIF neuron param-
eters were �m = 15ms, EL = −72mV, Vre = −73mV, DT = 2

mV, VT = −55mV, Vth = 0mV, and a reflecting lower bound-
ary on the membrane potential was placed at Vlb = −80 mV to 
approximate an inhibitory reversal potential. Synaptic time-
scales were �e = 6 ms and �i = 4ms. Baseline external input 
to excitatory and inhibitory neurons was X0

e
= 42.4 mV and 

X0

i
= 28.3mV. Parameters for the inhibitory plasticity rule 

were �e = 56.6mV, �i = 28.3mV, and �STDP = 200 ms with 
target rates at re

0
= 4 Hz and ri

0
= 8Hz. For mean-field rate 

network simulations (Eqs. (6)–(7); Figs. 2 and 6), we used a 
gain of g = 0.001ms/mV, which was derived by simulating 
the spiking network model without plasticity and then fitting 
the f-I curve r = f (I) = gIH(I) (where H is the Heaviside 
step function) to the time-averaged firing rates and input cur-
rents of all neurons in the simulation. Learning rates for rate 
network simulations were �e = 8944 mV and �i = 4472mV. 
All other parameters were the same as those used in spiking 
network simulations or their derivations are given in Results. 
Python code to simulate the networks reproduce the figures 
can be found on the last author’s academic webpage.

4.1 � Derivation of Eq. (10) for MSE
Poisson

Here, we derive Eq. (10) for MSEPoisson . Consider a popula-
tion of N neurons divided into M sub-populations where 
sub-population a contains Na neurons for a = 1,… ,M 
( M = 3 and a = e1, e2, i for the models considered in this 
paper). Assume that each neuron in population a spikes like 
a Poisson process with a rate of ra . Let na

j
 be the number of 

spikes emitted by neuron j = 1,… ,Na in population 
a = 1,… ,M during a time interval of duration T and let

be the sample firing rate of neuron j. Then each na
j
 has expec-

tation and variance

so each sample rate has expectation

ra
j
=

na
j

T

E[na
j
] = var(na

j
) = raT

and variance

Now suppose we have a target rates of r0
a
 for each neuron 

in population a and we would like to compute the population-
wide MSE deviation of the sample rates from their targets. 
This can be written as

where qa = Na∕N is the proportion of neurons in population 
a, rj is the sample rate, and r0

j
 is the rate parameter for neuron 

j = 1,… ,N . The inner sum can be written as

The first term in the sum is the sample variance of ra
j
 , so

when Na is large. The last term in the sum can be ignored 
when Na is large because

since ra is the expected value of ra
j
 . Putting this altogether 

gives

E[ra
j
] = E

[
na
j

T

]
= ra

var(ra
j
) = var

(
na
j

T

)
=

ra

T
.

MSEpop =
1

N

N∑
j=1

(rj − r0
j
)2

=
1

N

M∑
a=1

Na∑
j=1

(ra
j
− r0

a
)2

=

M∑
a=1

qa
1

Na

Na∑
j=1

(ra
j
− r0

a
)2

1

Na

Na∑
j=1

(ra
j
− r0

a
)2 = (r0

a
− ra)

2

+
1

Na

Na∑
j=1

(ra
j
− ra)

2 − 2(r0
a
− ra)(r

a
j
− ra).

1

Na

Na∑
j=1

(ra
j
− ra)

2 ≈ var(ra
j
) =

ra

T
.

1

Na

Na∑
j=1

(r0
a
− ra)(r

a
j
− ra) = (ra − r0

a
)

(
ra −

1

Na

Na∑
j=1

ra
j

)

≈ 0

MSEpop ≈

M∑
a=1

qa

[
(ra − r0

a
)2 +

ra

T

]

= MSEmf +
1

T

M∑
a=1

qara
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where

is the mean-field MSE defined in Eq. (9). This calculation 
motivates the definition of the Poisson-corrected MSE,

as defined in Eq. (10). Specifically, our calculations above 
show that MSEPoisson approximates the population-level MSE 
(i.e., MSEpop ) that would be produced if all of the spike 
trains in each sub-populations were Poisson processes. The 
approximation becomes exact as Na → ∞.
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