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ABSTRACT

We study properties of the realizations of groups as the combinatorial

automorphism group of a convex polytope. We show that for any non-

abelian group G with a central involution there is a centrally symmetric

polytope with G as its combinatorial automorphisms. We show that for

each integer n, there are groups that cannot be realized as the combina-

torial automorphisms of convex polytopes of dimension at most n. We

also give an optimal lower bound for the dimension of the realization of a

group as the group of isometries that preserves a convex polytope.
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Introduction

Polyhedra and their symmetries have been a rich subject of study. In this

paper we are interested in the symmetries of convex polytopes, the convex hulls

of finite sets of points in Rd. For a given polytope P , we consider the following

two symmetry groups: The geometric symmetry group G(P) consists of

all (Euclidean) isometries of the ambient space that map P onto itself. The

combinatorial symmetry group Γ(P) of P consists of all the automorphisms

of the face lattice of P . The group Γ(P) can be identified with the group

of all permutations of the vertices of P which map faces of P to faces of P .

It has recently been established that every finite group is isomorphic to the

combinatorial automorphism group of a convex polytope P . This result was

first proved by Schulte and Williams [SW15] and later by Doignon [Doi18] with

a simplified proof. In Doignon’s paper, it was shown that every finite group is

the combinatorial automorphism group of a 0/1-polytope.

Given a group G, there are many different convex polytopes whose symmetry

group is exactly G. This leads to a rich family of extremal problems: given

a group G and a parameter λ(·), determine the maximum/minimum value

that λ(P) can take, where P ranges over the polytopes whose (geometric or

combinatorial) symmetry group is exactly G. In this note we are interested in

finding polytopes P of minimal dimension with prescribed symmetry group. We

give a lower bound for the dimension of a polytope having an elementary abelian

group of given order as combinatorial automorphism group (Theorem 3.3). A

consequence is that for every d, there are finite groups which can not be realized

as combinatorial automorphism groups of convex polytopes of dimension less

than or equal to d. It turns out that for elementary abelian groups, our lower

bound is sharp (Theorem 4.8). While our results also yield lower bounds for

the dimension of a polytope with some other prescribed finite group as com-

binatorial automorphism group, these lower bounds are probably not optimal

when the group is not elementary abelian.

We also show that finding a polytope of smallest dimension with a prescribed

group as geometric symmetry group reduces to a problem in the representation

theory of finite groups. Using this, we can compute exactly the smallest dimen-

sion of a polytope having a given abelian group as geometric symmetry group

(Theorem 4.6), and similarly for other classes of groups. For example, the sym-

metric group Sn on n letters is the geometric (and combinatorial) symmetry
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group of a regular simplex of dimension n − 1, and this is in fact the smallest

dimension of a polytope with geometric symmetry group Sn (see Theorem 4.9).

The results described so far affirmatively answer two questions of Schulte,

Soberón and Williams [SSW21, Open Questions 1 and 2]. We also consider

the following problem suggested by Schulte, Soberón and Williams: Instead of

solving instances of the general extremal problems described above, one can

look for polytopes with fixed symmetry groups that satisfy additional geomet-

ric properties. This was explored in the cited paper [SSW21], where it was

established that every finite abelian group of even order is the automorphism

group of a centrally symmetric polytope. Moreover, the involution that corre-

sponds to the central symmetry can be prescribed in advance. We generalize

this result to non-abelian groups with a central involution, thereby answer-

ing another question from [SSW21] (see Theorem 2.1). The methods we use

come from representation theory and geometric group theory. Representation

theory has been used previously to study convex polytopes, as can be seen in

[GP06, FL16, BHNP09] and the references therein.

Our main results answer all the open questions [SSW21, Open Questions 1, 2

and 3] affirmatively. In Section 5, we propose some new questions, which are

suggested by our results.

1. Preliminaries

Given a polytope P , we denote by Γ(P) its group of combinatorial automor-

phisms and by G(P) its group of geometric symmetries. One of our main tools

we use is the following theorem.

Theorem 1.1 ([SSW21]): Let d ≥ 3, let Q be a convex d-polytope with (com-

binatorial) automorphism group Γ(Q), and let Γ be a subgroup of Γ(Q). Then

there exists a convex d-polytope P with the following properties:

(a) Γ(P) = Γ.

(b) P is isomorphic (as an abstract polytope) to a face-to-face tessellation T

of the (d− 1)-sphere Sd−1 by spherical convex (d− 1)-polytopes.

(c) skeld−2(C(Q)) is a subcomplex of skeld−2(P).

(d) If Γ is a subgroup of the (geometric) symmetry group G(Q) of Q, then

the tessellation T on Sd−1 in (b) can be chosen in such a way that

G(T ) = Γ = Γ(T ).
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In the statement above, skeld−2(·) stands for the (d−2)-dimensional skeleton

of a polytope, and C(Q) for the barycentric subdivision of the boundary complex

of Q. The proof of Theorem 1.1 is done by taking a barycentric subdivision of Q

and then adding faces in order to break the undesired symmetries in P . The

method preserves any geometric symmetries of Q that were present in Γ. This

method actually gives a stronger result. Not only is the group of combinatorial

automorphisms of P equal to Γ, but the group of automorphisms of skel1(P) (as

a graph) is equal to Γ. The reason for this is that the only tool that [SSW21]

uses to determine that extra symmetries have been broken is an analysis of the

degrees of the vertices in skel1(P). It follows that in Theorem 2.1 below, the

combinatorial automorphism group Γ(P) can be replaced by the automorphism

group of the 1-skeleton (as a graph) of our polytope.

The following corollary will be useful a few times:

Corollary 1.2: Let d ≥ 3 and let Γ be a finite subgroup of the orthogonal

group Od(R). Then there exists a convex d-polytope P such that

G(P) = Γ(P) = Γ.

Proof. The group Γ acts on the unit sphere Sd−1 ⊂ Rd. If we take a sufficiently

large union F of finitely many Γ-orbits, then the convex hull Q = conv(F )

will be a convex d-polytope. By construction, Γ ≤ G(Q), so the result follows

from Theorem 1.1(d).

A few times, we will use the following standard result from representation

theory [Hup98, Theorem 2.13].

Proposition 1.3: Let ρ : Γ→GL(d,R) be a representation of the finite group Γ.

Then there is a Γ-invariant inner product on Rd. Equivalently, the representa-

tion ρ is similar to a representation Γ → Od(R).

Proof. Let (·, ·) be an arbitrary inner product on Rd. Then

[x, y] :=
∑

g∈Γ

(ρ(g)x, ρ(g)y)

yields a Γ-invariant inner product on Rd. When S = (s1, . . . , sd) is an orthonor-

mal basis of Rd with respect to [·, ·], then the corresponding matrices S−1ρ(g)S

are orthogonal.
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Finally, notice the following: every geometric symmetry of a polytope fixes

the geometric center of the polytope. By choosing the center as origin of the

coordinate system, we may assume that all geometric symmetries are realized by

orthogonal maps. It is then also true that all affine symmetries of the polytope

(the affine maps sending a polytope to itself) are linear maps.

A general consequence of Proposition 1.3 and the last comment is that it

does not make much of a difference for the questions considered in this paper,

whether we deal with the geometric symmetry group of a polytope, or the group

of affine symmetries of a polytope, or the group of orthogonal or linear maps

sending the polytope to itself.

2. Symmetric polytopes

Our first main result answers [SSW21, Open Question 3] affirmatively.

Theorem 2.1: Let Γ be a finite group and σ ∈ Γ a central order-two element.

Then, there is a centrally symmetric polytope P with

G(P) = Γ(P) ∼= Γ

and σ acting as the central symmetry.

Proof. Let G = 〈σ〉 and let ρ : G → {±1} ⊂ R× be the non-trivial representa-

tion, whose one-dimensional real carrier space we denote by V . Upon equipping

the induced representation

W := IndΓGV

with a Γ-invariant inner product (Proposition 1.3), we get an embedding of Γ

into the orthogonal group of W . Moreover, σ acts as −1 on W by con-

struction. By Corollary 1.2, it follows that there is a polytope P such that

G(P) = Γ(P) ∼= Γ.

3. The combinatorial convex polytope dimension

Our next result shows that the “combinatorial convex polytope dimension of a

group” is a meaningful parameter.

Definition 3.1: Let G be a group. We define ccpd(G) (the combinatorial

convex polytope dimension of G) to be the minimum integer d such that

there is a convex polytope P in Rd such that Γ(P) = G.
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The results in [SW15] show that this parameter is well defined. In this sec-

tion we will prove that it can be arbitrarily large, and is therefore interest-

ing to compute. Note that when A is a subgroup of B and ccpd(B) ≥ 3,

then ccpd(A) ≤ ccpd(B). This is a direct consequence of Theorem 1.1. On

the other hand, the only groups with ccpd(B) = 2 are the dihedral groups of

order 2n ≥ 6, and the only groups with ccpd(B) ≤ 1 are the groups of order 1

and 2. So when B is a dihedral group and A ≤ B is cyclic of order n ≥ 3, or

the Klein four-group, then ccpd(B) = 2, but ccpd(A) = 3. Aside from these

exceptions, ccpd(·) is monotone.

Remark 3.2: As recalled in [SSW21, Section 2], to every convex polytope P

one can associate its boundary complex, consisting of its proper faces. This

complex

• gives a tesselation of the boundary ∂P , which, topologically, is a sphere;

• has a barycentric subdivision giving a triangulation of said sphere, i.e.,

a simplicial sphere;

• depends only on the combinatorial data of how the proper faces of P

are glued along facets.

It follows that the combinatorial symmetry group Γ(P) of a polytope P can

be regarded as a group of simplicial symmetries of ∂P , i.e., automorphisms

of ∂P equipped with its simplicial complex structure. This renders plausible

the relevance of Theorem 3.3 below, where the dimension n of the sphere fits

into the present discussion as n = dim ∂P = dimP − 1.

The proof of the following result requires, for a prime p and an integer n ≥ −1,

the notion of a cohomology n-sphere over Z/p. Cohomology n-manifolds are

introduced in [Bor60, Definition I.3.3] and are the central subject of study in

said reference. They coincide with the objects introduced by Smith in [Smi39]

to provide the appropriate context for his study of finite transformation groups.

For brevity, we refer to a cohomology n-manifold with the same homology as

the sphere in Z/p as a cohomology n-sphere over Z/p.

We do not recall the full definition of cohomology manifolds here, pausing

only to note that

• simplicial n-spheres are cohomology n-spheres (over every Z/p);

• cohomology 0-spheres are just plain 0-spheres, i.e., disjoint unions of

two points (this follows for instance from [Smi39, 5.3]).
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We will also be referring to the link lkK(∆) of a simplex ∆ in a simplicial

complex K. This is usually defined via the star stK(∆):

stK(∆)=subcomplex ofK generated by the simplices ∆′ such that ∆⊆∆′⊆K.

Then, the subcomplex of stK(∆) consisting only of simplices disjoint from ∆

is the link lkK(∆). See, for example, [FP90, discussion preceding Proposition

3.2.12] or [Mau96, Definition 2.4.2], but notice that the latter reference calls

‘nerves’ what we call ‘stars’. The introductory material in [Bry02, §2] is another

reference for these notions.

It follows for instance from [Wil79, Theorem X.6.9] that in a simplicial com-

plex that is a cohomology n-manifold, the link on a d-simplex is a cohomology

(n− d− 1)-sphere.

The following result is essentially [Smi44, second corollary, p. 107], but it was

not obvious to us how it follows from the discussion preceding it, so we include

a proof for completeness. See also Remark 3.4 for further discussion.

Theorem 3.3: Let p be a prime, and let Γ = (Z/p)r be an elementary abelian

p-group acting simplicially and effectively on a simplicial n-sphere. Then, we

have r ≤ n+ 1 if p = 2, and 2r ≤ n+ 1 otherwise.

Proof. It will be convenient, throughout the proof, to denote

e =

⎧
⎨
⎩
1 if p = 2

1

2
otherwise.

We prove the claim that r ≤ e(n + 1) by induction on n for an action on a

simplicial cohomology n-sphere P .

Base case n = 0. We have observed above that cohomology 0-spheres are just

plain 0-spheres, so the result is obvious: Z/2 can act effectively by permuting

the two points that constitute the 0-sphere, while Z/p, p > 2 cannot.

Induction step. We can assume r ≥ 2. Since according to [Smi44, first

corollary, p. 107] a non-cyclic abelian group cannot act freely on a cohomology

sphere, there must be a cyclic subgroup

Z/p ∼= 〈σ〉 = G ≤ Γ

with non-empty fixed-point set F . It is a non-trivial result that the simplicial

subcomplex F ⊂ P must again be a cohomology m-sphere for some 0 ≤ m ≤ n:
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• It is shown in [Bor60, §IV.4.3] that F has the same (Z/p)-homology as

an m-sphere;

• [Bor60, Theorem V.2.2] proves that F is an orientable cohomology man-

ifold;

• [Bor60, §I.3.4] then shows that its dimension as a complex (and as a

cohomology manifold) must be m.

We choose σ such that the dimension of F is maximal, and consider the point-

wise isotropy group ΓF of F . Because Γ is elementary abelian we have a de-

composition

Γ = ΓF ⊕ Γ̃,

and Γ̃ acts on F (because the latter is the fixed-point set of ΓF and Γ̃ commutes

with the latter). We first claim that this action of Γ̃ on the (m-dimensional)

cohomology sphere F is faithful.

Indeed, were it not, there would be an element σ̃ ∈ Γ̃ that fixes a set contain-

ing F . This could not be proper containment (for that fixed-point set would

then be a strictly higher-dimensional cohomology sphere thus contradicting the

maximality of dimF), and hence

P σ̃ = Pσ = F .

But then [Smi44, Theorem] would imply that σ̃ ∈ Γ = 〈σ〉, i.e., a contradiction.

But by induction, the faithfulness of the action of Γ̃ on F then gives

(3-1) rank Γ̃ ≤ e(m+ 1).

On the other hand, the fact that ΓF itself acts effectively on all of P but

trivially on F implies that the resulting action of ΓF on the link of some m-

simplex in F ⊂ P is effective. We observed in the above discussion that said

link is a simplicial cohomology sphere of dimension m′ satisfying

(3-2) (m+ 1) + (m′ + 1) = n+ 1.

The inductive step applied to this action gives us

(3-3) rank ΓF ≤ e(m′ + 1),

and adding together (3-1) and (3-3) produces, via (3-2), precisely the desired

inequality

r = rank ΓF + rank Γ̃ ≤ e(n+ 1).

This finishes the proof.
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Remark 3.4: As mentioned above, Theorem 3.3 is essentially [Smi44, second

corollary, p. 107]. The latter, though, states only the 2r ≤ n + 1 inequality,

which cannot be correct in full generality: Z/2, of rank r = 1, acts on the zero-

sphere by the obvious permutation; in that case the inequality would read 2 ≤ 1.

There are hints in [Smi44] that perhaps only odd primes are considered (see,

e.g., footnote 6 therein), but this does not seem to be stated explicitly.

Remark 3.5: The inductive argument in the proof of Theorem 3.3 is very much

in the spirit of [MZ06, Lemmas 2.2 and 2.3].

As a consequence we have the following corollary.

Corollary 3.6: For each n there is a finite group that cannot be realized

as Γ(P) for any polytope with dimP < n.

Proof. Immediate from Theorem 3.3 and Remark 3.2 above, to the effect

that Γ(P) acts effectively on the simplicial sphere ∂P .

Corollary 3.6 gives an affirmative answer to [SSW21, Open Question 1]. On

the other hand, since finite groups of isometries can be regarded as acting

effectively and simplicially on simplicial spheres, Theorem 3.3 also proves an

affirmative answer to [SSW21, Open Question 2]:

Corollary 3.7: For each n there is a finite group that cannot be realized as

the geometric symmetry group G(P) for any polytope with dimP < n.

In fact, the last corollary and the geometric version of Theorem 3.3 follow

more swiftly from the observation that an abelian group with minimal number

r of generators can not be embedded into GL(d,C) for d < r (see Theorem 4.6

below, proof of lower bound).

4. The geometric convex polytope dimension

Definition 4.1: Let Γ be a group. Let gcpd(Γ) (the geometric convex poly-

tope dimension of Γ) be the minimum integer d such that there is a convex

polytope P in Rd such that G(P) = Γ.

Proposition 4.2: When gcpd(Γ) ≥ 3, then ccpd(Γ) ≤ gcpd(Γ).

Proof. This follows from Theorem 1.1, Part (d).
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Figure 1 indicates two constructions of polygons with geometric symmetry

group the cyclic group of order 4. The same constructions apply to all cyclic

groups Z/n of order n ≥ 3, so gcpd(Z/n) = 2. On the other hand, the combina-

torial automorphism group of a polygon is a dihedral group, so ccpd(Z/n) ≥ 3.

By Theorem 1.1 or otherwise, we have ccpd(Z/n) = 3. Similarly, we have

gcpd((Z/2)2) = 2 (take a rectangle), but ccpd((Z/2)2) = 3. It follows that the

conclusion of Proposition 4.2 is wrong only for cyclic groups of order ≥ 3, and

the Klein four-group (Z/2)2.

Figure 1. Two polygons with Z/4 as geometric symmetry group

For geometric symmetries, we have the following alternative version of Theo-

rem 1.1, which also works in dimension d ≤ 2. The gist of this result is that we

need to add at most one orbit of vertices to break undesired symmetries. The

proof is adapted from an argument by Isaacs [Isa77].

Proposition 4.3: Let Q ⊂ Rd be a finite, convex d-polytope and Γ a sub-

group of G(Q). Then there exists an orbit X of Γ on Rd such that for the

polytope P = conv(Q ∪X), we have Γ = G(P).

Proof. Let t be the translation that sends the barycenter of Q to the origin.

Then

G(t(Q)) = tG(Q)t−1

and tΓt−1 is a subgroup of G(t(Q)). So after replacing Q by a translated copy,

we may assume without loss of generality that the barycenter of Q is the origin.

In this case, we have G(Q) ⊂ Od(R). Let Y be the vertex set of Q. For

every 1 
= g ∈ G(Q), we have that ker(g − 1) (the eigenspace of g associated

with the eigenvalue 1) is a proper subspace of Rd. As Rd is not the union
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of finitely many proper subspaces, we can find a vector x such that no non-

identity element of G(Q) fixes x and such that x is not contained in a proper

subspace which is spanned by some subset of Y . Let X = Γx be the Γ-orbit

of x. For λ > 0, set

Pλ = conv(Y ∪ λX).

We will show that there is some λ > 0 such that G(Pλ) = Γ.

Consider the ray {λx : λ > 0} spanned by x. As x is not contained in a proper

subspace spanned by a subset of Y , this ray meets the boundary of Q in the

interior of a facet. Thus there is a nonempty interval I of positive real numbers

such that the vertex set of Pλ = conv(Y ∪ λX) is exactly Y ∪ λX for all λ ∈ I.

Set

s = (1/|G|)
∑

g∈Γ

gx.

The barycenter of Pλ is λs. For any y ∈ Y , there are at most two λ’s that solve

the quadratic equation |y−λs|2 = |λx−λs|2. As Y is finite, there are infinitely

many λ ∈ I such that |y−λs| 
= |λx−λs| for all y ∈ Y . We claim that G(Pλ) = Γ

for these λ. By construction, Γ ≤ G(Pλ) for any λ. As Y ∪λX is the vertex set

of Pλ, the isometry group G(Pλ) is the set of isometries mapping Y ∪ λX to

itself. By the choice of λ, we have that G(Pλ) stabilizes λX , and thus also Y .

Therefore, G(Pλ) ⊆ G(Q). By the choice of x, no non-identity element of G(Q)

fixes x. Thus

|G(Pλ)| = |G(Pλ)x| ≤ |X | ≤ |Γ|.

Since Γ ⊆ G(Pλ) we have G(Pλ) = Γ.

Isaacs also showed that when some finite group Γ ⊂ Od(R) acts absolutely

irreducibly on Rd, then Γ is the geometric symmetry group of a vertex-transitive

polytope. This can be generalized to some groups not necessarily acting abso-

lutely irreducibly [FL18, Corollary 5.8], but not to arbitrary subgroups ofOd(R).

Corollary 4.4: Let Γ be a finite group. Then gcpd(Γ) equals the smallest d

such that Γ embeds into GL(d,R).

Proof. When Γ ∼= G(P) for some d-polytope P , then Γ embeds into

Od(R) ⊂ GL(d,R).
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Conversely, suppose Γ embeds into GL(d,R). By Proposition 1.3, it follows

that Γ is isomorphic to a subgroup Γ̃ of Od(R). As in the proof of Corollary 1.2,

we can find a polytope Q such that G(Q) contains the given subgroup Γ̃ iso-

morphic to Γ. Then by Proposition 4.3 (or Corollary 1.2 when d ≥ 3), Γ̃ is the

isometry group of some d-polytope.

Remark 4.5: When d is minimal such that the given group Γ embeds

into GL(d,R), then one can actually show that Rd can be generated by a single

Γ-orbit on Rd. It follows that there is a d-polytope P with Γ ∼= G(P) and

such that Γ has at most two orbits on the set of vertices of P . On the other

hand, not every group is isomorphic to the geometric automorphism group of a

vertex-transitive polytope [Bab77].

As an example, we can compute gcpd for abelian groups.

Theorem 4.6: Let

(4-1) Γ = Z/n1 × · · · × Z/nr

be an abelian group, where

n1 | n2 | · · · | nr

are the invariant factors of Γ. Let s be the number of factors ni such that ni = 2

and let t be the number of factors ni such that ni > 2 (so r = s + t). Then

gcpd(Γ) = s + 2t, that is, the minimal dimension of a polytope P such that

G(P) ∼= Γ is s+ 2t.

Proof. By Corollary 4.4, we need to show that d = s + 2t is the minimum

dimension of a faithful linear representation ρ : Γ → GL(d,R). The fact that

this is a sharp bound entails two inequalities, which we prove separately.

Lower bound. Suppose the linear representation ρ : Γ → GL(d,R) is faithful.

So when decomposing the complexification of ρ (denoted by the same symbol,

for brevity) as a sum of irreducible (hence one-dimensional) characters, the

summands χi must generate the Pontryagin dual group

Γ̂ := Hom(Γ, S1) ∼= Γ.

It follows from this that there is, among the χi, a minimal set of genera-

tors χ1 up to χh, so that r ≤ h ≤ d. Minimality implies that no two χi

and χj , 1 ≤ i 
= j ≤ h can be mutually conjugate (since conjugation means tak-

ing the inverse in Γ̂).
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All self-conjugate χi = χi are trivial on the t-factor abelian group 2Γ, so

among the h χi we must have at least t non-self-conjugate characters. But

because ρ is a real representation, the t conjugates χi must be among the

summands of ρ as well, meaning that

dim ρ ≥ h+ t ≥ r + t = s+ 2t,

as claimed.

Upper bound. Fix an isomorphism

Γ̂ ∼= Γ ∼= Z/n1 × · · · × Z/nr

and select a set χi, 1 ≤ i ≤ r of generators for the r factors. The χi of order

two (s of them, in the notation of the statement) are realizable over the real

numbers, while the rest can be regarded as representations onR2 ∼= C. Summing

the characters we thus obtain an orthogonal representation of Γ on Rs+2t, which

is faithful because its simple constituents generate the dual group.

We have similar sharp bounds in the centrally symmetric case:

Theorem 4.7: Let Γ be a finite abelian group as in (4-1), σ ∈ Γ an involution,

and s and t as in the statement of Theorem 4.6. When σ is not a square in Γ,

then the conclusion of Theorem 4.6 holds for polytopes equipped with Γ-actions

with σ �→ −1. When σ is a square, then the minimal dimension of a polytope P

with geometric symmetry group Γ such that σ acts as −1 is 2r = 2(s+ t).

Proof. In any case, the fact that dimP ≥ s+2t follows from Theorem 4.6, since

the actions with σ �→ −1 form a subclass of isometric actions.

When σ is not a square in Γ, then we can write Γ = 〈σ〉×Γ0. Thus there is a

real character χ taking value −1 on σ. Now choose generators χ1 = χ, χ2, . . . , χr

as before. By replacing χi by χχi if necessary, we can ensure that χi(σ) = −1

for all i. Thus again the lower bound is achieved.

Now suppose that σ is a square in Γ. Then for every irreducible character χ

taking value −1 on σ we necessarily have χ 
= χ. Thus in this case a faithful

representation ρ : Γ → GL(d,R) with ρ(σ) = −I has at least 2r = 2(s + t)

summands. Conversely, we can find a generating set χ1, . . . , χr with χi(σ) = −1

for all i (as above), so the bound is achieved.

Going back to ccpd, we now know enough to determine it precisely for ele-

mentary abelian p-groups.
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Theorem 4.8: Let p be a prime. For Γ = (Z/p)r we have ccpd(Γ) = gcpd(Γ)

except in the following cases:

(a) when r = 1 and p > 2, then ccpd(Γ) = 3 and gcpd(Γ) = 2;

(b) when r = 2 and p = 2, then again ccpd(Γ) = 3 and gcpd(Γ) = 2.

Proof. By Theorem 3.3, the dimension n+1 of a polytope P on whose boundary

spherical simplicial complex ∂P the group Γ can act effectively is at least the

value of gcpd as computed in Theorem 4.6 (namely r when p = 2 and 2r

otherwise). In short, for elementary abelian p-groups Γ we always have

(4-2) ccpd(Γ) ≥ gcpd(Γ).

The two exceptions in the statement were noted and analyzed in the discussion

following Proposition 4.2. As for the other cases, Theorem 4.6 says that we then

have gcpd(Γ) ≥ 3 and hence ccpd(Γ) ≤ gcpd(Γ) by Proposition 4.2. Combining

this with (4-2) gives the conclusion.

In principle, Corollary 4.4 allows us to compute gcpd(Γ) from the character

table of Γ. We present a few more (elementary) examples which show that

gcpd(Γ) can be arbitrarily large:

Theorem 4.9:

(a) gcpd(Sn) = n− 1, where Sn is the symmetric group on n letters.

(b) Let Γ be an extraspecial p-group of order p2k+1, p odd. Then

gcpd(Γ) = 2pk.

(c) Let Γ = Aff(Fq) be the affine group of degree 1 over the field Fq with q

elements, that is, the set of all maps Fq → Fq of the form x �→ ax + b,

a, b ∈ Fq, a 
= 0. Then gcpd(Γ) = q − 1.

Proof. (a) Sn is the geometric (and combinatorial) automorphism group of

a regular (n − 1)-simplex. The one-dimensional characters of Sn have

the alternating group in the kernel. For n 
= 4, the symmetric group Sn

has no irreducible representations of degree between 1 and n−1 [Bur55,

pp. 466–468], and for n = 4, the irreducible representation of degree 2

is not faithful. Thus gcpd(Sn) = n− 1.

(b) The irreducible character degrees of an extraspecial p-group are 1 and pk

[Hup98, 7.6(b)]. The one-dimensional characters have the commuta-

tor subgroup in the kernel, so are not faithful. Every character χ
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of degree pk is faithful, but χ 
= χ as p is odd. The representa-

tion Γ → GL(pk,C) affording χ can be viewed as a representation

Γ → GL(2pk,R), so gcpd(Γ) = 2pk.

(c) The affine group is not abelian and has only one nonlinear character,

of degree q − 1 [Hup98, 7.9(c)]. This character is afforded by a repre-

sentation over R (in fact over Q), so gcpd(Γ) = q − 1.

5. Some open questions

By the results in the last section, we can (in principle) compute the geometric

convex polytope dimension gcpd(Γ) of a group using representation theory. For

the combinatorial convex polytope dimension, the situation is less clear. We

have sharp bounds for elementary abelian p-groups by Theorem 4.8, but the

analogous question arises naturally for other families:

Question 5.1: What is the exact value of ccpd(Sn) or ccpd(Aff(Fq))?

Notice that for symmetric groups we do at least know that

ccpd(Sn) → ∞ for n → ∞,

as Sn contains a subgroup (Z/2)⌊n/2⌋. For ccpd(Aff(Fp)), p prime, we do not

known even this, since abelian subgroups of Aff(Fp) are cyclic.

By Proposition 4.2, we have ccpd(Γ) ≤ gcpd(Γ) for all groups Γ except cyclic

groups of order ≥ 3 and the Klein four-group. This motivates the following

question:

Question 5.2: Is there a group Γ such that ccpd(Γ) < gcpd(Γ)?

When such a group Γ exists, then there must be a polytope P of dimension

d = ccpd(Γ), such that Γ ∼= Γ(P) is not isomorphic to a subgroup of GL(d,R).

Conversely, when P is a convex d-polytope P such that Γ = Γ(P) is not iso-

morphic to a subgroup of GL(d,R), then

ccpd(Γ) ≤ d < gcpd(Γ),

as GL(k,R) ⊂ GL(d,R) for k < d.

Of course, a negative answer to Question 5.2 would also settle Question 5.1.

Bokowski, Ewald and Kleinschmidt [BEK84] found the first example of a

polytope P (in dimension 4) which has a combinatorial automorphism ϕ that
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can not be realized geometrically in the sense that the polytope has no geo-

metric realization that admits ϕ as geometric automorphism. Mani [Man71]

showed that in dimension 3, for every convex polytope there is a combinatori-

ally equivalent polytope, such that all its combinatorial automorphisms come

from geometric automorphisms. It follows that when gcpd(Γ) > 3, then also

ccpd(Γ) > 3. Not much else seems to be known.

If additional geometric structure is required on the realization of G as a group

of combinatorial symmetries of a polytope P , it can imply restrictions on the

dimension of P . Interestingly, such conditions are more diverse than just lower

bounds on the dimension. For example, if σ is a central involution and there

exists an element γ such that γ2 = σ, then for σ to act as a central symmetry

we need the ambient dimension to be even. This is implied by a simple degree

argument [SSW21, Proof of Theorem 4.2]. Therefore, if we impose the way that

a subgroup A ⊂ G has to act on our polytope P , it can heavily restrict on which

dimensions admit such a polytope.
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