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ABSTRACT

We study properties of the realizations of groups as the combinatorial
automorphism group of a convex polytope. We show that for any non-
abelian group G with a central involution there is a centrally symmetric
polytope with G as its combinatorial automorphisms. We show that for
each integer n, there are groups that cannot be realized as the combina-
torial automorphisms of convex polytopes of dimension at most n. We
also give an optimal lower bound for the dimension of the realization of a
group as the group of isometries that preserves a convex polytope.
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Introduction

Polyhedra and their symmetries have been a rich subject of study. In this
paper we are interested in the symmetries of convex polytopes, the convex hulls
of finite sets of points in R%. For a given polytope P, we consider the following
two symmetry groups: The geometric symmetry group G(P) consists of
all (Euclidean) isometries of the ambient space that map P onto itself. The
combinatorial symmetry group I'(P) of P consists of all the automorphisms
of the face lattice of P. The group I'(P) can be identified with the group
of all permutations of the vertices of P which map faces of P to faces of P.
It has recently been established that every finite group is isomorphic to the
combinatorial automorphism group of a convex polytope P. This result was
first proved by Schulte and Williams [SW15] and later by Doignon [Doil8] with
a simplified proof. In Doignon’s paper, it was shown that every finite group is
the combinatorial automorphism group of a 0/1-polytope.

Given a group G, there are many different convex polytopes whose symmetry
group is exactly G. This leads to a rich family of extremal problems: given
a group G and a parameter A(-), determine the maximum/minimum value
that A(P) can take, where P ranges over the polytopes whose (geometric or
combinatorial) symmetry group is exactly G. In this note we are interested in
finding polytopes P of minimal dimension with prescribed symmetry group. We
give a lower bound for the dimension of a polytope having an elementary abelian
group of given order as combinatorial automorphism group (Theorem 3.3). A
consequence is that for every d, there are finite groups which can not be realized
as combinatorial automorphism groups of convex polytopes of dimension less
than or equal to d. It turns out that for elementary abelian groups, our lower
bound is sharp (Theorem 4.8). While our results also yield lower bounds for
the dimension of a polytope with some other prescribed finite group as com-
binatorial automorphism group, these lower bounds are probably not optimal
when the group is not elementary abelian.

We also show that finding a polytope of smallest dimension with a prescribed
group as geometric symmetry group reduces to a problem in the representation
theory of finite groups. Using this, we can compute exactly the smallest dimen-
sion of a polytope having a given abelian group as geometric symmetry group
(Theorem 4.6), and similarly for other classes of groups. For example, the sym-
metric group S, on n letters is the geometric (and combinatorial) symmetry
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group of a regular simplex of dimension n — 1, and this is in fact the smallest
dimension of a polytope with geometric symmetry group S,, (see Theorem 4.9).

The results described so far affirmatively answer two questions of Schulte,
Soberén and Williams [SSW21, Open Questions 1 and 2]. We also consider
the following problem suggested by Schulte, Soberén and Williams: Instead of
solving instances of the general extremal problems described above, one can
look for polytopes with fixed symmetry groups that satisfy additional geomet-
ric properties. This was explored in the cited paper [SSW21], where it was
established that every finite abelian group of even order is the automorphism
group of a centrally symmetric polytope. Moreover, the involution that corre-
sponds to the central symmetry can be prescribed in advance. We generalize
this result to non-abelian groups with a central involution, thereby answer-
ing another question from [SSW21] (see Theorem 2.1). The methods we use
come from representation theory and geometric group theory. Representation
theory has been used previously to study convex polytopes, as can be seen in
[GP06, FL16, BHNP09] and the references therein.

Our main results answer all the open questions [SSW21, Open Questions 1, 2
and 3] affirmatively. In Section 5, we propose some new questions, which are
suggested by our results.

1. Preliminaries

Given a polytope P, we denote by I'(P) its group of combinatorial automor-
phisms and by G(P) its group of geometric symmetries. One of our main tools
we use is the following theorem.

THEOREM 1.1 ([SSW21]): Let d > 3, let Q be a convex d-polytope with (com-
binatorial) automorphism group I'(Q), and let T' be a subgroup of T'(Q)). Then
there exists a convex d-polytope P with the following properties:
(a) I'(P) =T.
(b) P is isomorphic (as an abstract polytope) to a face-to-face tessellation T
of the (d — 1)-sphere S*~! by spherical convex (d — 1)-polytopes.
(c) skelg—2(C(Q)) is a subcomplex of skely_o(P).
(d) IfT is a subgroup of the (geometric) symmetry group G(Q) of @, then
the tessellation T on S?~! in (b) can be chosen in such a way that

G(T) =T =I(T).
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In the statement above, skely_2(+) stands for the (d — 2)-dimensional skeleton
of a polytope, and C(Q) for the barycentric subdivision of the boundary complex
of ). The proof of Theorem 1.1 is done by taking a barycentric subdivision of @
and then adding faces in order to break the undesired symmetries in P. The
method preserves any geometric symmetries of ) that were present in I'. This
method actually gives a stronger result. Not only is the group of combinatorial
automorphisms of P equal to I, but the group of automorphisms of skel; (P) (as
a graph) is equal to I'. The reason for this is that the only tool that [SSW21]
uses to determine that extra symmetries have been broken is an analysis of the
degrees of the vertices in skel; (P). It follows that in Theorem 2.1 below, the
combinatorial automorphism group I'(P) can be replaced by the automorphism
group of the 1-skeleton (as a graph) of our polytope.

The following corollary will be useful a few times:

COROLLARY 1.2: Let d > 3 and let I' be a finite subgroup of the orthogonal
group O4(R). Then there exists a convex d-polytope P such that

Proof. The group I acts on the unit sphere S¥~1 ¢ RY. If we take a sufficiently
large union F' of finitely many I'-orbits, then the convex hull @ = conv(F)
will be a convex d-polytope. By construction, I' < G(Q), so the result follows
from Theorem 1.1(d). |

A few times, we will use the following standard result from representation
theory [Hup98, Theorem 2.13].

PROPOSITION 1.3: Let p:I'— GL(d, R) be a representation of the finite group I".
Then there is a I'-invariant inner product on R?. Equivalently, the representa-
tion p is similar to a representation I' — O4(R).

Proof. Let (-,-) be an arbitrary inner product on R?. Then

[z, 9] == _(p(9)x, p(9)y)

gel
yields a I-invariant inner product on RY. When S = (s1, ..., s4) is an orthonor-
mal basis of R? with respect to [-,-], then the corresponding matrices S~!p(g)S

are orthogonal. ]
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Finally, notice the following: every geometric symmetry of a polytope fixes
the geometric center of the polytope. By choosing the center as origin of the
coordinate system, we may assume that all geometric symmetries are realized by
orthogonal maps. It is then also true that all affine symmetries of the polytope
(the affine maps sending a polytope to itself) are linear maps.

A general consequence of Proposition 1.3 and the last comment is that it
does not make much of a difference for the questions considered in this paper,
whether we deal with the geometric symmetry group of a polytope, or the group
of affine symmetries of a polytope, or the group of orthogonal or linear maps
sending the polytope to itself.

2. Symmetric polytopes
Our first main result answers [SSW21, Open Question 3] affirmatively.

THEOREM 2.1: Let I" be a finite group and o € I' a central order-two element.
Then, there is a centrally symmetric polytope P with

GP)=TP)=T
and o acting as the central symmetry.

Proof. Let G = (o) and let p: G — {£1} C R* be the non-trivial representa-
tion, whose one-dimensional real carrier space we denote by V. Upon equipping
the induced representation
W :=TIndV

with a I-invariant inner product (Proposition 1.3), we get an embedding of T’
into the orthogonal group of W. Moreover, o acts as —1 on W by con-
struction. By Corollary 1.2, it follows that there is a polytope P such that
GP)=I'(P)=T. 1

3. The combinatorial convex polytope dimension

Our next result shows that the “combinatorial convex polytope dimension of a

group” is a meaningful parameter.

Definition 3.1: Let G be a group. We define ccpd(G) (the combinatorial
convex polytope dimension of G) to be the minimum integer d such that
there is a convex polytope P in R? such that I'(P) = G.



80 A. CHIRVASITU, F. LADISCH AND P. SOBERON Isr. J. Math.

The results in [SW15] show that this parameter is well defined. In this sec-
tion we will prove that it can be arbitrarily large, and is therefore interest-
ing to compute. Note that when A is a subgroup of B and ccpd(B) > 3,
then cecpd(A) < cepd(B). This is a direct consequence of Theorem 1.1. On
the other hand, the only groups with ccpd(B) = 2 are the dihedral groups of
order 2n > 6, and the only groups with ccpd(B) < 1 are the groups of order 1
and 2. So when B is a dihedral group and A < B is cyclic of order n > 3, or
the Klein four-group, then ccpd(B) = 2, but ccpd(A) = 3. Aside from these
exceptions, ccpd(-) is monotone.

Remark 3.2: As recalled in [SSW21, Section 2|, to every convex polytope P
one can associate its boundary complex, consisting of its proper faces. This
complex

e gives a tesselation of the boundary 9P, which, topologically, is a sphere;

e has a barycentric subdivision giving a triangulation of said sphere, i.e.,
a simplicial sphere;

e depends only on the combinatorial data of how the proper faces of P
are glued along facets.

It follows that the combinatorial symmetry group I'(P) of a polytope P can
be regarded as a group of simplicial symmetries of 0P, i.e., automorphisms
of OP equipped with its simplicial complex structure. This renders plausible
the relevance of Theorem 3.3 below, where the dimension n of the sphere fits
into the present discussion as n = dimdP = dim P — 1.

The proof of the following result requires, for a prime p and an integer n > —1,
the notion of a cohomology n-sphere over Z/p. Cohomology n-manifolds are
introduced in [Bor60, Definition 1.3.3] and are the central subject of study in
said reference. They coincide with the objects introduced by Smith in [Smi39]
to provide the appropriate context for his study of finite transformation groups.

For brevity, we refer to a cohomology n-manifold with the same homology as
the sphere in Z/p as a cohomology n-sphere over Z/p.

We do not recall the full definition of cohomology manifolds here, pausing
only to note that

e simplicial n-spheres are cohomology n-spheres (over every Z/p);
e cohomology 0-spheres are just plain O-spheres, i.e., disjoint unions of
two points (this follows for instance from [Smi39, 5.3]).
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We will also be referring to the link lkx(A) of a simplex A in a simplicial
complex K. This is usually defined via the star stx(A):

st (A) =subcomplex of K generated by the simplices A’ such that A CA'CK.

Then, the subcomplex of stk (A) consisting only of simplices disjoint from A
is the link lkx (A). See, for example, [FP90, discussion preceding Proposition
3.2.12] or [Mau96, Definition 2.4.2], but notice that the latter reference calls
‘nerves’ what we call ‘stars’. The introductory material in [Bry02, §2] is another
reference for these notions.

It follows for instance from [Wil79, Theorem X.6.9] that in a simplicial com-
plex that is a cohomology n-manifold, the link on a d-simplex is a cohomology
(n — d — 1)-sphere.

The following result is essentially [Smi44, second corollary, p. 107], but it was
not obvious to us how it follows from the discussion preceding it, so we include
a proof for completeness. See also Remark 3.4 for further discussion.

THEOREM 3.3: Let p be a prime, and let I' = (Z/p)” be an elementary abelian
p-group acting simplicially and effectively on a simplicial n-sphere. Then, we
haver <nm+1ifp=2, and 2r < n+ 1 otherwise.

Proof. It will be convenient, throughout the proof, to denote

ifp=2

M= =

otherwise.

We prove the claim that » < e(n + 1) by induction on n for an action on a
simplicial cohomology n-sphere P.

BASE CASE n = 0. We have observed above that cohomology 0-spheres are just
plain 0-spheres, so the result is obvious: Z/2 can act effectively by permuting
the two points that constitute the 0-sphere, while Z/p, p > 2 cannot.

INDUCTION STEP. We can assume r > 2. Since according to [Smi44, first
corollary, p. 107] a non-cyclic abelian group cannot act freely on a cohomology
sphere, there must be a cyclic subgroup

Z/p= (o) =G<T

with non-empty fixed-point set F. It is a non-trivial result that the simplicial
subcomplex F C P must again be a cohomology m-sphere for some 0 < m < n:
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e It is shown in [Bor60, §1V.4.3] that F has the same (Z/p)-homology as
an m-sphere;
e [Bor60, Theorem V.2.2] proves that F is an orientable cohomology man-
ifold;
e [Bor60, §1.3.4] then shows that its dimension as a complex (and as a
cohomology manifold) must be m.
We choose ¢ such that the dimension of F is maximal, and consider the point-
wise isotropy group I'x of F. Because I' is elementary abelian we have a de-
composition
Ir=Irol,
and T acts on F (because the latter is the fixed-point set of I'z and I’ commutes
with the latter). We first claim that this action of I' on the (m-dimensional)
cohomology sphere F is faithful.

Indeed, were it not, there would be an element o € [ that fixes a set contain-
ing F. This could not be proper containment (for that fixed-point set would
then be a strictly higher-dimensional cohomology sphere thus contradicting the
maximality of dim F), and hence

P =P° =F.
But then [Smi44, Theorem] would imply that & € ' = (o), i.e., a contradiction.
But by induction, the faithfulness of the action of I' on F then gives
(3-1) rank T < e(m+1).
On the other hand, the fact that 'z itself acts effectively on all of P but
trivially on F implies that the resulting action of I'x on the link of some m-
simplex in F C P is effective. We observed in the above discussion that said
link is a simplicial cohomology sphere of dimension m’ satisfying
(3-2) (m+1)+(m +1)=n+1.
The inductive step applied to this action gives us
(3-3) rank Tz <e(m’ + 1),
and adding together (3-1) and (3-3) produces, via (3-2), precisely the desired
inequality
r=rank [z +rank I' <e(n+1).
This finishes the proof. |



Vol. 245, 2021 PRESCRIBED POLYTOPAL SYMMETRIES 83

Remark 3.4: As mentioned above, Theorem 3.3 is essentially [Smid4, second
corollary, p. 107]. The latter, though, states only the 2r < n + 1 inequality,
which cannot be correct in full generality: Z/2, of rank r» = 1, acts on the zero-
sphere by the obvious permutation; in that case the inequality would read 2 < 1.

There are hints in [Smi44] that perhaps only odd primes are considered (see,
e.g., footnote 6 therein), but this does not seem to be stated explicitly.

Remark 3.5: The inductive argument in the proof of Theorem 3.3 is very much
in the spirit of [MZ06, Lemmas 2.2 and 2.3].

As a consequence we have the following corollary.

COROLLARY 3.6: For each n there is a finite group that cannot be realized
as I'(P) for any polytope with dim P < n.

Proof. Immediate from Theorem 3.3 and Remark 3.2 above, to the effect
that T'(P) acts effectively on the simplicial sphere 9P. ]

Corollary 3.6 gives an affirmative answer to [SSW21, Open Question 1]. On
the other hand, since finite groups of isometries can be regarded as acting
effectively and simplicially on simplicial spheres, Theorem 3.3 also proves an
affirmative answer to [SSW21, Open Question 2:

COROLLARY 3.7: For each n there is a finite group that cannot be realized as
the geometric symmetry group G(P) for any polytope with dim P < n. |

In fact, the last corollary and the geometric version of Theorem 3.3 follow
more swiftly from the observation that an abelian group with minimal number
r of generators can not be embedded into GL(d, C) for d < r (see Theorem 4.6
below, proof of lower bound).

4. The geometric convex polytope dimension

Definition 4.1: Let T be a group. Let gepd(T') (the geometric convex poly-
tope dimension of I') be the minimum integer d such that there is a convex
polytope P in R? such that G(P) =T.

PROPOSITION 4.2: When gepd(T) > 3, then cepd(T) < gepd(T).

Proof. This follows from Theorem 1.1, Part (d). n
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Figure 1 indicates two constructions of polygons with geometric symmetry
group the cyclic group of order 4. The same constructions apply to all cyclic
groups Z/n of order n > 3, so gcpd(Z/n) = 2. On the other hand, the combina-
torial automorphism group of a polygon is a dihedral group, so ccpd(Z/n) > 3.
By Theorem 1.1 or otherwise, we have ccpd(Z/n) = 3. Similarly, we have
gepd((Z/2)?) = 2 (take a rectangle), but cepd((Z/2)?) = 3. It follows that the
conclusion of Proposition 4.2 is wrong only for cyclic groups of order > 3, and
the Klein four-group (Z/2)2.

Figure 1. Two polygons with Z/4 as geometric symmetry group

For geometric symmetries, we have the following alternative version of Theo-
rem 1.1, which also works in dimension d < 2. The gist of this result is that we
need to add at most one orbit of vertices to break undesired symmetries. The
proof is adapted from an argument by Isaacs [Isa77].

PROPOSITION 4.3: Let @ C R? be a finite, convex d-polytope and I a sub-
group of G(Q). Then there exists an orbit X of I' on R? such that for the
polytope P = conv(Q U X), we have I' = G(P).

Proof. Let t be the translation that sends the barycenter of Q to the origin.
Then
G(HQ)) = tG(Q)t !

and tI't ! is a subgroup of G(t(Q)). So after replacing Q by a translated copy,
we may assume without loss of generality that the barycenter of Q is the origin.
In this case, we have G(Q) C O4(R). Let Y be the vertex set of Q. For
every 1 # g € G(Q), we have that ker(g — 1) (the eigenspace of g associated
with the eigenvalue 1) is a proper subspace of R?. As R? is not the union
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of finitely many proper subspaces, we can find a vector x such that no non-
identity element of G(Q) fixes = and such that x is not contained in a proper
subspace which is spanned by some subset of Y. Let X = I'z be the I'-orbit
of x. For A > 0, set

Py = conv(Y UAX).

We will show that there is some A > 0 such that G(Py) =T.

Consider the ray {\xz: A > 0} spanned by z. As x is not contained in a proper
subspace spanned by a subset of Y, this ray meets the boundary of Q in the
interior of a facet. Thus there is a nonempty interval I of positive real numbers
such that the vertex set of Py = conv(Y UAX) is exactly Y UAX for all A € I.

Set

s=(1/|G) Y gz
ger

The barycenter of P, is As. For any y € Y, there are at most two A’s that solve
the quadratic equation |y — As|?> = [Az — As|?. As Y is finite, there are infinitely
many A € I such that [y—As| # |Az—As| for ally € Y. We claim that G(Py) =T
for these A. By construction, I' < G(Py) for any A. As Y UAX is the vertex set
of Py, the isometry group G(P)) is the set of isometries mapping ¥ U AX to
itself. By the choice of A\, we have that G(P,) stabilizes AX, and thus also Y.
Therefore, G(Py) C G(Q). By the choice of x, no non-identity element of G(Q)
fixes . Thus

|G(PA)| = [G(Px)z] < |X| < T
Since I' C G(Py) we have G(Py)=T. 1

Isaacs also showed that when some finite group I' C O4(R) acts absolutely
irreducibly on R?, then I' is the geometric symmetry group of a vertex-transitive
polytope. This can be generalized to some groups not necessarily acting abso-
lutely irreducibly [FL18, Corollary 5.8], but not to arbitrary subgroups of O4(R).

COROLLARY 4.4: Let ' be a finite group. Then gcpd(T') equals the smallest d
such that ' embeds into GL(d,R).

Proof. When I' & G(P) for some d-polytope P, then I' embeds into

04(R) C GL(d,R).
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Conversely, suppose I" embeds into GL(d,R). By Proposition 1.3, it follows
that I is isomorphic to a subgroup T of 0O4(R). Asin the proof of Corollary 1.2,
we can find a polytope Q such that G(Q) contains the given subgroup T iso-
morphic to I'. Then by Proposition 4.3 (or Corollary 1.2 when d > 3), [ is the
isometry group of some d-polytope. ]

Remark 4.5: When d is minimal such that the given group I' embeds
into GL(d, R), then one can actually show that R? can be generated by a single
I-orbit on R?. It follows that there is a d-polytope P with ' = G(P) and
such that I' has at most two orbits on the set of vertices of P. On the other
hand, not every group is isomorphic to the geometric automorphism group of a
vertex-transitive polytope [Bab77].

As an example, we can compute gepd for abelian groups.

THEOREM 4.6: Let
(4-1) F'=2Z/nix---xZ/n,

be an abelian group, where

n1|n2|...|nr

are the invariant factors of I'. Let s be the number of factors n; such that n; = 2
and let t be the number of factors n; such that n; > 2 (sor = s+t). Then
gepd(T') = s + 2t, that is, the minimal dimension of a polytope P such that
G(P) =T is s+ 2t.

Proof. By Corollary 4.4, we need to show that d = s + 2t is the minimum
dimension of a faithful linear representation p: I' — GL(d,R). The fact that
this is a sharp bound entails two inequalities, which we prove separately.

LOWER BOUND. Suppose the linear representation p: I' = GL(d, R) is faithful.
So when decomposing the complexification of p (denoted by the same symbol,
for brevity) as a sum of irreducible (hence one-dimensional) characters, the
summands y; must generate the Pontryagin dual group

I:=Hom(T',S") ~T.

It follows from this that there is, among the x;, a minimal set of genera-
tors x1 up to xp, so that r < h < d. Minimality implies that no two x;
and x;, 1 <i# j < h can be mutually conjugate (since conjugation means tak-
ing the inverse in I).
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All self-conjugate x; = X; are trivial on the t-factor abelian group 2I'; so
among the h y; we must have at least ¢ non-self-conjugate characters. But
because p is a real representation, the ¢ conjugates Y; must be among the
summands of p as well, meaning that

dimp>h+4+t>r+t=s+2t,

as claimed.

UPPER BOUND. Fix an isomorphism
=T >Z/n x--- X Z/n,

and select a set y;, 1 < i < r of generators for the r factors. The y; of order
two (s of them, in the notation of the statement) are realizable over the real
numbers, while the rest can be regarded as representations on R? 2 C. Summing
the characters we thus obtain an orthogonal representation of I on R*+2, which
is faithful because its simple constituents generate the dual group. |

We have similar sharp bounds in the centrally symmetric case:

THEOREM 4.7: Let I' be a finite abelian group as in (4-1), o € T' an involution,
and s and t as in the statement of Theorem 4.6. When o is not a square in T,
then the conclusion of Theorem 4.6 holds for polytopes equipped with I'-actions
with o — —1. When o is a square, then the minimal dimension of a polytope P
with geometric symmetry group I' such that o acts as —1 is 2r = 2(s + t).

Proof. In any case, the fact that dim P > s+ 2t follows from Theorem 4.6, since
the actions with ¢ — —1 form a subclass of isometric actions.

When o is not a square in I', then we can write I' = (o) x I'g. Thus there is a
real character y taking value —1 on 0. Now choose generators x1 = x, x2,-- -, Xr
as before. By replacing x; by xx; if necessary, we can ensure that y,;(c) = —1
for all 7. Thus again the lower bound is achieved.

Now suppose that o is a square in I'. Then for every irreducible character x
taking value —1 on o we necessarily have y # . Thus in this case a faithful
representation p: I' = GL(d,R) with p(c) = —I has at least 2r = 2(s + t)
summands. Conversely, we can find a generating set x1, ..., X, with x;(c) = —1
for all ¢ (as above), so the bound is achieved. |

Going back to ccpd, we now know enough to determine it precisely for ele-
mentary abelian p-groups.
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THEOREM 4.8: Let p be a prime. For I' = (Z/p)" we have ccpd(T") = gepd(T)
except in the following cases:

(a) when r =1 and p > 2, then ccpd(I') = 3 and gepd(T") = 2;

(b) when r =2 and p = 2, then again ccpd(I') = 3 and gepd(T") = 2.

Proof. By Theorem 3.3, the dimension n+1 of a polytope P on whose boundary
spherical simplicial complex 0P the group I' can act effectively is at least the
value of gepd as computed in Theorem 4.6 (namely r» when p = 2 and 2r
otherwise). In short, for elementary abelian p-groups I' we always have

(4-2) cepd(T') > gepd(T).

The two exceptions in the statement were noted and analyzed in the discussion
following Proposition 4.2. As for the other cases, Theorem 4.6 says that we then
have gepd(T") > 3 and hence ccpd(I') < gepd(I') by Proposition 4.2. Combining
this with (4-2) gives the conclusion. |

In principle, Corollary 4.4 allows us to compute gepd(T') from the character
table of I'.  We present a few more (elementary) examples which show that
gepd(T) can be arbitrarily large:

THEOREM 4.9:

(a) gepd(S,) =n — 1, where S,, is the symmetric group on n letters.
(b) Let I' be an extraspecial p-group of order p***1, p odd. Then

gepd(T) = 2p*.

(c) Let I = Aff(F,) be the affine group of degree 1 over the field F, with q
elements, that is, the set of all maps F, — F, of the form x — ax + b,
a,beFy, a#0. Then gepd(T') =g — 1.

Proof. (a) Sy is the geometric (and combinatorial) automorphism group of
a regular (n — 1)-simplex. The one-dimensional characters of S,, have
the alternating group in the kernel. For n # 4, the symmetric group S,
has no irreducible representations of degree between 1 and n—1 [Burb5,
pp. 466-468], and for n = 4, the irreducible representation of degree 2
is not faithful. Thus gepd(S,) =n — 1.
(b) The irreducible character degrees of an extraspecial p-group are 1 and p*
[Hup98, 7.6(b)]. The one-dimensional characters have the commuta-
tor subgroup in the kernel, so are not faithful. Every character x
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of degree p* is faithful, but y # X as p is odd. The representa-
tion I' — GL(p*,C) affording y can be viewed as a representation
I' — GL(2p*,R), so gepd(T) = 2p*.

(¢) The affine group is not abelian and has only one nonlinear character,
of degree ¢ — 1 [Hup98, 7.9(c)]. This character is afforded by a repre-
sentation over R (in fact over Q), so gepd(T') = ¢ — 1. n

5. Some open questions

By the results in the last section, we can (in principle) compute the geometric
convex polytope dimension gepd(I') of a group using representation theory. For
the combinatorial convex polytope dimension, the situation is less clear. We
have sharp bounds for elementary abelian p-groups by Theorem 4.8, but the
analogous question arises naturally for other families:

Question 5.1: What is the exact value of ccpd(Sy,) or cepd(Aff(Fy))?
Notice that for symmetric groups we do at least know that
cepd(Sy,) = o0 for n — oo,

as S, contains a subgroup (Z/2)"/2). For ccpd(Aff(F,)), p prime, we do not
known even this, since abelian subgroups of Aff(F,) are cyclic.

By Proposition 4.2, we have ccpd(T') < gepd(T) for all groups T' except cyclic
groups of order > 3 and the Klein four-group. This motivates the following
question:

Question 5.2: Is there a group I' such that ccpd(T") < gepd(I")?

When such a group I' exists, then there must be a polytope P of dimension
d = ccpd(T), such that I' =2 T'(P) is not isomorphic to a subgroup of GL(d,R).
Conversely, when P is a convex d-polytope P such that I' = T'(P) is not iso-
morphic to a subgroup of GL(d,R), then

cepd(l) < d < gepd(I),

as GL(k,R) C GL(d,R) for k < d.
Of course, a negative answer to Question 5.2 would also settle Question 5.1.
Bokowski, Ewald and Kleinschmidt [BEK84] found the first example of a
polytope P (in dimension 4) which has a combinatorial automorphism ¢ that
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can not be realized geometrically in the sense that the polytope has no geo-
metric realization that admits ¢ as geometric automorphism. Mani [Man71]
showed that in dimension 3, for every convex polytope there is a combinatori-
ally equivalent polytope, such that all its combinatorial automorphisms come
from geometric automorphisms. It follows that when gepd(T') > 3, then also
cepd(T") > 3. Not much else seems to be known.

If additional geometric structure is required on the realization of G as a group
of combinatorial symmetries of a polytope P, it can imply restrictions on the
dimension of P. Interestingly, such conditions are more diverse than just lower
bounds on the dimension. For example, if o is a central involution and there
exists an element v such that 42 = o, then for o to act as a central symmetry
we need the ambient dimension to be even. This is implied by a simple degree
argument [SSW21, Proof of Theorem 4.2]. Therefore, if we impose the way that
a subgroup A C G has to act on our polytope P, it can heavily restrict on which
dimensions admit such a polytope.
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