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We introduce the coherent algebra of a compact metric measure space by analogy

with the corresponding concept for a finite graph. As an application we show that

upon topologizing the collection of isomorphism classes of compact metric measure

spaces appropriately, the subset consisting of those with trivial compact quantum

automorphism group is of 2nd Baire category. The latter result can be paraphrased as

saying that “most” compact metric measure spaces have no (quantum) symmetries; in

particular, they also have trivial ordinary (i.e., classical) automorphism group.

1 Introduction

Coherent algebras were defined in [11] as self-adjoint subalgebras of Mn(C) that

are also unital and closed under the so-called Hadamard matrix product: entry-wise

multiplication, that is, multiplication of matrices regarded as functions [n]×2 → C for

[n] = {1, · · · , n}. They arise naturally as algebraic counterparts of certain combinatorial

structures (see e.g., [5, Definition 1.1]):

Definition 1.1. Let X be a finite set. A coherent configuration on X is a partition

of X × X into sets Ri, i ∈ I (referred to as the coherence classes of the configuration)

such that

• the diagonal � ⊂ X × X is a union of Rj;
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14380 A. Chirvasitu

• for each Ri the opposite relation

Ri := {(x, y) | (y, x) ∈ Ri}

is one of the Rj;

• for i, j, k ∈ I there are integers pk
ij such that for all (x, z) ∈ Rk the number of

y ∈ X, (x, y) ∈ Ri and (y, z) ∈ Rj

is pk
ij.

Given a coherent configuration, the span of the X × X-indexed matrices

A(Ri)xy :=

⎧

⎨

⎩

1, if (x, y) ∈ Ri,

0, otherwise

attached to the relations Ri can then be shown to be a coherent algebra in the sense made

precise above. Conversely, every coherent subalgebra of Mn(C) arises as above for some

coherent configuration on X = [n]. In conclusion, coherent algebras and configurations

are two manifestations of the same structure.

The preeminent example of a coherent configuration is the partitioning of X × X

into G-orbits for the diagonal action attached to an action of a finite group G on X (this

is referred to as the group case in [9–11]). In that context, coherent algebras have a

very satisfying representation-theoretic interpretation (see for instance the discussion

on [11, p. 213]).

To make sense of the following statement, we identify the function algebra C(X)

of a finite set X with C
n (where n = |X| is the cardinality) via the basis for the vector

space C(X) consisting of the minimal projections (i.e., the indicator functions of the n

singleton sets). This then identifies the endomorphism algebra End(C(X)) of that vector

space with the n × n matrix algebra M|X|(C). Finally, we denote by

EndG(C(X)) ⊆ End(C(X))

the algebra of endomorphisms of the vector space C(X) intertwining the G-action.
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Generic Quantum Metric Rigidity 14381

Proposition 1.2. Let G be a finite group acting on the finite set X, and denote by

C(X) the function algebra of X, identified with C
|X| via the standard basis consisting of

characteristic functions of singletons. Then, the isomorphism

M|X|(C) ∼= End(C(X))

identifies the coherent algebra ⊆ M|X|(C) on the left-hand side with the algebra

EndG(C(X)) of algebra automorphisms of C(X) intertwining the G-action.

It can be shown that the intersection of two coherent subalgebras of Mn(C)

is again a coherent algebra. If X is the vertex set of a graph there is thus a smallest

coherent algebra containing its adjacency matrix; it is customary to refer to it as the

coherent algebra of the graph (see [13, Section 2.3]).

By Propostion 1.2, the automorphism group of a finite graph X is trivial if the

coherent algebra of the graph is full (i.e., all of M|X|(C)). The same principle is applied

in [13] in the context of actions of compact quantum groups on finite graphs. We recall

the necessary background (e.g., [3, 18]) in Section 2 below, providing only a broad outline

here.

The quantum automorphism group of a graph is a typically non-commutative

Hopf algebra H coacting on the function algebra C(X) of the vertex set. The coaction

is required to be appropriately compatible with the graph structure (encoded into the

adjacency matrix), and the Hopf algebra is regarded as an algebra of functions on the

otherwise non-existent “quantum group” G.

With this in place, [13, Theorem 3.11] is the quantum analog of Proposition 1.2,

and the observation made above, to the effect that full coherent algebras entail trivial

automorphism groups, is applied in [13, Theorem 3.14] to argue that as n increases

and graph structures are selected uniformly and randomly on an n-element set X,

the probability that the resulting graph has trivial quantum automorphism group

approaches 1. In short:

“Most′′ finite graphs have trivial quantum automorphism group. (1)

The aim of the present paper is to make sense of and prove a continuous analog

of the previous sentence. The phrase ‘continuous’ refers to substituting compact spaces

X for finite ones. Furthermore, thinking of a graph structure as a type of low-resolution

distance function, we promote our spaces X to compact metric spaces.

Compact quantum groups can act isometrically on compact metric spaces X

(see Section 2 below). Every such quantum group will also preserve some probability
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14382 A. Chirvasitu

measure on X. Since for infinite X there is no canonical choice for such a measure

(comparable to the uniform measure on a finite set X), we will also fix a probability

measure on X beforehand and focus on measure-preserving actions. All in all, the

objects taking the place of finite graphs here are compact metric measure spaces

(X, d, μ) (“measure” is understood as “probability measure” unless this convention is

explicitly discarded).

It is unclear how one would equip the collection Y of isomorphism classes of

compact metric measure spaces with a probability measure that would then allow us

to refer to “most” of them, so we instead equip it with a well-behaved topology. In that

setup we say that most compact metric measure spaces have a property if the subset of

Y where the property holds is residual: it contains some dense countable intersections

of open sets.

The rigidity result alluded to in the title can now be stated (see Theorem 4.5).

Theorem 1.3. Let Y be the set of isomorphism classes of compact metric measure

spaces equipped with the measured Hausdorff topology. Then, the subset consisting of

objects with trivial compact quantum automorphism group is residual.

The paper is organized as follows:

Section 2 collects some auxiliary material of use later on both compact quantum

groups and metric measure spaces.

In Section 3 we prove the metric measure space analog of Proposition 1.2. This

is Corollary 3.2, obtained as a consequence of Theorem 3.1.

Section 4 contains the main results of the paper; Theorem 4.4 shows that the set

of isomorphism classes of metric measure spaces with full coherent algebra is large in

the sense of Baire category theory, while its consequence, Theorem 4.5, is the rigorous

formulation of the ill-defined principle in (1).

We also argue in Proposition 4.6 that the Laplacian of a finite metric space

belongs to its coherent algebra; this recovers the result of [2, Section 4], stating that

a compact quantum group acting isometrically on a finite metric space preserves the

underlying Laplacian (albeit for an inessentially different incarnation of the Laplacian).

2 Preliminaries

2.1 Compact quantum groups

For background the reader can consult, for instance, [12, 18], as well as, say, [16]

for material on operator algebras. All of our operator algebras are unital, and ten-
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Generic Quantum Metric Rigidity 14383

sor products between C∗ or von Neumann algebras are minimal unless specified

otherwise.

As sketched in the introduction, compact quantum groups G are objects dual to

certain C∗-algebras C(G). We formalize this as follows:

Definition 2.1. A compact quantum group G consists of a unital C∗-algebra C(G)

equipped with a unital C∗ morphism � : C(G) → C(G)⊗2 satisfying the following

properties:

• � is coassociative, in the sense that

commutes, and

• �(A)(A ⊗ 1) and �(A)(1 ⊗ A) are dense in A ⊗ A.

C(G)always has a unique dense Hopf ∗-subalgebra in the sense of [12, Definition

2.1]: see [12, Theorem 3.1.7].

We also need the notion of a unitary representation of a compact quantum group

on a Hilbert space ([18, Section 3] or [12, Section 3.2]).

Definition 2.2. A unitary representation of a compact quantum group G on a Hilbert

space H is a unitary element U ∈ M(K(H)⊗C(G)) satisfying (id⊗�)U = U12U13, where

• K(−) denotes compact operators;

• M(−) denotes the multiplier algebra of a non-unital C∗-algebra;

• the “leg-numbering” notation Uij indicates the operator U acting on the ith

and jth tensorands.

2.2 Actions on spaces

Let (X, d) be a compact metric space, and G a compact quantum group acting isomet-

rically on it in the sense of [8, Definition 3.1]. We will follow the notation of [8]. The

coaction consists of a map

β : C(X) → C(X) ⊗ C(G).
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14384 A. Chirvasitu

We will also sometimes consider the purely algebraic counterpart of the picture,

whereby the unique dense Hopf ∗-subalgebra H of C(G) is substituted for the latter,

and the coaction restricts to

β : A → A ⊗ H

for a dense ∗-subalgebra A ⊂ C(X).

As explained in the discussion on [8, p. 344], there is a faithful probability

measure μ on X invariant under β in the sense that for every function f ∈ C(X) we have

(μ ⊗ id)β(f ) = μ(f ) :=

∫

X

f dμ.

We will use a particular measure with these properties throughout the note, and we

shorten L2(X, μ) to L2(X) or even L2; similarly, L2(X × X) stands for L2(X × X, μ ⊠ μ).

The space L2(X) is a representation of the compact quantum group, described by

a unitary operator U ∈ M(K(L2) ⊗ C(G)), as in Definition 2.2.

As explained on [8, p. 344], the condition that the action be isometric is

equivalent to either of the equalities

U13U23(d ⊗ 1) = d ⊗ 1 = U23U13(d ⊗ 1), (2)

where d⊗1 is regarded, say, as an element of L2(X ×X)⊗L2(G) (the last tensorand being

the GNS [1, Section 1.6] space of the Haar measure on G).

Equivalently, this condition can be phrased as

W(π (2)(d) ⊗ 1)W∗ = π (2)(d) ⊗ 1 = Z(π (2)(d) ⊗ 1)Z∗, (3)

where W = U13U23, Z = U23U13, and

π (2) = π ⊗ π : C(X × X) → B(L2(X × X))

is the tensor-squared GNS representation of μ.

Definition 2.3. An action β of G on X as above is faithful if

span{(1 ⊗ a)β(f ) | f ∈ C(X), a ∈ C(G)}

is dense in C(X) ⊗ C(G).

We say that (X, d, μ) has trivial quantum automorphism group if a compact

quantum group acting on X faithfully via β which preserves both d and μ must be trivial.
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Generic Quantum Metric Rigidity 14385

Note that the set of all continuous functions satisfying (3) is a subalgebra of

C(X × X), so is the function algebra of a quotient space X × X → O. We use this

observation as a vehicle for the following introducing the following notion.

Definition 2.4. The orbital algebra associated (or attached) to the action β is the

subalgebra C(O) of C(X × X) consisting of functions f ∈ C(X × X), which satisfy (3)

upon substituting f for d.

The orbitals of the action β are the points of the spectrum X × X → O of the

orbital algebra.

Remark 2.5. As noted above, it follows from the discussion on [8, p. 344] that for any

function f ∈ C(X × X) the four equalities in (2) and (3) are mutually equivalent. This,

together with [13, Lemma 3.8], also shows that for finite metric spaces X the present

notion of orbital coincides with that of [13, Definition 3.5].

2.3 Metric measure spaces

Throughout this note the phrase “metric measure space” refers to a compact metric

space (X, d) equipped with a faithful probability measure μ. For such a space we

consider two multiplicative structures on the space C(X × X) of continuous functions:

the standard multiplication of functions denoted by juxtaposition, and the convolution

by μ denoted by ∗ and used above:

( f ∗ g)(x, z) =

∫

X

f (x, y)g(y, z) dμ(z).

We denote the nth power of a function f under convolution by f ∗n.

We will now topologize the collection Y of (the isomorphism classes of) all

metric measure spaces adapting the notion of measured Hausdorff topology from [7,

Definition 0.2] to the present setting so as to take into account both structures (metric

and measure-theoretic). In order to do this, we need some preparation.

Recall for example, [4, Definition 7.3.27].

Definition 2.6. For ε > 0 an ε-isometry f : X → Y between metric spaces (X, dX) and

(Y, dY) is a possibly discontinuous function such that

• the ε-neighborhood of f (X) is all of Y, and

• |dY(f (x), f (x′)) − dX(x, x′)| ≤ ε for all x, x′ ∈ X.
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14386 A. Chirvasitu

We can define a quasimetric on Y (i.e., distance function satisfying all of the

usual axioms except perhaps for symmetry) by

Dd((X, dX), (Y, dY)) = inf{ε > 0 | there exists an ε − isometry X → Y}. (4)

Dd is equivalent to the Gromov–Hausdorff distance (e.g., by [4, Corollary 7.3.28]) and

hence induces the same topology on Y.

We will use a finer topology on Y, which also carries measure-theoretic

information. Given metric measure spaces (X, dX , μX) and (Y, dY , μY) and an ε-isometry

f : X → Y we will need to compare the probability measures f∗μX and μY on Y. We will

use the weak∗ topology on Prob(Y) for this purpose, in the sense that a net μα converges

to μ if

μα(ϕ) → μ(ϕ)

for all continuous functions f ∈ C(Y). This topology is metrizable in numerous ways, for

example, via the so-called Wasserstein distances [17, Definition 6.1] Wp defined (on X,

for p ≥ 1) by

Wp(μ, ν) = inf
π

(∫

X×X

d(x, x′)p dπ(x, x′)

)
1
p

,

where π ranges over the (μ, ν)-couplings: those probability measures on X × X whose

two marginals are μ and ν, respectively. Any p ≥ 1 will do for our purposes, but we

retain flexibility by incorporating p into the definition of the following quasimetric.

Definition 2.7. Let (X, dX , μX) and (Y, dY , μY) be elements of Y, and p ≥ 1. We then

write Dp(X, Y) for the infimum of the set of those t > 0 for which there exists a

measurable t-isometry f : X → Y such that

Wp( f∗μX , μY) ≤ t.

We topologize Y by defining the neighborhoods of X ∈ Y to be those sets that

contain some

Uε,X = {Y ∈ Y | Dp(X, Y) < ε}

for some ε > 0. The choice of p ≥ 1 makes no difference here. Y is a Baire space in the

sense that it satisfies Baire’s theorem; countable intersections of open dense sets are

again dense. We record this here for future use.
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Generic Quantum Metric Rigidity 14387

Lemma 2.8. Y topologized via any of the quasimetrics Dp is a Baire space.

Proof. The proof of [4, Corollary 7.3.28] to the effect that the quasimetric Dd of (4)

induces the Gromov–Hausdorff topology and hence is equivalent to its transpose

Dt
d(X, Y) = Dd(Y, X)

extends to the present setting to show that the topological space Y can be metrized by

D + Dt. By Baire’s theorem, it thus suffices to argue that D + Dt is complete.

In turn, this last claim follows from the fact that convergence with respect to

D + Dt dominates the Gromov–Hausdorff distance (e.g., [4, Corollary 7.3.28]), together

with the fact that the Gromov–Hausdorff distance and Wp are both complete. �

Remark 2.9. The same topology, restricted to compact R-trees, is considered in [6]

and metrized in essentially the same fashion. Evens and Winter (2006) [6, Theorem 2.5]

similarly prove that the resulting metric space is complete and separable.

Due to Lemma 2.8, any subset of Y containing a dense Gδ is appropriately

thought of as “large”. We will use the term residual for such sets. See for example,

[14] for some background on this and ancillary concepts, and parallels to measure-

theoretic notions of largeness; Chapter 9 therein contains the definition of residual sets,

in agreement with the present one.

3 Intertwiners

Throughout this section we work with compact metric measure spaces (X, d, μ) and

compact quantum groups G acting on (X, d, μ), preserving both d and μ.

In the above discussion we regarded C(X × X) as an algebra of operators on

L2(X × X) via the GNS representation. We now consider its representation

ρ : C(X × X) → B(L2(X))

by convolution through μ:

(ρ( f )(g))(x) =

∫

X

f (x, y)g(y) dμ(y)

for f (x, y) ∈ C(X × X) and g(y) ∈ L2(X). This is analogous to the action of the X × X-

indexed matrix algebra on the space of functions on X for finite X.
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14388 A. Chirvasitu

Recall also that an intertwiner for the representation U of G on L2(X) is an

element t of B(L2(X)) satisfying Ut = tU if we regard t as an element of M(K(L2) ⊗ C(G))

by

B(L2(X)) ∼= M(K(L2(X))) → M(K(L2) ⊗ C(G)).

The intertwiners of U form a von Neumann subalgebra EndG(L2(X)) of B(L2(X)). Since

furthermore every representation of G on a Hilbert space decomposes as a direct sum

of finite-dimensional irreducible representations, we have

L2(X) ∼=
⊕

i

Hi ⊗ Vi

as G-representations, where Vi are irreducible (and hence finite-dimensional) and Hi are

multiplicity spaces, that is, carry the trivial G-representation. This in turn entails

End
G
(L2(X)) ∼=

∏

i

B(Hi),

where the product is in the category of von Neumann algebras. The embedding of this

product into B(L2(X)) via the standard inclusion

End
G
(L2(X)) ⊂ B(L2(X))

is such that the minimal projections of B(Hi) have respective rank dim(Vi). We will use

this observation below.

The goal of this section is to prove the following partial analog of [13,

Theorem 3.11].

Theorem 3.1. For a function f ∈ C(X × X), ρ(f ) is an intertwiner for U if and only if f

belongs to the orbital algebra C(O).

Proof. We prove the two implications separately.

(⇐) Suppose first that f belongs to the orbital algebra, that is, the equivalent conditions

(2) and (3) hold with f in place of d. We’ll want to verify that

ρ(f ) = U−1ρ(f )U. (5)
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Generic Quantum Metric Rigidity 14389

Operating with the right-hand side of (5) on the function g ∈ C(X) is equivalent to

applying μ to the middle leg of

U−1
13 ( f ⊗ 1)(1 ⊗ β(g)). (6)

The left-hand equality in (2) ensures that U−1
13 ( f ⊗ 1) = U23( f ⊗ 1). If we write fx(y) =

f (x, y), this is an x-dependent element of C(X) ⊗ C(G) given by

x 
→ β( fx).

In conclusion, the right-hand side of (6) is the x-dependent element of C(X) ⊗ C(G)

x 
→ β( fx)β(g) = β( fxg).

Applying μ to the left-hand tensorand of the right-hand side in this equation produces

x 
→ (μ ⊗ 1)β( fxg) = x 
→ μ( fxg)

by the β-invariance of μ. This, however, is nothing but the result of operating with ρ(f )

on g (by the very definition of ρ).

(⇒) Conversely, suppose

Uρ( f ) = ρ( f )U.

We can now reverse the argument above. The hypothesis is that for every g ∈ C(X), the

results of operating on g with ρ( f ) and U−1ρ( f )U coincide. As before, application of the

latter amounts to evaluating μ against the middle tensorand of (6). On the other hand,

applying the former means evaluating μ on the middle leg of

U23( f ⊗ 1)(1 ⊗ β(g)) (7)

instead. Since these results are moreover unaffected by further multiplying the right-

most tensorand on the right by arbitrary t ∈ C(G), the rightmost factors in (6) and (7)

can be replaced by arbitrary 1 ⊗ (β(g)(1 ⊗ t)). Since every element of A ⊗ H is of the form

β(g)(1⊗ t), we may as well assume that the right-hand factors in (6) and (7) are arbitrary

tensor products 1 ⊗ g ⊗ t (or indeed simply 1 ⊗ g ⊗ 1).
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14390 A. Chirvasitu

The conclusion now follows from the fact that μ is faithful, and hence, if a =

U−1
13 (f ⊗ 1) and a′ = U23(f ⊗ 1) denote the left-hand factors of (6) and (7), respectively,

the vanishing of al

(1 ⊗ μ ⊗ 1)((a − a′)(1 ⊗ g ⊗ 1))

for arbitrary g ∈ C(X) entails the vanishing of a − a′. In other words, as claimed, f

satisfies (2). �

Lupini et al. (2017) [13, Theorem 3.11] in fact indentify the entire algebra

End
G
(L2(X)) with the orbital algebra C(O) (see also [9, Section 7] for the case of ordinary

as opposed to quantum permutation groups). On the other hand, Theorem 3.1 only

realizes C(O) as a subalgebra of EndG(L2(X)); for this reason, the analogy thus far is

only partial. The inclusion

C(O) ⊆ End
G
(L2(X))

is indeed proper when X is infinite, but only for the simple reason that the larger algebra

is von Neumann, while the smaller one is only a C∗-algebra of continuous functions. The

two differ in just this obvious fashion though:

Corollary 3.2. The von Neumann closure of C(O) in B(L2(X)) is End
G
(L2(X)).

Proof. The argument in the proof of Theorem 3.1 applies to functions in L2(X × X) to

argue that they too belong to End
G
(L2(X)) precisely when they are constant along the

fibers of X × X → O.

On the other hand, recall from the discussion preceding Theorem 3.1 that

EndG(L2(X)) is generated as a von Neumann algebra by finite-rank operators. The latter

are contained in the algebra

L2(X × X) ∼= L2(X) ⊗ L2(X)

of Hilbert–Schmidt operators on L2(X), meaning that End
G
(L2(X)) is the von Neumann

closure of its subalgebra of Hilbert–Schmidt operators. By the 1st paragraph of the

present proof, this coincides with the W∗ closure of C(O). �

4 Coherent Algebras for Metric Measure Spaces

Recall from Section 2.3 that unless specified otherwise, all metric measure spaces are

assumed compact. Following the discussion in [13, Section 2.3] in the context of finite

graphs, we introduce the following object.
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Definition 4.1. The coherent algebra Coh(X) of a metric measure space (X, d, μ) is

the smallest unital C∗-subalgebra (with respect to the standard algebra structure) of

C(X × X) meeting the following requirements

• it contains d;

• it is closed under the convolution multiplication ∗;

• it is closed under flips; if f ∈ Coh(X) then so is the function (x, y) 
→ f (y, x).

Remark 4.2. For a finite graph, its coherent algebra as recalled in [13, Section 2.3]

coincides with Coh(X) in the sense of Definition 4.1 when X is equipped with its path

metric and the uniform probability measure (i.e., the rescaled counting measure).

Now consider the setup of the previous section, of a compact quantum group

acting isometrically (and faithfully) on (X, d, μ) ∈ Y. In the language of Theorem 3.1

ρ(d) ∈ B(L2(X)) is an intertwiner for U, and hence the coherent algebra Coh(A) is a

subalgebra of C(O). In conclusion:

Lemma 4.3. If the coherent algebra of (X, d, μ) equals all of C(X × X) then (X, d, μ) has

trivial quantum automorphism group.

Proof. Let G be a compact quantum group acting faithfully on (X, d, μ) (and preserving

the metric and measure).

Under the hypotheses we have C(O) = C(X ×X), and hence the latter is contained

in the algebra of intertwiners for the G-representation L2(X). Since the weak-∗ closure

of C(X × X) in B(L2(X)) contains all Hilbert–Schmidt operators, the intertwiner algebra

must be all of B(L2(X)).

It now follows that the (faithful) representation U of G on L2(X) is trivial, which

in turn means that G is trivial. �

Theorem 4.4. The subset Ytriv of Y consisting of metric measure spaces with full

coherent algebra is residual.

Proof. We will argue that Ytriv contains a dense Gδ set. Since we are working

in a complete metric space, this amounts to showing that it contains a countable

intersection of open dense subsets of Y.
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14392 A. Chirvasitu

Fix positive integers N, m, and p and denote by YN,m,p the subset of Y consisting

of (classes of) metric spaces (X, d, μ) for which the following condition holds:

Whenever d(x, x′) + d(y, y′) ≥
1

m
we have|d∗n(x, y) − d∗n(x′, y′)| >

1

p
for some 1 ≤ n ≤ N.

(8)

We then have

Ytriv =
⋂

m

⋃

N,p

YN,m,p,

and hence it suffices to argue that each
⋃

N,p YN,m,p is open and dense in Y. We prove

these two claims separately.
⋃

N,p YN,m,p is dense. First, note that the set of isomorphism classes of finite

metric measure spaces is dense in Y. Furthermore, the metric of any finite metric space

can be perturbed by arbitrarily small amounts as to ensure that the distance function

d : X ×X → [0, ∞) is one-to-one off the diagonal � of X and d∗2 is one-to-one on �. Such

finite metric measure spaces (X, d, μ) thus constitute a dense subset of Y. On the other

hand that set is contained in
⋃

N,p YN,m,p for every positive m, hence the density claim.

YN,m,p is open.

Suppose not. This means that we can find a metric measure space (X, d, μ) in

YN,m,p and a sequence (Xn, dn, μn) of elements of Y \ YN,m,p converging to X in the

topology we have equipped Y with.

The assumptions mean that we can find points xn, x′
n, yn, y′

n in Xn such that

(1) dn(xn, x′
n) + dn(yn, y′

n) ≥ 1
m ;

(2) for all 1 ≤ i ≤ N we have |d∗i
n (xn, yn) − d∗i

n (x′
n, y′

n)| ≤ 1
p .

On the other hand, the convergence (Xn, dn, μn) → (X, d, μ) means that there are εn-

isometries fn : Xn → X as in Definition 2.7 for εn → 0.

By compactness, after passage to a subsequence we can assume that fn(xn)

converge to x ∈ X and similarly for x′, y, and y′. For each individual i we then have

d∗i
n (xn, yn) → d∗i(x, y) and d∗i

n (x′
n, y′

n) → d∗i(x′, y′),

and hence conditions (1) and (2) above imply, respectively, that

• d(x, x′) + d(y, y′) ≥ 1
m ;

• for all 1 ≤ i ≤ N we have |d∗i(x, y) − d∗i(x′, y′)| ≤ 1
p .

This, however, contradicts our assumption that (X, d, μ) belongs to YN,m,p and finishes

the proof. �
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Theorem 4.5. The subset of Y consisting of metric measure spaces with trivial

quantum automorphism groups is residual.

Proof. Simply combine Theorem 4.4 and Lemma 4.3. �

4.1 Laplacians and coherent algebras

The main result of the present subsection is as follows:

Proposition 4.6. Let (X, d) be a finite metric space equipped with the uniform

probability measure. Then, the Laplace operator � on X belongs to Coh(X).

In particular, since as observed above we have Coh(X) is contained in the orbital

algebra C(O) for any isometric action of a compact quantum group G on (X, d, μ),

isometric quantum actions automatically preserve the Laplacian. This gives an alternate

take on [2, Theorem 4.5], stating that the quantum isometry groups of finite metric

spaces can be recovered as implementing quantum symmetries of natural Laplace

operators attached to said metric spaces. Before going into the proof of Proposition 4.6

we recall some background on Laplacians using [15] as our source. Following [15, Section

2], we write

Z := {(x, y) ∈ X2 | x �= y}

for the off-diagonal of the Cartesian square X2. We have a “gradient” operator

∂ : C(X) → C(Z), ∂f (x, y) = f (x) − f (y)

and an inner product on C(Z) defined by

〈ω, ω′〉 :=

∫

X

⎛

⎝

∑

x �=y

ω(x, y)ω′(x, y)cxy

⎞

⎠ dμ(y),

where cxy = 1
d(x,y)

are the “conductances” attached to the metric, along with the usual

inner product on C(X) itself induced by μ:

〈 f , f ′〉 :=

∫

X

f (x)f ′(x) dμ(x).

Finally, we have the following:
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14394 A. Chirvasitu

Definition 4.7. The Laplacian on X is the unique positive operator � on L2(X)

satisfying

〈∂f , ∂f ′〉 = 〈 f , �f ′〉, ∀f , f ′ ∈ C(X).

Since integration against μ is simply the averaging operator

∫

X

f dμ(x) =
1

|X|

∑

x∈X

f (x)

the definition of � expands as

∑

z∈X

f (z)�f ′(z) =
∑

x �=y

( f (x) − f (y))( f ′(x) − f ′(y))cxy,

which in turn equals

2
∑

x �=y

f (x)( f ′(x) − f ′(y))cxy.

All in all:

�f (x) = 2
∑

y �=x

(f (x) − f (y))cxy.

In conclusion, written as an X × X-indexed matrix operating on L2(X) ∼= C
|X|, � is (up to

a global scalar we henceforth disregard) equal to T + A where T is diagonal with

Txx =
∑

y �=x

cxy

and A is off-diagonal (i.e., its main diagonal is zero) and Axy = −cxy for x �= y.

Proof of Proposition 4.6. According to the discussion carried out above it will suffice

to show that both T and A belong to Coh(X). We prove these claims separately.

(1): A ∈ Coh(X). We have I + A = (I + D)−1 with respect to the Hadamard product where

I is the identity matrix and D is the distance matrix with Dxy = d(x, y). Since both I and

D are contained in Coh(A) and the latter is a finite-dimensional C∗-algebra under the

Hadamard product the inverse

(I + D)−1 = I + A

is a member of Coh(A) as well, and hence so is A.
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(2): T ∈ Coh(X). Write X × X → O for the surjection corresponding to the embedding

Coh(X) ⊂ C(X × X), so that Coh(X) = C(O). We have to argue that viewed as a function

on X ×X, T factors through X ×X → O. In other words, the task is to show that T ∈ C(X ×

X) is constant along the equivalence classes Ri making up the coherent configuration

corresponding to Coh(X) (see Definition 1.1).

Recall that the diagonal {(x, x) | x ∈ X} is a union of classes Ri. Since the off-

diagonal entries of T vanish it will be enough to argue that T is constant along the

diagonal relations Ri.

Suppose (x, x) and (y, y) belong to the same class. Lemma 4.8 applied to singleton

intervals shows that for every r ∈ R the number of points x �= z ∈ X with d(x, z) = r

equals the analogous number for y. In other words

{cxz, x �= z ∈ X} and {cyw, y �= w ∈ X}

coincide as multisets, and hence the (x, x) and (y, y) entries

∑

z �=x

czx and
∑

w �=y

cwy

of T coincide. �

Lemma 4.8. Let (X, d) be a finite metric space and (x, x), (y, y) diagonal points in the

same equivalence class of the canonical coherent configuration attached to Coh(X).

Then, for any interval [a, b] ⊂ R the sets

{z ∈ X | d(z, x) ∈ [a, b]} and {w ∈ X | d(w, y) ∈ [a, b]} (9)

have the same cardinality.

Proof. Let D be the distance matrix, as before (i.e., Dxy = d(x, y)). Since D ∈ Coh(X),

applying Borel functional calculus applied to the C∗-subalgebra Coh(X) ⊂ C(X × X)

yields

f (D) := the matrix with entries f (Dxy) ∈ Coh(X).

This holds in particular for f = χ[a,b] (the characteristic function of [a, b]), leading to

M ∈ Coh(A) where

Mx,y =

⎧

⎨

⎩

1, if d(x, y) ∈ [a, b],

0, otherwise.
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14396 A. Chirvasitu

Now, the square M2 with respect to the usual, matrix multiplication is also a

member of Coh(X), and note that its diagonal entry M2
xx is exactly the cardinality of the

set on the left-hand side of (9) (and similarly for M2
yy). Since (x, x) and (y, y) are assumed

in the same coherence class, M2 ∈ Coh(X) must assign them equal value, as claimed. �
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