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We introduce the coherent algebra of a compact metric measure space by analogy
with the corresponding concept for a finite graph. As an application we show that
upon topologizing the collection of isomorphism classes of compact metric measure
spaces appropriately, the subset consisting of those with trivial compact quantum
automorphism group is of 2nd Baire category. The latter result can be paraphrased as
saying that “most” compact metric measure spaces have no (quantum) symmetries; in

particular, they also have trivial ordinary (i.e., classical) automorphism group.

1 Introduction

Coherent algebras were defined in [11] as self-adjoint subalgebras of M, (C) that
are also unital and closed under the so-called Hadamard matrix product: entry-wise
multiplication, that is, multiplication of matrices regarded as functions [n]*? — C for
[n] ={1,---,n}. They arise naturally as algebraic counterparts of certain combinatorial

structures (see e.g., [5, Definition 1.1]):

Definition 1.1. Let X be a finite set. A coherent configuration on X is a partition
of X x X into sets R;, i € I (referred to as the coherence classes of the configuration)
such that

e the diagonal A € X x X is a union of RJ-;
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14380 A. Chirvasitu

e for each R; the opposite relation
R;:={(x,y) | (v, € Ry

is one of the Rj,'

e fori,j, k €I there are integers pg. such that for all (x,z) € R; the number of
veX, (x,y)€R; and (y,2) € R;
is pg
Given a coherent configuration, the span of the X x X-indexed matrices

1, if (x,y) €R;,
A(R)),, =
v 0, otherwise

attached to the relations R; can then be shown to be a coherent algebra in the sense made
precise above. Conversely, every coherent subalgebra of M, (C) arises as above for some
coherent configuration on X = [n]. In conclusion, coherent algebras and configurations
are two manifestations of the same structure.

The preeminent example of a coherent configuration is the partitioning of X x X
into G-orbits for the diagonal action attached to an action of a finite group G on X (this
is referred to as the group case in [9-11]). In that context, coherent algebras have a
very satisfying representation-theoretic interpretation (see for instance the discussion
on[11, p. 213]).

To make sense of the following statement, we identify the function algebra C(X)
of a finite set X with C" (where n = |X| is the cardinality) via the basis for the vector
space C(X) consisting of the minimal projections (i.e., the indicator functions of the n
singleton sets). This then identifies the endomorphism algebra End(C(X)) of that vector

space with the n x n matrix algebra My, (C). Finally, we denote by
End;(C(X)) € End(C(X))

the algebra of endomorphisms of the vector space C(X) intertwining the G-action.
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Proposition 1.2. Let G be a finite group acting on the finite set X, and denote by
C(X) the function algebra of X, identified with CX! via the standard basis consisting of

characteristic functions of singletons. Then, the isomorphism
My, (C) = End(C(X))

identifies the coherent algebra C M (C) on the left-hand side with the algebra
End;(C(X)) of algebra automorphisms of C(X) intertwining the G-action.

It can be shown that the intersection of two coherent subalgebras of M, (C)
is again a coherent algebra. If X is the vertex set of a graph there is thus a smallest
coherent algebra containing its adjacency matrix; it is customary to refer to it as the
coherent algebra of the graph (see [13, Section 2.3]).

By Propostion 1.2, the automorphism group of a finite graph X is trivial if the
coherent algebra of the graph is full (i.e., all of My,(C)). The same principle is applied
in [13] in the context of actions of compact quantum groups on finite graphs. We recall
the necessary background (e.g., [3, 18]) in Section 2 below, providing only a broad outline
here.

The quantum automorphism group of a graph is a typically non-commutative
Hopf algebra H coacting on the function algebra C(X) of the vertex set. The coaction
is required to be appropriately compatible with the graph structure (encoded into the
adjacency matrix), and the Hopf algebra is regarded as an algebra of functions on the
otherwise non-existent “quantum group” G.

With this in place, [13, Theorem 3.11] is the quantum analog of Proposition 1.2,
and the observation made above, to the effect that full coherent algebras entail trivial
automorphism groups, is applied in [13, Theorem 3.14] to argue that as n increases
and graph structures are selected uniformly and randomly on an n-element set X,
the probability that the resulting graph has trivial quantum automorphism group

approaches 1. In short:

“Most” finite graphs have trivial quantum automorphism group. (1)

The aim of the present paper is to make sense of and prove a continuous analog
of the previous sentence. The phrase ‘continuous’ refers to substituting compact spaces
X for finite ones. Furthermore, thinking of a graph structure as a type of low-resolution
distance function, we promote our spaces X to compact metric spaces.

Compact quantum groups can act isometrically on compact metric spaces X

(see Section 2 below). Every such quantum group will also preserve some probability
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14382 A. Chirvasitu

measure on X. Since for infinite X there is no canonical choice for such a measure
(comparable to the uniform measure on a finite set X), we will also fix a probability
measure on X beforehand and focus on measure-preserving actions. All in all, the
objects taking the place of finite graphs here are compact metric measure spaces
(X,d, ) (“measure” is understood as “probability measure” unless this convention is
explicitly discarded).

It is unclear how one would equip the collection Y of isomorphism classes of
compact metric measure spaces with a probability measure that would then allow us
to refer to “most” of them, so we instead equip it with a well-behaved topology. In that
setup we say that most compact metric measure spaces have a property if the subset of
Y where the property holds is residual: it contains some dense countable intersections
of open sets.

The rigidity result alluded to in the title can now be stated (see Theorem 4.5).

Theorem 1.3. Let Y be the set of isomorphism classes of compact metric measure
spaces equipped with the measured Hausdorff topology. Then, the subset consisting of

objects with trivial compact quantum automorphism group is residual.

The paper is organized as follows:

Section 2 collects some auxiliary material of use later on both compact quantum
groups and metric measure spaces.

In Section 3 we prove the metric measure space analog of Proposition 1.2. This
is Corollary 3.2, obtained as a consequence of Theorem 3.1.

Section 4 contains the main results of the paper; Theorem 4.4 shows that the set
of isomorphism classes of metric measure spaces with full coherent algebra is large in
the sense of Baire category theory, while its consequence, Theorem 4.5, is the rigorous
formulation of the ill-defined principle in (1).

We also argue in Proposition 4.6 that the Laplacian of a finite metric space
belongs to its coherent algebra; this recovers the result of [2, Section 4], stating that
a compact quantum group acting isometrically on a finite metric space preserves the

underlying Laplacian (albeit for an inessentially different incarnation of the Laplacian).

2 Preliminaries
2.1 Compact quantum groups

For background the reader can consult, for instance, [12, 18], as well as, say, [16]

for material on operator algebras. All of our operator algebras are unital, and ten-
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sor products between C* or von Neumann algebras are minimal unless specified
otherwise.
As sketched in the introduction, compact quantum groups G are objects dual to

certain C*-algebras C(G). We formalize this as follows:

Definition 2.1. A compact quantum group G consists of a unital C*-algebra C(G)
equipped with a unital C* morphism A : C(G) — C(G)®? satisfying the following

properties:

e A is coassociative, in the sense that

A C(G) ®2 A®id
CG) — C(G)®3
T C0)® — iqen

commutes, and
o AA)A®I1) and A(A)(1®A) are densein AR A.

C(G)always has a unique dense Hopf #-subalgebra in the sense of [12, Definition
2.1]: see [12, Theorem 3.1.7].
We also need the notion of a unitary representation of a compact quantum group

on a Hilbert space ([18, Section 3] or [12, Section 3.2]).

Definition 2.2. A unitary representation of a compact quantum group G on a Hilbert
space H is a unitary element U € M(K(H)®C(G)) satisfying 1d® A)U = U,,U, 5, where

e /C(—) denotes compact operators;
e M(—) denotes the multiplier algebra of a non-unital C*-algebra;
o the “leg-numbering” notation Uj; indicates the operator U acting on the ith

and jth tensorands.

2.2 Actions on spaces

Let (X,d) be a compact metric space, and G a compact quantum group acting isomet-
rically on it in the sense of [8, Definition 3.1]. We will follow the notation of [8]. The

coaction consists of a map

B:CX) — CX)®CG).
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14384 A. Chirvasitu

We will also sometimes consider the purely algebraic counterpart of the picture,
whereby the unique dense Hopf *-subalgebra H of C(G) is substituted for the latter,

and the coaction restricts to
B:A—>AQH

for a dense *-subalgebra A c C(X).
As explained in the discussion on [8, p. 344], there is a faithful probability

measure px on X invariant under 8 in the sense that for every function f € C(X) we have
(4@ 1B =) i= [ f du
X

We will use a particular measure with these properties throughout the note, and we
shorten L?(X, ) to L?(X) or even L?; similarly, L?(X x X) stands for L%(X x X, u X ).
The space L?(X) is a representation of the compact quantum group, described by
a unitary operator U € M(K(L?) ® C(G)), as in Definition 2.2.
As explained on [8, p. 344], the condition that the action be isometric is

equivalent to either of the equalities

Up3Up(d®1) =d®1 = UyUpa(d® 1), 2)

where d®1 is regarded, say, as an element of L2(X x X) ® L?(G) (the last tensorand being
the GNS [1, Section 1.6] space of the Haar measure on G).

Equivalently, this condition can be phrased as

WrP@d e YW =122 @1 =2x?d) e 1)z (3)

where W = U,3U,3, Z = UygU, 3, and
7P =7@7:CX xX) > BL*X x X))

is the tensor-squared GNS representation of u.
Definition 2.3. An action 8 of G on X as above is faithful if
span{(1 ® a)B(f) | f € C(X), a € C(G)}

is dense in C(X) ® C(G).
We say that (X,d, ) has trivial quantum automorphism group if a compact

quantum group acting on X faithfully via g which preserves both d and x must be trivial.
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Note that the set of all continuous functions satisfying (3) is a subalgebra of
C(X x X), so is the function algebra of a quotient space X x X — 0. We use this

observation as a vehicle for the following introducing the following notion.

Definition 2.4. The orbital algebra associated (or attached) to the action B is the
subalgebra C(0O) of C(X x X) consisting of functions f € C(X x X), which satisfy (3)
upon substituting f for d.

The orbitals of the action 8 are the points of the spectrum X x X — O of the
orbital algebra.

Remark 2.5. As noted above, it follows from the discussion on [8, p. 344] that for any
function f € C(X x X) the four equalities in (2) and (3) are mutually equivalent. This,
together with [13, Lemma 3.8], also shows that for finite metric spaces X the present

notion of orbital coincides with that of [13, Definition 3.5].

2.3 Metric measure spaces

Throughout this note the phrase “metric measure space” refers to a compact metric
space (X,d) equipped with a faithful probability measure u. For such a space we
consider two multiplicative structures on the space C(X x X) of continuous functions:
the standard multiplication of functions denoted by juxtaposition, and the convolution

by u denoted by * and used above:
(f*9)(x,2) = /f(X, V)9, 2) du(2).
X

We denote the nth power of a function f under convolution by f*".

We will now topologize the collection Y of (the isomorphism classes of) all
metric measure spaces adapting the notion of measured Hausdorff topology from [7,
Definition 0.2] to the present setting so as to take into account both structures (metric
and measure-theoretic). In order to do this, we need some preparation.

Recall for example, [4, Definition 7.3.27].

Definition 2.6. For ¢ > 0 an ¢-isometry f : X — Y between metric spaces (X, dy) and

(Y,dy) is a possibly discontinuous function such that

e the e-neighborhood of f(X) is all of Y, and
o |dy(f(x),.f(x)) —dx(x,x') <eforall x,x' €X.
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We can define a quasimetric on Y (i.e., distance function satisfying all of the

usual axioms except perhaps for symmetry) by
D4((X,dy),(Y,dy)) =inf{e > 0| there exists an ¢ — isometry X — Y}. (4)

D, is equivalent to the Gromov-Hausdorff distance (e.g., by [4, Corollary 7.3.28]) and
hence induces the same topology on Y.

We will use a finer topology on Y, which also carries measure-theoretic
information. Given metric measure spaces (X, dy, ux) and (Y, dy, uy) and an e-isometry
f : X — Y we will need to compare the probability measures f, iy and uy on Y. We will
use the weak™ topology on Prob(Y) for this purpose, in the sense that a net u, converges

to u if

Mo (@) = (@)

for all continuous functions f € C(Y). This topology is metrizable in numerous ways, for
example, via the so-called Wasserstein distances [17, Definition 6.1] Wp defined (on X,

for p > 1) by

1
Wy (., v) = inf (/ d(x, x")P dn’(X,X/))p ,
T XxX

where 7 ranges over the (u, v)-couplings: those probability measures on X x X whose
two marginals are u and v, respectively. Any p > 1 will do for our purposes, but we

retain flexibility by incorporating p into the definition of the following quasimetric.

Definition 2.7. Let (X,dy,ux) and (Y, dy, ity) be elements of Y, and p > 1. We then
write D,(X,Y) for the infimum of the set of those t > 0 for which there exists a

measurable t-isometry f : X — Y such that

We topologize Y by defining the neighborhoods of X € Y to be those sets that
contain some
U x={YeY| Dp(X, Y) < ¢}

for some ¢ > 0. The choice of p > 1 makes no difference here. Y is a Baire space in the
sense that it satisfies Baire's theorem; countable intersections of open dense sets are

again dense. We record this here for future use.
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Lemma 2.8. Y topologized via any of the quasimetrics D), is a Baire space.

Proof. The proof of [4, Corollary 7.3.28] to the effect that the quasimetric D; of (4)

induces the Gromov-Hausdorff topology and hence is equivalent to its transpose
Dy(X,Y) = Dy(Y,X)

extends to the present setting to show that the topological space Y can be metrized by
D + D'. By Baire's theorem, it thus suffices to argue that D + D! is complete.

In turn, this last claim follows from the fact that convergence with respect to
D + D! dominates the Gromov-Hausdorff distance (e.g., [4, Corollary 7.3.28]), together
with the fact that the Gromov-Hausdorff distance and W, are both complete. |

Remark 2.9. The same topology, restricted to compact R-trees, is considered in [6]
and metrized in essentially the same fashion. Evens and Winter (2006) [6, Theorem 2.5]

similarly prove that the resulting metric space is complete and separable.

Due to Lemma 2.8, any subset of Y containing a dense G; is appropriately
thought of as “large”. We will use the term residual for such sets. See for example,
[14] for some background on this and ancillary concepts, and parallels to measure-
theoretic notions of largeness; Chapter 9 therein contains the definition of residual sets,

in agreement with the present one.

3 Intertwiners

Throughout this section we work with compact metric measure spaces (X, d, n) and
compact quantum groups G acting on (X, d, u), preserving both d and pu.
In the above discussion we regarded C(X x X) as an algebra of operators on

L?(X x X) via the GNS representation. We now consider its representation
0 CX x X) > BIL?*(X))
by convolution through u:

(p(NH(@)(x) = /Xf(X, Y)9(y) du(y)

for f(x,y) € C(X x X) and g(y) € L?>(X). This is analogous to the action of the X x X-

indexed matrix algebra on the space of functions on X for finite X.
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Recall also that an intertwiner for the representation U of G on L?(X) is an
element t of B(L?(X)) satisfying Ut = tU if we regard t as an element of M (K(L?) ® C(G))
by

B(LA(X)) = M(K(L*(X))) - M(K(L?) ® C(G)).

The intertwiners of U form a von Neumann subalgebra EndG(L2 (X)) of B(L?(X)). Since
furthermore every representation of G on a Hilbert space decomposes as a direct sum

of finite-dimensional irreducible representations, we have
L*(X) = @Hi ®V;
i

as G-representations, where V; are irreducible (and hence finite-dimensional) and H; are

multiplicity spaces, that is, carry the trivial G-representation. This in turn entails

End (L*(X)) = [ | B@H)),

1

where the product is in the category of von Neumann algebras. The embedding of this

product into B(L%(X)) via the standard inclusion
Endg (L3(X)) C B(L*(X))

is such that the minimal projections of B(H;) have respective rank dim(V;). We will use
this observation below.

The goal of this section is to prove the following partial analog of [13,
Theorem 3.11].

Theorem 3.1. For a function f € C(X x X), p(f) is an intertwiner for U if and only if f
belongs to the orbital algebra C(0O).

Proof. We prove the two implications separately.
(<) Suppose first that f belongs to the orbital algebra, that is, the equivalent conditions
(2) and (3) hold with f in place of d. We'll want to verify that

p(f) =Utp(HU. (5)
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Operating with the right-hand side of (5) on the function g € C(X) is equivalent to
applying u to the middle leg of

U, (f® D1 ® Bg)). (6)

The left-hand equality in (2) ensures that Uf31 (f®l) =Uy(f®1). If we write f,(y) =
f(x,y), this is an x-dependent element of C(X) ® C(G) given by

x = B(fy).

In conclusion, the right-hand side of (6) is the x-dependent element of C(X) ® C(G)

x = B(f)B@) = B(fi9).

Applying u to the left-hand tensorand of the right-hand side in this equation produces

x> (L@ DB(frg) = x = n(fy9)

by the B-invariance of u. This, however, is nothing but the result of operating with p(f)
on g (by the very definition of p).

(=) Conversely, suppose

Up(f) = p(HU.

We can now reverse the argument above. The hypothesis is that for every g € C(X), the
results of operating on g with p(f) and U~ p(f)U coincide. As before, application of the
latter amounts to evaluating u against the middle tensorand of (6). On the other hand,

applying the former means evaluating x on the middle leg of

Uys(f @ D1 ® B(9) (7)

instead. Since these results are moreover unaffected by further multiplying the right-
most tensorand on the right by arbitrary ¢ € C(G), the rightmost factors in (6) and (7)
can be replaced by arbitrary 1 ® (8(g)(1 ® t)). Since every element of A ® H is of the form
B(9)(1®t), we may as well assume that the right-hand factors in (6) and (7) are arbitrary
tensor products 1 ® g ® t (or indeed simply 1 ® g ® 1).
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The conclusion now follows from the fact that u is faithful, and hence, if a =
Ul_sl(f ® 1) and @’ = U,3(f ® 1) denote the left-hand factors of (6) and (7), respectively,

the vanishing of al

Aou®((a—a)(1®g®1l))

for arbitrary g € C(X) entails the vanishing of a — a’. In other words, as claimed, f
satisfies (2). |

Lupini et al. (2017) [13, Theorem 3.11] in fact indentify the entire algebra
EndG(L2 (X)) with the orbital algebra C(O) (see also [9, Section 7] for the case of ordinary
as opposed to quantum permutation groups). On the other hand, Theorem 3.1 only
realizes C(O) as a subalgebra of EndG(Lz(X)); for this reason, the analogy thus far is

only partial. The inclusion

C(0) € Endg(L* (X))

is indeed proper when X is infinite, but only for the simple reason that the larger algebra
is von Neumann, while the smaller one is only a C*-algebra of continuous functions. The

two differ in just this obvious fashion though:
Corollary 3.2. The von Neumann closure of C(0) in B(L?(X)) is End (L?(X)).

Proof. The argument in the proof of Theorem 3.1 applies to functions in L?(X x X) to
argue that they too belong to Endg (L?(X)) precisely when they are constant along the
fibers of X x X — O.

On the other hand, recall from the discussion preceding Theorem 3.1 that
Endg (L2(X)) is generated as a von Neumann algebra by finite-rank operators. The latter

are contained in the algebra
L*(X x X) = L*(X) ® L*(X)
of Hilbert-Schmidt operators on L?(X), meaning that EndG(L2 (X)) is the von Neumann

closure of its subalgebra of Hilbert-Schmidt operators. By the 1st paragraph of the
present proof, this coincides with the W* closure of C(0). |

4 Coherent Algebras for Metric Measure Spaces

Recall from Section 2.3 that unless specified otherwise, all metric measure spaces are
assumed compact. Following the discussion in [13, Section 2.3] in the context of finite

graphs, we introduce the following object.
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Definition 4.1. The coherent algebra Coh(X) of a metric measure space (X, d, u) is
the smallest unital C*-subalgebra (with respect to the standard algebra structure) of

C(X x X) meeting the following requirements

e it contains d;
e it is closed under the convolution multiplication x;

e itis closed under flips; if f € Coh(X) then so is the function (x,y) — f(y, x).

Remark 4.2. For a finite graph, its coherent algebra as recalled in [13, Section 2.3]
coincides with Coh(X) in the sense of Definition 4.1 when X is equipped with its path

metric and the uniform probability measure (i.e., the rescaled counting measure).

Now consider the setup of the previous section, of a compact quantum group
acting isometrically (and faithfully) on (X,d,) € Y. In the language of Theorem 3.1
p(d) € B(L?*(X)) is an intertwiner for U, and hence the coherent algebra Coh(A) is a

subalgebra of C(0). In conclusion:

Lemma 4.3. If the coherent algebra of (X, d, u) equals all of C(X x X) then (X, d, 1) has

trivial quantum automorphism group.

Proof. LetG be a compact quantum group acting faithfully on (X, d, 1) (and preserving
the metric and measure).

Under the hypotheses we have C(0) = C(X x X), and hence the latter is contained
in the algebra of intertwiners for the G-representation L?(X). Since the weak-x closure
of C(X x X) in B(L?(X)) contains all Hilbert-Schmidt operators, the intertwiner algebra
must be all of B(L?(X)).

It now follows that the (faithful) representation U of G on L?(X) is trivial, which

in turn means that G is trivial. |

Theorem 4.4. The subset Y

coherent algebra is residual.

wiv 0f Y consisting of metric measure spaces with full

Proof. We will argue that Y, contains a dense G; set. Since we are working

triv
in a complete metric space, this amounts to showing that it contains a countable

intersection of open dense subsets of Y.
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Fix positive integers N, m, and p and denote by Yy . ., the subset of Y consisting

of (classes of) metric spaces (X, d, 1) for which the following condition holds:

Whenever d(x,x) +d(y,y) > % we have|d"(x,y) — d*""(X,y)| > 113 forsomel <n <N.
(8)
We then have
Ytriv = m U YN,m,p'
m N,p
and hence it suffices to argue that each Uy, Yy, , is open and dense in Y. We prove
these two claims separately.

Uw,p Y, mp is dense. First, note that the set of isomorphism classes of finite
metric measure spaces is dense in Y. Furthermore, the metric of any finite metric space
can be perturbed by arbitrarily small amounts as to ensure that the distance function
d: X xX — [0,00) is one-to-one off the diagonal A of X and d*? is one-to-one on A. Such
finite metric measure spaces (X, d, 1) thus constitute a dense subset of Y. On the other
hand that set is contained in (Jy , Yy , , for every positive m, hence the density claim.

Yy m,p is Open.

Suppose not. This means that we can find a metric measure space (X, d, 1) in
Yy, mp and a sequence (X,,d,, u,) of elements of Y \ Yy, ., converging to X in the
topology we have equipped Y with.

The assumptions mean that we can find points x,,, x,, y,,, 5, in X,, such that

(1) dp (X, Xp) + Ay (Vi Vi) = 5

(2) foralll <i=< N we have |dy(x,, V) — di (X3, ¥p)| < 3-

On the other hand, the convergence (X,,d,, 1,,) — (X,d,u) means that there are ¢,-
isometries f,, : X,, — X as in Definition 2.7 for ¢, — 0.
By compactness, after passage to a subsequence we can assume that f,(x,)

converge to x € X and similarly for x’, y, and y’. For each individual i we then have

d;‘li(xn,yn) — d*(x, y) and d:‘li(x;l,y;) — d*i(x’,y’),
and hence conditions (1) and (2) above imply, respectively, that

o dx,x)+dy.y) = 5
e forall 1 <i< N we have |d*(x,y) — d*x,y)| < %.

This, however, contradicts our assumption that (X, d, u) belongs to YN,m,p and finishes
the proof. |
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Theorem 4.5. The subset of Y consisting of metric measure spaces with trivial
quantum automorphism groups is residual.

Proof. Simply combine Theorem 4.4 and Lemma 4.3. |

4.1 Laplacians and coherent algebras

The main result of the present subsection is as follows:

Proposition 4.6. Let (X,d) be a finite metric space equipped with the uniform

probability measure. Then, the Laplace operator A on X belongs to Coh(X).

In particular, since as observed above we have Coh(X) is contained in the orbital
algebra C(O) for any isometric action of a compact quantum group G on (X,d, ),
isometric quantum actions automatically preserve the Laplacian. This gives an alternate
take on [2, Theorem 4.5], stating that the quantum isometry groups of finite metric
spaces can be recovered as implementing quantum symmetries of natural Laplace
operators attached to said metric spaces. Before going into the proof of Proposition 4.6
we recall some background on Laplacians using [15] as our source. Following [15, Section

2], we write

Z:={x,y) eX?|x#y)

for the off-diagonal of the Cartesian square X?. We have a “gradient” operator

3:CX) — C©2), af(x,y) = f(x) — F(y)

and an inner product on C(Z) defined by

o) = [ [ Zowpe ey )| duw,

X#y

where c,, are the “conductances” attached to the metric, along with the usual

_ 1
Yy — dxy)
inner product on C(X) itself induced by u:

mﬂ:Amﬁmwm.

Finally, we have the following:
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Definition 4.7. The Laplacian on X is the unique positive operator A on L?(X)

satisfying
(f of") = (f, Af), Yf.f € CX).

Since integration against p is simply the averaging operator

1
/X fdue = > )

xeX

the definition of A expands as

D F@af(2) =D (F@ —FOI(f @) —F 1),

zeX X#£y

which in turn equals
2> FO ) =¥y,
Xty
All in all:
Afx) =2 (F(0) = F(7))Cyy-
V#X

In conclusion, written as an X x X-indexed matrix operating on L?(X) = C*I, A is (up to

a global scalar we henceforth disregard) equal to T + A where T is diagonal with

Ty = Z Cxy

y#X

and A is off-diagonal (i.e., its main diagonal is zero) and 4,,, = —c,,, for x # y.

Proof of Proposition 4.6. According to the discussion carried out above it will suffice
to show that both T and A belong to Coh(X). We prove these claims separately.

(1): A € Coh(X). We have I + A = (I + D)~ ! with respect to the Hadamard product where
I is the identity matrix and D is the distance matrix with D,,, = d(x, y). Since both I and
D are contained in Coh(A) and the latter is a finite-dimensional C*-algebra under the

Hadamard product the inverse
I+D)'=I+4

is a member of Coh(A) as well, and hence so is A.
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(2): T € Coh(X). Write X x X — O for the surjection corresponding to the embedding
Coh(X) c C(X x X), so that Coh(X) = C(0O). We have to argue that viewed as a function
on X x X, T factors through X x X — O. In other words, the task is to show that T € C(X x
X) is constant along the equivalence classes R; making up the coherent configuration
corresponding to Coh(X) (see Definition 1.1).

Recall that the diagonal {(x,x) | x € X} is a union of classes R;. Since the off-
diagonal entries of T vanish it will be enough to argue that T is constant along the
diagonal relations R;.

Suppose (x,x) and (y, y) belong to the same class. Lemma 4.8 applied to singleton
intervals shows that for every r € R the number of points x # z € X with d(x,z) = r

equals the analogous number for y. In other words

{Cxzr

x#zeX} and {CYW, y #w e X}
coincide as multisets, and hence the (x,x) and (y, y) entries

ZCZX and ZCWY

Z#X wW#y

of T coincide. [ |

Lemma 4.8. Let (X, d) be a finite metric space and (x, x), (y,y) diagonal points in the
same equivalence class of the canonical coherent configuration attached to Coh(X).

Then, for any interval [a, b] C R the sets
{ze X |d(z,x) €la,bl} and {weX|d(w,y) e la,bl} 9

have the same cardinality.

Proof. Let D be the distance matrix, as before (i.e., D,, = d(x,y)). Since D € Coh(X),
applying Borel functional calculus applied to the C*-subalgebra Coh(X) ¢ C(X x X)
yields

f(D) := the matrix with entries f(DXy) € Coh(X).
This holds in particular for f = x,, (the characteristic function of [a, b)), leading to
M € Coh(A) where
1, ifd(x,y) €la,bl,

X,y - .
0, otherwise.
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Now, the square M? with respect to the usual, matrix multiplication is also a
member of Coh(X), and note that its diagonal entry M2, is exactly the cardinality of the
set on the left-hand side of (9) (and similarly for ng). Since (x,x) and (y, y) are assumed

in the same coherence class, M? € Coh(X) must assign them equal value, as claimed. W
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