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Abstract. We study the Riemannian quantitive isoperimetric inequality. We show that a direct
analogue of the Euclidean quantitative isoperimetric inequality is—in general—false on a closed
Riemannian manifold. In spite of this, we show that the inequality is true generically. Moreover, we
show that a modified (but sharp) version of the quantitative isoperimetric inequality holds for a real
analytic metric, using the Lojasiewicz—Simon inequality. The main novelty of our work is that in all
our results we do not require any a priori knowledge on the structure/shape of the minimizers.
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1. Introduction

The isoperimetric inequality on R” states that & (2) > & (B) for any Caccioppoli set
Q with |2| = | B|, with equality only for & = B (up to a set of measure zero). That is,
the isoperimetric inequality states that balls in Euclidean space have the least perimeter
for their enclosed volume. Starting with Bonnesen (cf. [40]), there has been considerable
activity concerning quantitative versions of the isoperimetric inequality, finding geometric
conditions on a set €2 that nearly achieves equality in the isoperimetric inequality.

Recently, a (Euclidean) quantitative isoperimetric inequality holding in all dimen-
sions has been established by Fusco, Maggi, and Pratelli [29]. They proved that if 2 is a
Caccioppoli set with |©2| = | B1(0)|, then

(B=Bf‘2f)cm &2 A B |>2 < C(n)(P(Q) — P(B)). (1.1)

By considering C? perturbations of the ball, one can see thet the exponent on the left
hand side is sharp [31]. Subsequently, Figalli, Maggi, and Pratelli [24], and Cicalese and
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Leonardi [13], gave substantially different proofs of (1.1), and were also able to explicitly
compute the constant C(n) and prove that it is polynomial in n. See also [14, 28], and
[1,7] for applications of such quantitative inequalities.

In this work, we consider the analogue of (1.1) on a closed (that is, compact without
boundary) Riemannian manifold. The symmetrization and optimal transport techniques
of [24,29] are not applicable even for non-quantitative isoperimetric inequalities on a
general Riemannian manifold (see Section 1.2 below for more discussion), so we follow
the selection principle approach of [13]. The general idea of the selection principle (which
has its roots in the work of White [50]) is that by considering a “worst case scenario”
for (1.1), one can reduce to the case where 92 is a small C1*® graph over dB. At this
point work of Fuglede [26] applies (in R") to show that (1.1) holds in the worst case
scenario (and thus in all situations).

In a closed Riemannian manifold (M, g), it is well known that isoperimetric regions
exist for all volumes V € (0, |M |¢). However, there are surprisingly few manifolds where
explicit isoperimetric regions are known (see [19, Appendix H] for a recent survey). As
such, methods that rely explicitly on the geometry of B C R” cannot be directly extended
to a general manifold. Indeed, an estimate of the form (1.1) is false in a general Rieman-
nian manifold, even for sets which are small graphs over isoperimetric regions!

Indeed, we construct the following example in Section 4:

Theorem 1.1. For all n > 2 there exists a closed manifold M"™ with a real analytic
Riemannian metric g, a uniquely isoperimetric region 2 C M and sets Ey with smooth
boundary such that |Q A Ex|s — 0 but the sets Ey do not satisfy the analogue of (1.1),
ie.

(12 A Eglg)?
PE(Er) — PE(Q)
In fact, for any y > 0 fixed, there exists a real analytic g, depending on y, such that

(12 A Exlg)*t”
— 00
PE(Ex) — PE(2)

Finally, we show that there is a g smooth but not real analytic on M™ such that one cannot
bound P8 (Ey) — PE(E) by any power of |2 A Ex|g, i.e.,

(12 A Eglg)*tY
PE(E) — PE(Q)

— o0 forall y>0.

As such, the natural analogue of (1.1) cannot hold in general. Nevertheless, we prove
that (1.1) holds generically in the following sense. Let I" denote the the set of C3 metrics
on a given Riemannian manifold.

Theorem 1.2. Let M" be a closed manifold with 2 < n < 7. There exists an open and
dense subset § C T with the following property. If g € G, then there exists an open dense
subset'V C (0, |M|g) such that for Vo € 'V, there is C = C(g, Vo) > 0 such that

PE(E) — I8 (Vo) = Cay(E)? (1.2)



Quantitative isoperimetry on manifolds 3

forany E C M with |E|g = Vp. Here,
3¢ (Vo) = inf{P*(Z) : |S|, = Vo)
is the isoperimetric profile and the manifold Fraenkel asymmetry is
ag(E):=inf{|{EAZX|g:X € :Mfg,o},
Sfor M{g,o the set of ¥ attaining the infimum in J ¢ (Vo).

A key element of the proof here is a bumpiness result in the spirit of [48,49], but with
a volume constraint.

Remark 1.3. We note that given a metric g, fixing V' € (0, |M|¢) one can always find a
nearby g such that (1.2) holds for volume V' (without needing to perturb V'): see Corol-
lary 5.4.

Moreover, for any real analytic metric g, we prove an analogue of (1.1) that holds for
all volumes.

Theorem 1.4. For?2 <n <7, assume that (M", g) is a real analytic, closed Riemannian
manifold, and let 0 < Vy < |M |g. There exist constants Cy > 0,y > 0, depending only
on (M, g) and Vy, such that

PE(E) — 98 (Vo) = Coag(E)*HY (1.3)
forany E C M with |E|g = V.

As remarked above, the main difference between Theorem 1.4 and essentially all
the known quantitative inequalities is that we have no a priori knowledge of the struc-
ture/shape or any classification of the minimizers of (2.1). For this reason we expect this
method to be applicable to a variety of other problems. On the other hand, the price that
we have to pay is the exponent y > 0 (see Section 1.2 for a more in-depth comparison).
We remark that our result is optimal both in the analyticity assumption and in the fact that
y might be (arbitrarily) greater than O (see Section 4). The restriction 2 < n < 7 is due to
the fact that minimizers are smooth only in these dimensions.

1.1. Idea of the proof of Theorems 1.2 and 1.4

The key idea for Theorems 1.2 and 1.4 is that the quantitative inequality (1.3) with y = 0
corresponds to integrability of the minimizers, that is, roughly speaking, every null direc-
tion of the second variation can be killed by choosing a nearby minimizer. More precisely:

Definition 1.5. We say that a minimizer X of (2.1) is integrable if every Jacobi field on X
with zero average is the infinitesimal generator of a one-parameter family of minimizers.

For example, in the case of the Euclidean space, balls are known to be the unique
minimizers, and the zero-average part of the kernel of the Jacobi operator is composed
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only of infinitesimal generators of translations, that is, balls are integrable and the second
order expansion gives the inequality. Since in our case integrability is in general false (see
Section 4) we have to use a stronger tool, the following infinite-dimensional version of
the so-called Lojasiewicz inequality.

Lemma 1.6 (Quantitative inequality and Lojasiewicz inequality). For any n > 2, let
(M"™, g) be an analytic, compact Riemannian manifold and ¥ C M a smooth isoperi-
metric region of volume |X|g = V. There exist constants §,y, Cy > 0, depending only on
(M, g) and Z, such that if E C M has |[E A X|; <8 and |E|g = Vp then

PE(E) — PE(X) > Coas(E, g)*T" (1.4)

where
as(E,g) :=inf{|E AX[g: X e My, |ZAZ|, <8}, (1.5)

and we recall that M§0 are the isoperimetric regions of volume V).
If X is integrable, then we can take y = 0. If X is strictly stable then we can replace
(1.4) with the stronger

PE(E) — PE(Z) > Co|E A TP (1.6)

This is a local version of Theorem 1.4 valid in every dimension as long as ¥ is
smooth, and the proof of Theorem 1.4 follows from Lemma 1.6 and a simple compactness
argument. On the other hand, the proof of Lemma 1.6 is a consequence of the so-called
selection principle, introduced in [13] for the quantitative inequality in Euclidean space,
and an infinite-dimensional version of the Lojasiewicz inequality for competitors £ which
are graphical on X, which replaces the so-called Fuglede inequality.

Theorem 1.2 follows by combining (1.6) with a bumpiness type theorem that guaran-
tees that for generic metrics and values of the enclosed volume Vj, minimizers of (2.1)
are strictly stable, that is, the kernel of the second variation is empty. The only additional
difficulty with respect to the results in [48, 49] is the parameter Vj, which corresponds
essentially to a Lagrange multiplier.

1.2. Technical discussion of related work

As mentioned above, there has been a lot of recent work on quantitative stability not
just for the isoperimetric inequality but also for many other geometric (e.g. Brunn—
Minkowski [23]), spectral (e.g. Faber—Krahn [6]), and functional (e.g. Sobolev [39])
inequalities. We refer to the recent survey of Fusco [27] for a more comprehensive list.
When the underlying space and the extremizers are highly symmetric these results are
often proven by symmetrization or rearrangement (see e.g. [12]). In this vein we would
also like to point out the works [11,32], which do not use symmetrization techniques but
do exploit the richness of the symmetry group of the underlying space.

We also note that the quantitative isoperimetric inequality in the form (1.1) for regions
in space-forms does hold [4,5]. Moreover, in recent work, Cavalletti-Maggi—Mondino [8]
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prove a qualitative version of the Lévy—Gromov isoperimetric inequality (for manifolds
with lower Ricci curvature bounds). In particular, their results imply that sets nearly satur-
ating the Lévy—Gromov isoperimetric inequality are close (in L!) to metric balls, which
are close (in L) to isoperimetric regions. We emphasize that this closeness in [8] is meas-
ured relative to how close the metric saturates the Lévy—Gromov inequality, rather than
how close the set comes to being isoperimetric.

In the anisotropic setting, optimal transport techniques have been used with great suc-
cess (see e.g. [3]). However, usually convexity of the extremizers is required (e.g. to
guarantee the necessary regularity of the transport map). Other techniques, such as the
selection principle, often require understanding the spectrum of the relevant energy lin-
earized around the extremizers (to obtain estimates like Fuglede’s [26]). In the generality
we consider here, there is very little one can say about the structure of the extremizers
(i.e. isoperimetric regions) or symmetry of the underlying space. This lack of knowledge
is our primary technical obstacle.

As alluded to above, we are able to overcome this obstacle by establishing the
Lojasiewicz—Simon type inequality (1.4). Lojasiewicz’s work [34] was first applied to
geometric analysis by Simon [43], in order to prove the regularity of solutions to certain
elliptic PDE near isolated singularities. These ideas have been further developed by a
number of different authors in a number of different settings, e.g., to understand the long
term behavior of some gradient flows [16,47] or to prove results in the same vein as [43],
but either in the parabolic setting (see e.g. [10, 15]), or in purely variational settings (see
e.g. [20]). See the introduction of [22] and the references therein for a more comprehens-
ive history. As far as we are aware, this is the first instance of a Lojasiewicz—Simon type
inequality being used to prove a quantitative stability result.

1.3. Results for stable minimal surfaces

We briefly note that the techniques used to prove Lemma 1.6 can be used to prove the
following quantitative minimality result for minimal surfaces, related to the works [18,
33,50].

Theorem 1.7. Consider a real analytic Riemannian manifold (M™, g). Assume that T~
C M is a smooth stable minimal hypersurface. Then there are §,C > 0 and y > 0
(depending on T, M, g) such that for M being the set of T homologous to T with the
same mass and small flat norm F (T, f') < §8,! for any current S homologous to T with
F(T,S) < 8, we have

~ \2+Y
M(S) — M(T) > C(finLIF(S, r)) .

where M(+) is the mass (area) of the current.

'Here F(T', T”) = inf {M(A4) + M(B) : A + 3B = I — '/} is the flat norm (see e.g. [33, Sec-
tion 2]).
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This follows in a nearly identical manner to Lemma 1.6. We note that with appro-
priate modifications, one can prove a similar result in higher codimensions. It would be
interesting to understand an analogue of Theorem 1.7 for finite index surfaces (see [50]).

1.4. Plan of the paper

Section 2 is dedicated to fixing some notations and introducing some preliminary tools,
particularly the various Banach manifolds we will use in the rest of the paper. In Section 3
we prove the infinite-dimensional version of Lojasiewicz inequality (Lemma 1.6) and
Theorem 1.4, while Section 4 is dedicated to its optimality. Finally, in Section 5 we prove
Theorem 1.2 and the bumpy metric result needed to do that.

2. Preliminaries and notations

We start by introducing some concepts that will be used throughout the paper.

2.1. The isoperimetric problem

Recall that the distributional perimeter of E C M is defined by

PE(E) = sup {/E divg (¢) dvolg

¢ e CYM;TM), ||§|L < 1}.

Sometimes, when it is clear in context, we will eliminate the dependence on g from the
notation. Then, for a fixed constant 0 < Vo < |M"|,, where | - |, denotes the volume on
M induced by g, we study the minimization problem

JE (Vo) := inf(PE(E) : E € A, } 2.1)

where
Af ={E C M : yg € BV(M), |E|g = Vo}

is the set of Caccioppoli sets with volume V. If Q € A‘Ig,o attains 48 (Vy), we say that
is isoperimetric. We let M{‘;O denote the set of isoperimetric regions of volume V.

2.2. Graphical regions

Let X C M" be such that X is smooth, and embedded, and let vy be the normal to 9%
in M" pointing outside X. Let f : ¥ — R. Then the graph of f is defined by

graph(f) := {(x, expy (f(x)vz(x))) : x € 9%},

and we will sometimes use the notation graph( f) = dX + f. Moreover we associate to
each such graph a set of finite perimeter ¥ + f insuchaway thatd(X + f) =0X + f =
graph( /'), with orientation chosen so that Vgph( 1) - V= > 0. When the set X is clear from
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context, we will often abuse notation and use f to refer to both the function and the
submanifold % + f or the subset X + f.

Ifu : N1 — X" is a smooth embedding from a compact orientable manifold N~
to M™, we will denote by [u] the set of all maps of the form u o ¢, where ¢ : N — N is
a smooth diffeomorphism; that is, the elements of [u] are all parametrizations of the same
surface u(N).

2.3. Banach manifolds

We will denote by
BE¥(ho) := {h € C*(M) : ||h — hollcre < 7).
We will abuse this notation a bit, writing
BE(2) = {f € CR*OD) 1 || fllcha <7},

and B, (Vo) ={V eR: |V =Vy| <r}.
Given r, Vo > 0, and ¥ a minimizer of (2.1) for a C3 metric go with |Z| g0 = Vo, we
are interested in the following sets:

Br(2):={f €B): IS+ flgo = |Zlgo) 2.2)
B,(2.80) :={(f£.8) € B*(2) x B}(g0) : |IZ + flg = |Zgo} (2.3)
B (2.80. Vo) :={(f.8.V) € B¥*(Z) x B} (0) x B-(Vo) : IS+ flg =V}. (24

It is straightforward to see that these are Banach manifolds; we sketch the proof for
the reader’s convenience (recall that I" denotes the family of C3 metrics on M).

Lemma 2.1. Let ¥ be a smooth minimizer of the isoperimetric problem (2.1) for the
metric go. There exists § > 0, depending on X, gg, such that Bs(X), Bs(Z, go) and
Bs(X, go, Vo) are separable, codimension 1 Banach submanifolds of the separable
Banach spaces C*>*(3%), C*%(3X) x T and C*>*(dX) x I' x R respectively (modeled
on the Banach space of functions with zero average on 0% with respect to the metric gg).

Proof. We sketch only the case B,(X), as the other two are the same. Separability fol-
lows from the separability of C2%, so we only need to show that the function F(f) :=
|Z + flego — |Z|g, is a submersion near 0. To do this we observe that, by a well known
computation (see for instance [49, Lemma 3.1 and Section 7])

DFO)[v] = /a _vdoy,

where doyg, is the volume form of dX in the metric go. Choosing v as a constant, we
immediately see that the differential is surjective, so that there exists § > 0 depending on X
such that B5(Z, go) is a Banach submanifold of C%%(3X). Since the kernel of DF(0) is
the space of functions v € C%“ such that [, a5 V dog, = 0, the proof is complete. ]
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When the precise value of r is not so important, we will write 8(X) to mean B, (X)
for some fixed r, small enough as in the previous lemma, and analogously B (X, go) and
B(Z, g0, Vo).

We will use a chart on 8(X) defined as follows. First, we fix amap & : ToB(X) N U
— B(X), where U is a neighborhood of 0 € Ty B(X) by taking

E():=v+ &) where&(v) € Rischosen so that |[X + E(v)| = |X|.

We notice that by Lemma 2.1, after choosing U sufficiently small, the map D E(v) :
ToB(X) — Tgw)B(X) is invertible, with D E(0) = Id and moreover, if u; = E(v;),
then

lur —uzllfy12 = Cllog = vall 12 (2.5)

Moreover, we will denote by Pz : ToB(X) N U — R the perimeter functional written
in the coordinates defined by &, namely

Pe(v) = P(Z + E(v)), veToB(E)NU.

We remark that if the metric g¢ is analytic, then so is the function &. We can see this in
the proof of Lemma 2.1, since the submersion, F, there is analytic.

We will denote by D&z, D2 %P5 the first and second derivative of Pz as a map on
(a subset of) ToB(X). We have the following simple lemma.

Lemma 2.2. For every v € U we have
DPg(v) = DP(X+ E(v)) o DE(v) (2.6)
where DP(Z 4+ E(v)) : C*%(Z + E(v)) — R is defined by

DP(S + E(w)[w] = 4

T P(E+ EW) + tw).

t=0

In particular,
D>z (0) =0, 2.7)

D> P2 (0)wi. ws] = /B _wa(Us + H)un + () 2.8)

where Js = — As —(|Ax|? + Ric(v, v)) is the Jacobi operator of 3% and j(wy) € R is
the unique real number such that (Jx + H%)wl ~+ j(wy) has zero average on d%.

2.4. Properties of isoperimetric regions

The following result concerning regularity of isoperimetric regions is well known (see
e.g. [35]).

Theorem 2.3. We can choose representatives of minimizers of (2.1) so that their bound-
aries are compact, have constant mean curvature, and are regular away from a singular
set of Hausdorff dimension at most n — 8.
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Finally, we recall the following

Lemma 2.4. Let X be an isoperimetric region in a closed Riemannian manifold (M", g).
There exists a number L € N, depending on (M, g), such that the number of compact
connected components of 0% is bounded by L.

Proof. By [37, Theorem 2.2] there is § > 0 such thatif [X|g € (0,§] U [|[M|g —§.|M|g)
then 0% is connected (and indeed a perturbation of a coordinate sphere). Now, by
Lemma C.1 if ||, € (6, |M|g — §), then 92 has constant mean curvature |H| < C =
C(M, g, ). By the boundedness of H, the monotonicity formula applied to each com-
ponent of d2 implies that P& (2) > ¢ L for some constant ¢ = ¢(M, g,8) > 0. However,
it is easy to see that J8(V) < Iy = Iy(M, g) for all V, by e.g. foliating (M, g) by the
level sets of a Morse function. This completes the proof. ]

This will be used in the proof of Lemma 3.4 (to prove that the kernel of an elliptic
operator over X has finite dimension) and again in the proof of Theorem 1.2 (to conclude
that there are only countably many diffeomorphism types for minimizers X of (2.1)).

3. Proofs of Lemma 1.6 and Theorem 1.4

The proof is divided into two parts. First, using a modification of the argument in Simon’s
[43], based on the Lyapunov—Schmidt reduction and the Lojasiewicz inequality for ana-
lytic functions, we prove Lemma 1.6 for graphs close to a smooth minimizer of (2.1). This
can be interpreted as a generalization of Fuglede’s inequality to the non-integrable case.
In the second part we combine this result with a modification of the selection principle
inspired by [13] to conclude the proof of Lemma 1.6.

Throughout this section, (M, g) will be fixed, so we will not make explicit the depend-
ence on g.

3.1. Lyapunov-Schmidt reduction, integrability and strict stability

We start by recalling the following technical result whose proof is given in Appendix A.
We denote K := ker(D2?Pz(0)). Notice that since 9% is smooth and compact (by
Theorem 2.3) and D25z (0) is the quadratic form associated to an elliptic operator by
Lemma 2.2, dimK =/ < oo.
We let Lf@ be the Hilbert space of L2-functions on dX that integrate to zero. We can
thus denote by K the Lf@ orthogonal complement of K in Ty B(X).

Lemma 3.1 (Lyapunov—Schmidt reduction). Suppose (M, g) is a C3 manifold and ¥
is a smooth® minimizer of (2.1). There exists a neighborhood U of 0 in TyB(Z) and a

2By smooth here, we mean that the singular set is empty; then dX will be as regular as g allows.
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map Y : KN U — K*, as regular as g, where the orthogonal complement is taken with
respect to the Lé inner product, such that

T©0)=0 and VY(0) =0, 3.1)

and, in addition,

(3.2)

g (VP(E+ () =0 Vie KNU,
ng(VPe(§+ (€)= VP(E) VYieKNU,

where P : R! — R is the function defined by
P&)=P=(+TY() foreveryle KNU

and we identify ¢ with the [-vector given by its coordinates in an orthonormal basis of the
kernel K. Moreover, let £ be the [-dimensional family defined by

£:={+7T©):LeUNK)C ToB(3).

Now assume that g is analytic. Then P is analytic and satisfies the so-called
Lojasiewicz inequality at 0 (see [21, Corollary 4]): there are constants C,8§ > 0 and
y > 0, depending on X, such that if |€| < 8, then

2+y
PeO-PO=C( i Je—tl) (3.3)

{§0: VP (¢0)=0}

For W = 85(X) and M the set of critical points of P : B(X) — R we have
MOAW={Z4+C+TO+EC+TYQ):€eUNKand VP() =0}, (3.4)

and
SeMNW implies P(2)=P(). (3.5)

Moreover, there is a constant C < 0o such that, forall {,n € U N K,

IVY©OMlllcae < Clinllco.e. (3.6)

Finally, there exists a constant C > 0 such that, writing u = E(v) and defining ve :=
kv + Y(wgv) and ug := E(vg), the following key estimate holds:

P(E+u)—P(E+ug) = Clu—ugly, . Yue Bs(2). (3.7)

Definition 3.2 (Integrability and strict stability). We say that a minimizer X of (2.1) is
integrable if every Jacobi field u € K = ker(D? Pz (0)) is the infinitesimal generator of
a one-parameter family of critical points of J in Bs(X); that is, for every element u € K
there exists a one-parameter family of diffeomorphisms, (¢;);e(—1,1), such that ¢o = Id,
%¢,|t=0 = u(¢o)vy on 0%, and

(¢1)4(X) € B5(X) is acritical point of & in Bs(X) for every ¢ € (—1,1).
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We say that a minimizer X of (2.1) is strictly stable if there exists C > 0, depending
on X, such that

D2Pz (0)[v,v] = C|v]| for every v € Ty Bs(X). (3.8)

2
W12(2)

In this case we can refine the Lyapunov—Schmidt decomposition to obtain the follow-
ing lemma.

Lemma 3.3 (Lyapunov—Schmidt and integrability). Under the assumptions of Lemma 3.1
and using the notation introduced there, if § > 0 is small enough the following holds.

(1) If g is analytic, then X is integrable if and only if the function P of Lemma 3.1 is
constant. In particular, if 3 is integrable, then

MAW ={Z+T+TE+EC+TK):{eUNK},
and moreover
PE+u)—P(E)=Clu—ugly. Yue Bs(). (3.9)
(i) If  is strictly stable and g € C3, then £ = {Z} and moreover
PE+u)—PE) > C||u||%V1.2 Yu € Bs(%). (3.10)

The proof of this fact is also contained in Appendix A.

3.2. Lojasiewicz inequality as a generalization of Fuglede’s inequality
In this subsection we prove the main estimate of the paper.

Lemma 3.4 (Lojasiewicz meets Fuglede). Let ¥ be a smooth embedded orientable min-
imizer of (2.1) on a manifold (M, g).

If g is analytic, then there exist constants §(X), C(X), y(X) > 0, all depending on
¥, M, g, such that

P(E+u)—P(2) > C(D)asx) (T +u)>"® vy e 85(%). (3.11)
If g is analytic and X is integrable, then we can take y = 0 in the above estimate, that
K P(E+u)—P(T) > C(D)asx) (T +u)? Yu e Bs(T). (3.12)
If g € C3 and X is strictly stable, then
PE4+u)—PE)>=CEO|(E+u) AP Yue B5(2). (3.13)
Proof. We start by observing that

inf u—u 2>C inf U — i > Cas(S + u). 314
sl iz = C o int el = Cap(S 4w, (G4
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where the first inequality is the Poincaré inequality and the second follows from the fact
that u, & € Bs(X) implies that u has small C "% norm when reparametrized over X.

Now we prove (3.11). Letu € B(X) andletv € U C ToB(X) be such thatu = E(v).
Letuy = E(ve) where ve € £ is as in Lemma 3.1 and write

PE+U)-—PE)=PE+u)—P(E +ug)+ P(E+ug)— P(E), (3.15)

=71 =g

For the first term we simply use (3.7), therefore to conclude we only need to estimate /.
We distinguish three cases.

3 is strictly stable. In this case ug = 0 and (3.13) follows immediately from (3.10) and
(3.14).

3 is integrable. In this case we have /¢ = 0 by (3.5), therefore by (3.7) and (3.15), and
the fact that ve + E(vg) = M N W for all ve € £, we find that

2
PE+u)—P(X)>Cllu—ugl? >C( inf u—u )
(E+10) =D 2 Clhu—ulyz 2 C(,_nt e~y

Combined with (3.14), this proves (3.12).

Y is not integrable. We identify ve with £ € R!, via vy = £ + T& where £ is the
projection of v onto the kernel of D2z (0). Using the definition of P and (3.3) we get

I¢ = P(ug) — P(0)

T S 1)
> in — )
{€0: VP(60)=0} 0

C inf ¢ — Ullw m
> . )
(ﬁeMln.ﬁ,g(E) v Ullw-2
C inf ue —ully w 3.16
> n - . ) , .
(ﬁeMlmi},g(E) | lw2 ( )

where in the first inequality we used standard estimates for elements of the kernel D2 Pz
and (3.6), while in the last inequality we used (2.5). We combine the inequalities (3.7)
and (3.16) with the simple fact that a>*Y + b2+Y > C(y)(a + b)?>*? foralla,b > 0 to
conclude that

24y
P +u)—P() > Cllu—ugl? +(( inf Uge — U )
( ) (2) = C| §C||W1,2 e MNBs( )” £ w2

+y
> ( ( u—u 2+ inf U — U . )
- ” JC”WI 2 ieMNBs(S) ” £ ”W1 2

o _inf u—ilyiz)
> in u—1u . ) ,
= 7 \GeMnBs (D) wi-2

which, together with (3.14), concludes the proof of the proposition. ]
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3.3. Proof of Lemma 1.6

Let X, Vg be as in Lemma 1.6. Let §(X), C(X) > O and y := y(X) > 0 be the constants
given by Lemma 3.4, depending on X.
Given a set £ C sy, N Wj of finite perimeter, where

Ws:={F CM:yxp €BV(M), |FAX|<8), (3.17)

we can define the associated “energy” relative to X,

@D
(Q(E,y):zinf{liminf 5P (Fr)

! WHFI«}kCAVO, as(Fi) >0, |F A E|—>0}, (3.18)

where
§P(Fx) = P(Fr) — (Vo)

is the isoperimetric defect.
With y > 0 fixed as above, assume that there is a sequence of “bad” sets Ej €
Ay, N Ws such that

1
SP(Ex) < %as(Ek)Hy-

The trivial bound of as(Ex) < 2Vp implies that §P (Er) — 0. Note that, by com-
pactness in the space of functions of bounded variation and the lower semicontinuity of
perimeter, passing to a subsequence we can guarantee that Ey — ¥ € M N W in the
sense of sets of finite perimeter, and therefore ag(Er) — 0 as well. We have just shown
that the (local) quantitative isoperimetric inequality is equivalent to the statement that

_inf  Q(Z,y) > 0. (3.19)
SeMnWg

In order to prove (3.19) we are going to use the following version of the selection
principle of [13].

Proposition 3.5 (Selection principle). Assume that Q(X, y) < oo. There exists a
sequence of sets Ex C M of finite perimeter with the following properties:
(1) as(Er) >0ask — oo;
(i) Q(Ex,y) = infge i, @S, y) ask — oo;
(iii) there exists a smooth %o € M N Wy such that

_inf Q(2,y) = (0, 7)
XeMNWs

and functions uy € C“*(3%¢) such that E := Xo + uy and |ug|cre — 0 as
k — oc.
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The proof of Proposition 3.5 is given in Appendix B and is a modification of the one
in [13] with the simplification that the ambient space is compact and the complication that
once again we do not know the shape of the minimizers nor the growth of the isoperimetric
profile V' + 4 (V). Notice that one of the reasons for this local version is the choice of §
so that % is smooth, since it is sufficiently close to X.

We are now ready to conclude the proof of Lemma 1.6. If @(X, y) = oo, then it
follows from Lemma 3.4 (and the triangle inequality) that Lemma 1.6 holds. Otherwise,
we can apply Proposition 3.5: since Xy € Wj is a minimizer of (2.1) and 9% is assumed
to be smooth, choosing ¢ sufficiently small depending on §(X), e-regularity guarantees
that £y = X + tix for some iy € Bsz)(2).

Then by Proposition 3.5 (ii) we have

IO
SPEL ) 0 o(gy 50

inf Q(,y) = lim Q(Ek,y) = lim _
SeMNW;s (2.7) k—o0 (Er. ) k—oc0 a5(x) (T + tig )2ty

where the second equality follows from the fact that s (Ey) > O for every k (i.e., Propos-
ition 3.5 (1)). This implies (3.19) and thus concludes the proof. [

3.4. Proof of Theorem 1.4

Let §(X), C(X) > 0 and y(X) > 0 be the constants of Lemma 1.6 for each ¥ € M.
Consider the covering (Bs(s)/2(Z))senm of M with respect to the L!'-norm, and recall
that M is compact, so that there exists a finite subcover (Bg(zj)/z(Ej))jJ:l of M. Set

J=1,... Jj=1,...,

8o := min 8(%;), ypo:= max yp(X;), Co:= min C(%;). (3.20)
=1,,J ' J J=lend

We claim that there exists g > 0 such that
a(E) <ap implies 8P (E) > Coa(E)>T70. (3.21)

Indeed, suppose not; then there exists a sequence E; of sets of finite perimeter such that
a(Ej) — 0and
8P(Ej) < Coa(E;)*To.

By a standard compactness argument, up to a subsequence E; — Y € M, so that there
exists N sufficiently large satisfying

|En A Z| < 80/2.
Then, by the triangle inequality and the definition of (X j)jjzl,
loss of generality that

we can assume without

|En A 21| < 8(20),
and that, by our contradiction assumption and the definitions of Cy, Yy,
SP(EN) < C(ZNa(En)*"ED < C(S))as, (En.8)>T7ED,

This contradicts Lemma 1.6.
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Next suppose g < a(E) < 2|M |g; then we recall the following fact (whose proof is
a simple contradiction argument combined with the fact that M is compact):

Lemma 3.6 ([13, Lemma 3.1]). For every ag > 0O there exists 8¢ > 0 such that, for any E,
if 8P(E) < 8y, then a(E) < ay.

Then we see that in our regime P (E) — P (X) > §p, and so

SP(E) > a(E)>tro, (3.22)

S0 > —0
* = 2[Mg)2 0

Choosing C; := min {Cy, }, Theorem 1.4 follows from (3.21) and (3.22). =

3o
(2IM|g)>t70

4. Optimality of Theorem 1.4

In this section we prove Theorem 1.1, giving an example demonstrating the sharpness of
Theorems 1.2 and 1.4. Finally, we discuss the possibility of extending our results to the
case of non-compact, finite volume manifolds.

We begin by proving the following relatively standard result. See e.g. [41,42,45] for
more refined statements.

Lemma 4.1. There is Ry = Ro(n) such that for R > Ry, if we consider the product

metric gr on SY(R) x S"71(1), then every isoperimetric region Q C M with volume
12| = LISY(R) x S"~1(1)| is of the form

Q = (to,to + 7R) x S™™ 1 for some ty € R.

Proof. For n = 2 this can easily be proven by passing to the universal cover R? and using
the classification of embedded constant curvature curves. We thus consider n > 3. The
proof we give below holds for 3 < n < 7, but can be easily modified to accommodate for
a singular set in higher dimensions.

Take Ry — oo and consider a sequence of isoperimetric regions

Qr € SY(Rg) x S™!

with [Qx| = 2|S'(Rg) x S"~!| — co. By comparison with the expected minimizer, we
have
P Qi) <2/S"7').

Moreover, because the Ricci curvature of S'(R) x S"~! is non-negative and vanishes
only in the S'(R) directions, we see”’ that the reduced boundary of Q; has exactly one
component unless 2y is of the form asserted in the lemma.

3This is a standard argument: if there are two boundary components, take a function in the
second variation that is 1 on one component and —A on another, where A is chosen so that the
function integrates to zero. Non-negativity of the Ricci curvature implies that |A|?> + Ric(v, v)
vanishes identically along each component.
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We now claim that the mean curvature Hy of 0*Qj remains uniformly bounded as
k — oo. This follows exactly as in Lemma C.1 since all of the metrics ggr are locally
isometric. Thus, using the monotonicity formula, we find that each component of 0*Qy
has (extrinsic) diameter uniformly bounded, say by 7j. From this, the conclusion easily
follows, because if 3*Q has only one component, then 0*Qy C [tx, tx + To] x S*~!
for some ;. This implies that either |Qx| = O(1) or |Q| > %|Sl(Rk) x S*71 for k
sufficiently large. This is a contradiction. ]

We now prove Theorem 1.1. We begin with the non-analytic case (the third assertion
in the theorem) and explain how the proof can be modified for the analytic case at the
end of the section. Consider a fixed R > R, for Ry from the previous lemma. Consider a
sequence of smooth functions ¢ : R — (1/2,2) such that

(1) @ is 2m R-periodic,

(2) gr(r) =1for|r—1| > 1/2(r € [0,27R)),

(3) @ convergesin C* to 1 as k — oo,

(4) ¢r(1) =1—1/k is the unique minimum of ¢y, and

(5) @ is strictly decreasing on (1/2, 1) and strictly increasing on (1, 3/2).

We claim that for k sufficiently large, the unique isoperimetric region of half the volume
in the warped product metric

gk = dr? + g (r)>ggn—1

on ST(R) x 8" 1is Qi = (1, Ry) x S (or its complement) for k large enough, where
Ri =1+ 7R + o(1) as k — oo is chosen so that || = 3|S"(R) x S"~!|¢, . Indeed,
let 2 be any isoperimetric region for g, enclosing half the volume. By Lemma 4.1, and
e-regularity, for k sufficiently large, 9y, is a small graph over {fo, to + 7R} x S"~! for
some #y € R. Up to replacing Q , with its complement (reversing the roles of 79, o + 7 R),
we can assume that ¢ = 1 near 79 + mR. Hence, by the argument in Lemma 4.1, the
component of 92 near {fo + 7R} is an exact slice {r;} x S”~1. It remains to consider
the other component ig of 92 k- By properties (4) and (5), and because 22 is a small
graph over o x S"~1, we see that*

=2 > (1—1/k)*S™™,

with equality only when £¢ = {1} x S"~!. Putting this together, we find £ (Qx) > £ (Q)
with equality only when Q2 = Q. This proves the claim.
We fix such a sufficiently large k for the remainder of the section and write M for

(S'(Rk) x S"71. g).

“Indeed, the map (1/4,7/4) x S*~1 — {1} x S"~ ! is (n — 1)-area non-increasing (with respect
to gz ) and is strictly (n — 1)-area decreasing on any hypersurface except {1} x S*~1.
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We now consider the sets I's := (1 + 8, ps) x S~ where p; is chosen so that the
volume of T's is equal to %|M| for all § > 0 small. Let ['y = (1, Rg) x S"~!. Note that

1+
p=Ret [ gy ar
1
Thus,
148
ITs ATyl = 2|S"_1|/ o(r)""tdr > ¢é.
1
On the other hand, for some C,, > 0,
P(Ts) — PTo) = Ca(p(1+ 8" —p)" )

(recall that ¢ = 1 outside of a small neighborhood of 1).
Now, suppose that ¢ (1 4+ r) — ¢(1) vanishes faster than any polynomial. Then we see
that
P(Ts) — P(To) < C;8/

for any j > 0. This shows that it cannot be true that
P ([s) — P (L) = C|Ts A o>

for any C,y > 0, independent of §.

To show that for a general analytic metric, it is necessary to allow y > 0 (arbitrarily
large) is slightly more involved. We sketch the modifications here. Choose an analytic
warping function ¢ that is 7 R-periodic, with unique minimum ¢(1) < 1 at 1 (and hence
1 + wR), so that is strictly decreasing on (0, 1) and strictly increasing on (1, 2), and so
that ¢ > 1 outside of (0, 2). Assuming ¢(1 + x) = @(1) + x> + O(x?>™*1) for small x
and a large positive integer m, shows that one cannot take y = 0 (and that y > 0 can be
arbitrarily large). ]

4.1. Manifolds with metric of finite volume

We briefly comment on the situation for (M, g) non-compact but still with finite volume.
By [36], isoperimetric regions exist for all volumes Vy € (0, |M|g). However, it seems
possible that such an (M, g) exists where some isoperimetric region has infinitely many
components (compare to Lemma 2.4). While each of these components might satisfy a
Lojasiewicz inequality, it seems plausible that the associated constants, y, are unbounded,
in which case one could construct a counterexample to the finite-volume analogue of
Theorem 1.2 or Theorem 1.4. It would be interesting to rigorously construct such an
example.

5. Proof of Theorem 1.2

We first quickly adapt some of the results in [49] to our setting and then prove The-
orem 1.2.
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5.1. More Banach manifolds

Given X, a minimizer of (2.1) for the metric go and with volume Vj, we introduce canon-
ical local coordinates at (X2, go, Vo), whose existence in a neighborhood U is guaranteed
by Lemma 2.1, defined by

g:UnN T(O,g(),V())‘(B(Z’gov VO) - 38(27 8o, VO),

where T(o.g,.v0)B(Z, g0, Vo) = C3%(3T) x T’ x R, with CZ*(dX) the space of func-
tions on d% with zero average with respect to the metric go. Recall that here, and through-
out this section, I" is the family of C3 metrics on M. In particular, we write (2!, 82, E3)
€ B5(Z. go. Vo) C C?>*(dX) x T' x R for the components of E. As in the previous sec-
tions, we will write

Pe(v, g, V)= PECV) (5 L Bl(v, g, V)).

Moreover, we will denote by D,,, Dy, the first and second derivative of #z with respect
to its first coordinate, and by D, the first derivative with respect to its second coordinate.
A similar computation to (2.6) shows that we can identify the space of critical points for
the isoperimetric problem near (0, go, Vo) with

Mr(zﬂ g07 VO) = {(_f’ g» V) € T(O,g(),V()):B(E’ gO’ VO) : Du=(PE (f; g? V) = 0}
In the following, we will work with this identification.

Proposition 5.1. There exists 0 < §; < 8, depending on X, go, Vo, such that
Mz, (2, go, Vo) is a separable, smooth Banach submanifold of ToB (X, go, Vo) such that
the projection

IT: Ms, (2, g0, Vo) = I' xR is a Fredholm operator of index 0.

Proof. Since the statement is local we can apply [49, Theorem 1.2] with (using the nota-
tion of that paper) X = ToB(Z, g0, Vo), Y = C**(%), =T x Vand H(u,g,V) =
Vu®Pz(u, g, V) the gradient induced by D, &Pz using the scalar product of L%. Since
Dyu Pz (0, go, Vo) is as in (2.8), it is a self-adjoint Fredholm map of index 0. Moreover,
for every non-zero v € ker(Dy, Pz (0, o, Vo)), let g(s) € I' be the one-parameter family
of metrics defined in a neighborhood of 9% by

g(s)(2) == (1 +51(2))go(2).

where f(z) = 0 for every z € dX. Then, following the computation in [49, Theorem 2.1]
we can find f such that

82

— Pz vV 0.
Soor | PEvg0). V60 £

Therefore condition (C) of [49, Theorem 1.2] is satisfied and Proposition 5.1 is proved. m
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Finally, by a standard procedure (see [49, Theorem 2.1]), we can patch together all the
local neighborhoods M (X, g¢, Vo) to obtain a Banach manifold containing all the critical
points for (2.1) for varying metrics and values of the volume, but fixed diffeomorphism
type (as we are only working with local parametrizations).

Proposition 5.2. Let N"~! and M" be smooth compact manifolds and let T be the col-
lection of C3 Riemannian metrics on M™. Let [u] denote the class of C*% embeddings
u: N — M up to diffeomorphism, i.e. v € [u] if and only ifv =uo ¢ with¢p : N - N
a smooth diffeomorphism. Let

M(N) :={([u], g, V) : u(N) is the boundary of a critical point of (2.1)
with respect to g and V' }.

Then M(N) is a smooth separable Banach manifold and the map
M(N) > (u].g. V) = T([u].g. V) := (g.v) e T x{V}

is a Fredholm operator of index 0 and the kernel of DI1([u], g, V') has dimension equal
to the nullity of the second variation of u(N) with respect to the metric g in the linear
space of functions with zero average on u(N).

Proof. As observed in the preliminaries, given embeddings u, v of N in M such that
lu —v| 2.« < 1, we can find a function f € C%%(u(N)) such that v(N) = u(N) + £,
and vice versa: if f € C>%(0X = u(N)) has small norm, then we can find v €
C2%(N, M) with ||u — v||c2.« < 1 suchthat 3T + f = v(N).

With this identification in mind we can use Proposition 5.1 to find local charts for M.
The rest of the proposition follows exactly as in [49, Theorem 2.1]. ]

5.2. Proof of Theorem 1.2

First of all notice that for every diffeomorphism type N”~! we can apply Sard—Smale
[44, Theorem 1.3] to M(N) and IT to show that for every fixed N there is an open and
dense subset §y C I' x R such that every minimizer u(N) of (2.1) with (g,v) € §y
is non-degenerate, that is, strictly stable. Since by Lemma 2.4, every minimizer of (2.1)
has finitely many connected compact components and since there are countably many
diffeomorphism types for compact manifolds (N;);en, we can consider the open dense
subset § := ();cn 9n; of T x R. Its projections % and U on T and R respectively are
also open and dense, since the projection is an open map.

Now let g € § and V € (0, [M|g) N U. Since every smooth minimizer of (2.1) is
strictly stable, there are only finitely many minimizers with volume V in the metric g.
Now the result follows using (1.6) and letting C(g) be the minimum of the constants
in (1.6). [
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5.3. Some further consequences

As an outcome of the previous theorem we also have the following result, valid in every
dimension.

Corollary 5.3. For an open and dense set of metrics and volumes, smooth minimizers
of (2.1) are strictly stable and thus satisfy (1.6) with a constant C depending only on
(M, g) and Vy. This is the generic analogue of Lemma 1.6.

Finally, if one uses 8B, (X, go) instead of B, (X, go, Vo) and argues as in the previous
two subsections, it is easy to conclude the following.

Corollary 5.4. Let V € R. There exists an open and dense set of metrics, § C I, such that
for every g € § there exists a constant C(g, V) > 0 such that if ¥ € A‘f, is a minimizer
of 2.1)in (M, g), then

SPE(E) = C(g.V)IE AZ|S forevery E € A} (5.1)

Appendix A. Proofs of Lemmas 3.1 and 3.3

In this section we prove the Lyapunov—Schmidt reduction and its version in the integ-
rable case. For notational simplicity, we write C é’“ (0X) and C o%’“ (0X) for functions that
integrate to zero on dX with the obvious Holder regularity, and similarly for LfB (0X).

Proof of Lemma 3.1. Recall that K := ker(D?$z(0)) C ToB(X) and define the operator
N() := DP= () + nxl : CZ*(0T) — Co* (%),

where 7k, mg L denote the projections on K, K+ with respect to the inner product of
Lf,g (0%). By Lemma 2.2, we have N (0) = 0. Furthermore,

DNOR] = S NGD)| = DDPOL] + 7t

0
Note that
(N(8), w) = DPa(t)[w] + {7kt w),
SO
(DN (0[], w) = D*Pa(0)[¢, w] + (nk&, w).
Thus,

DN (O] = — A5 & — (142 + Ric(vs, vy) + HZ)E + i) + 7k,

where j(¢) € R is unique such that DN (0)[¢] € C %’“ (0X). (Recall that j(¢) appears
because we are enforcing the zero-average condition.) In particular, ker(D N (0)) = {0} C
Cé’“(BZ). Note that |j(¢)| < C||¢]||co, so by Schauder theory, DN (0) : Cé’“(aE) —
C %a (0%) is an isomorphism. To be more explicit, since DN (0) is (formally) self-adjoint
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and injective, we know that it is surjective onto Lf@(aE). Schauder theory for elliptic
operators plus the estimate on the size of j(¢) gives the isomorphism between the Holder
spaces.

We apply the inverse function theorem to N in this neighborhood, producing the map
W := N ! which is a bijection from a neighborhood W C C %’a (0%) of the origin to a
neighborhood U C C é’“ (0X) of the origin. We claim that the desired map is given by

T:=ngioW:KNU — K+

In particular, for ¢ € K N U we have W({) = ¢ 4+ Y ({). The first conclusion of (3.1) is
trivial as Y (0) = Y (N (0)) = gL (W (N (0))) = 0.
To check (3.2), we first notice that

§=NW(Q) =DP(V(Q) + ng¥(0). (A.D)
Applying g 1 to both sides we get
0= JTKLDJ)E(\IJ(;))

for { € K N U. This proves the first line of (3.2).
To prove the second line of (3.2), we compute, for any n € K,

(VP().n) =DPe(+ T+ VYN
=DP=(§+ T,

which implies the second claim of (3.2) (as n € K is arbitrary). The second equality above
follows from the fact that VY'(¢)[] € K+ (as the image of Y is in K1) and then from
the first line of (3.2).

The proof of (3.3) follows from the analyticity of P : R’ — R and the classical
Lojasiewicz inequality (see [21, Corollary 4]).

To prove (3.4) we turn to (A.1). Let ¥ + n be an arbitrary critical point of P
(on B(X)) in a neighborhood of zero, and write n = E (v) for some v € THB(X). By (2.6)
we know that DPg(v) = 0 and so we can write v = W({), and (A.1) reads { = ngv.
This implies

v =gV + v =+ g W) = E+ T
as desired (the condition on VP follows trivially from (3.2)). The other containment
follows immediately from (3.2), (2.6) and the invertibility of D E.

To show (3.5) we recall that, by the gradient version of the Lojasiewicz inequality,
there exist yg, Co, 89, depending on X, such that

|P(§) = P(O)]'™" < ColVP(§)| forevery £ € Bs,,

which yields P(§) = P(0) as long as £ is a critical point of P, as desired.
(3.6) follows from the C! regularity of W : C%a (0%) — C?b,’a (0%).
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Finally, to prove (3.7) we notice that since X is a minimizer of & in 8(X), there exists
a constant C, depending on X, such that

D*Pz(0)[n.n = Clnll3,1» Vne K*. (A.2)

Then we can use a simple Taylor expansion to deduce that if as above ¥ = E(v) and
ug = EB(vg), then with the notation vii=v—ve = v — gV — Y (wgv) € KL, we
have
PE+u)—P(E+ug)=Pe(v) — Pa(ve)
= DPz(ve)v' ]+ D> Pe(ve) v, v + o(lvt[1312)

= (VP2 (vg). vi) 2 + D2 Pe(ve) v, v + o([vt]3)

(3.2)
=0
= D2Pz(0)[vt, vt] — (D2 P (0)[v*, vi] — D2 P (ve) vt vt])
+o(lvtl32)
(A.2)
> Clvt)%. = Cllu—ugl3: 2.

where the next to last inequality follows by the continuity of D?%g at 0 by choosing the
norm of u, and so W, small enough, together with (3.2), and the last inequality follows
from (2.5). ]

Next we prove the integrable and strictly stable versions of the Lyapunov—Schmidt
reduction, which are a simple modification of the argument above, essentially already
contained in [2].

Proof of Lemma 3.3. The integrability condition is equivalent to

lim W, = 0,

s—>0

Vo € K A(Wy)se1.y) C CAHE, B 1§ DPe(¥s) =0 forse(=1.1), (A3
W

— Yy = lim — = ¢.

ds|s_o = 0 s ¢
Assume (A.3) holds, and recall the definition P(un) = Pz (n + Y(w)). If P = P(0) in
a neighborhood of zero then we are done. Otherwise we can write P(u) = P,(u) +
Pr(1) + P(0), where P, # 0, Py(Ajt) = AP Py(ut/|]) for 2 > 0 and Pr(x) is the sum
of homogeneous polynomials of degrees > p + 1 (here we use the analyticity of P). Note
that there exists some ¢ € K such that V P,(¢) # 0. Let W, be the one-parameter family
of critical points that is generated by ¢ (as in (A.3)).

As Wy is a critical point, Lemma 3.1 allows us to write ¥y = ¢ + Y (¢s) where
¢s € K and ¢5/s — ¢ as s | 0. Computing

¢

0= DP(¥s) = VP(¢s) = VPy(¢s) + VPR(¢s) =577V Py (m) +o(s?71),

we divide the above by s?~! and let s | 0 to obtain a contradiction to V P, (¢) # 0.
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In the other direction, assume that P = P(0) in a neighborhood of 0. This implies
that VP = 0 in a (perhaps slightly smaller) neighborhood of 0. Therefore, for any u € K,
letting Wy = su + Y (sp) and recalling (3.6) establishes (A.3).

Next, since we have proven that P is constant on £, (3.9) follows immediately from
(3.7) and the fact that ug € &£.

Finally, if ¥ is strictly stable, then K = {0}, which immediately implies £ = {0} and
so ug = 0, which gives (3.10). ]

Appendix B. Proof of Proposition 3.5

The proof of Proposition 3.5 is obtained by combining results from [13, 33, 50], and we
will recall the fundamental steps over the following subsections, leaving many stand-
ard details to the reader. The basic idea is that the Ej will be minimizers to a pen-
alized version of energy in (3.18), where the penalization guarantees that we recover
inf5 e s Q(X, y) in the limit.

The existence of the Ey and the fact that they satisfy properties (i) and (ii) of Pro-
position 3.5 is covered in Proposition B.2. The smooth convergence of property (iii) of
Proposition 3.5 is proven in Lemma B.6.

For simplicity of notation, in this section we will denote

a(E) ==as(E), A=Ay, W:=W;.

We emphasize that we are assuming that (X, y) < oo in this section.
Before starting the proof we observe the following simple facts.

Lemma B.1 (Properties of @(—, y)). The energy Q(—, y) satisfies the following proper-
ties.

o Ifas(E) > 0,E C o, then Q(E,y) = §P(E)/a(E)*+7.

L!
o IfE, C Aand Ex, — E, then Q(E,y) < liminfy @(Ey, y). (This follows from the
lower semicontinuity of perimeter and a diagonal argument.)

B.1. The penalized minimization problem

By the definition of @ (X, y) and a diagonal argument, there exists {W;}; C A such that

QW;.y)— _inf  @Q(E,y)
w

YeMn

1
<=, 0<a(W) <1, aW;)—0. (B.1)
J

We want to “regularize” these W; and so we introduce the penalized functionals

aE) )’
Q;(E,y):= (,‘Z(E,y)—i-(a(Wj) —1) , (B.2)
where (W;); is as in (B.1). The content of the following proposition is that minimizers to
@; (—, y) exist and are also an approximating sequence for infg MOW; Q(,y) (e. they
satisfy (B.1)).
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Proposition B.2 (Minimizers of @;). There exist sets {Ej}; C # of finite perimeter such
that for each j, Q;(Ej,y) < @;(S,y) for all other sets S € 4. Furthermore,

a(Ej) >0, «(E;))—0, |QE;y)— inf Q(,y)|—0.
YeMNW

Ll
Finally, perhaps after passing to a subsequence, E; —> X where X9 € M N W is smooth

and @(Zo,y) = infgynw Q. y).

Proof. The existence of a minimizer follows from BV-compactness and the lower semi-
continuity of the energy @;(—, y) (see Lemma B.1, second bullet point).
If a(Ej) =0forany j > 1, then E; € M N W and we have

_inf  Q(E.y) S QEj.y) = Q(E;.y)—1=Q;(W.y)—1
eMNW
—aW.y) -1

~ 1
< inf QX,y)+—--1,
Seenw J

which is a contradiction as long as j > 1.
A similar argument shows that a(E;) — 0. Indeed for any subsequence E;, we have

- (aE) Y . .
hlin (Ol(—ijk) - 1) < hlinajk(Ejk’V) < hlgn(,‘ij(ij,y) = hlgné‘l(ij,y)

= inf (Q(f),y)<oo.
Seenw

Since a(W;) — 0 it follows that ¢ (E;) — 0.

Of course, we can similarly argue that

Q(Ej.y) < Q;(Ej.y) <Q;(Wj.y)=QW;,y) < _inf Q(Z.y)+1< o0,
Yeenw

where we emphasize that we have assumed that @(X, y) < oco.

This implies that §”(E;) — 0so E; L—l> Yo for some Xy € M N W. Note that 93,
is automatically smooth by the definition of W and the assumption that 0¥ is smooth.

We have proven that the E; (perhaps after passing to a subsequence) satisfy the
requirements of an approximating sequence in the definition of @ (X, y). Therefore,

Q(Zo,y) <limQ(E;,y) <1lim@Q;(Ej,y)
J J
<lim@;(W;,y) = limQ(W;,y)
J J

= inf Q).
Yeenw
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This implies that
lim@(E;,y) = inf Q(Z,y) = A(Zo. ),
J et
and finally that
a(E))
im
j—oo Ol(VVj)

completing the proof. ]

=1, (B.3)

B.2. Almost-minimizers and smoothness for the E;

In this subsection we will prove that the E; satisfy the hypothesis of Proposition 3.5. Note
that we only have to verify the smooth convergence property (property (iii)), as the first
two properties are guaranteed by Proposition B.2.

We will prove this smooth convergence by first showing that the E;’s are almost-
minimizers for perimeter with uniform constants. Then smooth convergence will follow
from regularity theory for almost-minimizers and a standard argument in the calculus of
variations (see the proof of Lemma B.6 below for more details).

Our first lemma is that £; minimizes perimeter in the class # up to an error which is
proportional to the area of the symmetric difference between E; and the competitor. It is
important to note that the constant of proportionality is uniform over the index.

Lemma B.3. There exist A > 0 and jo € N such that for all F € A and all j > jy we
have
P(E;) < P(F)+ A|Ej A F.

Proof. Without loss of generality we can assume that (F) < £ (E;). We also let j, be
large enough such that
a(E;) < 1/2,
la(E;) —a(W))| < a(W))/2, (B.4)
Q(E;,y) < _inf QE,y)+1.
eMNW

Such a jj exists by Proposition B.2 and (B.3). Next we distinguish two cases.
Case 1: «(E;)®*” < |E; A F|. Since Q(E;,y) < infg ny @, y) + 1 and
a(Ej) > 0, we get

P(E;) < 3(V0) +a(E)*(_inf @(S.y)+1)

<P(F)+|E; A F|(~ inf  Q(.,y) + 1)
TeMNW
< P(F)+AEj AF|, (B.5)

completing the proof in this case.
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Case 2: |E; A F| < a(E;)**”. We know the inequality @;(E;,y) < @;(F,y), which
implies that

2
P(Ej) < P(F) +5?(F)(M - 1)

a(F)Z'H’
1
oy 9F) 2_(a(Ej) B )2)
+olBy) y((a(W» ) oy t) ) B9
1
We can estimate II in (B.6) as follows:
o< (w)z((x(F) +a(E;) — 20(W) (@(F) — a(E;))
~ \a(W)) ! ! !
< Cla(F)—a(E;)| < C|F A Ej|, (B.7)

where the second inequality follows from the estimates in (B.4) and the last inequality
follows from the triangle inequality. In order to estimate / we observe that by assumption
a(Ej) <1/2,s0

|Ej A F| < a(Ej))*™ < ja(Ej) = 5a(Ej) < a(F) <2a(Ej).  (BS8)

It follows that

@(E)*Y — a(F)H
a(F)2ty

< C(Ninf QE.y) + 1)(a(Ej) —a(F)) < C|F A E|. (B.9)
YeM

I <8P(F) < CQ(E;,y)(@(Ej)*Y —a(F)**7)

where the second inequality follows from (B.8) and the fact that > (F) < #(E;), while
the third inequality comes from (B.4) and the estimate x” — y" < C(x — y) for0 <y <
x <1.

Putting (B.9) and (B.7) together with (B.6) finishes the proof of Case 2 and thus
concludes the proof of the lemma. ]

The following result follows by a straightforward modification of the main result
in [30]. It is important to note that the constants are independent of the index j.

Proposition B.4. There exist C = C(M,X) > 0,rg=ro(M, %) >0, =a(M) € (0,1)
and a jo € N (which again depends on X) such that for all j > jo, all x € U and all
r <ro, if xr € BV(M) with xp = xg; on M \ B(x,r), then

P(E;; B(x,r)) < P(F;B(x,r)) + Cr". (B.10)

At this point, the desired estimates for £; would follow from [46], except for the fact
that [46] only considers almost-minimizers in Euclidean space, and not for a Riemannian
metric. Although this should not be a serious issue, we describe an argument below that



Quantitative isoperimetry on manifolds 27

will instead reduce the problem to Almgren’s theory of (¥, ct, 8) almost-minimizers (as
in [50]).

Note that Proposition B.4 immediately implies that E; obeys an almost-monotonicity
formula and all tangent cones are area-minimizing (cf. [17, Proposition 2.1]).

We now recall that the area functional of a Riemannian metric can be regarded as a
parametric elliptic integrand (cf. [50, §1]) and a current 7T is said to be (¥, ct, §) almost-
minimizing if for all points x,

F(V) = (I +cerF (V)

whenever r < 8, V is a piece of T inside of B(x,r) and 0V’ = 9V . Here ¥ represents
the parametric elliptic functional “frozen” at x (in this situation, this just means that we
are using normal coordinates at x and measuring the area of V, V' with respect to the
Euclidean metric in these coordinates).

Proposition B.5. There are § = §(M, %) > 0, ¢c = ¢(M, X) > 0, and jo = jo(M, X)
such that for all j > jo, the reduced boundary 0* E; is an (¥ , cr, §) almost-minimizer.

Proof. We begin by observing that (thanks to the almost-monotonicity formula and the
above observation about the tangent cones) there is § > 0 independent of x and j suffi-
ciently large such that for r < § and x € 9*E;, we have P(E;; B(x,r)) > Cr"!.In fact,
if d(x, 0" E;) < r/2 then the same inequality holds, after shrinking C.

Thus, if y € BV(M) has yp = yg; on M \ B(x,r) then this lower bound, combined
with Proposition B.4, yields

P(F;B(x,r)) = Cr"!

after again shrinking C (still assuming that d(x, 0*E;) < r/2).
We may thus apply Proposition B.4 again to conclude that

P(E;; B(x,r)) < (1 +cr)P(Ej; B(x,r))

for r < § and ¢ > 0 appropriately chosen. Because freezing the coefficients introduces
an O(r?) error, this yields the asserted claim assuming that d(x, 3* E;) < r/2. Finally,
if d(x,9*E;) > r/2, then we can apply the above argument with r replaced by 2r. This
completes the proof. ]

Proposition 3.5 will now follow from standard facts about the regularity of (¥, ¢, §)-
minimizers. We write the formal statement here and collect the salient facts in the proof.

Lemma B.6. The Ey satisfy condition (iii) of Proposition 3.5, that is, if Xg € M N W is
as in Proposition B.2, then there are functions uy € C1%(3X¢) such that Ex 1= ¢ + uy
and |ugllcre = 0ask — oo.

Proof. For almost-minimizers, convergence in the BV sense implies convergence in
the Hausdorff sense. Smooth convergence then follows from e-regularity for (¥, ct, §)
almost-minimizers, exactly as in [50, p. 207]. [
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Appendix C. Boundedness of mean curvature for isoperimetric regions

In this appendix we recall the uniform boundedness of the mean curvature of isoperimetric
regions whose volume is not very small (or close to |M | ).

Lemma C.1 ([9,38]). For 2 <n <7, fix § > 0 and (M", g), a closed Riemannian
manifold with C3 metric. There is C = C(M, g, 8) < oo such that if Q € A‘f, is an
isoperimetric region with V. = |Q|g € (8, |M|g — §), then the mean curvature H of 92
satisfies |H| < C.

Proof. Fix (M, g) and § > 0 and assume for contradiction that there are isoperimetric
regions Q; C (M, g) with |Qj|, € (8, |M|; — 6) with mean curvature H; satisfying
Aj = |HJ| — OQ.

Choosing x; € d€2;, we can rescale by A; around x; to find isoperimetric regions S~2‘,-
in (M i, &j). Furthermore, (M /, ;) converges in C;2, to R” equipped with the flat metric.
Passing to a subsequence Q converges in the local Hausdorff sense to a locally isoperi-
metric region Q in R”; moreover 8&2 converges in C1 to 3. Hence, 2 has constant

mean curvature 1. On the other hand, A% is stable, in the sense that
[ apeazent < [ vopazen
Q2 aQ
for any ¢ € ccl(afz) with [5e @ d#"! = 0.Because |H| = 1, we find |A|?> > 1/n, so

/~ ¢2d=}€n_1 En/~ |V§0|2de}€n_l
0Q a2

for any ¢ € C}(3Q) with [ 9 d H"1 = 0.

Suppose that Q2 were compact for all choices of x; € 9€2;. Then ©2; would be close
to a union of an increasing number of regions close to coordinate spheres. Using this, we
would conclude that ¢ (2;) — oo, a contradiction. Therefore, we will assume that Q2
is non-compact.

Standard arguments (cf. [25]) imply that there is R > 0 sufficiently large such that

/~ PrdH™ ! < n/~ |Vopl?d !
% ETo)

for any ¢ € C} (02 \ BR) (i.e., 0 is strongly stable outside of a compact set).
Taking ¢ = ¢ *~D/2 for y € cl (02 \ Bg) and using Holder’s inequality, we find

wn—l d%n_l < C/ |Vl//|n_1 d%n_l.
a0 aQ
Choose an ambient radial function ¥ that is 0 for |x| < R, increases to 1 for |x| €

[R + 1, p], and then cuts off to O for |x| > 2p. We can arrange that |[Vy/| < Cp~'. Thus,
we find that

H"LOQ N (B, \ Br) < C(1 + p' ™" (32 N Byp)).
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Letting p — 00, we deduce a contradiction if we can show that #”~1(3Q \ Bg) = oo and
H1OQ N B,) < Cp"~!. The first fact follows from the monotonicity formula (since
|H| = 1) applied to small balls. The second follows since Q is locally isoperimetric in
the sense that Q' with Q@ A Q' € Bg and |Q N Bg| = |’ N Bg| has P(3Q'; Bg) >
P (0K2; BR), allowing us to compare €2 to (€ \ B,) U B, (), where r(p) < pis chosen to
preserve the enclosed volume. This is a contradiction, completing the proof. ]
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