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Abstract. We show that for a generic 8-dimensional Riemannian manifold with positive
Ricci curvature, there exists a smooth minimal hypersurface. Without the curvature condi-
tion, we show that for a dense set of 8-dimensional Riemannian metrics there exists a min-
imal hypersurface with at most one singular point. This extends previous work on generic
regularity that only dealt with area-minimizing hypersurfaces.

These results are a consequence of a more general estimate for a one-parameter min-max
minimal hypersurfaceZ c (M, g) (valid in any dimension):

A Fom (X)) + Index(T) < 1

where $2m(Z) denotes the set of singular points of Z with a unique tangent cone non-area
minimizing on either side.
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INTRODUCTION

It is well known that 7-dimensional area minimizing hypersurfaces can have isolated
singularities. Using work of Hardt-Simon [HS85], Smale proved in [Sma93| that in an 8-
dimensional manifold M with H7(M;Z) # 0, there exists a smooth embedded area mini-
mizing hypersurface for a generic choice of metric. In other words, he showed that iso-
lated singularities of an area-minimizing 7-dimensional hypersurface can generically be
perturbed away.

One may thus seek to find a smooth embedded minimal hypersurface in all 8-manifolds
M equipped with a generic metric g, even when H;(M;Z) = 0. Here, we find such a hy-
persurface in the case of positive Ricci curvature, and give a partial answer in general.
We let Met>®(M) denote the space of Riemannian metrics of regularity C*% on M and

Meti’i‘éo(M) < Met>*(M) denote the open subset of Ricci positive metrics.

Theorem 0.1 (Generic regularity with positive Ricci in dimension 8). Let M® be a compact
smooth 8-manifold. There is an open and dense set§ c Meti’ichO(M) so that for g € 4, there
exists a smooth embedded minimal hypersurface~Z c M.

Without the curvature condition, we have the following partial result.

Theorem 0.2 (Generic almost regularity in dimension 8). Let M® be a compact smooth 8-
manifold. There exists a dense set ¢ c Met>*(M) so that for g € 4, there exists a smooth
embedded minimal hypersurface Z c M with at most one singular point.

We actually prove more general results valid in all dimensions, see Theorem[0.3|below.

As mentioned above, the principal motivation for such results is to study generic reg-
ularity of non-minimizing, high-dimensional minimal submanifolds. This contrasts with
previous works on generic regularity:

e Hardt-Simon [HS85] (resp. Smale [Sma93]), cf. [Liul9], show that regular singulari-
ties of (one-sided) minimizing hypersurfaces can be perturbed away by perturbing
the boundary (resp. metric).

o White [Whi85, Whil9] shows that minimizing integral 2-cycles are smoothly em-
bedded surfaces for a generic metric.

e Moore [M0006, Mo017] shows that parametrized minimal (2-dimensional) sur-
faces are free of branch points for a generic ambient metric.

In fact, our work proves that generically there exists a minimal hypersurface of opti-
mal regularity avoiding certain singularities in ambient dimensions beyond the singular
dimension. Indeed, Theoremis a consequence of a more general result stated below.

Theorem 0.3 (Generic removability of isolated singularities). Consider a compact smooth
(n+1)-manifold, for n = 7. Thereis a dense set9 c Met>%*(M) with the following properties:

e If g € G then there exists a minimal hypersurface Z, smooth away from a closed
singular set of Hausdorff dimension at most n—7, so that for # < Sing(Z) the set of
singular points with regular tangent cones, we have 7°(Sy) < 1.
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e Ifge¥dn Meti’i‘éo(M ) then the same statement holds, except we can conclude that

F0(H) =0.

In order to remove the topological condition H;(M;Z) # 0 of Smale, we will use the
Almgren-Pitts min-max construction [Pit81], which guarantees the existence of a minimal
hypersurface X" in a closed Riemannian manifold (M"*!,g). As in the area-minimizing
case, when the dimension 7 satisfies 2 < n < 6, the Almgren-Pitts minimal hypersurface is
smooth, but for larger values of n there may be an at most (n —7)-dimensional singular set
(this follows from work of Schoen-Simon [SS81]). However tangent cones to min-max hy-
persurfaces are a priori only stable, while only area-minimizing cones have complements
that are foliated by smooth minimal hypersurfaces (cf. [BDGG69, [Law91]) and it seems
that such a foliation is needed (at least on one side) to perturb the singularity away by
adjusting the metric [HS85].

The key technical result of this paper is that (for one-parameter min-max) at all points—
except possibly one—of the singular set with a regular tangent cone, the tangent cone is
area minimizing on at least one side. Put another way, we show that tangent cones that are
not area minimizing on either side “contribute to the Morse index” from the point of view
of min-max (and these are precisely the cones that we are unable to perturb away using
Hardt-Simon [HS85]).

0.1. Detailed description of results. Let (M n+l g) be a closed Riemannian manifold. By a
sweepout of M we will mean a family of (possibly singular) hypersurfaces {®(x) = 0Q(x)} xe[0,1),
where each hypersurface ®(x) is the boundary of an open set Q(x) with Q(0) = @ and
Q(1) = M, and we denote the family of such sweepouts by .# (see Section[2|for the precise
definition). The width, W (M), is then defined by

W (M) = inf {supM(q)(x))} .
de. & X

Given a stationary integral varifold V, with supp V regular outside of a set of n—7 Haus-

dorff dimension, we define
for all r > 0 small, supp V n B, (p) is not one-sided
Ham (V) ;=4 p e supp(V) :

homotopy area minimizing on either side (in B, (p)).

In other words, p € hnm (V) implies that in any small ball there are one-sided homo-
topies on both sides of supp V that strictly decrease area without ever increasing area. Let
Z denote the set of integral varifolds, whose support is a complete embedded minimal hy-
persurface regular away from a closed singular set of Hausdorff dimension n — 7. Finally,
we let Index(V) denote the Morse index of the regular part of the support of V, that is

Index(V) = Index(supp(Reg(V))).

Then the main technical estimate of this paper is the following result.

Theorem 0.4 (Index plus non-area minimizing singularities bound). Forn =7, let(M"*}, g)
be a closed Riemannian manifold of class C?>. There exists a stationary integral varifold



4 O. Chodosh, Y. Liokumovich & L. Spolaor

V € Z such that |V|(M) = W, which satisfies
(0.1) F° (Hnm (V) + Index(V) < 1.

Ifequality holds in (0.1), then for any point p € supp V \ bym (V) there is € > 0 so that supp V
is area-minimizing to one side in B¢(p). Finally, we can write V. =} ;x;|Z;|, where Z;
are finitely many disjoint embeddded minimal hypersursufaces smooth away from finitely
many points with x; < 2 for every i; if Z; is one-sided then x; = 2 and if x j = 2 for some j
then each X; is stable.

The above bound is valid in all dimensions and can be seen as a generalization of the
work of Calabi-Cao concerning min-max on surfaces [CC92]. Indeed if we define %, (V)

byf]

V islocally a C"* graph over its unique tangent cone €
Fam (V) ;=3 pesupp(V):

at p and both sides of € are not one-sided minimizing
then we will see that #m (V) < hpm (V) in Lemma[3.4] In particular, implies that
A (Fm (V) + Index(V) < 1.

Thus, if we are guaranteed to have Index(V) =1 (e.g., in positive curvature) we see that
“m (V) = @. This is precisely the higher dimensional analogue of the result of Calabi-Cao
(cf. Figure[I|and the remark below).

See also the more recent work of Mantoulidis [Man17] which makes a more explicit
connection with Morse index, using the Allen-Cahn approach (as developed by Guaraco
and Gaspar [Gual8,GG19]) rather than Almgren-Pitts; it would be interesting to elucidate
the relationship between Mantoulidis’s Allen-Cahn techniques and our proof of Theorem
0.4}

FIGURE 1. The figure eight geodesic c is an example of a min-max closed
geodesic that is stable and has one singularity with non-area minimizing
tangent cone.

Remark 0.5. By the index bound in Theorem|0.4, any tangent cone to V has stable regular
part. Moreover, we note that the Simons cones [SIm68] in R® (formed from products of two

'Here w is a modulus of continuity, and we could take it to be logarithmic, as suggested by the work of
[Sim83al. Notice in fact that at all isolated singularities .4, minimal surfaces have unique tangent cone and
are locally C'°8 deformation of the cone itself.
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spheres) are all stable and area minimizing on (at least) one side (cf. [Law91]). We particu-
larly emphasize that the Simons cone

C%:={(x,y) e R* x R®: 5|x[% = |y|}}

is one-sided minimizing (and stable), but is not minimizing on the other side. It seems to
be an open question whether or not there exists an n-dimensional stable cone that does not
minimize area on either side, forn = 7.

Even assuming the existence of a stable minimal cone which is not area minimizing on
either sides, it is hard to decide if the above bound is optimal. In dimension n = 1, such
an example is provided by the classical starfish example (cf. Figure[l), whose tangent cone
at the singular point (the union of two lines through the origin) is indeed stable non-area
minimizing on either sides (and the starfish fails to be one-sided homotopy minimizing on
either side).

We conjecture that if there is a regular stable minimal cone that is not area-minimizing
on either side, then it can arise as the tangent cone to a min-max minimal hypersurface
(possibly in a manifold geometrically similar to the starfish); note that were this to occur,
Theorem|0.4 would imply that the resulting hypersurface would necessarily be stable.

Theorem[0.4) generalizes the index upper bound of Marques and Neves [MN16] for Rie-
mannian manifolds M1, 3 < n+1 < 7 (see also [Zhol5]). In recent years there has
been tremendous progress in the understanding of the geometry of minimal hypersur-
faces constructed using min-max methods in these dimensions (see [DLT13], [MN19],
[CM20], [Zho19], [Sonl18] and references therein).

For manifolds of dimension 7 + 1 = 8 much less is known. When Ricci curvature is pos-
itive Zhou obtained index and multiplicity bounds for one-parameter min-max minimal
hypersurface [Zhol7] (see also the work of Ramirez-Luna [RL19] and Bellettini [Bel20]).
Upper Morse index bounds are known to hold in arbitrary manifolds of any dimensions
for hypersurfaces constructed by Allen—Cahn, as proven by Hiesmayr and Gaspar [Hiel8,
Gas20] (see also the recent work of Dey showing that the Almgren-Pitts and Allen-Cahn
approaches are equivalent [Dey20]). Li proved [Li19] existence of infinitely many distinct
minimal hypersurfaces constructed via min-max methods for a generic set of metrics, us-
ing the Weyl law of Liokumovich-Marques—Neves [LMN18].

0.2. Overview of the proof. The construction of a minimal hypersurface in Almgren-Pitts
min-max theory proceeds by considering a sequence of sweepouts {®; (x)} with the supre-
mum of the mass sup, M(®;(x)) — W(M) as i — oo. It is then proved that we can find
a subsequence {i;} and {®;, (x;)} with mass tending to W, so that |®;,|(x;) converges to
some V € Z.

We outline the proof of Theorem[0.4] For the sake of simplicity, let’s focus on the non-
cancellation case, i.e., when all multiplicities of V' are one (in the case of cancellation we
must argue slightly differently but the main strategy is the same). The main geometric
idea is to show that there cannot be two disjoint open sets U;, U so that ~ = supp V fails
to be one-sided homotopy minimizing on the same side in both U; and U,. This property
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is reminiscent of (but different from) almost minimizing property introduced by Pitts to
prove regularity of min-max minimal hypersurfaces.

Granted this fact, it is easy to deduce the bound (0.I). For example, if Index(X) = 1
and by, (2) = {p}, then we can localize the index in some U disjoint from p. Because
2 is unstable in U, we can find area decreasing homotopies to both sides there, and we
can also find B, (p) disjoint from U with area decreasing homotopies (by definition). This
contradicts the above fact.

As such, we want to show the one-sided homotopy minimizing property in pairs by
using the fact that V is a min-max minimal hypersurface. However, this leads us to a major
difficulty. Indeed, the approximating currents ®;, (xx) might cross £ many times, making
it difficult to glue in one-sided homotopies to push down the mass.

At a technical level, the main tool used in this paper is that it is possible to simplify
the one-parameter case of min-max theory by constructing a nested optimal sweepout
®(x) with supM(®(x)) = W. This allows us to work with one sweepout ®(x) instead of a
sequence of sweepouts. The nested property allows us to directly “glue in” the one-sided
homotopies to push down the mass.

The existence of a nested optimal sweepout follows from a monotonization technique
from [CL20]. There Chambers and Liokumovich proved that each sweepout ®;(x) can
be replaced by a nested sweepout ¥;(x) with supM(¥;(x)) < supM(V¥;(x)) + % “Nested”
here means that ¥;(x) = 0Q(x) for a family of open sets with Q(x) c Q(y) if x < y. The
proof used ideas of Chambers and Rotman [CR18] on existence of monotone homotopies
of closed curves on surfaces.

After we reparametrize W ;(x) by the volume swept out we obtain a sequence of families
that is uniformly Lipschitz in flat topology. By Arzela—Ascoli a subsequence will converge
to an optimal sweepout.

In the Almgren-Pitts theory, a “pull-tight” procedure is used to find a varifold achieving
the width with good properties. We can apply this procedure to our sweepout to deduce
that one of the critical varifolds in the sweepout is a smooth (up to small singular set)
minimal hypersurface. We would then like to prove that this hypersurface satisfies (0.1I).
However, this poses another issue, namely that it could a priori be possible to push the
mass of the sweepout near this critical value down, while not decreasing the global width.
This could lead to an infinite sequence of “pushing down” operations that could create
extra critical points not dealt with previously.

As such, our second main technical tool is that we construct an optimal sweepout ®(x)
with the following special property. For every point xy with sup ..y M(®(x)) = W for every
neighbourhood U of xo, there does not exist an open interval I 3 xy and a family {®'(x)}
that coincides with @ for x ¢ I and satisfying sup ..y M(®'(x)) < W for every closed interval
I' c I. (In fact, we will prove a somewhat stronger property that holds for open, half-open
and closed intervals I). In other words, we can not make a small “dip” in the graph of M(x),
pushing it below W in the neighbourhood of xy.
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FIGURE 2. A diagram of how to use two disjoint regions that are not one-
sided homotopy minimizing to either side to push down the mass. The
“bumps” have smaller mass than the original surface and are homotopic
along one-sided homotopies that never increase mass. By doing one ho-
motopy fully and then the other, we can see that the mass is always strictly
decreased in this range. This can then be glued into a nested sweepout
without increasing mass of the adjacent leaves.

This property of ® allows us to easily prove the “homotopy minimizing to one-side”
property of V discussed above (and thus Theorem [0.4). A diagram of the procedure to
prove this can be found in Figure

It thus remains to explain how we perturb remaining singularities. Hardt-Simon (cf.
[HS85]) proved that one sided perturbations of area minimizing cones with isolated sin-
gularities are smooth, and Liu extended this result to one sided stationary minimizers (cf.
[Liul9)). The proofs of the bounds in Theorems and [0.3] are then obtained by
combining a weak generalization of White [Whi94], where “stability” is replaced by the
stronger hypothesis that the surface is homotopic minimizing to one side, with a simple
surgery procedure in an annulus around the singularity, to show that singular points with
regular tangent cones in Sing(V) \ by (V) are not generic. As such, the main results follow
from when combined with a result of Simon on uniqueness of the blow up at cer-
tain singularities [Sim83a]. The rest of the theorem follows from the index lower bound in
manifolds with positive Ricci curvature.

0.3. Organization of the paper. The paper is divided into four sections. The first section
contains the basic definitions and some useful geometric tools. The second section intro-
duces the notion of non-excessive optimal sweepouts, which is a key idea in the present
work. The third section proves Theorem while the last section is dedicated to the

proofs of Theorems|[0.2]and

0.4. Remark. Since the first version of this paper appeared, Li-Wang have shown in a re-
markable work [LW20] that the results of this paper can be combined with [Wan20] and
some further geometric arguments to prove a version of Theorem [0.1]for generic metrics
without any curvature assumption.
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1. GEOMETRIC PRELIMINARIES

In this section we introduce the main notations, we prove the existence of optimal
nested sweepouts and we recall some useful geometric tools.

1.1. Notations. Let (M"*1, g) be a closed Riemannian manifold. By scaling, it suffices to
consider Vol(M, g) = 1, which we will always assume below. We use Z,(M; Z,) to denote
the space of mod 2 flat cycles in M. The topology on the space Z,(M;Z,) is induced by
the usual flat norm &.

We will make extensive use of the notion of Caccioppoli set. A measurable set E c M is
Caccioppoli if

Per(E) := sup{/ xedivew : w € X(M), llollco < 1} <00,
M

where yr denotes the indicator function of E. By De Giorgi’s strutcure theorem we have
that the distributional derivative D y g (which is is a Radon measure) of a set of finite perime-
ter E is given by Dyg = vg A"_0"E, where 0" E is the reduced boundary of E, which is a
n-rectifiable set, and vg is the normal direction to 0* E pointing outside E defined /" -
a.e.. This allows us to identify Dy with an element of Z,(M;Z,), which we will abuse
notation and denote by
O0E := vEJf"LG*E.
In particular, with this identification we have
M(OE) = Per(E) and  F(0E,0F)=lxeg— xrll1 = VOl(EAF),

where EAF denotes the symmetric difference between two sets. As usual, the perimeter
of E in an open set U, denoted by Per(E | U), is the total variation of Dy in the set U.

We let 7 denote the set of varifolds of (M"*!, g). Given a cycle T € Z,,(M;Z,), we will
write |I'| for the associated integral varifold. In particular if I = 0Q, then

IT|=A".0"Q® 6150 and  pur:=A".0"Q

is the total variation measure of the measure Dyq. Finally, given a set X regular outside a
set of dimension n — 7, we will denote with |X| the associated integral varifold.

1.2. Optimal nested sweepouts. We start by recalling the notion of sweepouts that we will
use in this paper.
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Definition 1.1 (Sweepout). A sweepout of M is a map ® : [0,1] — Z,(M;Z,) continuous
in & -topology such that ®(x) = 0Q(x), where {Q(x) : x € [0,1]} is a family of Caccioppoli
sets with Q(0) the 0-cycle and Q(1) = M. We will denote with . the collection of all such
sweepouts. Moreover, we define the width W to be
W = inf sup M(®(x)).
Qe xel0,1]
It is a consequence of the isoperimetric inequality that W > 0 [DLT'13, Proposition 0.5].

We will switch freely between the equivalent notation M(®(x)) and Per(€2(x)). We now
introduce the notion of optimal nested sweepouts and prove their existence.

Definition 1.2 (Optimal nested volume parametrized (ONVP) sweepout). A sweepout{®(x) =
0Q(x) : xe[0,1]} is called
e optimal ifsupr[O’l] M(®(x)) =W;
e nested if Q(x1) € Q(x2), forall0< x; < xp < 1;
e volume parametrized if Vol(Q(x)) = x, for every x € [0,1] (recall that we have as-
sumedVol(M, g) = 1).

Nested volume parametrized sweepouts enjoy nice compactness properties.

Lemma 1.3 (Compactness for nested volume parametrized sweepouts). Let (®;); be a se-
quence of nested volume-parametrized sweepouts with mass uniformly bounded, that is

(1.1) sup sup M(®;(x)) < M <oo.
ieN x€[0,1]

Then there exists a subsequence (®;, ) i converging uniformly to a nested volume parametrized
sweepout V¥V such that

(1.2) supM(Y(x)) < lin}cinf(supM((Dik(x))).

Proof. The sequence of continuous functions ®;: [0,1] — Z,_;(M; Z,) is uniformly Lisp-
chitz continuous, since for every 0 < x < y <1 we have

F(D;(x),D;(y) <Vol(Q; () \ Q;(x)) = Vol(Q;(y)) = Vol(Q;(x)) =y —x

and ®;(0) = @ for every i, so by Arzela-Ascoli Theorem there exists a subsequence ®;, and
a nested volume parametrized sweepout ¥: [0,1] — Z,(M; Z,) such that ®;_ converges
uniformly to W. Then follows from and the lower semi-continuity of M with
respect to the flat topology. U

Optimal nested volume parametrized sweepouts exist.

Theorem 1.4 (Existence of (ONVP) sweepouts). Forany closed Riemannian manifold (M, g)
there exists an optimal nested volume-parametrized sweepout.

Proof. Let {¥;}; be amin-max sequence of sweepouts with lim; ., sup, M(¥;(x)) = W. By
ICL20, Theorem 1.4] we can replace {¥;(x)}; by a sequence of nested sweepouts {®;};, such
that ®;(x) = fl.‘1 (x) for a surjective Morse function f; : M — [0,1] and lim; ., sup,, M(®; (x)) =
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W.Letg;(x) = Vol(fi_1 ([0, x])). Since f; is a Morse function we have that ¢; : [0,1] — [0, 1] is
a continuous strictly increasing function. Then (®; o c/)l._l)l. is asequence of nested volume-

parametrized sweepouts. By Lemma a subsequence of {®; o c/)l._l}i converges to a
(ONVP) sweepout. O

Finally we recall the definition of critical set for a sweepout.

Definition 1.5 (Critical set). Given a sweepout ®, we define

M(x) = lims;lp{M(QD(y)) Hy—xl<r}.

If ® is an optimal sweepout, we define the critical domain of ® fo be the set
m(®) ={xe[0,1]: M(x) = W}.

We will say that a sequence x; — x € m(®) is amin-max sequence if |®|(x;) converges in the
varifold sense to a varifold V of mass W, i.e. |V|(M) = W. We denote the set of such varifolds
by C(¥).

In fact, it is convenient to refine this definition somewhat.

Definition 1.6 (Left and right critical set). Given a sweepout ®, we say that x € mp(®) if
there are x; /" x with

MW (x;)) = W
and similarly, x € mg(®) if there are x; "\, x with

M(¥(x;)) — W.
Note that m(®) = m (®) Umpg(P) (and my (P) N mp(P) need not necessarily be empty).

Definition 1.7 (Varifolds of optimal regularity). For an open set U c M we say that a vari-
foldV isin Z(U) if

K
VLU =) x;l%l,
k=i
for Z; c U embedded minimal hypersurfaces that are regular away from a closed singular
set of Hausdorff dimension n—7, and x; € N integer multiplicities. We set Z = Z(M).
Abusing notation, we will say that a (singular) hypersurface X is in 2(U) if the associated
varifold satisfies |Z| € Z(U).

As we will discuss later, Almgren-Pitts theory [Pit81] implies that given an optimal sweep-
out ¥, thereis Ve C(¥) with V € £.

1.3. (Homotopic) one sided minimizers. The notions of one sided minimizers and ho-
motopic minimizers will be useful when dealing with our deformations theorems, as we
will see in Section[3l

Let U ¢ M"**! be an open set. Given two Caccioppoli sets E c Q with EAQ c U and
€ = 0, we denote the inner families of deformations between E and Q in U which do not
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increase the volume more than ¢ by
QO0)=E Q1) =Q, QAN \U =@,
T QL E|U) = QD eo : Q1) € Q(t2) for 1 < 1o, ,
Per(Q;) < Per(QQ) +¢
and analogously for Q c E with EAQ < U, we define the outer families of deformations
between Q and E in U which do not increase the volume more than € by
Q0)=Q, E=Q),( QA \U =@,
Oc(QEIU) :=1 {Q(D}tefo,1): Q(r) cQ(p) forty < 1
Per(Q;) <Per(Q) +¢
Moreover, given Q2 and € = 0, we denote the collections of inner and outer Caccioppoli sets
that can be reached by an inner or outer family of deformations by
F(QIU)={EcQ:EANQcU, %(Q,E|U) # ¢},
O:(QIU)={E>Q:EANQcU,G.(Q,E|U) # p}.
In both definitions, if we do not include an e-subscript, it should be understood that we

are taking € = 0; this will happen most of the time below, but we will crucially rely on the
definition with € > 0 to obtain regular homotopic minimizers in certain situations.

Definition 1.8 (Homotopic inner and outer minimizers). Given a Caccioppoli set Q) we say
that a Caccioppoli set L(Q|U) € £ (2| U) is ahomotopic inner minimizer for Q in U, if

(1) Per(L(Q|U) |U) < Per(Q'|U), forevery Q' € #(Q|U) and

(2) if Ee€ #(Q|U) satisfies (1) and L(Q2|U) c E then E = L(Q| U).
Similarly, define R(Q|U) € ©(Q|U) to be ahomotopic outer minimizer for Q in U, if

(1) Per(R(Q|U) | U) <Per(Q'|U), for every Q' € #(Q|U);

(2) ifE e #(Q|U) satisfies (1) and E c R(Q|U) then E = R(Q|U).
We say that a Caccioppoli set Q) is an inner (resp. outer) homotopic minimizer in U ifQ is
a homotopic inner (resp. outer) minimizer relative to itself.

Itis easy to see that inner and outer homotopic minimizers for a fixed set Q2 always exist.

Lemma 1.9 (Existence of homotopic minimizers). For any Caccioppoli set Q) and open set
U we can find a homotopic inner (resp. outer) minimizer L(Q|U) (resp. R(Q|U)) for Q in
U.

Proof. We consider only the case of inner minimizers as the outer minimizers are handled
identically.

This is once again an application of Arzela—Ascoli theorem. Indeed, notice that .# (Q| U) #
@, since Q € .#(Q|U), so we can consider a minimizing sequence (E i) that is

limPer(E;|U) = inf{Per(E|U) : E€ #(Q|U)}
J

and let {E;(x) : x € [0,1]} € #(Q, E;|U) be the corresponding inner volume non increas-
ing sweepout between E; and (2. We can assume that it is volume parametrized (being
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nested). Moreover Per(E;(x)|U) is uniformly bounded by Per(Q2|U), so by Arzela-Ascoli
there is a subsequence converging to {Ex(x)} € #(Q, Ex, | U), with E, satisfying the de-
sired minimality property by lower semi-continuity of the perimeter.

Finally, again by Arzela-Ascoli, we can find L(Q|U) < Q in the set of minimizers, which
infimizes the flat distance to 02, and so satisfies condition (2) (otherwise there would be
a competitor closer to Q in flat norm). ]

We recall the definition of one-sided minimizers, which will be useful in the sequel
when we perform cut and paste arguments.

Definition 1.10 (One sided minimizers). Let E be a Caccioppoli set. We say that E islocally
one-sided inner (resp. outer) area-minimizing in U if forevery A € U and V with VAE c A,
we have

Per(E| A) < Per(V | A)
whenever V C E (resp. E c V). We say that E is strictly locally one-sided inner (resp. outer)
area-minimizing if the inequality holds strictly except when E =V as Caccioppoli sets.

We show that homotopic minimizers are in fact strict one sided minimizers into the
region they sweep out.

Lemma 1.11 (Homotopic minimizers are one sided minimizers in the swept out region).
Suppose L(Q|U) is an homotopic inner (resp. outer) minimizer for Q in U. Then L(Q|U)
(resp. R(Q|U)) is strict locally outer (resp. inner) one-sided minimizing in UNQ (resp. U\Q)

Proof. We consider homotopic inner minimizers; the case of outer minimizers is similar.
If L(Q| U) is not a strict outer minimizer in U N Q then there is V' with L(Q|U) < V' and
LQ|U)AV'c AE U and
Per(V'| A) < P(L(Q|U)| A).

We can minimize perimeter in A among all such V' to find V. Namely,
(1.3) Per(V|A) <Per(W]A)

for all W with WAV < A\ L(Q|U). Since L(Q|U) € £(Q|U), thereis {U(x) : x € [0,1]} €
F(Q,LIQIU)|U). Set Q(x) = U(x) U V. Since V satisfies (1.3), we have that

Per(Q;| A) < Per(U;| A).

This implies that Q(1) = V satisfies (1) of Definition[1.8land VAL(Q|U) c A\L(Q| U), there-
fore by (2) of Definition|[L.8] it follows that V = L(Q| U). This completes the proof. O

We have the following lemma that will allow us to find bounded mass homotopies in
certain situations.

Lemma 1.12 (Interpolation lemma). Fix L > 0. For every € > 0 there exists 6 > 0, such that
the following holds. IfQg, <, are two sets of finite perimeter, such that Qy c Q;, Per(Q;) < L,
i =0,1, and Vol(Q, \ Qo) < 8, then there exists a nested F -continuous family {0} re(0,1]
with

Per(Q;) < max{Per(Qg),Per(Q21)} +¢
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forall t€[0,1]

Proof. Let Q be a Caccioppoli set that minimizes perimeter among sets Q' with Qy < Q'
Q.

Fix r > 0 such that for every x € M the ball B(x, 2r) is 2-bi-Lipschitz diffeomorphic to the
Euclidean ball of radius 2r. Let {B(x;, r)}ﬁ\; , be a collection of balls covering M. By coarea
inequality we can find a radius r; € [r,2r], so that M(0B(x;, r;) N Q\ Qq) < g.

Let Uy = B(x1,r1) nQ\ Q. By aresult of Falconer (see [Fal80], [Gut07, Appendix 6]) there
exists a family of hypersurfaces sweeping out U; of area bounded by c(n)d w1, It follows
(see [CL20, Lemma 5.3]) that there exists a nested family {Z!(#)} of Caccioppoli sets with
Z1(0) = Qg and Z!(1) = Qy U U, and satisfying

Per(Z' (1)) < Per(Qo) + 2c(n)87+1 .
Let Q' = Qy U U;. Observe, that the minimality of Q implies that

1 20
Per(Q2") < Per(Qp) + —
-

Inductively, we define Qk=qk1y Uy and Uy = B(xp, 1) N QN Qk-1. As above we can
construct a nested homotopy of Caccioppoli sets =k () from Q%! to QF, satisfying

. 2N
Per(ZX (1)) < Per(Qq) + 2c(m) 67 + 76

We choose & > 0 so small that Per(Z¥(£)) < Per(Qg) + €. It follows then that we have
obtained a homotopy from Q to Q satisfying the desired perimeter bound. Similarly, we
construct a homotopy from Q to Q. 0J

Finally, we have the following result. Recall that White [Whi94] proves that strictly stable
smooth minimal hypersurfaces are locally area-minimizing. A generalization of such a
result to the case of hypersurfaces with singularities (i.e., elements of %) would be very
interesting. The following (weaker) result will suffice for our needs; it can be seen as a
result along these lines, except “stability” is replaced by a stronger hypothesis: the surface
is homotopic minimizing to one side

Proposition 1.13 (Comparing the notions of minimizing vs. homotopic minimizing for
minimal surfaces). Suppose thatQ is a Caccioppoli set and for some strictly convex open set
U c M with smooth boundary, the associated varifold V = |0Q}| satisfies V € Z(U). Assume
that supp V N U is connected.

Suppose that Q) is inner (resp. outer) homotopy minimizing in U. Then, at least one of the
following two situations holds:

(1) for all p € suppV nU, there is po > 0 so that for p < pg, Bp(p) < U and Q is inner
(resp. outer) minimizing in B, (p), or

Note that one certainly needs a condition on the singularities rather than just a condition on the regular
part like strict stability, since as we show in Proposition[3.2] the existence of (regular) non-minimizing tan-
gent cones implies that the hypersurface is not homotopic minimizing irrespective of any stability condition
that might hold on the regular part.
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(2) there exists a sequence of Caccioppoli sets E; # Q with |0E;| € Z(U) so that EAQ c
QnNU (resp. Q° N U), |0E;| has stable regular part, and 0E; — 0Q) in the flat norm.

Remark 1.14. It is interesting to ask if the second possibility occurs; it seems possible that
one could rule this out in the case where V has regular tangent cones that are all strictly
minimizing in the sense of Hardt-Simon [HS85, §3].

Proof of Proposition[1.13, We consider the “inner” case, as the “outer” case is similar. Let
Ef € #.(Q|U) minimize perimeter among all sets in .%.(Q|U) (as usual, the existence of
E? follows from Arzela-Ascoli). We claim that E¢ is area-minimizing to the inside of Q in
sufficiently small balls.

More precisely, for r > 0 sufficiently small, suppose there was a Caccioppoli set E’ so
that E'AE® < B, (p)nUNQ and Per(E' | U) < Per(E® | U). Aslong as r was chosen sufficiently
small, Lemmall.12|guarantees that E’ € .%,(Q| U). This is a contradiction.

Now, consider p € RegV n U. We note that E is almost minimizing (with no constraint
coming from Q) in the sense of [Tam84], and thus has C La boundaryin B, (p)nU, thanks to
standard results on the obstacle problem; see [Tam84, §1.9, §1.14(iv)]. As such, away from
Sing V' (which has Hausdorff dimension at most n —7) we can thus conclude that 0* E¢ is
regular, stationary and stableﬂ A capacity argument then implies that |0E¢| € Z(U) and
0" E¥ is stable. Therefore, the maximum principle for (possibly singular) hypersurfaces
[MIm96] implies that either E¢ = Q or 0* E* nsupp V = @. In the first case, we can conclude
that Q is inner minimizing in small balls (since E? is).

We can thus assume that the latter possibility holds for all € > 0 sufficiently small. Taking
€j — 0, there is E € % (Q|U) so that Efi — E with respect to the flat norm. If E = Q, then
the second possibility in the conclusion of the proposition holds for E; = E®/.

The final case to consider is E # Q). By curvature estimates for stable minimal hypersur-
faces [SS81], |0E| € Z(Q2) and thus 0" Ensupp V = ¢ again by the maximum principle.

We know that Per(E;|U) < Per(Q2|U), so in the limit we get Per(E|U) < Per(Q2|U) By Arzela-
Ascoli nested homotopies from Q to E; will converge to a nested homotopy E(¢) from Q
to E that does not increase volume. By the inner homotopy minimizing property of Q we
have

Per(E|U) =Per(Q| U).

Suppose we minimize perimeter among Caccioppoli sets A’ sandwiched between E and
Q, E c A’ < Q. We claim that the minimizer A has perimeter equal to that of Q. Indeed, if A
has strictly smaller perimeter, then family E(#) U A is an area decreasing nested homotopy
between Q2 and A, contradicting that Q is inner homotopic minimizing.

We thus see that Q is minimizing in QN E°n U, which implies that it is inner minimizing
in small balls, as asserted. [

3Cf. the proof of [Liul9} Proposition 2.1] for the proof of stability.
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2. NON-EXCESSIVE SWEEPOUTS

In this section we introduce the concept of excessive intervals and excessive points for a
sweepout and prove that there is a sweepout, such that every point in the critical domain
is not excessive.

Definition 2.1 (Excessive points and intervals). Suppose {®(x) = 0Q(x)} is a sweepout.
Given a connected interval I (we allow I to be open, closed, or half-open) we will say that
@l(x) = GQI(x)}xej is an I-replacement family for ® ifQI(a) =Q(a), QL (b) = Qb) and for
allxel,

limsupM(®(y)) < W.
Iy—x

We say that a connected interval I is an excessive interval for ® if there is an I-replacement
family for ®. We say that a point x is left (resp. right) excessive for ® if there is an excessive
interval I for ® so that (x —€,x] < I (resp. [x,x+¢€) < I) for some e > 0.

The goal of this section is to prove the following result.

Theorem 2.2 (Existence of non-excessive min-max hypersurface). There exists a (ONVP)
sweepout V¥V such that every x € myp (V) is not left excessive and every x € mg (V) is not right
excessive.

2.1. Preliminary results. We establish several results that will be used in the proof of The-

orem

Lemma 2.3 (Extension lemma I). IfI, J are excessive for ® and In ] # @, then I U ] is exces-
sive for ®.

Proof. Let {0Q1 (1)} ves and {0Q7 (%)} ye 7 be I and J replacement families for ®.

Let a; = inf{x € I}, a, = inf{x € J} and b; = sup{x € I}, b, = sup{x € J}. Assume without
any loss of generality that a; < ay, and b; < b, and at least one of the two inequalities is
strict.

Let K = In J; let a, b denote, respectively, left and right boundary points of K and ¢ =

“;b € K. Let Q be a Caccioppoli set minimizing perimeter among all Q' with Q(a) c Q' c
Q(b). Define ¢, : [ay, c] — (a1, b1] and ¢2 : [c, bo] — [az, bo] given by ¢ (x) = a; + bcl ;11 (x—

bg ay

ap) and ¢y (x) = az + Ty—c (X—0). We define an I U J replacement family for @ by setting

o1V () = 0Q (1) NQ) x€lay,c]
0 (p2(x) UQ) x€lc, byl
Observe that ®%/ is continuous since ®“/(c) = Q. It follows from our choice of Q that

M(®Y (x)) < M@ (¢p7' (x))) < W for x € I N (—oo, c] and M(®Y (x)) < M(®/ (¢, (x))) < W
for xe Jn|c,o00). O

Lemma 2.4 (Extension lemma II). If [ is excessive for ® and ] has ] N I # @ and is excessive

for
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then JU I is excessive for ®.
Proof. Define an I U J-replacement family ®/V/ for ® by

D(x) xe[0,1]1\Ju]))
oV (x)={®I(x) xeI\J
vix) xeJ

where W/ is a J-replacement family for . UJ
The following is the technical core of the proof of Theorem[2.2]

Proposition 2.5 (Existence of maximal excessive intervals). Given an (ONVP) sweepout®,
if ] is excessive for {®(x) = 0Q2(x)}, then there exists an excessive interval ] > ] so that ] is
maximal in the sense that if J is excessive with Jn ] # @, then J < J.

Proof. Let

a :=supi{|]|: J excessive, J N J # @}.
Choose excessive intervals J, with J, n J # @ and |J,| — a. By Lemma 2.3} we can replace
Jn by J, U J, and thus assume that J c J,. In particular J, N J,, # @ for all m, n. Using
Lemma 2.3|again, we can replace J, by

n ~
U Jm
m=1
so that the J, form an increasing sequence of excessive intervals (still with | J.| — a). Note
that the interior of an excessive interval is still excessive, so we can consider J,, := (J,,)°.

Note that |J,| — a and the J,, are increasing.
We will show below that

], = U In
n
is excessive. Write J' = (a, b). Granted the fact that J’ is excessive, we claim that one of the
intervals (a, b), (a, b, [a, b), or [a, b] is the desired maximal excessive interval. Note that by
Lemma if [a, b) and (a, b] are excessive, then so is [a, b], so we can choose the largest

excessive interval out of these four choices and call it J. Suppose that J is excessive with
JnJ #@. Then, Ju J is excessive by Lemmaand J<c Ju]J. Thus,

JuJl<a,

so J < J (where J is the closure of J). Now, JU J is excessive, but strictly larger than J
(by assumption). This contradicts the choice of J as the largest excessive interval out of
(a,b),(a,bl],|a,b), and [a, b]. This shows that J is maximal, as desired.

It thus remains to prove that J' = U, J, is excessive for a nested sequence of open exces-
sive intervals J,. Write J,, = (an, by) and set a}, = a, + +, b, = b, — +.

Fixi=0,1,... and assume we have real numbers 0 < A;,...,A; < W and integers n; = i
(with n; < np < --- < n;) so that for n = n;, there is a J,-replacement {q)?(x) = GQ;’(x)} SO
that

Per(Q} (x)) < Aj



Generic min-max 17

for x € [a;., b;.] and 1 < j <i. (Note that for i = 0, we can find such objects because the J,
are excessive.)

We will choose 0 < A;,; < W, and n;,1 > max{n;,i + 1} so that we can construct J;,-
replacements {®7, , (x) =0Q7, ,(x)} for n > n;,; with

Per(Q7 ,(x)) < A;j

for x € [a;., b;.] and 1 < j < i+ 1. Granted this, we can easily (inductively) complete the
proof by passing q)?fll to a subsequential limit (using Arzela—-Ascoli).
It is useful to introduce the following notation, used in the construction of @7, ,. Given

two nested sets of finite perimeter V< W, we let

e /Yy, an outermost Caccioppoli set minimizing perimeter among all the Cacciop-
polisets Qwith VcQc W;
e {Jiv,w)(x)} the optimal nested homotopy from V to W.

For n = n;, we set

Lni=Aoya,07a,

i+1

),Q2(bp)

Note that for n < m, L,, c L,, and U,, < U,,. Hence, L,, and U,, have % -limits as n — oco.

For € > 0 fixed so that
max {Per (Q"(a;, )),Per (Q?" (b, D)} +e<W,

1

Lemma thus guarantees that there is n;1 = i + 1 sufficiently large so that for n = n;, 1,
sup Per (7/(Ln,Ln-+1)(t)) <Ww, sup Per (7/(Uy,.+1,Un)(t)) <W.
t ! t !

For n = n;;1, we define

A(QMx+1NLy,) x€lan—1,b,-1]
OV, L,,, () x€[bp—1,an,,]
@7 (0) =40 (Q"* () ULy, NUp,,,) x€lan,, bn,,,]
M, U, (%) x € [by,,,, an+1]
0(QMNx-1DuUy) x€lan+1,by+1l.

Here, the 7 are the homotopies 7 reparametrized to be defined on the given intervals (the
exact parametrization is immaterial). It is easy to check that &D?H is continuous.

Let @7 | denote the reparametrization of @7 , by volume. We have arranged that ®7 |
is a J,-replacement. Moreover, for x € [a}, |, b}, ], we have that ®”,  (x) = @' (x), so

i+1’
M@, (x) < A
forx e [a;., b;.] and 1 < j < i. Finally, we can set
Ais1i= sup  M(@*'(x) <W
xelag, b,
(which is independent of n). This completes the proof. U

2.2. Proof Theorem[2.2l We are now able to complete proof of Theorem[2.2]
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Let @ be a nested optimal sweepout. Consider the collection &« of the maximal (with
respect to inclusion) excessive intervals for @, that is I € « if for every excessive interval
I' such that I'n I # @, we have I o I'. The existence of maximal intervals follows from
Proposition [2.5/proven above.

Notice that by definition I # J € o« implies that In J = @, so we can define a new sweep-
out V¥ in the following way

ol(x) ifxeleo
Y(x)=
D(x) otherwise.

Note that WV is a nested optimal sweepout, so up to reparametrization we can assume it
is (ONVP), and moreover by construction m(¥) c m(®). Suppose that x € my (V) is left
excessive. Then, there is a W-excessive interval J with (x — €, x] < J. We claim that there
is I € of with J c I. Indeed, if JnI = @ for all I € o/, then J is a ®-excessive interval,
contradicting the definition of «/. On the other hand, if there is I € of with Jn [ # @,
then J U I is excessive by Lemma Thus, J c I by definition of &« again. Thus, for
yelx-¢gxlcl, ¥Y(y) = p! (). By the definition of replacement family, we know that if
Xx; € (x — ¢, x] has x; — x, then
limsupM(¥!(x;)) < W.
1—00

However, this contradicts the assumption that x € m (). The same proof works to prove
that x € mg (V) is not right excessive. This finishes the proof. O

3. DEFORMATION THEOREMS AND PROOF OF THEOREM[0.4]

In this section we conclude the proof of Theorem By Theorem there exists an
(ONVP) sweepout ® so that every x € my (®) is not left excessive and every x € mg(®) is not
right excessive. By Almgren-Pitts pull-tight and regularity theory [Pit81], we find that for
some xo € m(®), there is a min-max sequence x; — Xxp so that |®(x;)| converges to some
V € Z. Indeed, we can pull-tight ® to find a sweepout (in the sense of Almgren-Pitts,
not in the (ONVP) sense considered in this paper) ®; we have that C(®) c C(®) and some
V € C(®) is in Z. By replacing ®(x) by ®(1 — x) if necessary, we can then assume for the
rest of this section that:

there is a (ONVP) sweepout {®(x) = 0Q(x)} and x; / xo € my (D), so that

3.1
S |®(x;)| — V € £ and @ is not left excessive at xg

We then consider two cases: M(®(xg)) = W (no cancellation) and M(®(xp)) < W (can-
cellation). We analyze the geometric properties of V' in both cases separately, proving
deformation theorems reminiscent of those in [MN16].

3.1. Nocancellation. Throughout this subsection we will assume the no cancellation con-
dition
M(®(xp)) = W.
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In this case we have that |®(x;)| — |0Q|, see for instance [DLT13, Proposition A.1], so we
can rephrase our assumption (3.1) as

there is a (ONVP) sweepout {®(x) = 0Q(x)} and x; / xp € my (D), so that

3.2
3-2) |®(x;)| — |Z] := |0Q] € Z and D is not left excessive at xp.

In particular, in this case the multiplicity bound of Theorem|[0.4]follows immediately.

Proposition 3.1. LetZ be as in (3.2). Suppose X is not homotopic minimizing to either side
in some open set U. Then the following holds:

(1) forevery x ¢ U there exists r > 0, such that X is minimizing to one side in B, (x);
(2) for every open set U' disjoint from U, we have that ¥ is homotopic minimizing to
onesideinU'.

Proof. We prove statement (1). There is § > 0 and Caccioppoli sets E; € .#(Q|U) and Ef €
O Q| U) with

(3.3) Per(EI—L |U) <Per(Q|U) -6,

and nested families {Q (x) : x € [0,1]} € #(Q, E| |U) and {Qf(x) :x€e[0,1]} e C(Q, Ef | U).
Furthermore, by Lemma we can assume that E; are inner and E are outer homotopic
minimizers in U.

Let x € £\ U and assume, for contradiction, that X is not area minimizing on both sides
in every ball B, (x), r < dist(x,U). Let E; < Q, with Q\ E, < B, (x), denote a Caccioppoli
set that is a strict outer minimizer in Q N B, (x). Similarly, let Q c E; , with E; \Q < By (x),
denote a Caccioppoli set that is a strict inner minimizer in Q N B, (x). We have

Per(Q) > max{Per(E;)}.

If we choose r > 0 sufficiently small, then, by Lemma [1.12} there exist nested families
{Q; (x) : x € [0,1]} and {Q3 (x) : x € [0, 1]} that interpolate between E; and Q and between
Q and E; and satisfying

(3.4) Per(Q); (x)) < Per(Q) + g
Let (x;, x;) # @ be the interval (since @ is nested) such that
®(x) N (U EF\UE;) # 0.
Then we define a family ¥: [x; — 2, x, + 2] — Z,,(M;Z,) by setting
Qx+2)NE; NE;) ifxe(x;—2,x9—2]

Q;(x—x0+2)NE,;) ifxe[xg—2,x—1]
Qf (x—xo+1)NE,) ifxe[xo—1,x0]

Qf (x—-xo-1DUE]) ifxe[xo+1,x0+2]

0
0
Y(x):=1< g
0
0
0(Qx—-2)UEf UE]) ifxe[xg+2,x +2)

(
(
(
(Q (x—x0) UEY) if x € [xg, xp + 1]
(
(
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It is easy to see that ¥ is continuous, and moreover notice that, since by Lemma Ef is
a strict inner minimizer in U and E; strict outer minimizers in U, we have that
limsupM(¥(y)) < limsupM(®(y)) < W
y—x y—x
for x € (x;—2,x9—2] U [xg — 2, x; — 2). Since the families Q]—L (x) do not increase the volume
of Z in U; and using (3.3) and (3.4), we also have

- o
M(‘I’(x))SW—E Vxel[xo—2,x0+2].

We let ¥ be the volume reparametrization of the nested sweepout ¥, then V¥ is a (x;, x,)-
replacement for @, thus giving a contradiction with the fact that xy € (x;,x;) and xp €
my (D).

The proof of statement (2) is completely analogous. 0J

Proposition 3.2. Let X be as in (3.2), then the following holds

(1) Index(Z) <1;

(2) IfIndex(X) = 1, then for every point x € X there existsr > 0, such that X is minimizing
to one side in B, (x);

3) If hum(Z) is non-empty, then X is stable, 7#°(hnm (X)) = 1 and for every point x €
2\ bnm(Z) there exists r > 0, such that X is minimizing to one side in B, (x).

In particular, Theorem[0.4 holds in the case of no cancellations.

Proof. Note that if U N Z is smooth and unstable, it is easy to see that X is not homotopic
minimizing to either side in U (just consider the normal flow generated by a compactly
supported unstable variation of fixed sign). Statements (2) and (3) of the Proposition now
immediately follow from Proposition[3.1} The upper bound on the index (1) follows from
(2) of Proposition[3.1]and Lemma 3.3|below. O

Lemma 3.3 (Localizing the index). Suppose that Z € Z is two-sided and has Index(Z) =
2. Then, there is 27,25 < X smooth hypersurfaces with boundary so that the X} are both
unstable (for variations fixing the boundary).

Proof. A standard capacity argument implies that there is a subset ¥’ < ¥ where X' is a
smooth minimal surface with smooth boundary and Index(X’) = 2 (with Dirichlet bound-
ary conditions). Let u denote the second (Dirichlet) eigenfunction (with eigenvalue A < 0)
for the stability operator for X. Because u must change sign, there are at least two nodal
domains 21, %, < X. One can find subsets with smooth boundary X7 < %; so that  are un-
stable. This follows from the argument in [Cha84, p. 21] (namely, by considering (u|z; —€)+
in the stability operator for € — 0 chosen so that {u|s, > €} has smooth boundary). U

Lemma 3.4. 4 (Z) < (D).

Proof. Suppose that p € #n(V), we claim that X is not homotopic minimizing to either
side in B¢ (p) for any € > 0 sufficiently small. Indeed, by assumption, the unique tangent
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cone C = 0Q¢ to Z at p is not minimizing to either side. This implies that there are Cac-
cioppoli sets E; < Q¢ c Ef so that EZEAQ¢ c B © R”*! and so that

Pergni1 (E¢ | By) < Pergn1 (Qc | By) — 6.

Choose C1* coordinates on M around p so that Q = Q¢ in B¢(p) and so that gij(p) =46ij,
which we can do since g € C? and X is a C1* deformation of C near p by assumption.
Then, set
Q\B)U(Ix|EgNB:) x<0
E(x):=4Q x=0
(Q\B)U(XIEENBy) x>0
We have that
Perg (E(x)) —Perg(€2) = —|x|"6(1+ 0(1))
as x — 0 (since the metric g;; converges to the flat metric 0; j after rescaling | x| — 1, by the
C1 regularity of the chart). This shows that X is not homotopic minimizing to either side
in B.(p), so p € hym(X) as claimed. O

3.2. Cancellation. We will assume the cancellation condition
M(®(xp)) <W

throughout this subsection. In particular, we can find g € RegV so that for all € > 0 suffi-
ciently small,
Per(Q2| B:(q)) <|VI(Be(q))
where 0Q) = ®(xy). Like in the previous section we set X := supp V.
Furthermore we set V =} ;x;|Z;|, where each X; is a minimal hypersurface with opti-
mal regularity and x; € N are constant multiplicities, by the constancy theorem [Sim83b,
Theorem 41.1]. So becomes

there is a (ONVP) sweepout {®(x) = 0Q(x)} and x; /" xp € my (D), so that
(3.5) |Dx)|— V=) «;|Z;| € #, ® is not left excessive at xo and

1

there is g € Z such that Per(Q|B:(q)) <|VI|(B:(q)) —6(¢) foralle>0.

We write Q = Q(xp) and observe that X c Q. We would like to claim that X is homo-
topically minimizing, but this condition might not make sense if X is one-sided. However,
thanks to the cancellation we can actually prove that X is area-minimizing in its neighbor-
hood in Q away from a small ball around gq.

Definition 3.5. We will call aset Q) a (q,¢,71,%,Q)-competitor if
(Q\BT(Z)) U (Bg(q) \Z) cQ cQ\X.

An (q,€,7,Z,Q)-competitor Q' will be called a minimizing competitor if its perimeter is
strictly less than perimeter of any (q, €,7,%,Q)-competitor Q" with Q' < Q". (Note that we
do not require Per(Q)') to be less that the perimeter of all competitors, but only those that
contain()').
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Proposition 3.6. Suppose (3.5) holds, then for every e > 0 thereist >0, such that minimiz-
ing(q,¢,7,Z,Q)-competitor does not exist.

Proof. For contradiction suppose there exists a minimizing (g, €,7,%,Q)-competitor U.
Observe that by the cancellation assumption for every n > 0 we can find (q,¢,7,%,Q)-
competitors Q' with Per(Q') < W +n - 6(€), where 6 () is from (3.5). It follows that

Per(U) <Per(Q)<W.

If we choose 7 > 0 sufficiently small, then by Lemma there exists a nested family
{E(x) : x€[0,1]} with E(0) = U, E(1) =Q and

Per(E(x)) < W.

Let (x;, xo] be the connected interval such that Q(x) \ U # @, where {®(x) = 0Q(x)}, and
define family ¥: (x;, xo + 1] — Z,(M, Z,) by

o) nU) ifxe (xg,x0]
(X)._{GE(x—xo) if x € [xg, xo + 1]
Clearly V¥ is continuous, since Q2 = Q(x) and moreover we have that
limsupM(¥(y)) <limsupM(®(x)) s W
y—x y—x
for every x € (xj, xp) by strict minimality condition in Definition 3.5 For every x € [xp, xo +

1] we also have M (¥ (x)) = M(0E(x)) < W. This implies that x; is left excessive for ® which
is a contradiction. UJ

Proposition 3.7. SupposeV =) ;x;|Z;| is as in (3.5), then each Z; has stable regular part
and bhnm (V) = @. Moreover, for every point x € suppor t(V) there exists r > 0, such that the
support of V is minimizing to one side in B, (x)

Proof. First we observe that we can find two points g; and ¢ in RegV, such that for all
€ > 0 sufficiently small,

Per(Q2| B:(q;)) <|VI|(B:(q)).
By Proposition We have non-existence of minimizing (g, ¢, 7, Z, Q) -competitors for j =
1,2. This implies that X; is area minimizing to one side in a small ball around every point
of V. In particular, we have #°(h,m(V))) = 0.

The stability of the regular part of each X; also follows from the non-existence of mini-
mizing (q,¢,7,Z,Q)-competitors. Indeed, if a component X; has index = 1, then for € > 0
sufficiently small, the minimal hypersurface Z;\ B, (q) with fixed boundary will be unstable
by a standard capacity argument. If Z; is two-sided, then by considering a minimization
problem to one side of X; in B;(X;) \ B.(q) we can find open set U c ), such that Q\ U is a
minimizing (q,€,7, Z,2)-competitor.

Suppose Z; is one-sided. Since Z; c Q we have that B;(Z;)\ Z; c Q for all sufficiently
small 7 > 0. In particular, for small T < € we can minimize in the class of hypersurfaces {S c
B;(%£;) : SN B:(q) = Z; N B:(q)} to obtain a minimizer Z’l. in the same homology class and
openset U c QwithdU =Z; U Z’i. Then Q\ U is a minimizing (g, €, 7, Z, Q2)-competitor. []



Generic min-max 23

3.3. Multiplicity 2 bound. In this subsection we show that if x; > 2 for some i, then xy is
excessive, by using simple comparisons with disks. Notice that if any multiplicity satisfies
x; = 2 then we must be in the cancellation case considered above.

Lemma 3.8 (Multiplicity 2 bound). LetV =) ;«;|Z;| beasin (3.1). Thenk; <2 for every .

Proof. Suppose by contradiction «; = 3 for some i. Then let p € Reg(X;), p # q (where g
is the cancellation point considered above). Consider a ball B,(p), r < %dist( p, q), suffi-
ciently small so that Z; n B, (p) is two-sided. Let 7(r) > 0 be a small constant to be chosen
later and set U = B, (p) N B;(Z;).

Consider sequence x; / xo with [0Q(x;)| — V. We can assume that the radius r was
chosen sufficiently small, so that
(3.6) M@©OQ(x;)NU) = (Ki—%)wnr”,
for all j large enough, where w, denotes the measure of the n-dimensional ball of radius
one.

Let Q’j < Q(x;)), Q’j \U =Q(x;)\ U, be astrict one-sided outer area minimizer in Q(x;) N
U. Observe that ifQ’j does not converge to Q(xp), then lim Q'j isa(q, %dist(p, q),7,Z,Q(x0))-
competitor, which contradicts Proposition[3.6]

We conclude that lim Q’j = Q(x0). On the other hand, by comparing Q(x;) \ U to Q'j and
assuming that 7(r) was chosen sufficiently small, we have that one-sided area minimizing
property of Q’j implies

10

For 7(r) sufficiently small and j large we can apply Lemma[1.12]to find a nested family
E(x) interpolating between Q’j and Q, such that

1
M(OQ'J- NU) < Per(U) < (2+ —)wnr”,

Per(E(x)) < max{M(OQ’j \ U),M(0Q(xp) \ U)} + (2 + 1%) w,r"

3 n
<W-|1-=|w,r"
10

By combining families Q(x) N Q’] and E(x) we obtain that xj is left-excessive. 0J

3.4. Proof of Theorem[0.4] The result follow immediately by combining Corollary[2.2lwith
Propositions and Lemma[3.8 O

4. PROOF OF THEOREMS|0.1],[0.2], AND[0.3]

In this section we prove Theorem [0.3] (Theorems [0.1] and [0.2] follow immediately from
Theorem [0.3) when combined with the facts that when n = 8 all singularities are regular
and that the set of bumpy metrics is open and dense [Whi91, Whil7]). Theorem [0.3| will
follow from Theorem|0.4]and Proposition[1.13] together with a simple surgery procedure.
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4.1. Surgery procedure. We show here how to regularize minimal hypersurfaces with reg-
ular singularities under the assumption that the hypersurface minimizes area in a small
ball around each singularity.

Proposition 4.1 (Perturbing away regular singularities of locally area minimizing surfaces).
For (M"*, g) a compact C**-Riemannian metric and X € % a minimal hypersurface, recall
that () c SingX is defined to be the set of singular points with a regular tangent cone.
There is § € Met>*(M) arbitrarily close to g and £ arbitrarily close in the Hausdorff sense to
X so that £ is minimal with respect to T and #(Z) < bym(Z) = hum (2).

Proof. For every p € #(2) \ bam(2), and €y = €9(p) so that Z N (Bg,(p) \ p) is regular, we
will show how to perturb g and Z so that p becomes regular. We will do this by making
an arbitrarily small change to g, X supported in B, (p). Because .4 is discrete (but not
necessarily closed when n = 9) it is easy to enumerate the elements of #(X) \ hym (X) and
make a summably small change around each point. As such, it suffices to consider just the
perturbation near p.

By definition, taking € < g sufficiently small, £ N B.(p) is one-sided homotopy area-
minimizing. For concreteness write X N B.(p) = 0Q in B.(p) and assume that Q is inner
homotopy minimizing. By Lemma 3.4} the tangent cone at p is area-minimizing (to the
same side).

We claim that (after taking € > 0 smaller if necessary) there is a sequence of Z; € Z(B.(p))
with stable regular part, with Z; c Q, Z; disjoint from X, and X; — X. Indeed, we can apply
Proposition[1.13]to conclude that either (after shrinking € > 0), Q is area-minimizing to the
inside, or there are X; as asserted.

In the case that Q is area-minimizing to the inside, we can still construct the X; by
shrinking € > 0 even further so that Q is strictly area-minimizing to the inside and then
minimizing area with respect to a boundary X ndB.(p) + 6;, for a sequence §; — 0; i.e.,
the boundary of Z n B.(p) pushed slightly into Q. By the unique minimizing property, the
minimizers will converge back to X in B, (p).

For i sufficiently large we can write the intersection of X; with the annulus A(p, /5, ¢€)
as a graph of function u; over X.

Reasoning as in Hardt-Simon [HS85, Theorem 5.6] (cf. [Liul9, Theorem 3.1]), for i suf-
ficiently large, Z; will be regular in B, /> (p). We now set

L= (EiNBys)UE\Be(p) U(Z+ yui) N A(p,el5,¢€)
where y is a smooth cutoff function with y =1 on B/5 and y = 0 on Bs,/5. Note that
Hg(%;) issupported in Bye/s(p) \ Be/s(p)

and || Hg(Z:)llc2a = 0(1) as i — oco.
Now, define g = €%/ g, in this new metric, since £ is smooth, we have the transformation

o .. Of
HyS=e f(Hg(2)+a—V),
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where v is the normal direction to X. Setting Hg(i) =0, this reduces to the equation

Hg(2) + of _ 0
§ ov
which implies that f = —Hg (£){(v), for a function {(#) such that {’(0) = 1 and { = 0 for
|| = €/100 is a solution. Since, as observed, Hg(Z) is supported in A(p,€/5,4€/5), so is the

metric change, and since || u| o1« < 0(1) and y is smooth, we have

g = &lza=lle —1lceallglza < Cllullciallglze = 0(1)

as i — oo. This completes the proof. 0

4.2. Proof of Theorem Forge Met?>% (M), apply Theoremto find V € Z with
F° (Onm (V) + Index(V) < 1.

We can apply Propositionto T = supp V to find a metric g that is arbitrarily C>%-close
to g and a § minimal hypersurface £ € Z so that % (Z) < hm(Z). (Note that if Index(V) =
1, then hym, (2) = @, so H(X) = @.) This completes the first part of the proof.

We now consider g € Metﬁ’i‘éO(M) If X is two-sided, then Index(X) = 1, so we can argue
as above. On the other hand if X is one-sided, then [Z] # 0 € H,,(M, Z,). We can then find
3 € [Z] by minimizing area in the homology class. The surface £ may have singularities,
but they are all locally area minimizing. Thus, we can apply Proposition{4.1/to X yielding

2 and g with % (2) = @. O
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