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Regularized Kaczmarz Algorithms for Tensor Recovery\ast 

Xuemei Chen\dagger and Jing Qin\ddagger 

Abstract. Tensor recovery has recently arisen in a lot of application fields, such as transportation, medical
imaging, and remote sensing. Under the assumption that signals possess sparse and/or low-rank
structures, many tensor recovery methods have been developed to apply various regularization tech-
niques together with the operator-splitting type of algorithms. Due to the unprecedented growth of
data, it becomes increasingly desirable to use streamlined algorithms to achieve real-time compu-
tation, such as stochastic optimization algorithms that have recently emerged as an efficient family
of methods in machine learning. In this work, we propose a novel algorithmic framework based
on the Kaczmarz algorithm for tensor recovery. We provide thorough convergence analysis and its
applications from the vector case to the tensor one. Numerical results on a variety of tensor recov-
ery applications, including sparse signal recovery, low-rank tensor recovery, image inpainting, and
deconvolution, illustrate the enormous potential of the proposed methods.
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1. Introduction. Tensors are an important tool to represent, analyze, and process high-
dimensional data. By generalizing vectors and matrices, tensors can be used to represent a
variety of data sets in a versatile and efficient way. Besides the traditional low-dimensional sig-
nal processing problems such as image restoration, tensor modeling is able to improve complex
data analysis and processing by exploiting the hidden relationships among data components.
Recently, tensor recovery has arisen in many application areas, such as transportation sys-
tems [49], medical imaging [53], and hyperspectral image restoration [19]. The goal is to
reconstruct a tensor-valued signal from its measurements with multiple channels which may
be degraded by noise, blur, and so on. For example, many image restoration problems, e.g.,
image deblurring, can be cast as a tensor recovery problem by treating an image as a special
type of tensor [25]. Moreover, tensor modeling typically imposes the assumption of sparsity
and low-rank structures on the underlying tensor signal to be reconstructed, which brings the
presence of sparsity-promoted regularizations in the objective function. In this work, we focus
on third-order tensor recovery models given consistent linear measurements.

Tensor recovery problems usually involve massive data sets which result in large-scale
systems of linear equations. As one of the most important iterative algorithms for solving
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1440 XUEMEI CHEN AND JING QIN

linear systems, the Kaczmarz algorithm was first proposed by Stephen Kaczmarz [24] and
then rediscovered as the algebraic reconstruction technique in computed tomography [21].
Due to its simplicity and efficiency, it has been used and developed in many applications,
including ultrasound imaging [3], seismic imaging [40], positron emission tomography [22],
electrical impedance tomography [30], and recently phase retrieval [23, 50].

There is a large amount of work on the interpretations, developments, and extensions of
the Kaczmarz algorithm. For example, by treating each linear equation as a hyperplane of a
high-dimensional space, it can be derived by applying the method of successive projections
onto convex sets [10]. With random selection of projections, a randomized Kaczmarz algo-
rithm for solving consistent overdetermined linear systems with a unique solution is proposed
in [48], which can be considered as a special case of the stochastic gradient matching pur-
suit (StoGradMP) [37]. Convergence analysis of randomized Kaczmarz for noisy and random
linear systems can be found in [36, 13]. In addition, application of coordinate descent to
the dual formulation of a linear equality constrained least-norm problem leads to the Kacz-
marz algorithm [51]. Some other Kaczmarz types of methods include accelerated randomized
Kaczmarz [18], asynchronous parallel randomized Kaczmarz [31], block Kaczmarz algorithms
[42, 39, 17], Kaczmarz method for fusion frame recovery [14], and greedy randomized Kacz-
marz [4]. Similar to the standard version, randomized sparse block Kaczmarz can also be
obtained from randomized dual block-coordinate descent [41]. Note that the randomized
Kaczmarz algorithm can be considered as a special instance of stochastic gradient descent
[37]. The Kaczmarz algorithm has also been incorporated into other iterative methods for
solving ill-posed problems; a comprehensive review and convergence rate comparison can be
found in [28].

Motivated by the advantages of Kaczmarz-type algorithms in solving linear systems, we
intend to extend it from vectors to tensors. In this work, we integrate the Kaczmarz algorithm
into sparse/low-rank tensor recovery to significantly reduce the computational cost while pre-
serving high accuracy. To simplify the discussion, we focus on third-order tensors which can
be further extended to other higher-order tensors. Specifically, we assume that the acquired
tensor measurements \scrB \in RN1\times K\times N3 are related with the sensing tensor \scrA \in RN1\times N2\times N3 and
the underlying signal in a tensor form \scrX \in RN2\times K\times N3 via the tensor equation g(\scrX ) = \scrB . To
recover \scrX , one can consider the following constrained minimization problem:

\^\scrX = argmin
\scrX \in RN2\times K\times N3

f(\scrX ), s.t. g(\scrX ) = \scrB .(1.1)

Here the objective function f is convex on the real tensor space RN2\times K\times N3 , and g is a map
from RN2\times K\times N3 to RN1\times K\times N3 . In this paper, we assume g(\scrX ) = \scrA \ast \scrX where the symbol
``\ast "" denotes the t-product [26] (see section 2.2). To solve this linear constrained minimization
problem, we propose a general regularized Kaczmarz tensor algorithm. The algorithm is ``reg-
ularized"" since the objective function contains regularization terms for preserving desirable
characteristics of the underlying solution which is similar to regularization techniques for ill-
posed inverse problems. Moreover, the proposed algorithm alternates the Kaczmarz algorithm
and subgradient descent, which is thereby different from the classical Kaczmarz algorithm. We
discuss convergence guarantees of the proposed algorithm with either a deterministic control
sequence or a random sequence. The proposed framework is also adapted to solve the tensorD
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REGULARIZED KACZMARZ TENSOR ALGORITHMS 1441

nuclear norm minimization problem. In addition, convergence guarantees of our algorithm in
special cases when the third dimension of tensors is one have been provided for vector and ma-
trix recovery problems. Furthermore, numerical experiments in various applications, including
sparse vector recovery, image inpainting, low-rank tensor recovery, and single/multiple image
deblurring, demonstrate the great potential of the proposed algorithms in terms of computa-
tional efficiency. There are three major contributions for this work detailed as follows.

1. We propose a novel regularized Kaczmarz algorithmic framework for tensor recovery
problems with thorough convergence analysis; see Theorem 3.3. Due to the difference
in data structures, extension of a Kaczmarz type of algorithm to tensors is not trivial.
A linear convergence rate is proven for the randomized version; see Theorem 3.9.
Moreover, we consider the noisy scenario with a slightly stronger assumption on the
objective function; see Theorem 3.10.

2. We provide three important special cases of the proposed framework with detailed
convergence discussions. The first case is for matrix recovery (see Corollary 4.1),
which involves minimizing the sum of the (scaled) nuclear norm and the Frobenius
norm. The second one is for vector recovery which has been studied extensively as
mentioned above. Although Corollary 4.4 is comparable to results from the literature,
Corollary 4.5 addresses the noisy case which is the first of its kind to the best of our
knowledge. The last one is tensor nuclear minimization, which is particularly useful
in a lot of high-dimensional signal processing problems. Convergence guarantees are
also provided in Corollary 4.8 and Theorem 4.12.

3. Numerical experiments on various signal/image recovery problems have justified the
proposed performance, which can be further extended to solve other related appli-
cation problems in various areas. In addition, the proposed algorithms are friendly
to parameter tuning, where the stepsize can be fixed as one. Batched versions have
empirically shown the capability of further improvements.

When reduced to the vector or matrix cases, our work is relevant to [32], which has a
more general form of constraints, and [45], which shows linear convergence for the randomized
algorithm. Our results are compared with existing research when appropriate. The very
recent work by Ma and Molitor [34] also uses the Kaczmarz algorithm for tensor recovery, but
it focuses on solving the system \scrA \ast \scrX = \scrB without minimizing a general objective function.

The rest of the paper is organized as follows. In section 2, we introduce basic concepts
and results in convex optimization, and tensors. Our main results are in section 3, where we
propose a tensor recovery method based on the Kaczmarz algorithm with the convergence
guarantees. For the randomized version of this algorithm, we show linear convergence in
expectation, even when in the presence of noise. As special cases of tensor recovery, section 4
discusses how the proposed framework is applied to solve the vector and matrix recovery
problem, and the tensor nuclear norm regularized tensor recovery model. Section 5 lists
various numerical experiments illustrating the efficiency of the proposed algorithms.

2. Preliminaries. In this section, we provide clarification of notation and a brief review
of fundamental concepts in convex optimization and tensor algebra.

Throughout the paper, we use boldface lowercase letters such as x for vectors, capital
letters such as X for matrices, and calligraphic letters such as \scrX for tensors. The sets of allD
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1442 XUEMEI CHEN AND JING QIN

natural numbers and real numbers are denoted by N and R, respectively. Given a real number
p \geq 1, the \ell p-norm of a vector x \in RN is defined as \| x\| p := (

\sum N
i=1 | xi| p)1/p. Analogous

to the vector \ell 2-norm, the Frobenius norm of a matrix X \in RN1\times N2 is defined as \| X\| F =\sqrt{} \sum N1
i=1

\sum N2
j=1 x

2
ij . The trace of a square matrix X, denoted by Tr(X), is the sum of all

diagonal entries of X. Furthermore, the nuclear norm of a matrix X, denoted by \| X\| \ast , is
defined as the sum of all the singular values of X. For a complex-valued matrix X, XT is its
transpose by interchanging the row and column index for each entry, and X\ast is its complex
conjugate transpose, i.e., performing both transpose and componentwise complex conjugate.
For any positive integer k, the set \{ 1, 2, . . . , k\} is denoted by [k]. Given a finite set I, the
cardinality of I is denoted by | I| .

For a convex set V , PV denotes the orthogonal projection onto V . Given a matrix A, R(A)
is the row space of A, and \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A), \sigma \mathrm{m}\mathrm{a}\mathrm{x}(A) are the smallest and largest nonzero singular
values of A, respectively. One can show that

\sigma \mathrm{m}\mathrm{i}\mathrm{n}(A)\| PR(A)(x)\| 2 \leq \| Ax\| 2 \leq \sigma \mathrm{m}\mathrm{a}\mathrm{x}(A)\| PR(A)(x)\| 2.(2.1)

The soft thresholding operator (also known as shrinkage) S\lambda (\cdot ) is defined componentwise
as

(S\lambda (x))i = sgn(xi)max\{ | xi|  - \lambda , 0\} ,(2.2)

where x \in RN and sgn(\cdot ) is the signum function which returns the sign of a nonzero number
and zero otherwise. This operator can also be extended for matrices and tensors.

2.1. Convex optimization basics. To make the paper self-contained, we present basic
definitions and properties about convex functions defined on real vector spaces. By reshap-
ing matrices or tensors as vectors, these concepts and results can be naturally extended to
functions defined on real matrix or tensor spaces.

For a continuous function f : RN \rightarrow R, its subdifferential at x \in RN is defined as

\partial f(x) =
\bigl\{ 
x\ast : f(y) \geq f(x) + \langle x\ast ,y  - x\rangle for any y \in RN

\bigr\} 
.

It can be shown that \partial f(x) is closed and convex in RN . If, in addition, f is convex, then
\partial f(x) is nonempty for any x \in RN . In addition, a convex function is called proper if its
epigraph \{ (x, \mu ) : x \in RN , \mu \geq f(x)\} is nonempty in RN+1.

Furthermore, f is \alpha -strongly convex for some \alpha > 0 if for any x,y \in RN and x\ast \in \partial f(x)
we have

f(y) \geq f(x) + \langle x\ast ,y  - x\rangle + \alpha 

2
\| y  - x\| 22.(2.3)

Example 2.1. Let f1(x) =
1
2\| x\| 

2
2, which is differentiable. In this case, the subdifferential

becomes a singleton only consisting of the gradient, i.e., \partial f1(x) = \{ \nabla f1(x)\} = \{ x\} , and one
can show that f1 is 1-strongly convex.

Moreover, it is easy to show that h(x)+ 1
2\| x\| 

2
2 is 1-strongly convex if h is convex. In what

follows, we provide two such examples. For more details and examples, please refer to [5].D
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REGULARIZED KACZMARZ TENSOR ALGORITHMS 1443

Example 2.2. Given a positive number \lambda , f\lambda (x) = \lambda \| x\| 1 + 1
2\| x\| 

2
2 is 1-strongly convex.

Example 2.3. Let U be a real matrix, \lambda > 0, then fU (x) = \lambda \| Ux\| 1 + 1
2\| x\| 

2
2 is 1-strongly

convex.

The convex conjugate function of f at z \in RN is defined as

f\ast (z) := sup
\bfx \in RN

\{ \langle z,x\rangle  - f(x)\} .

It can be shown that z \in \partial f(x) if and only if x = \nabla f\ast (z) [43].
Following the ideas in [32], we can verify that if f is \alpha -strongly convex, then the conjugate

function f\ast is differentiable and for any z,w \in RN , the following inequalities hold:

\| \nabla f\ast (z) - \nabla f\ast (w)\| 2 \leq 
1

\alpha 
\| z - w\| 2,(2.4)

f\ast (y) \leq f\ast (x) + \langle \nabla f\ast (x),y  - x\rangle + 1

2\alpha 
\| y  - x\| 22.(2.5)

For a convex function f : RN \rightarrow R, the Bregman distance between x and y with respect
to f and x\ast \in \partial f(x) is defined as

Df,\bfx \ast (x,y) := f(y) - f(x) - \langle x\ast ,y  - x\rangle .(2.6)

Since \langle x,x\ast \rangle = f(x) + f\ast (x\ast ) if x\ast \in \partial f(x) [43], the Bregman distance can also be written as

Df,\bfx \ast (x,y) = f(y) + f\ast (x\ast ) - \langle x\ast ,y\rangle .(2.7)

Note that for f1(x) = 1
2\| x\| 

2
2, we have Df1,\bfx \ast (x,y) = 1

2\| x  - y\| 22. In general, if f is
\alpha f -strongly convex, then the Bregman distance satisfies the property

\alpha f

2
\| x - y\| 22 \leq Df,\bfx \ast (x,y) \leq \langle x\ast  - y\ast ,x - y\rangle .(2.8)

The proximal operator of f is defined as

proxf (v) = argmin
\bfx 

\biggl\{ 
f(x) +

1

2
\| x - v\| 22

\biggr\} 
.(2.9)

Due to the Fenchel's duality, we have

proxh(v) = \nabla f\ast (v), where f(x) = h(x) +
1

2
\| x\| 22.

It can be shown that the soft thresholding operator is in fact the proximal operator of the
\ell 1-norm, i.e., S\lambda (x) = prox\lambda \| \cdot \| 1(x).

We provide an important lemma related to the Bregman distance, which will be used in
proving Theorem 3.10.

Lemma 2.4. If f : RN \rightarrow R is convex, continuous, and proper, then

Df,\bfx \ast (x,y) - Df,\bfw \ast (w,y) \leq \langle x\ast  - w\ast ,x - y\rangle 

for any x\ast \in \partial f(x) and w\ast \in \partial f(w).D
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1444 XUEMEI CHEN AND JING QIN

Proof. For any x\ast \in \partial f(x) and w\ast \in \partial f(w), we have

Df,\bfx \ast (x,y) - Df,\bfw \ast (w,y) = f(y) - f(x) - \langle x\ast ,y  - x\rangle  - f(y) + f(w) + \langle w\ast ,y  - w\rangle 
= f(w) - f(x) - \langle x\ast ,y  - x\rangle + \langle w\ast ,y  - w\rangle 
\leq \langle w\ast ,w  - x\rangle  - \langle x\ast ,y  - x\rangle + \langle w\ast ,y  - w\rangle 
= \langle w\ast ,y  - x\rangle  - \langle x\ast ,y  - x\rangle = \langle x\ast  - w\ast ,x - y\rangle .

Next we will introduce the concept of restricted strong convexity. If f : RN \rightarrow R is convex,
differentiable, and proper, then (2.3) in the definition of an \alpha -strongly convex function becomes

\langle \nabla f(y) - \nabla f(x),y  - x\rangle \geq \alpha \| y  - x\| 22(2.10)

for any x,y \in RN . We define a weaker version as follows.

Definition 2.5. Let f : RN \rightarrow R be convex differentiable with a nonempty minimizer set
Xf := \{ x : f(x) \leq f(y) for any y \in RN\} . The function f is restricted strongly convex on a
convex set C \subseteq RN with \alpha > 0 if

\langle \nabla f(y) - \nabla f(x),y  - x\rangle \geq \alpha \| y  - x\| 22(2.11)

for any x \in C and y = PXf\cap C(x).

This definition can be found in [44]. The concept of restricted strong convexity first
appeared in [29], where C is RN . We include below a useful lemma about the restricted
strong convexity, which will be used for proving Lemma 3.6.

Lemma 2.6 ([44, Lemma 2.2]). If f is restricted strongly convex on C with the constant
\alpha , then

f(x) - min
\bfx 

f(x) \leq 1

\alpha 
\| \nabla f(x)\| 22(2.12)

for any x \in C.

2.2. Tensor basics. We follow the notation for tensor operators in [25]. If \scrA \in RN1\times N2\times N3

with the kth frontal slice Ak = \scrA (:, :, k), then we define the block circulant operator as follows:

bcirc(\scrA ) :=

\left[     
A1 AN3 \cdot \cdot \cdot A2

A2 A1 \cdot \cdot \cdot A3
...

...
. . .

...
AN3 AN3 - 1 \cdot \cdot \cdot A1

\right]     \in RN1N3\times N2N3 .(2.13)

Moreover, we define the operator unfold(\cdot ) and its inversion fold(\cdot ) for the conversion between
tensors and matrices,

unfold(\scrA ) =

\left[     
A1

A2
...

AN3

\right]     \in RN1N3\times N2 , fold

\left(     
\left[     
A1

A2
...

AN3

\right]     
\right)     = \scrA .(2.14)
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For degenerate cases, we define the operator squeeze(\cdot ) that removes all the dimensions
of length one from a tensor. For example, if \scrA \in R3\times 1\times 1, then squeeze(\scrA ) returns a three-
dimensional (3D) vector. The transpose of \scrA , denoted by \scrA T , is the N2 \times N1 \times N3 tensor
obtained by transposing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through N3. We have

bcirc(\scrA T ) = (bcirc(\scrA ))T .

For the two tensors \scrA , \~\scrA of the same size, we define the inner product and the Frobenius
norm for tensors as

\langle \scrA , \~\scrA \rangle :=
\sum 
i,j,k

\scrA (i, j, k) \~\scrA (i, j, k), \| \scrA \| 2F = \langle \scrA ,\scrA \rangle .

One can see that \langle \scrA , \~\scrA \rangle = \langle unfold(\scrA ), unfold( \~\scrA )\rangle where the right-hand side is an inner
product of two matrices. If \scrA \in RN1\times N2\times N3 , \scrC \in RN2\times K\times N3 , then their t-product is the
N1 \times K \times N3 tensor given by [27]

\scrA \ast \scrC := fold (bcirc(\scrA ) unfold(\scrC )) .(2.15)

We list three important properties about the t-product as follows:
(a) Separability in the first dimension

(\scrA \ast \scrC )(i, :, :) = \scrA (i, :, :) \ast \scrC .(2.16)

(b) Sum separability in the second dimension

\scrA \ast \scrC =

N2\sum 
j=1

\scrA (:, j, :) \ast \scrC (j, :, :).(2.17)

(c) Circular convolution in the third dimension: if \scrA , \scrC \in R1\times 1\times N3 , then

squeeze(\scrA \ast \scrC ) = circ(a)c,(2.18)

where both a = squeeze(\scrA ) and c = squeeze(\scrC ) are N3-dimensional vectors. Here
circ(a) is the circular matrix generated by the vector a, i.e., the reduced case of (2.13)
when \scrA \in R1\times 1\times N3 .

Here \scrA (i, :, :) is called the ith horizontal slice of \scrA . For notational convenience, \scrA (i, :, :) will
be denoted as \scrA (i).

In Table 1, we summarize the t-products of tensors with reduced dimensions and their
corresponding operators for vectors or matrices. In particular, based on (2.16) and (2.18), the
t-product of \scrA \in R1\times 1\times N3 and \scrC \in R1\times K\times N3 can be implemented as

squeeze(\scrA \ast \scrC ) = squeeze(\scrC )circ(squeeze(\scrA ))T ,(2.19)

where squeeze(\scrA ) \in RN3 and squeeze(\scrC ) \in RK\times N3 . If \scrA \in RN1\times 1\times N3 and \scrC \in R1\times 1\times N3 , then

squeeze(\scrA \ast \scrC ) = squeeze(\scrA )circ(squeeze(\scrC ))T ,(2.20)D
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1446 XUEMEI CHEN AND JING QIN

Table 1
T-products of dimension-reduced tensors.

Condition \scrA \scrC Vector/matrix operator

N2 = K = N3 = 1 RN1\times 1\times 1 R1\times 1\times 1 scalar multiplication of a vector
N1 = N2 = N3 = 1 R1\times 1\times 1 R1\times K\times 1 scalar multiplication of a vector

N1 = K = N3 = 1 R1\times N2\times 1 RN2\times 1\times 1 inner product of two vectors
N2 = N3 = 1 RN1\times 1\times 1 R1\times K\times 1 outer product of two vectors
N1 = N3 = 1 R1\times N2\times 1 RN2\times K\times 1 vector-matrix multiplication
K = N3 = 1 RN1\times N2\times 1 RN2\times 1\times 1 matrix-vector multiplication (section 4.2)

N3 = 1 RN1\times N2\times 1 RN2\times K\times 1 matrix-matrix multiplication (section 4.1)

N1 = N2 = K = 1 R1\times 1\times N3 R1\times 1\times N3 vector circular convolution (2.18)
N1 = N2 = 1 R1\times 1\times N3 R1\times K\times N3 vector-matrix circular convolution (2.19)
N2 = K = 1 RN1\times 1\times N3 R1\times 1\times N3 matrix-vector circular convolution (2.20)
N1 = K = 1 R1\times N2\times N3 RN2\times 1\times N3 sum of vector circular convolutions (2.21)

where squeeze(\scrA ) \in RN1\times N3 and squeeze(\scrC ) \in RN3 . Furthermore, if \scrA \in R1\times N2\times N3 and
\scrC \in RN2\times 1\times N3 , then the t-product becomes a sum of vector circular convolutions

squeeze(\scrA \ast \scrC ) =
N2\sum 
j=1

circ(squeeze(\scrA )(j, :)) squeeze(\scrC )(j, :)T ,(2.21)

where squeeze(\scrA )(j, :) \in RN3 is the jth row of the matrix squeeze(\scrA ). These properties are
particularly useful for representing the image blurring as a t-product; see section 5.4 for more
details.

Based on the t-product, some concepts in the matrix case can be directly extended to the
tensor case [26], e.g., tensor singular value decomposition (t-SVD) and tubal rank that is the
number of nonsingular tubes in the t-SVD form.

Lemma 2.7. If \scrA \in RN1\times N2\times N3 ,\scrB \in RN1\times K\times N3, and \scrC \in RN2\times K\times N3, then

\langle \scrA \ast \scrC ,\scrB \rangle = \langle \scrC ,\scrA T \ast \scrB \rangle .(2.22)

Proof.

\langle \scrA \ast \scrC ,\scrB \rangle = \langle fold(bcirc(\scrA ) unfold(\scrC )),\scrB \rangle = \langle bcirc(\scrA ) unfold(\scrC ), unfold(\scrB )\rangle 

= Tr
\Bigl( \bigl( 

bcirc(\scrA ) unfold(\scrC )
\bigr) T

unfold(\scrB )
\Bigr) 
= Tr

\Bigl( \bigl( 
unfold(\scrC )

\bigr) T
bcirc(\scrA T ) unfold(\scrB )

\Bigr) 
= \langle unfold(\scrC ), bcirc(\scrA T ) unfold(\scrB )\rangle 
= \langle \scrC ,\scrA T \ast \scrB \rangle .

Lemma 2.8. If \scrA \in RN1\times N2\times N3 and \scrX \in RN2\times K\times N3, then we have

\| \scrA \ast \scrX \| F \leq 
\sqrt{} 

N3\| \scrA \| F \| \scrX \| F .(2.23)

Proof. \| \scrA \ast \scrX \| 2F = \| bcirc(\scrA ) unfold(\scrX )\| 2F \leq \| bcirc(\scrA )\| 2F \| \scrX \| 2F = N3\| \scrA \| 2F \| \scrX \| 2F .
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3. Tensor recovery. Let f be an \alpha f -strongly convex function defined on RN2\times K\times N3 , \scrA \in 
RN1\times N2\times N3 , and \scrB \in RN1\times K\times N3 . Consider a tensor recovery problem of the following form:

\^\scrX = argmin
\scrX \in RN2\times K\times N3

f(\scrX ) s.t. \scrA \ast \scrX = \scrB .(3.1)

Using (2.15), the constraint \scrA \ast \scrX = \scrB can be rewritten as the form

bcirc(\scrA ) unfold(\scrX ) = unfold(\scrB ),(3.2)

and we assume the linear system (3.2) is consistent and underdetermined. Recall that \scrA (i) =
\scrA (i, :, :). According to the separability of t-product in the first dimension (2.16), the linear
constraint \scrA \ast \scrX = \scrB can be split into N1 reduced ones,

\scrA (i) \ast \scrX = \scrB (i), i \in [N1].(3.3)

One can see that

N1\sum 
i=1

\| \scrA (i) \ast \scrX \| 2F = \| \scrA \ast \scrX \| 2F .(3.4)

We further let Hi := \{ \scrX : \scrA (i) \ast \scrX = \scrB (i)\} , and let H =
\bigcap N1

i=1Hi be the feasible set of (3.1).
The ``row space"" of \scrA is defined as

R(\scrA ) :=
\bigl\{ 
\scrA T \ast \scrY : \scrY \in RN1\times K\times N3

\bigr\} 
.

If N3 = 1, then R(\scrA ) coincides with the row space of the N1 \times N2 matrix \scrA .
The optimal solution \^\scrX of (3.1) satisfies the following optimality conditions:

\scrA \ast \^\scrX = \scrB , \partial f( \^\scrX ) \cap R(\scrA ) \not = \emptyset .(3.5)

We propose Algorithm 3.1, which only uses one of the horizontal slices of \scrA at each
iteration. In order to make sure all horizontal slices are used, we define a control sequence for
slice selection at each iteration.

Definition 3.1. A sequence i : N \rightarrow [M ] is called a control sequence for [M ] if for any
m \in [M ], there are infinitely many k's such that i(k) = m.

In Algorithm 3.1, it can be shown that \scrZ (k) \in \partial f(\scrX (k)) \cap R(\scrA ) which will be used in our
convergence analysis. Regarding the control sequence, one common choice is the cyclic se-
quence \{ 1, 2, . . . , N1, 1, 2, . . . , N1, . . .\} , which cycles sequentially through the constraints (3.3).
Algorithm 3.1 can be viewed as a deterministic algorithm, whereas Algorithm 3.2 picks the
slices in a random fashion and has gained much attention in recent years [48, 38, 54, 35].
At each iteration, the probability of picking the jth constraint/slice (3.3) is proportional to
\| \scrA (j)\| 2F , which is commonly used in the literature [48]. Nevertheless, other probability dis-
tributions are also allowed; see Corollary 4.1 and Remark 4.2. More discussion on picking
appropriate probability distributions can be found in [16, 2, 14].D
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1448 XUEMEI CHEN AND JING QIN

Algorithm 3.1 Regularized Kaczmarz algorithm for tensor recovery.

Input: \scrA \in RN1\times N2\times N3 , \scrB \in RN1\times K\times N3 , control sequence \{ i(k)\} \infty k=0 \subseteq [N1], stepsize t,
maximum number of iterations T , and the tolerance tol.
Output: an approximation of \^\scrX 
Initialize: \scrZ (0) \in R(\scrA ) \subset RN2\times K\times N3 ,\scrX (0) = \nabla f\ast (\scrZ (0)).
for k = 0, 1, . . . , T  - 1 do

\scrZ (k+1) = \scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) - \scrA (i(k))\ast \scrX (k)

\| \scrA (i(k))\| 2F
\scrX (k+1) = \nabla f\ast (\scrZ (k+1))
Terminate if \| \scrX (k+1)  - \scrX (k)\| F /\| \scrX (k)\| F < tol.

end for

Algorithm 3.2 Randomized regularized Kaczmarz algorithm for tensor recovery.

Input: \scrA \in RN1\times N2\times N3 , \scrB \in RN1\times K\times N3 , stepsize t, maximum number of iterations T , and
the tolerance tol.
Output: an approximation of \^\scrX 
Initialize: \scrZ (0) \in R(\scrA ) \subset RN2\times K\times N3 ,\scrX (0) = \nabla f\ast (\scrZ (0)).
for k = 0, 1, . . . , T  - 1 do

pick i(k) randomly from [N1] with Pr(i(k) = j) = \| \scrA (j)\| 2F /\| \scrA \| 2F ,
\scrZ (k+1) = \scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) - \scrA (i(k))\ast \scrX (k)

\| \scrA (i(k))\| 2F
\scrX (k+1) = \nabla f\ast (\scrZ (k+1))
Terminate if \| \scrX (k+1)  - \scrX (k)\| F /\| \scrX (k)\| F < tol.

end for

3.1. Convergence analysis with a control sequence. To analyze the convergence of the
proposed Algorithms 3.1 and 3.2, we state the following proposition involving a dimension-
reduced t-product in Table 1 which plays an important role in the convergence analysis.

Proposition 3.2. Suppose \scrA \in R1\times N2\times N3, \scrB \in R1\times K\times N3, and f is an \alpha f -strongly convex
function defined on RN2\times K\times N3. Given an arbitrary \=\scrZ \in RN2\times K\times N3 and \=\scrX = \nabla f\ast ( \=\scrZ ), let

\scrZ = \=\scrZ + t \scrA T

\| \scrA \| 2F
\ast (\scrB  - \scrA \ast \=\scrX ) and \scrX = \nabla f\ast (\scrZ ); we have

Df,\scrZ (\scrX ,\scrH ) \leq Df, \=\scrZ (
\=\scrX ,\scrH ) - t

\| \scrA \| 2F

\biggl( 
1 - tN3

2\alpha f

\biggr) 
\| \scrB  - \scrA \ast \=\scrX \| 2F

for any \scrH that satisfies \scrA \ast \scrH = \scrB .

Proof. For simplicity of notation, let \scrZ = \=\scrZ + s\scrW , where \scrW = \scrA T \ast (\scrB  - \scrA \ast \=\scrX ), and
s = t

\| \scrA \| 2F
. By Lemma 2.8, we have \| \scrW \| F \leq 

\surd 
N3\| \scrA \| F \| \scrB  - \scrA \ast \=\scrX \| F . By Lemma 2.7, we have

\langle \scrW ,\scrH  - \=\scrX \rangle = \langle \scrA T \ast (\scrA \ast \scrH  - \scrA \ast \=\scrX ),\scrH  - \=\scrX \rangle = \| \scrA \ast (\scrH  - \=\scrX )\| 2F = \| \scrB  - \scrA \ast \=\scrX \| 2F .

By (2.7), the Bregman distance between \scrX and \scrH with respect to f and \scrZ satisfiesD
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Df,\scrZ (\scrX ,\scrH ) = f\ast (\scrZ ) - \langle \scrZ ,\scrH \rangle + f(\scrH )

= f\ast ( \=\scrZ + s\scrW ) - \langle \=\scrZ + s\scrW ,\scrH \rangle + f(\scrH )

\leq f\ast ( \=\scrZ ) + \langle \nabla f\ast ( \=\scrZ ), s\scrW \rangle + 1

2\alpha f
\| s\scrW \| 2F  - \langle \=\scrZ + s\scrW ,\scrH \rangle + f(\scrH )

= Df, \=\scrZ (
\=\scrX ,\scrH ) - \langle s\scrW ,\scrH \rangle + \langle \=\scrX , s\scrW \rangle + 1

2\alpha f
\| s\scrW \| 2F

= Df, \=\scrZ (
\=\scrX ,\scrH ) - \langle s\scrW ,\scrH  - \=\scrX \rangle + 1

2\alpha f
\| s\scrW \| 2F

\leq Df, \=\scrZ (
\=\scrX ,\scrH ) - s\| \scrB  - \scrA \ast \=\scrX \| 2F +

s2

2\alpha f
N3\| \scrA \| 2F \| \scrB  - \scrA \ast \=\scrX \| 2F

= Df, \=\scrZ (
\=\scrX ,\scrH ) - s\| \scrB  - \scrA \ast \=\scrX \| 2F

\biggl( 
1 - 

sN3\| \scrA \| 2F
2\alpha f

\biggr) 
.

The desired result is obtained since s = t
\| \scrA \| 2F

.

This proposition essentially shows how much the Bregman distance decreases after one
iteration. We are now ready to state our first main result.

Theorem 3.3. Let f be \alpha f -strongly convex. If t < 2\alpha f/N3, then the sequence \{ \scrX (k)\} gen-
erated by Algorithm 3.1 satisfies

Df,\scrZ (k+1)(\scrX (k+1),\scrX ) \leq Df,\scrZ (k)(\scrX (k),\scrX ) - t

\biggl( 
1 - tN3

2\alpha f

\biggr) 
\| \scrA (i(k)) \ast (\scrX (k)  - \scrX )\| 2F

\| \scrA (i(k))\| 2F
(3.6)

for all \scrX \in Hi(k). Moreover, the sequence \{ \scrX (k)\} converges to the solution of (3.1).

Proof. We apply Proposition 3.2 where \scrA (i(k)), \scrB (i(k)), \scrZ (k), \scrZ (k+1) are replaced by \scrA ,
\scrB , \=\scrZ , \scrZ , respectively, and then obtain (3.6). The rest of the proof is for the convergence of
the sequence \{ \scrX (k)\} .

It is known that lim\| \scrZ \| F\rightarrow \infty 
f\ast (\scrZ )
\| \scrZ \| F = \infty (see [32, equation (5)]). Then for any \scrZ \in \partial f(\scrX )

and arbitrary \scrY , we have

lim
\| \scrZ \| F\rightarrow \infty 

Df,\scrZ (\scrX ,\scrY )

\| \scrZ \| F
= lim

\| \scrZ \| F\rightarrow \infty 

f\ast (\scrZ ) - \langle \scrZ ,\scrY \rangle + f(\scrY )

\| \scrZ \| F
\geq lim

\| \scrZ \| F\rightarrow \infty 

f\ast (\scrZ ) - \| \scrZ \| F \| \scrY \| F
\| \scrZ \| F

= \infty .

By (3.6), the sequence \{ Df,\scrZ (k)(\scrX (k), \^\scrX )\} is decreasing, hence bounded and convergent. The

above limit implies that \| \scrZ (k)\| F must be bounded. So for a subsequence \{ kl\} , we have
liml\rightarrow \infty \scrZ (kl) = \~\scrZ . Thus, we get

lim
l\rightarrow \infty 

\scrX (kl) = lim
l\rightarrow \infty 

\nabla f\ast 
\Bigl( 
\scrZ (kl)

\Bigr) 
= \nabla f\ast ( \~\scrZ ) := \~\scrX .

We denote the constant t(1 - tN3
2\alpha f

) by r. Since \{ i(k)\} is a control sequence for [N1], there

exists j0 \in [N1] such that \{ i(kl)\} has infinitely many terms of j0. Without loss of generality,
the subsequence can be picked such that

\forall l, i(kl) \equiv j0, and \{ i(kl), i(kl + 1), . . . , i(kl+1  - 1)\} = [N1].

D
ow

nl
oa

de
d 

01
/1

3/
22

 to
 5

8.
25

0.
17

4.
74

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1450 XUEMEI CHEN AND JING QIN

Therefore, we have

D
f,\scrZ (kl+1)(\scrX (kl+1), \^\scrX ) \leq Df,\scrZ (kl+1)(\scrX (kl+1), \^\scrX )

\leq Df,\scrZ (kl)(\scrX (kl), \^\scrX ) - r
\| \scrA (i(kl)) \ast (\scrX (kl)  - \^\scrX )\| 2F

\| \scrA (i(kl))\| 2F
.(3.7)

By letting l \rightarrow \infty , we can get

Df, \~\scrZ (
\~\scrX , \^\scrX ) \leq Df, \~\scrZ (

\~\scrX , \^\scrX ) - r
\| \scrA (j0) \ast ( \~\scrX  - \^\scrX )\| 2F

\| \scrA (j0)\| 2F
,

which implies that \scrA (j0) \ast ( \~\scrX  - \^\scrX ) = 0 and thereby \~\scrX \in Hj0 .
Let Jin := \{ j : \~\scrX \in Hj\} . Obviously, j0 \in Jin by the previous analysis. Next we use

the proof by contradiction to further show Jin = [N1]. Suppose that Jout = [N1]\setminus Jin \not = \emptyset .
For each l, we define nl to be the index in \{ kl, kl + 1, . . . , kl+1  - 1\} such that \{ i(kl), i(kl +
1), . . . , i(nl  - 1)\} \subset Jin and i(nl) \in Jout.

Since \~\scrX \in Hj for any j \in \{ i(kl), i(kl + 1), \cdot \cdot \cdot , i(nl  - 1)\} , we have, by (3.6),

Df,\scrZ (nl)(\scrX (nl), \~\scrX ) \leq Df,\scrZ (nl - 1)(\scrX (nl - 1), \~\scrX ) \leq \cdot \cdot \cdot \leq Df,\scrZ (kl)(\scrX (kl), \~\scrX ).

By letting l \rightarrow \infty , we have liml\rightarrow \infty \scrX (nl) = \~\scrX .
By choosing a subsequence, we can assume i(nl) \equiv j1 \in Jout. By the same analysis as in

(3.7), we can get \~\scrX \in Hj1 which is a contradiction. Therefore, we must have \~\scrX \in H =
\bigcap N1

i=1Hi.
By (3.6), Df,\scrZ (k)(\scrX (k), \~\scrX ) is decreasing. Since its subsequence Df,\scrZ (kl)(\scrX (kl), \~\scrX ) \rightarrow 0, the

entire sequence Df,\scrZ (k)(\scrX (k), \~\scrX ) converges to zero as well. This shows \scrX (k) \rightarrow \~\scrX due to (2.8).

Now we have \~\scrZ = limk\rightarrow \infty \scrZ (k) \in R(\scrA ). Since \scrZ (k) \in \partial f(\scrX (k)), we have \~\scrZ \in \partial f( \~\scrX ). So
\scrA \ast \~\scrX = \scrB and \~\scrZ \in \partial f( \~\scrX ) \cup R(\scrA ) fulfill the optimality condition (3.5). Since the solution of
(3.1) is unique, we have \^\scrX = \~\scrX .

Remark 3.4. We would like to compare Theorem 3.3 with [32, Theorem 2.7]. Note that
[32, Theorem 2.7] considers the split feasibility problem, that is, finding vectors belonging to
the set \{ x : Aix \in Qi\} , where Ai are matrices and Qi are convex sets. Our theorem focuses
on a specific minimization problem that recovers tensors.

3.2. Convergence analysis with a random sequence. For the randomized Algorithm 3.2,
Theorem 3.3 no longer applies. We will prove a linear convergence rate in expectation if the
objective function f satisfies certain conditions.

The dual problem of (3.1) is the unconstrained problem

min
\scrY \in RN1\times K\times N3

gf (\scrY ),

where

gf (\scrY ) = f\ast (\scrA T \ast \scrY ) - \langle \scrY ,\scrB \rangle .(3.8)D
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Definition 3.5. Let m := min\scrY gf (\scrY ). We will call a function f admissible if gf , as defined
in (3.8), is restricted strongly convex on any of gf 's level set L

gf
\delta := \{ \scrY : gf (\scrY ) \leq m+ \delta \} . We

call f strongly admissible if gf is restricted strongly convex on RN1\times K\times N3.

The following lemma is a consequence of Definition 2.5 and Lemma 2.6.

Lemma 3.6. Let \^\scrX be the solution of (3.1).
(a) Assume f is admissible. For \~\scrX and \~\scrZ \in \partial f( \~\scrX ) \cap R(\scrA ), there exists \nu > 0 such that

for all \scrX and \scrZ \in \partial f(\scrX ) \cap R(\scrA ) with Df,\scrZ (\scrX , \^\scrX ) \leq Df, \~\scrZ (
\~\scrX , \^\scrX ) it holds that

Df,\scrZ (\scrX , \^\scrX ) \leq 1

\nu 
\| \scrA \ast (\scrX  - \^\scrX )\| 2F .(3.9)

(b) If f is strongly admissible, there exists \nu > 0 such that (3.9) holds for all \scrX and
\scrZ \in \partial f(\scrX ) \cap R(\scrA ).

Proof. (a) Due to the strong duality, we have that f( \^\scrX ) =  - m =  - min\scrY gf (\scrY ).
Since \scrZ \in R(\scrA ), we let \scrZ = \scrA T \ast \scrY for some \scrY . Then

Df,\scrZ (\scrX , \^\scrX ) = f\ast (\scrZ ) - \langle \scrZ , \^\scrX \rangle + f( \^\scrX ) = f\ast (\scrA T \ast \scrY ) - \langle \scrA T \ast \scrY , \^\scrX \rangle + f( \^\scrX )

= f\ast (\scrA T \ast \scrY ) - \langle \scrY ,\scrA \ast \^\scrX \rangle + f( \^\scrX ) = f\ast (\scrA T \ast \scrY ) - \langle \scrY ,\scrB \rangle  - m

= gf (\scrY ) - m.

Similarly, for \~\scrX , there exists \~\scrY such that Df,\scrZ ( \~\scrX , \^\scrX ) = gf ( \~\scrY ) - m.

The assumption Df,\scrZ (\scrX , \^\scrX ) \leq Df, \~\scrZ (
\~\scrX , \^\scrX ) implies that \scrY \in \{ \scrW : gf (\scrW ) \leq gf ( \~\scrY )\} , a

level set of gf . By Lemma 2.6, the restricted strong convexity of gf on its level set implies the
existence of \nu > 0 such that

gf (\scrY ) - m \leq 1

\nu 
\| \nabla gf (\scrY )\| 2F for all \scrY \in \{ \scrW : gf (\scrW ) \leq gf ( \~\scrY )\} .

Furthermore, the gradient of gf is computed as

\nabla gf (\scrY ) = \scrA \ast \nabla f\ast (\scrA T \ast \scrY ) - \scrB = \scrA \ast \nabla f\ast (\scrZ ) - \scrB = \scrA \ast \scrX  - \scrB = \scrA \ast (\scrX  - \^\scrX ).

This proves part (a).
(b) The proof is similar to (a) and simpler. Under the assumption that gf is restricted

strong convex on RN1\times K\times N3 , we no longer need to require the dual variable \scrY to be in a level
set. The inequality (3.9) is thus true for any \scrX and \scrZ \in \partial f(\scrX ) \cap R(\scrA ).

Lemma 3.6 is a key lemma in proving the linear convergence rate for the randomized
version. However, its assumptions are not easy to check. Below we provide some important
examples.

Example 3.7. Admissible functions. See [44].
(a) If f is strongly convex and piecewise quadratic and bcirc(\scrA ) has full row rank, then

f is strongly admissible. There are many functions that fall under this category, e.g.,
f\lambda (\scrX ) = 1

2\| \scrX \| 2F + \lambda \| \scrX \| 1.
(b) Let f be defined on matrices. The objective function of the regularized nuclear norm

problem f(X) = 1
2\| X\| 2F + \lambda \| X\| \ast is admissible.D
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(c) When f is defined on RN , important examples include f\lambda (x) = 1
2\| x\| 

2
2 + \lambda \| x\| 1, or

more generally 1
2\| x\| 

2
2 + \lambda \| Ux\| 1, where U is a linear operator.

Remark 3.8. The constant \nu in Lemma 3.6 depends on the tensor \scrA , the function f , and
the corresponding level set (if f is only admissible). For a simple example, we let K = N3 = 1,
so \scrA \ast \scrX degenerates to the regular matrix-vector multiplication Ax. We let the objective
function be f1(x) = 1

2\| x\| 
2
2, we have x = z \in R(A). Furthermore, the minimizer \^x is the

projection of the any feasible vector onto R(A), so x  - \^x \in R(A). Then Df1,\bfz (x, \^x) =

1
2\| x - \^x\| 22 = 1

2\| PR(A)(x - \^x)\| 22
(2.1)

\leq 1
2\sigma 2

\mathrm{m}\mathrm{i}\mathrm{n}(A)
\| A(x - \^x)\| 22, which means that \nu = 2\sigma 2

\mathrm{m}\mathrm{i}\mathrm{n}(A). For

a less trivial example, we refer readers to [29, Lemma 7] for an explicit computation of \nu for
the function f\lambda (x) =

1
2\| x\| 

2
2 + \lambda \| x\| 1 (A does not need to be full row rank). In general, it is

hard to quantify \nu .

Theorem 3.9. Let f be \alpha f -strongly convex and admissible, and \nu is the constant from (3.9).
Let \scrX (k),\scrZ (k) be generated by the Algorithm 3.2. If 0 < \nu t

\| \scrA \| 2F
(1 - tN3

2\alpha f
) < 1, then \scrX (k) converges

linearly to \^\scrX in expectation, i.e.,

E
\Bigl[ 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\Bigr] 
\leq 
\biggl( 
1 - \nu t

\| \scrA \| 2F

\Bigl( 
1 - tN3

2\alpha f

\Bigr) \biggr) 
E
\Bigl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX )

\Bigr] 
,(3.10)

and thereby

E\| \scrX (k)  - \^\scrX \| 2F \leq 
\biggl[ 
2

\alpha f
Df,\scrZ (0)(\scrX (0), \^\scrX )

\biggr] \biggl( 
1 - \nu t

\| \scrA \| 2F

\Bigl( 
1 - tN3

2\alpha f

\Bigr) \biggr) k

.(3.11)

Proof. Let \scrG (k) := \scrX (k)  - \^\scrX . By Theorem 3.3,

Df,\scrZ (k+1)(\scrX (k+1), \^\scrX ) \leq Df,\scrZ (k)(\scrX (k), \^\scrX ) - r
\| \scrA (i(k)) \ast \scrG (k)\| 2F

\| \scrA (i(k))\| 2F
,(3.12)

where r = t(1 - tN3
2\alpha f

). We need to analyze the expectation of
\| \scrA (i(k))\ast \scrG (k)\| 2F

\| \scrA (i(k))\| 2F
.

Since Df,\scrZ (k)(\scrX (k), \^\scrX ) \leq Df,\scrZ (0)(\scrX (0), \^\scrX ) for any k \geq 1, we apply Lemma 3.6(a) and get

Df,\scrZ (k)(\scrX (k), \^\scrX ) \leq 1

\nu 
\| \scrA \ast \scrG (k)\| 2F .(3.13)

For the sake of convenience, we let Ec be the expectation conditioned on i(0), . . . , i(k - 1).
At the kth iteration, the probability that i(k) = j is proportional to \| \scrA (j)\| 2F . Therefore, we
have

Ec

\Biggl[ 
\| \scrA (i(k)) \ast \scrG (k)\| 2F

\| \scrA (i(k))\| 2F

\Biggr] 
=

N1\sum 
j=1

\| \scrA (j)\| 2F
\| \scrA \| 2F

\| \scrA (j) \ast \scrG (k)\| 2F
\| \scrA (j)\| 2F

(3.14)

(3.4)
=

1

\| \scrA \| 2F
\| \scrA \ast \scrG (k)\| 2F

(3.13)

\geq \nu 

\| \scrA \| 2F
Df,\scrZ (k)(\scrX (k), \^\scrX ).(3.15)D
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Finally, we take the expectation of (3.12) and get

E
\Bigl[ 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\Bigr] 
\leq E

\Biggl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX ) - r

\| \scrA (i(k)) \ast \scrG (k)\| 2F
\| \scrA (i(k))\| 2F

\Biggr] 

= Ei(0),...,i(k - 1)Ec

\Biggl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX ) - r

\| \scrA (i(k)) \ast \scrG (k)\| 2F
\| \scrA (i(k))\| 2F

\Biggr] 

\leq Ei(0),...,i(k - 1)

\biggl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX ) - r\nu 

\| \scrA \| 2F
Df,\scrZ (k)(\scrX (k), \^\scrX )

\biggr] 
=

\biggl( 
1 - r\nu 

\| \scrA \| 2F

\biggr) 
E
\Bigl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX )

\Bigr] 
.

To prove (3.11), we note that E[Df,\scrZ (k)(\scrX (k), \^\scrX )] \leq (1 - r\nu 
\| \scrA \| 2F

)kDf,\scrZ (0)(\scrX (0), \^\scrX ). Then by

(2.8), we have

E\| \scrX (k)  - \^\scrX \| 2F \leq 2

\alpha f
E
\Bigl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX )

\Bigr] 
\leq 
\biggl[ 
2

\alpha f
Df,\scrZ (0)(\scrX (0), \^\scrX )

\biggr] \biggl( 
1 - r\nu 

\| \scrA \| 2F

\biggr) k

.

So far, we have taken care of consistent and noise-free constraints of the form \scrA \ast \scrX = \scrB .
In what follows, we analyze the sensitivity of Algorithm 3.2 by considering the perturbed
constraint \scrA \ast \scrX = \~\scrB where \~\scrB = \scrB + \scrE . Here \scrE is typically assumed to be Gaussian noise.

Theorem 3.10. Let \scrA \ast \scrX = \scrB be the original consistent linear constraint. For the perturbed
measurements \~\scrB = \scrB + \scrE , Algorithm 3.2 performs the following updating scheme:

\=\scrZ (k+1) = \=\scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) + \scrE (i(k)) - \scrA (i(k)) \ast \=\scrX (k)

\| \scrA (i(k))\| 2F
,(3.16)

\=\scrX (k+1) = \nabla f\ast ( \=\scrZ (k+1)).(3.17)

Let f be \alpha f -strongly convex and strongly admissible, and \nu is the constant from (3.9). If

0 < \nu t
\| \scrA \| 2F

(1 - tN3
2\alpha f

) < 1 and \epsilon = maxi\in [N1]
\| \scrE (i)\| F
\| \scrA (i)\| F , then we have

E
\sqrt{} 
Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ) \leq 

\Biggl( \sqrt{} 
1 - \nu t

\| \scrA \| 2F

\biggl( 
1 - tN3

2\alpha f

\biggr) \Biggr) k

Df, \=\scrZ (0)( \=\scrX (0), \^\scrX ) +

\sqrt{} 
2\alpha fN3\| \scrA \| 2F \epsilon 

\nu 
\Bigl( 
1 - tN3

2\alpha f

\Bigr) ,

(3.18)

where \^\scrX is the solution of (3.1).

Proof. Given \=\scrZ (k) and \=\scrX (k), we define

\scrZ (k+1) = \=\scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) - \scrA (i(k)) \ast \=\scrX (k)

\| \scrA (i(k))\| 2F
,(3.19)

\scrX (k+1) = \nabla f\ast (\scrZ (k+1)).(3.20)D
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Note that \scrZ (k+1),\scrX (k+1) are not those defined in Algorithm 3.2. By (3.16) and (3.19), we
have that \=\scrZ (k+1) = \scrZ (k+1) + t

\| \scrA (i)\| 2F
\scrA (i)T \ast \scrE (i).

With the update (3.19), we apply Proposition 3.2:

Df,\scrZ (k+1)(\scrX (k+1), \^\scrX ) \leq Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ) - t

\biggl( 
1 - tN3

2\alpha f

\biggr) \bigm\| \bigm\| \bigm\| \scrA (i) \ast ( \^\scrX  - \=\scrX (k))
\bigm\| \bigm\| \bigm\| 2
F

\| \scrA (i)\| 2F
.(3.21)

Due to the presence of noise, it is not clear if the assumption of Lemma 3.6(a) holds. This
is why we require strong admissibility, in which case Lemma 3.6(b) applies and we have

Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ) \leq 1

\nu 
\| \scrA \ast ( \=\scrX (k)  - \^\scrX )\| 2F .(3.22)

Similar to the analysis in (3.14)--(3.15), we take the conditional expectation of (3.21) and get

E
\Bigl[ 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\bigm| \bigm| \bigm| i(1), . . . , i(k  - 1)
\Bigr] 
\leq 
\biggl( 
1 - \nu t

\| \scrA \| 2F

\biggl( 
1 - tN3

2\alpha f

\biggr) \biggr) 
Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ).

(3.23)

By Lemma 2.4, we get

Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ) - Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\leq \langle \=\scrZ (k+1)  - \scrZ (k+1), \=\scrX (k+1)  - \^\scrX \rangle \leq \| \=\scrZ (k+1)  - \scrZ (k+1)\| F \| \=\scrX (k+1)  - \^\scrX \| F
(2.8)

\leq t

\| \scrA (i)\| 2F
\| \scrA (i)T \ast \scrE (i)\| F

\sqrt{} 
\alpha f

2

\sqrt{} 
Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX )

(2.23)

\leq t
\surd 
N3\| \scrE (i)\| F
\| \scrA (i)\| F

\sqrt{} 
\alpha f

2

\sqrt{} 
Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ) \leq t\epsilon 

\sqrt{} 
\alpha fN3

2

\sqrt{} 
Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ).

By denoting a = t\epsilon 

\sqrt{} 
\alpha fN3

2 , \alpha 2 = Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ), and \beta 2 = Df,\scrZ (k+1)( \=\scrX (k+1), \^\scrX ), we

can rewrite the above inequality as \alpha 2  - \beta 2 \leq a\alpha , which implies

\alpha \leq 1

2

\Bigl( 
a+
\sqrt{} 
a2 + 4\beta 2

\Bigr) 
and thereby \alpha \leq a+ \beta . That is,\sqrt{} 

Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ) \leq a+
\sqrt{} 

Df,\scrZ (k+1)(\scrX (k+1), \^\scrX ).

We again let Ec be the expectation conditioned on i(0), . . . , i(k  - 1). Then we have

Ec

\sqrt{} 
Df, \=\scrZ (k+1)( \=\scrX (k+1), \^\scrX ) \leq a+ Ec

\sqrt{} 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\leq a+

\sqrt{} 
Ec

\Bigl[ 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\Bigr] (3.23)

\leq a+

\sqrt{} \biggl( 
1 - \nu t

\| \scrA \| 2F

\biggl( 
1 - tN3

2\alpha f

\biggr) \biggr) 
Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ),
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which implies

dk+1 \leq a+

\sqrt{} 
1 - \nu t

\| \scrA \| 2F

\biggl( 
1 - tN3

2\alpha f

\biggr) 
dk := a+

\surd 
1 - bdk,(3.24)

where dk := E
\sqrt{} 

Df, \=\scrZ (k)( \=\scrX (k), \^\scrX ). After applying (3.24) iteratively, we get

dk \leq (
\surd 
1 - b)kd0 + a

\Bigl( 
1 +

\surd 
1 - b+ (

\surd 
1 - b)2 + \cdot \cdot \cdot + (

\surd 
1 - b)k - 1

\Bigr) 
= (

\surd 
1 - b)kd0 + a

1 - (
\surd 
1 - b)k

1 - 
\surd 
1 - b

\leq (
\surd 
1 - b)kd0 + a

1

1 - 
\surd 
1 - b

= (
\surd 
1 - b)kd0 + a

1 +
\surd 
1 - b

b
\leq (

\surd 
1 - b)kd0 +

2a

b
,

which reduces to (3.18).

4. Special cases of the proposed algorithm.

4.1. Matrix recovery. This section discusses the special cases when N3 = 1. The tensor
\scrA \in RN1\times N2\times 1 degenerates to the N1 \times N2 matrix A. Although this has been brought up in
Example 3.7, we would like to include further discussions here. Specifically, \scrX degenerates to
the N2\times K matrix X and \scrB degenerates to the N1\times K matrix B. The minimization problem
(3.1) becomes a matrix recovery problem

min
X

f(X) s.t. AX = B.(4.1)

If f(X) = \lambda \| X\| \ast + 1
2\| X\| 2F , which is an admissible function, we have

\nabla f\ast (Z) = prox\lambda \| \cdot \| \ast (Z) = D\lambda (Z).

The singular value thresholding operator D\lambda (Z) is defined as U max\{ S  - \lambda , 0\} V T , provided
that Z = USV T is the singular value decomposition.

The following corollary is a consequence of Theorems 3.3 and 3.9. Note this function is
1-strongly convex. Similar to the tensor notation, we will let A(i) be the ith row of A, and
RM (A) = \{ ATY : Y \in RN1\times K\} .

Corollary 4.1. Let \^X be the solution of (4.1) where f(X) = \lambda \| X\| \ast + 1
2\| X\| 2F . This function

is admissible with the constant \nu (see (3.9)). Initializing with Z(0) \in RM (A) \subset RN2\times K and
X(0) = D\lambda (Z

(0)), we perform the updating scheme

Z(k+1) = Z(k) + tA(i(k))T
B(i(k)) - A(i(k))X(k)

\| A(i(k))\| 2F
,(4.2)

X(k+1) = D\lambda (Z
(k+1)),(4.3)

where \{ i(k)\} is a slice selection sequence and t < 2.D
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(a) If \{ i(k)\} is a control sequence for [N1], then the sequence X(k) converges to \^X.
(b) If \{ i(k)\} is a random sequence such that Pr(i(k) = j) = pj, then

E
\Bigl[ 
Df,Z(k+1)(X(k+1), \^X)

\Bigr] 
\leq 
\biggl( 
1 - \nu t

\biggl( 
1 - t

2

\biggr) 
min
j

\biggl\{ 
pj

\| A(j)\| 2F

\biggr\} \biggr) 
E
\Bigl[ 
Df,Z(k)(X(k), \^X)

\Bigr] 
.

(4.4)

Remark 4.2. Corollary 4.1(b) allows a more general probability distribution instead of the
specific distribution in Algorithm 3.2. The proof can be easily modified from that in Theorem
3.9.

Remark 4.3. It is worth noting that the linear constraint AX = B is in a different form
from \{ X : \langle Ai, X\rangle = bi, i \in [m]\} , where each Ai is a matrix. However, the proof of Theorem
3.9 can be easily adapted to these types of constraints. If we focus on the regularized nuclear
norm optimization problem

min
X\in RN2\times K

\lambda \| X\| \ast +
1

2
\| X\| 2F s.t. \langle Ai, X\rangle = bi, i \in [m],(4.5)

it is stated in the introduction of [45] that the algorithm

Z(k+1) = Z(k) + tAi(k)
b(i(k)) - \langle Ai(k),X

(k)\rangle 
\| Ai(k)\| 2F

,

X(k+1) = D\lambda (Z
(k+1))

(4.6)

with a random sequence \{ i(k)\} has a linear convergence rate in expectation. Related numerical
experiments can be found in section 5.2.

4.2. Vector recovery. As mentioned in Remark 3.8, when \scrA \in RN1\times N2\times 1 and \scrX \in 
RN2\times 1\times 1, \scrA degenerates to the N1 \times N2 matrix A and \scrX degenerates to the vector x. In
this section, we further discuss this special case in more detail. Specifically, we consider the
following vector version of the minimization problem (3.1):

\^x = argmin
x

f(x) s.t. Ax = b,(4.7)

where R(A) in this context is the row space of A. As a consequence, Algorithm 3.1 or
Algorithm 3.2 becomes Algorithm 4.1.

In this setting, Theorems 3.3 and 3.9 reduce to the following results.

Corollary 4.4. Let f be \alpha f -strongly convex.
(a) If \{ i(k)\} is a control sequence for [N1], then x(k) from Algorithm 4.1 converges to \^x.
(b) If f is admissible and \{ i(k)\} is a random sequence such that Pr(i(k) = j) = pj, then

the iterates from Algorithm 4.1 satisfy

E
\Bigl[ 
Df,\bfz (k+1)

\Bigl( 
x(k+1), \^x

\Bigr) \Bigr] 
\leq 
\biggl( 
1 - \nu t

\biggl( 
1 - t

2\alpha f

\biggr) 
min
j

\biggl\{ 
pj

\| A(j)\| 22

\biggr\} \biggr) 
E
\Bigl[ 
Df,\bfz (k)(x

(k), \^x)
\Bigr] 
.

(4.8)

Note that Corollary 4.4 aligns with the previous results in literature. Part (a) can be found
in [32, Theorem 2.7] in a more general setting, and part (b) can be found in [45, Theorem
4.5]. The following noisy setting is a new contribution, which is a result of Theorem 3.10.D
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Algorithm 4.1 Regularized Kaczmarz algorithm for vector recovery.

Input: A \in RN1\times N2 , b \in RN1 , row selection sequence \{ i(k)\} \infty k=0 \subseteq [N1], stepsize t, maximal
number of iterations T , and tolerance tol.
Output: an approximation of \^x
Initialize: z(0) \in R(A) \subset RN2 ,x(0) = \nabla f\ast (z(0)).
for k = 0, 1, . . . , T  - 1 do

z(k+1) = z(k) + t
\bfb i(k) - A(i(k))\bfx (k)

\| A(i(k))\| 22
A(i(k))T

x(k+1) = \nabla f\ast (z(k+1))
Terminate if \| x(k+1)  - x(k)\| 2/\| x(k)\| 2 < tol.

end for

Corollary 4.5. Let f be \alpha f -strongly convex and strongly admissible. Let \=z(k), \=x(k) be gener-
ated from Algorithm 4.1 (t < 2\alpha f ) with the noisy constraint Ax = b+ e, i.e.,

\=z(k+1) = \=z(k) + t
bi(k) + ei(k)  - A(i(k))\=x(k)

\| A(i(k))\| 22
A(i(k))T ,(4.9)

\=x(k+1) = \nabla f\ast (\=z(k+1)),(4.10)

Moreover, \{ i(k)\} is a random sequence such that Pr(i(k) = j) =
\| A(j)\| 22
\| A\| 2F

. Let \epsilon = max
i\in [N1]

| \bfe i| 
\| A(i)\| 2 .

We have

E
\sqrt{} 

Df,\=\bfz (k)(\=x
(k), \^x) \leq 

\left(   
\sqrt{}    

1 - 
\nu t
\Bigl( 
1 - t

2\alpha f

\Bigr) 
\| A\| 2F

\right)   
k

Df,\=\bfz (0)(\=x
(0), \^x) +

\sqrt{} 
2\alpha f\| A\| 2F \epsilon 

\nu 
\Bigl( 
1 - t

2\alpha f

\Bigr) ,(4.11)

where \^x is still the solution of (4.7).

In the work [32], some noisy models in practice have been briefly mentioned but without
theoretical analysis. Corollary 4.5 states that with perturbed measurements, the expected
square root of Bregman distance still enjoys an exponential decay and the iterates are within
certain radius (proportional to the noise level) of the true solution.

4.2.1. Kaczmarz type of algorithms. Important examples that satisfy the assumptions
of Corollaries 4.4 and 4.5 are when f is strongly convex and piecewise quadratic and A is full
row rank (see Example 3.7).

For f1(x) = 1
2\| x\| 

2
2, we have x(k) = z(k), and Algorithm 4.1 becomes the well-known

Kaczmarz algorithm [24]

x(k+1) = x(k) + t
bi(k)  - A(i(k))x(k)

\| A(i(k))\| 22
A(i(k))T ,

which is known to converge to the minimum norm solution of Ax = b if the initial x(0) is
in the row space of A. Linear convergence for the randomized Kaczmarz algorithm can beD
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found in [48, 13]. In fact, if we apply Corollary 4.4(b) and use the fact that \nu = 2\sigma 2
\mathrm{m}\mathrm{i}\mathrm{n}(A) (see

Remark 3.8), and \alpha f = 1, then (4.8) reduces to

E
\biggl[ \bigm\| \bigm\| \bigm\| x(k+1)  - \^x

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
\leq 
\biggl( 
1 - 2\sigma 2

\mathrm{m}\mathrm{i}\mathrm{n}(A)t

\biggl( 
1 - t

2

\biggr) 
min
j

\biggl\{ 
pj

\| A(j)\| 22

\biggr\} \biggr) 
E
\biggl[ \bigm\| \bigm\| \bigm\| x(k)  - \^x

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
,

which is a more general version of the result in [48].
For f\lambda (x) = \lambda \| x\| 1+ 1

2\| x\| 
2
2, (4.7) becomes a regularized version of the basis pursuit [52, 9],

\^x = argmin
x

\lambda \| x\| 1 +
1

2
\| x\| 22 s.t. Ax = b,(4.12)

and Algorithm 4.1 becomes the sparse Kaczmarz method

z(k+1) = z(k) + t
\bfb i(k) - A(i(k))\bfx (k)

\| A(i(k))\| 22
A(i(k))T ,

x(k+1) = D\lambda (z
(k+1))

(4.13)

that was proposed in [32].

4.3. Tensor nuclear norm regularized minimization. In this section, we consider one
special case of tensor recovery involving the nuclear norm regularization and linear measure-
ments. Specifically, we adapt the proposed algorithms for solving the tensor nuclear norm
regularized minimization problem

\^\scrX = argmin
\scrX \in RN2\times K\times N3

1

2
\| \scrX \| 2F + \lambda \| \scrX \| \mathrm{t}\mathrm{n}\mathrm{n} s.t. \scrA \ast \scrX = \scrB ,(4.14)

where \scrA \in RN1\times N2\times N3 and \scrB \in RN1\times K\times N3 . Here \| \scrX \| tnn is the tensor nuclear norm of \scrX ,
which is defined through the Fourier transform.

Definition 4.6. Given a tensor \scrX \in RN2\times K\times N3, F (\scrX ) is the N2 \times K \times N3 tensor obtained
by taking the 1D Fourier transform along each tube of \scrX , i.e.,

F (\scrX )(i, j, :) = fft(\scrX (i, j, :)) for i \in [N2], j \in [K].

In what follows, we use F (\scrX )i to denote the ith frontal slice of the tensor F (\scrX ).

Finally, we define

\| \scrX \| \mathrm{t}\mathrm{n}\mathrm{n} :=

N3\sum 
k=1

\| F (\scrX )k\| \ast .

In addition, the tensor nuclear norm can be computed through t-SVD [26], which involves
the SVD of each frontal slice F (\scrX )k:

F (\scrX )k = \~Uk
\~Sk

\~V T
k .

Let \~\scrU be the tensor generated by concatenating \~Uk's along the third dimension such that \~Uk is
the kth frontal slice of \~\scrU . Likewise, we obtain \~\scrS and \~\scrV . Denote \scrU = F - 1( \~\scrU ) and \scrV = F - 1(\~\scrV ).
The singular tube thresholding operator [46] is defined as

S\tau (\scrX ) := \scrU \ast F - 1(max( \~\scrS  - \tau , 0)) \ast \scrV T .

As a straightforward application of this definition, we obtain the following lemma.D
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Lemma 4.7. For any \scrX \in RN2\times K\times N3, the equality \scrY = S\lambda (\scrX ) holds if and only if F (\scrY )k =
D\lambda (F (\scrX k)) for k = 1, . . . , N3.

Next we develop regularized Kaczmarz algorithms for solving (4.14). It can be shown that
\nabla f\ast (\scrZ ) = prox\lambda \| \cdot \| \mathrm{t}\mathrm{n}\mathrm{n}(\scrZ ) = S\lambda (\scrZ ); see [33, Theorem 4.2] for more examples. In this case,
Algorithm 3.1 with a given control sequence reduces to Algorithm 4.2, which alternates the
Kaczmarz step and singular tube thresholding.

Algorithm 4.2 Regularized Kaczmarz algorithm for solving (4.14).

Input: \scrA \in RN1\times N2\times N3 , \scrB \in RN1\times K\times N3 , control sequence \{ i(k)\} \infty k=0 \subseteq [N1], stepsize t,
maximum number of iterations T , and tolerance tol.
Output: an approximation of \^\scrX 
Initialize: \scrZ (0) \in R(\scrA ) \subset RN2\times K\times N3 ,\scrX (0) = S\lambda (\scrZ (0)).
for k = 0, 1, . . . , T  - 1 do

\scrZ (k+1) = \scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) - \scrA (i(k))\ast \scrX (k)

\| \scrA (i(k))\| 2F
\scrX (k+1) = S\lambda (\scrZ (k+1))
Terminate if \| \scrX (k+1)  - \scrX (k)\| F /\| \scrX (k)\| F < tol.

end for

The following corollary is a direct consequence of Theorem 3.3 as the objective function
is 1-strongly convex.

Corollary 4.8. The sequence generated by Algorithm 4.2 with t < 2/N3 satisfies

Df,\scrZ (k+1)(\scrX (k+1),\scrX ) \leq Df,\scrZ (k)(\scrX (k),\scrX ) - t

\biggl( 
1 - tN3

2

\biggr) 
\| \scrA (i(k)) \ast (\scrX (k)  - \scrX )\| 2F

\| \scrA (i(k))\| 2F
(4.15)

for all \scrX \in Hi(k). Moreover, the sequence \{ \scrX (k)\} converges to the solution of (4.14).

Similarly, we can adapt Algorithm 3.2 with a random selection of row index to get a
reduced version, i.e., Algorithm 4.3, for solving (4.14).

Algorithm 4.3 Randomized regularized Kaczmarz algorithm for solving (4.14).

Input: \scrA \in RN1\times N2\times N3 , \scrB \in RN1\times K\times N3 , stepsize t.
Output: an approximation of \^\scrX 
Initialize: \scrZ (0) \in R(\scrA ) \subset RN2\times K\times N3 ,\scrX (0) = S\lambda (\scrZ (0)).
while termination criteria not satisfied do

pick i(k) randomly from [N1] with Pr(i(k) = j) = \| \scrA (j)\| 2F /\| \scrA \| 2F ,
\scrZ (k+1) = \scrZ (k) + t\scrA (i(k))T \ast \scrB (i(k)) - \scrA (i(k))\ast \scrX (k)

\| \scrA (i(k))\| 2F
\scrX (k+1) = S\lambda (\scrZ (k+1))

end while

Regarding the convergence analysis of Algorithm 4.3, Theorem 3.9 cannot be applied
directly as it is not immediately clear if this function is admissible. To address this issue, we
propose the following lemma, which can be shown using the definition of Bregman distance
and Lemma 4.7.D
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1460 XUEMEI CHEN AND JING QIN

Lemma 4.9. Let f(\scrX ) = \lambda \| \scrX \| \mathrm{t}\mathrm{n}\mathrm{n}+ 1
2\| \scrX \| 2F be defined on RN2\times K\times N3 and its reduced version

fM (X) = \lambda \| X\| \ast + 1
2\| X\| 2F be defined on RN2\times K . Then given z \in \partial f(\scrX ), we have

Df,Z(\scrX ,\scrW ) =

N3\sum 
j=1

DfM ,F (\scrZ )j (F (\scrX )j , F (\scrW )j).

Next we provide two lemmas showing that the Fourier transform of a t-product of two
tensors can be efficiently implemented in the matrix setting. Their derivations are based on
the fact that block circulant matrices can be block diagonalized by the Fourier transform; see
[26]. For a third-order tensor \scrX , we let diag(\scrX ) denote the block diagonal matrix whose ith
diagonal block is the ith frontal slice of \scrX .

Lemma 4.10. If \scrA \in RN1\times N2\times N3 and \scrX \in RN2\times K\times N3, then

unfold (F (\scrA \ast \scrX )) =

\left[     
F (\scrA )1

F (\scrA )2
. . .

F (\scrA )N3

\right]     
\left[     
F (\scrX )1
F (\scrX )2

...
F (\scrX )N3

\right]     (4.16)

= diag(F (\scrA )) unfold(F (\scrX )).

Lemma 4.11. If \scrA \in RN1\times N2\times N3 and \scrY \in RN1\times K\times N3, then

unfold(F (\scrA T \ast \scrY )) =

\left[     
[F (\scrA )1]

\ast 

[F (\scrA )2]
\ast 

. . .

[F (\scrA )N3 ]
\ast 

\right]     
\left[     
F (\scrY )1
F (\scrY )2

...
F (\scrY )N3

\right]     (4.17)

= (diag(F (\scrA )))\ast unfold(F (\scrY )).

Theorem 4.12. If t < 2/N3, then the sequence generated by Algorithm 4.3 converges in
expectation with

E
\Bigl[ 
Df,\scrZ (k+1)(\scrX (k+1), \^\scrX )

\Bigr] 
\leq 
\biggl( 
1 - \beta \nu 

\| \scrA \| 2F

\biggr) 
E
\Bigl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX )

\Bigr] 
,(4.18)

where \nu is the admissible constant for the function \lambda \| X\| \ast + 1
2\| X\| 2F (see Corollary 4.1), and

\beta is given by

\beta = min
i\in [N1],j\in [N3]

t
\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

\biggl( 
1 - 

t\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

\biggr) 
.(4.19)

Proof. The objective function can be written as

f(\scrX ) = \lambda \| \scrX \| \mathrm{t}\mathrm{n}\mathrm{n} +
1

2
\| \scrX \| 2F =

N3\sum 
j=1

\biggl( 
\lambda \| F (\scrX )j\| \ast +

1

2
\| F (\scrX )j\| 2F

\biggr) 
.D
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In light of Lemma 4.10, the constraint can be expressed in the Fourier domain as

F (\scrA )jF (\scrX )j = F (\scrB )j , j \in [N3].

Let \scrV \in RN2\times K\times N3 and \scrV k be the kth frontal slice of \scrV . Therefore, if

\^\scrV = argmin
\scrV 

N3\sum 
j=1

\biggl( 
\lambda \| \scrV j\| \ast +

1

2
\| \scrV j\| 2F

\biggr) 
s.t. F (\scrA )j\scrV j = F (\scrB )j , j \in [N3],(4.20)

then F - 1(\^\scrV ) is the minimizer of (4.14). Note that (4.20) can be split into N3 subproblems.
We apply F (\cdot ) to the first step of Algorithm 4.3:

F (\scrZ (k+1)) = F (\scrZ (k)) +
t

\| \scrA (i)\| 2F
F
\Bigl( 
\scrA (i)T \ast (\scrB (i) - \scrA (i) \ast \scrX (k))

\Bigr) 
.(4.21)

By Lemmas 4.10 and 4.11,

unfold
\Bigl( 
F
\Bigl( 
\scrA (i)T \ast (\scrB (i) - \scrA (i) \ast \scrX (k))

\Bigr) \Bigr) 
= (diag[F (\scrA (i))])\ast 

\Bigl( 
unfold (F (\scrB (i))) - unfold

\Bigl( 
F (\scrA (i) \ast \scrX (k))

\Bigr) \Bigr) 
= (diag[F (\scrA (i))])\ast 

\Bigl( 
unfold (F (\scrB (i))) - diag[F (\scrA (i))] unfold(F (\scrX (k)))

\Bigr) 
.

So (4.21) becomes

unfold(F (\scrZ (k+1))) = unfold(F (\scrZ (k)))

+
t

\| \scrA (i)\| 2F
(diag[F (\scrA (i))])\ast 

\Bigl( 
unfold (F (\scrB (i))) - diag[F (\scrA (i))] unfold(F (\scrX (k)))

\Bigr) 
.

By separating the above updating equation into N3 pieces, we obtain

F (\scrZ (k+1))j = F (\scrZ (k))j +
t

\| \scrA (i)\| 2F
F (\scrA (i))\ast j

\Bigl( 
F (\scrB (i))j  - F (\scrA (i))jF (\scrX (k))j

\Bigr) 
, j \in [N3].

(4.22)

By Lemma 4.7, the second step of Algorithm 4.3 becomes

F (\scrX (k+1))j = D\lambda (F (\scrZ (k+1))j), j \in [N3].(4.23)

Now we make a change of variables as F (\scrX (k))j = V
(k)
j , F (\scrZ (k))j = W

(k)
j . Then (4.22)--(4.23)

become

W
(k+1)
j = W

(k)
j +

t

\| \scrA (i)\| 2F
F (\scrA (i))\ast j

\Bigl( 
F (\scrB (i))j  - F (\scrA (i))jV

(k)
j

\Bigr) 
, j \in [N3],(4.24)

V
(k+1)
j = D\lambda (W

(k+1)
j ), j \in [N3].(4.25)

Note that (4.24)--(4.25) are the two major iteration steps for solving the matrix recovery
problemD
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\^Vj = argmin
Vj

\lambda \| Vj\| \ast +
1

2
\| Vj\| 2F s.t. F (\scrA )jVj = F (\scrB )j , j \in [N3].(4.26)

This is in fact the jth subproblem of (4.20), so we wish to apply Corollary 4.1(b). To fit into
the format of (4.2), we rewrite

t

\| \scrA (i)\| 2F
=

t

\| F (\scrA (i))\| 2F
=

t\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

1

\| F (\scrA (i))j\| 2F
.

The stepsize given by

sj =
t\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

\leq t \leq 2/N3 \leq 2

fits the assumption of Corollary 4.1. The probability distribution is pi =
\| F (\scrA (i))\| 2F
\| F (\scrA )\| 2F

. We

compute
pi

\| F (\scrA (i))j\| 2F
=

\| F (\scrA (i))\| 2F
\| F (\scrA )\| 2F

1

\| F (\scrA (i))j\| 2F
\geq 1

\| F (\scrA )\| 2F
=

1

\| \scrA \| 2F
.

So applying Corollary 4.1(b) yields

E
\biggl[ 
D

fM ,W
(k+1)
j

(V
(k+1)
j , \^Vj)

\biggr] 
\leq 

\Biggl( 
1 - 

\nu sj
\bigl( 
1 - sj

2

\bigr) 
\| \scrA \| 2F

\Biggr) 
E
\biggl[ 
D

fM ,W
(k)
j

\Bigl( 
V

(k)
j , \^Vj

\Bigr) \biggr] 
.(4.27)

Finally, using Lemma 4.9, we have

E
\Bigl[ 
Df,\scrZ (k+1)

\Bigl( 
\scrX (k+1), \^\scrX 

\Bigr) \Bigr] 
=

N3\sum 
j=1

E
\biggl[ 
D

fM ,W
(k+1)
j

\Bigl( 
V

(k+1)
j , \^Vj

\Bigr) \biggr] 

\leq 
N3\sum 
j=1

\Biggl( 
1 - 

\nu sj
\bigl( 
1 - sj

2

\bigr) 
\| \scrA \| 2F

\Biggr) 
E
\biggl[ 
D

fM ,W
(k)
j

\Bigl( 
V

(k)
j , \^Vj

\Bigr) \biggr] 

\leq 
\biggl( 
1 - \nu \beta 

\| \scrA \| 2F

\biggr) 
E
\Bigl[ 
Df,\scrZ (k)(\scrX (k), \^\scrX )

\Bigr] 
,

where

\beta = min
i\in [N1],j\in [N3]

sj(1 - sj/2) = min
i\in [N1],j\in [N3]

t
\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

\biggl( 
1 - 

t\| F (\scrA (i))j\| 2F
\| F (\scrA (i))\| 2F

\biggr) 
> 0.

5. Numerical experiments. In this section, we illustrate the performance of the proposed
algorithms in several application problems, including 1D sparse signal recovery, low-rank image
inpainting, low-rank tensor recovery, and image deblurring. There are two special cases of our
proposed algorithms when the constraint selection sequence is either cyclic or random. For
the random version, we take the average of all the results obtained by running 50 trials.
To save computational time, we only execute the deterministic version with a cyclic control
sequence for image inpainting and deblurring tests. For image deblurring, we also consider aD
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batched version of the proposed algorithm to improve the performance. However, the batching
technique has shown very limited performance enhancement in our other experiments, so we
skip those experiments.

To make fair performance comparisons, we adopt the widely used quantitative metrics.
For tensor recovery, we use the relative error (RelErr) defined as

RelErr =
\| \scrX  - \widehat \scrX \| F

\| \scrX \| F
,

where \widehat \scrX is an estimate of the ground truth tensor \scrX . As one of the most important image
quality metrics, the peak signal-to-noise ratio (PSNR) is defined as

PSNR = 20 log

\Biggl( 
I\mathrm{m}\mathrm{a}\mathrm{x}

\| \widehat X  - X\| F

\Biggr) 
,

where \widehat X is an estimate of the noise-free image X and I\mathrm{m}\mathrm{a}\mathrm{x} is the maximum possible image
intensity. In addition, the structural similarity index (SSIM) between two images X and Y is
defined as

SSIM =
(2\mu x\mu y + C1)(2\sigma xy + C2)

(\mu 2
x + \mu 2

y + C1)(\sigma 2
x + \sigma 2

y + C2)
,

where \mu x, \sigma x are the mean and standard deviation of the image X, \sigma xy is the cross-covariance
between X and Y , and C1 and C2 are the luminance and contrast constants. Both PSNR and
SSIM values can be obtained efficiently in MATLAB via PSNR and SSIM, respectively.

All the numerical experiments are implemented using MATLAB R2019a for Windows 10
on a desktop PC with 64GB RAM and a 3.10GHz Intel Core i9-9960X CPU.

5.1. One-dimensional sparse signal recovery. We will compare the performance of the
following three methods for solving (4.12): (1) linearized Bregman iteration [52, 9] (denoted
by LinBreg); (2) alternating direction method of multipliers (ADMM) [6]; (3) our proposed
regularized Kaczmarz method (4.13) with random or deterministic cyclic sequence (denoted
by RK-rand and RK-cyc). In particular, LinBreg has the following iterations:

z(k+1) = z(k) + tAT (b - Ax(k)),

x(k+1) = S\lambda (z
(k+1)).

(5.1)

For ADMM, we rewrite (4.12) as

min
\bfx ,\bfw 

1

2
\| x\| 22 + \lambda \| w\| 1 s.t. Ax = b, w = x,

and the corresponding augmented Lagrangian reads as

L(x,w,u1,u2) =
1

2
\| x\| 22 + \lambda \| w\| 1 +

\rho 1
2
\| Ax - b+ u1\| 22 +

\rho 2
2
\| x - w + u2\| 22.

In our experiment, A is a 200 \times 1000 Gaussian matrix. The ground truth vector x is a
10-sparse vector whose support is randomly generated and the entries on each support indexD
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1464 XUEMEI CHEN AND JING QIN

are independent and follow the normal distribution with mean 1 and standard deviation 1.
The parameters are all tuned to achieve optimal performance. For the regularized Kaczmarz
method, the stepsize is t = 40, and we show the results when the indices are chosen cyclically
or randomly. For the linearized Bregman iteration, the stepsize t = 20. For ADMM, we pick
\rho 1 = 10 and \rho 2 = 100.

Figure 1 shows the relative error of all four methods versus the running time. Both
versions of the regularized Kaczmarz algorithms are outperforming LinBreg and ADMM.
Moreover, the cyclic version of the regularized Kaczmarz method performs slightly better
than the randomized one.

5.2. Image inpainting. In the second experiment, we consider a low-rank image inpainting
problem. The test image is a checkerboard image of size 128 \times 128 with a large missing
rectangular area; see the first image of Figure 2. This image can be described by a rank-two
matrix, so it is appropriate to be recovered via the model (4.5). Let I be the image to be
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Figure 1. One-dimensional sparse signal recovery.

Original TV LinBreg Proposed
fail PSNR=40.96 PSNR=76.17

Figure 2. Image inpainting without noise. The original checkerboard image has a missing box. The
linearized Bregman result uses (5.2) with t = 1. Our result uses (5.3) with t = 9 and batch size 2000. The
running times are 1.24s (TV), 0.95s (LinBreg), 0.60s (proposed).D
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recovered, and let \Omega be the set of indices whose pixel values are known. Then the linear
constraints are \{ \langle Pij , X\rangle = Iij , (i, j) \in \Omega \} , where Pij is the matrix whose entries are all zeros
except its ijth entry is one. We use X\Omega for keeping the pixel intensities in \Omega and setting other
pixel intensities to be zero.

We consider three image inpainting methods: (1) total variation (TV) based image in-
painting [47, 20], (2) linearized Bregman iteration [8] (denoted by LinBreg as before), and
(3) the proposed regularized Kaczmarz method (4.6). For LinBreg, we adopt the following
updating scheme in analogy to (5.1):

Z(k+1) = Z(k) + t(I  - X(k))\Omega ,

X(k+1) = D\lambda (Z
(k+1)).

(5.2)

The second is the regularized Kaczmarz method (4.6). In this application, the first step of
(4.6) becomes Z(k+1) = Z(k)+ t(I  - X(k))(i,j), which means only one pixel from \Omega is updated.
Again, the choice of indexing can be cyclic or random. In our numerical experiment, we will
use a more general version Z(k+1) = Z(k) +

\sum 
(i,j)\in T (k) t(I  - X(k))ij = Z(k) + t(I  - X(k))T (k),

where T (k) \subset \Omega , so that | T (k)| many pixels are updated in one iteration. A different index
set T (k) is chosen at each iteration k, but we do require that they have the same batch size,
i.e., the cardinality | T (k)| = b. Therefore, our algorithm for this specific case reads as

Z(k+1) = Z(k) + t(I  - X(k))T (k),

X(k+1) = D\lambda (Z
(k+1)).

(5.3)

In the methods involving singular value thresholding [8], we choose \lambda = 1500.
Figure 2 compares all the listed methods quantitatively and qualitatively. For the TV

result, the image was recovered by minimizing the functional \lambda \| \nabla Xx\| 1 + \| \nabla Xy\| 1 + 1
2\| (X  - 

I)\Omega \| 22. The TV regularization only considers the piecewise constant type of smoothness and
thus it may not handle texture-like images with a low-rank structure very well. Since the
missing area is relatively large in the test image, TV fails to recover the image as expected.
As shown in the last two subfigures of Figure 2, either the linearized Bregman iteration or
the regularized Kaczmarz iteration is able to achieve almost perfect reconstruction. In our
regularized Kaczmarz iteration, we choose batch size to be 2000 with a cyclic indexing. The
regularized Kaczmarz enjoys faster convergence.

The batch size b plays an important role in a lot of optimization algorithms, e.g., stochastic
gradient descent. In this application, b can be viewed as the number of pixels updated in step 1
of (5.3). If b = | \Omega | , then our algorithm coincides with (5.2). This is related to StoGradMP [37],
especially with a random choice of the constraints. Some other relevant works include the block
Kaczmarz algorithm [38, 14]. The proof presented in this paper can also be adapted to show
that the algorithm\left\{       

Pick an index set T (k) whose cardinality is b,

Z(k+1) = Z(k) + t
\Bigl( 
Pspan(Ai,i\in T (k))

\^X  - Pspan(Ai,i\in T (k))X
(k)
\Bigr) 
,

X(k+1) = D\lambda (Z
(k+1))

(5.4)

produces a sequence \{ X(k)\} that converges to the solution of (4.5). Note that in the image
inpainting problem, (5.3) is exactly this block version (5.4) due to the orthogonality of theD
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indicator matrices Pij . The batch size does influence the convergence of (5.3). For this
particular example, we have | \Omega | = 8064 and we found a batch size around 2000 to be optimal.

5.3. Low-rank tensor recovery. Assume that the ground truth tensor \scrX \in RN2\times K\times N3

with a small tubal rank satisfies the tensor system

\scrA \ast \scrX = \scrB , \scrA \in RN1\times N2\times N3 .

Then we consider the tensor recovery model (4.14) with the tensor nuclear norm regularization.
It can be empirically shown that Algorithm 3.1 can achieve good performance in terms of
accuracy and convergence speed when N1 is larger than the other dimensions N2, N3,K but
may fail to converge in other scenarios. As an illustration, we show the performance of our
algorithm with cyclic and random control sequences in Figure 3, where N1 = 200, N2 = N3 =
K = 100, and the maximal number of iterations as 2000. Both the coefficient tensor \scrA and
the ground truth tensor \scrX are normally distributed, and the tubal rank of \scrX is two by taking
the hard thresholding of singular tubes after t-SVD. For the random case, we take the average
of 50 trials. One can see that the cyclic control sequence achieves faster convergence with
much smaller error but with slightly more running time.

5.4. Tensor-based image deconvolution. Consider an image \widehat X \in Rm1\times n1 that is de-
graded by taking the convolution with a point spread function \widehat H \in Rm2\times n2 . Let m =
m1 +m2  - 1 and n = n1 + n2  - 1. Using the zero padding, both \widehat X and \widehat H can be extended
to two respective matrices X,H of size m\times n. By the construction, we have

H \circledast X = Y,

where Y \in Rm\times n and \circledast is the 2D convolution. Next we establish the equivalence between
2D convolution and t-product by creating a doubly block circulant matrix [1, Appendix].
Let hi be the ith row of H, and let Ai := circ(hi) \in Rn\times n, i \in [m] be the circulant matrix

0 500 1000 1500 2000

Iteration Number
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Figure 3. Low-rank tensor recovery. Running times for the random and cyclic control sequences are 0.8721s
and 0.8612s, respectively. Both run 2000 iterations.D
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generated by hi. Let Ai be the ith frontal slice of \scrA \in Rn\times n\times m. Then we create a doubly
block circulant matrix bcirc(\scrA ) based on \scrA . Let \scrX \in Rn\times 1\times m be the tensor version of X
by setting \scrX (j, 1, i) = X(i, j) for i \in [m] and j \in [n]. Based on (2.14) and (2.15), the 2D
convolution can be represented as

vec(H \circledast X) = bcirc(\scrA ) vec(X) = unfold(\scrA \ast \scrX ).

Here vec(\cdot ) is a vectorization operator by rowwise stacking such that vec(X) = unfold(\scrX ).
The form of \scrA \ast \scrX in this setting can also be derived from (2.16) and (2.21). To recover \scrX ,
we consider the low-rank tensor recovery model

min
\scrX \in Rn\times 1\times m

\lambda \| \scrX \| \ast s.t. \scrA \ast \scrX = \scrY ,

where \scrY \in Rn\times 1\times m is the tensor version of the observed blurry image Y . Note that the tubal
rank of the ground truth \scrX is at most one since the second dimension of \scrX is one, which
implies that \scrX is low-rank. The conversion between Y and \scrY is the same as that between X
and \scrX . Next we apply Algorithm 4.3 to recover \scrX and thereby the image X.

We test an image ``house"" of size 256\times 256, which is degraded by a Gaussian convolution
kernel of size 9 \times 9 with standard deviation 2. Then we compare various image deblurring
methods, including TV image deblurring [11], nonlocal means (NLM) [7], BM3D [15], and
our algorithm with batch sizes b = 20, 40, 60, 80 and \alpha = 1, \lambda = 0.1. Here TV, NLM,
and BM3D are performed in the plug-and-play ADMM image recovery framework [12]. The
MATLAB sources codes can be found in https://www.mathworks.com/matlabcentral/
fileexchange/60641-plug-and-play-admm-for-image-restoration. To avoid ringing artifacts, we
extend the image symmetrically along the boundary 14 pixels, apply the algorithm, and cut
the results back to the normal size. Figure 4 shows the images recovered by TV, NLM, BM3D,
and our algorithm with b = 80. All results are compared quantitatively in Table 2 in terms
of PSNR, SSIM, and running time.

More generally, we consider an image sequence \scrX \in Rn\times p\times m with p frames (a video).
Assume that all frames are convolved with the same spatial blurring kernel in its extended
tensor form \scrA \in Rn\times n\times m. As an illustrative example, we test the 3D MRI image data set mri
in MATLAB, which consists of 12 slices of size 128\times 128 from an MRI data scan of a human
cranium. When p \ll min\{ m,n\} , the ground truth \scrX can be considered as low-rank. Each
blurry image is generated by convolving the ground truth with a Gaussian convolution kernel
of size 5 \times 5 with standard deviation 2. The parameters are \alpha = 1, \lambda = 10 - 2, the maximum
iteration number is 1000, and the batch size is 60. Figure 5 shows the first four frames of blurry
observations and their respective recovered image. To suppress ringing artifacts, projection
of all intensities onto the positive values is set as a postprocessing step.

6. Conclusions and future work. In many tensor recovery problems, the underlying tensor
is either sparse or low-rank, which can be exploited in the design of efficient algorithms.
In this paper, we propose a regularized Kaczmarz algorithm framework for tensor recovery.
Precisely, we adopt the t-product for third-order tensors with rapid implementation through
the fast Fourier transform and establish a linear convergence rate in expectation for the
proposed algorithm with random sequence. In addition, we provide extensive discussionsD
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Clean Blurry TV

NLM BM3D Proposed

Figure 4. Visual comparison of various image deblurring methods, including TV, NLM, BM3D, and our
proposed tensor-based deblurring algorithm with a cyclic control sequence and blocksize b = 80.

Table 2
Quantitative comparison of various image deblurring methods. Rows 5--8: The proposed tensor-based image

deblurring algorithm with a cyclic control sequence and batch size b = 20, 40, 60, 80.

Method PSNR SSIM Running time (s)

TV 29.48 0.8180 33.34
NLM 29.16 0.8113 29.27
BM3D 30.69 0.8381 318.58
b = 20 30.90 0.8257 53.34
b = 40 31.10 0.8451 72.88
b = 60 31.11 0.8457 97.96
b = 80 31.12 0.8461 122.13

on the matrix and vector recovery together with tensor nuclear norm minimization as special
cases. A showcase of numerical experiments demonstrates its considerable potential in various
applications, including sparse signal recovery, low-rank tensor recovery, image inpainting, and
deblurring. In the future, we intend to explore the convergence rate for the deterministic
method and discuss theoretical guarantees for its superior performance over the randomized
version. Moreover, it would be extremely intriguing to make a thorough discussion on the
acceleration effects by choosing an appropriate batch size or stepsize. Furthermore, the currentD

ow
nl

oa
de

d 
01

/1
3/

22
 to

 5
8.

25
0.

17
4.

74
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARIZED KACZMARZ TENSOR ALGORITHMS 1469

Figure 5. Image sequence deblurring. Row 1: blurry images; row 2: recovered images. Overall runtime is
72.90 seconds and the entire relative error between the ground truth and recovered sequences is 13.90\%.

framework can be adapted to other types of tensor products or tensors of order higher than
three.

Acknowledgment. The authors would like to thank the anonymous reviewers for improv-
ing the clarity and presentation of the paper.
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