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Hidden Inverses: Coherent Error Cancellation at the Circuit Level
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Coherent gate errors are a concern in many proposed quantum-computing architectures. Here, we show
that certain coherent errors can be reduced by a local optimization that chooses between two forms of the
same Hermitian and unitary quantum gate. We refer to this method as hidden inverses, and it relies on
constructing the same gate from either one sequence of physical operations or the inverted sequence of
inverted operations. We use parity-controlled Z rotations as our model circuit and numerically show the
utility of hidden inverses as a function of circuit width n. We experimentally demonstrate the effectiveness
for n = 2 and n = 4 qubits in a trapped-ion quantum computer. We numerically compare the method to
other gate-level compilations for reducing coherent errors.
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I. INTRODUCTION

Coherent errors are common in quantum computers due
to imperfect classical control and parameter drift dur-
ing the execution of quantum algorithms. Coherent errors
can be suppressed by dynamic decoupling [1-7], com-
posite pulses [8—11], dynamically corrected gates [12,
13], or randomized compiling [14], as well as through
decoherence-free subspaces [6,15—17] and quantum error
correction [18-21]. When we have more information about
the structure exhibited by the coherent errors, we can
more efficiently suppress them. For many systems, accu-
rate classical control and calibration of the driving fields
used to manipulate qubits remain a critical challenge
[22—24]. Fluctuating environmental conditions can lead to
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slow drifts of system parameters over the course of many
experimental runs.

Here we present a method for canceling coherent errors
without requiring any additional gates. We call this method
hidden inverses because it uses the fact that quantum cir-
cuits often contain inverted gates, which are hidden due
to the common use of self-adjoint unitary operations, for
example, the Hadamard (H), controlled-NOT (CNOT), and
Toffoli gates. Since these gates are constructed from phys-
ical operations, it can be beneficial to choose between
different configurations. As an example, we could choose
from two CNOT sequences, CNOT, = ABC or CNOTp =
CNOT:E = C'Bt A", where A, B, C, A*, Bt and C' are native
physical gates. The goal is to determine when to imple-
ment CNOT,, and when to implement CNOT;, = CNOTl. This
decision will depend on both the neighboring gates and the
underlying error process.

The paper is organized as follows: In Sec. Il we intro-
duce the idea of hidden inverses and discuss their appli-
cation in a common quantum circuit structure, the parity-
controlled Z rotation widely used to create high-weight
Pauli operations [25,26]. In Sec. III, we give an overview
of the trapped ion quantum-computing experimental plat-
form used for the demonstration of the hidden inverse
technique. In Sec. IV, we present the experimental results
and analyze the performance of hidden inverses. In Sec. V,
we numerically compare hidden inverses to other meth-
ods for reducing coherent errors. Finally, in Sec. VI, we
summarize the results and conclude.

Published by the American Physical Society
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II. DESIGNING GATES TO CONTROL
SYSTEMATIC ERROR

For solid-state and atomic quantum systems, quantum
gates are performed by applying electromagnetic signals
that generate a time-dependent Hamiltonian. For small
systems, the advantage of a gate description is ques-
tionable and direct optimization of the pulse sequences
to optimize the overall evolution is preferable [27-32].
Gates become a useful abstraction when we consider both
larger systems and the challenge of calibration for multiple
applications.

Let Uy be the ideal gate and U, be an instance of the
gate. U, could be a completely positive trace-preserving
map, but we invoke the Stinespring dilation theorem to say
that all instances of the gate differ only from the ideal gate
by a unitary operation that is potentially on a larger Hilbert
space. We consider both the left and right error operators
V, Uy = UpVpa = Vi oUp. We are interested in the case
where U, is a good approximation of Up and therefore Vp
and ¥V must be close to the identity.

The system controller does not control the noise but
chooses only what signals to imperfectly apply. We fur-
ther break the unitary label into a control label and
an error label U,.. The question that we are explor-
ing is whether it makes sense for the controller to
have multiple versions of U, or only a single version,
and given multiple versions what are the methods for
compilation.

A very common motif in quantum mechanics and quan-
tum algorithms is a unitary W that is transformed by
another unitary U, W = UWU'. We should find methods
for implementing U, and UE such that when averaged

over the noise instances, € and 8, U, WUI 5 is as close

to W. This will work perfectly, if Vg e WVE b5 = W. The
ideal cases are either when there is no noise or when
W commutes with the V’s and I/La,é = Vib s- In many
cases W itself is a small rotation, for example, in a Trot-
ter series, and VL%E = V}:,b,s will still yield a reduction in
erTor.

Given a quantum circuit with the structure W = UWU'
one can choose the appropriate U, and U; for every W.
We limit ourselves in this study to the case of “hidden
inverses” where U = U', which occurs regularly in quan-
tum circuits, for example, when operations are conjugated
by CNOTs. Our key observation is that in many physical
systems, a CNOT is constructed from a series of system-
specific gates, whose inverses are readily available by
changing the sign of the control field [33,34]. In these
cases, CNOT, corresponds to the regular order of gates with
the regular control fields, and CNOT,, inverts the sequence
and inverts the control field. It is the driven Hermitian con-
jugate of CNOT,. This extends to any unitary, which is its
self-inverse.

A. Parity-controlled rotations and theoretical error
models

A common place where self-inverses arise is when mul-
tiple CNOT(c, f)s are used to conjugate a single-qubit rota-
tion to generate a multiqubit unitary. This structure is com-
mon in quantum-simulation and quantum-optimization
algorithms [26,35]. To generate an n qubit weight Pauli
operation, we can build a circuit that performs a single-
qubit Z, Z(0) = exp [—i(8/2)Z], rotation whose direction
is conditioned on the parity of n — 1 other qubits as
follows:

n—1 n—1
U= ]‘[ CNOT(j,n) | Z,(0) (]‘[ CNOT(n — k, n))
j=1 k=1

0 .
= exp (—13 @Zj) (1)

We expect the CNOTs that come before the rotation and the
CNOTs that come after the rotation should differ depending
on the error model. At this point, we need to introduce a
physical decomposition of the CNOTs and an error model
to proceed. Many error models can be considered. In
the main text, we limit ourselves to a model where the
entangling operation is generated by a single two-qubit
Pauli operator that is decorated with single-qubit gates,
but we also consider the gate Hamiltonian model intro-
duced in Ref. [36] in Appendix A. For concreteness we
further specialize to an XX -type interaction common in
Melmer-Serensen (MS) gates in trapped ions [37]. For
this case, the CNOT gate can be performed in either its
standard or hidden inverse configurations as displayed in
Fig. 1 with ion trap gates XX () = exp(—i0XX), X () =
exp[—i(8/2)X], and Y(0) = exp[—i(6/2)Y]. The choice of
configuration is nontrivial since CNOT gates are synthe-
sized from a two-qubit gate and multiple single-qubit gates
[33], which are subject to systematic over-rotations and
phase errors in addition to stochastic noise.

We first consider a simplified error model where only
the two-qubit MS gates have the same over-rotation by a
fraction €. We calculate the average gate fidelity, F, from
the entanglement fidelity of two unitaries U and V, F, =

o T XX(%)%X(—f)HY(—f)F

&

— eE® (-3
ot T2 RGN T
& X(3)

FIG. 1. Standard and Hermitian conjugated decompositions of
CNOT gate with native trapped-ion quantum operations consisting
of single-qubit gates and Melmer-Serensen (MS) interactions.
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| Tr[U 1|2 /47, for the (n — 1)-qubit parity-controlled rota-
tion [Eq. (1)] as a function of 8, €, and n to be

Fet(0,e,n) = [cos (EG) =+ sin (ZE) cos (9)] ,
(2)
2"F, 41 (0,€e,n) + 1

Fi(0,e,n) = >l

, )

where F is the hidden inverse configuration fidelity and
F_ is the standard configuration fidelity. We note that
F,.(0,e,n) = F_(0 + m,e,n) and we can obtain the best
fidelity by choosing hidden inverses for |#| < 7/2 and the
standard circuit for || > n/2 for 8 € [—-mw,w]. At6 =0
and 8 = m, there is an exponential difference in the fidelity
between the two choices as a function of n. For small €
and small angle deviation, ¥, around these ideal points
of 0 and m, for the correct sequence choice fidelity drops
as (m—1) (:fr/-’-l)2 €292, while for the incorrect sequence
the fidelity drops as (n — 1) (r/4)* €2 (4 — 9%). We only
achieve perfect cancellation at the ideal points, but we
benefit from our choice as long as @ is close to the ideal
point.

With this simplified error model in mind, we consider
additional errors starting with over-rotation errors on all
gates, phase-misalignment errors, and then a consideration
of these systematic errors with additional stochastic errors.
Phase misalignment occurs because two-qubit and single-
qubit gates are driven by different fields and mechanisms.
The Z basis is well defined by the energy eigenbasis of
the undriven system Hamiltonian. X and Y in the rotating
frame simply differ by a phase and a common experimental
challenge is to align the X in a two-qubit XX interaction
with the single qubit X interaction.

In Fig. 2, we examine how these errors affect the cir-
cuit fidelity of implementing Eq. (1) using the standard
circuit with only CNOT and the hidden inverse circuit using
cNOT and CNOT' from Fig. 1. These choices impact cir-
cuit performance when each gate is subject to either only
over-rotation error [Fig. 2(a)] or only a phase misalignment
between single- and two-qubit gates [Fig. 2(b)].

In both Figs. 2(a) and 2(b), we observe that the hid-
den inverse configuration outperforms the standard one
considerably when the Z(#) rotation angle is small. This
can be understood by noting a small angle rotation is near
the identity, so the systematic errors are approximately
canceled. We further note the oscillatory behavior sug-
gests the need for compilation tools to determine which
CNOTs should be inverted in more complex circuits. The
amplitude of the oscillation is positively correlated with
the number of control qubits showing the affect of these
choices increases with circuit size. Due to the ubiquity of
CNOT conjugations about single-qubit rotations in quan-
tum algorithms, we expect a peep-hole style optimization

(a) (c) ]
Over-rotation -y
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FIG. 2. (a) Average gate fidelities of parity controlled-Z rota-

tion circuits according to Eq. (1) with standard (dashed lines)
and hidden inverse (solid lines) configurations for circuit width
n € {2,4,...,10}, with each two-qubit gate subject to €39 = 2%
over-rotation and each single-qubit gate subject to €9 = 0.2%
over-rotation. The hidden inverse configuration outperforms the
standard one when the absolute value of the Z rotation angle is
less than approximately 7 /2. (b) Average gate fidelities of parity
controlled-Z rotation circuits with @gir = 3.5° phase misalign-
ment. The performance of hidden inverse configuration is higher
than or equal to the standard one regardless of 6. This shows
the scalability of the hidden inverse technique. (c),(d) The aver-
age gate-fidelity difference between hidden inverse and standard
configuration when circuit width n = 2. The warm (cool) color
shows the area where hidden inverse configuration outperforms
(underperforms) the standard one. Curves in black represent the
boundary where the fidelity difference is zero. When the coher-
ent error is small, fidelities of standard configuration surpass the
hidden inverse configuration by approximately 10~ due to the
imperfect motional state coherence.

[38] would work well when slowly drifting over-rotation
or phase offset errors dominate.

In any real system, there will be multiple error types and
the potential advantage can differ. Here we now examine
numerically the n = 2 case using a detailed ion-trap-error
model. For the simulations shown in Figs. 2(c) and 2(d),
we consider the systematic over-rotation error, phase mis-
alignment, and all dominant stochastic error sources in our
experimental system [39] including laser dephasing error,
motional dephasing error, and motional heating. We use
a master equation in Lindblad form to simulate the open
quantum system. The dominant stochastic error sources are
depicted by corresponding collapse operators, while the
coherent error sources are represented by parameter off-
sets in the Hamiltonian. Further details can be found in
Appendix B.

For zero phase-alignment error, we compare the relative
fidelity difference between standard circuits and hidden
inverse circuits as we change the over-rotation angle in
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Fig. 2(c). We see that the broad feature of the over-rotation
data in Fig. 2(a) is preserved and hidden inverses perform
well for |8] < /2. For small systematic errors, the dif-
ference in fidelity between the two circuits and the ideal
circuit is less than 10~ while the circuit fidelities are close
tol— 1072

Figure 2(d) shows that the hidden inverse configuration
suppresses phase misalignment in almost all the area of
interest, even with additional stochastic noise. In the small
region where the hidden inverse configuration exagger-
ates the phase misalignment, the fidelity difference is at
the level of 1073. Unlike for over-rotation errors, where
the advantage of the hidden inverse sequence requires
the Z(0) rotation angle to be small, the hidden inverse
configuration provides a fidelity improvement for most
phase-misalignment errors given our gate model.

III. EXPERIMENT IMPLEMENTATION OF AN
ARBITRARY QUANTUM CIRCUIT

In the experiment, a chain of !"'Yb¥ions is trapped in
a linear chain 70 pum above the surface of a microfabri-
cated surface trap made by Sandia National Laboratories.
The |0) and |1) states of the qubit are encoded in the hyper-
fine ground states, 28, ;|F = 0,m; = O)and 2Sip|F =1,
mg = 0), respectively. A 369.5-nm laser is used to
Doppler cool, electromagnetically-induced-transparency
(EIT) cool, and prepare the ions in the |0) state. State detec-
tion is performed through state-dependent fluorescence
by resonantly exciting the 281/2|F: I)to 2PmlF: 0)
transition and collecting the emitted photons [40,41]. The
scattered photons are imaged with a 0.6 numerical-aperture
lens and coupled into a linear array of multimode fibers
with 100-pum-diameter cores [42]. Each fiber in the array
is connected to individual photomultiplier tubes, allowing
for individual qubit readout. For the following experiments
the Doppler cooling, EIT cooling, state initialization, and
state detection take 1 ms, 500 ws, 15 us, and 300 us,
respectively. Stimulated Raman transitions using a 355-nm
picosecond pulsed laser drive single-qubit and two-qubit
gates [43—45]. An elliptical beam addresses all qubits in
the chain simultaneously while two tightly focused beams
perpendicular to the elliptical beam individually address
the two qubits [46]. Steering of each individual beam
over the ion chain is accomplished by a pair of micro-
electromechanical systems (MEMS) mirrors each tilting
in orthogonal directions. The number of atomic qubits in
our trapped-ion quantum processor is limited to 13 by the
steering range of the MEMS mirrors. In this paper, a two-
ion chain (two-qubit circuits) and a five-ion chain (four-
qubit circuits) are used to prove the principle. The beams
pass through acousto-optic modulators (AOMs) driven by
a radio-frequency system on chip (RFSoC), which pro-
vides the ability to change the amplitude, frequency, and
phase of each beam. The RFSoC firmware is provided by

Sandia National Laboratories QSCOUT project [47]. By
controlling the duration of the pulse and the phase of one
of the two Raman beams we can perform arbitrary single-
qubit rotations, R(@, ¢). Two-qubit gates are implemented
using the MS scheme [48]. Frequency modulation (FM) of
the Raman beams is performed in order to robustly dis-
entangle the qubit states from all of the motional modes
[39,49-51]. Further details of the setup can be found in
Ref. [39].

One universal gate set of our system contains the MS
[XX (m/4)] gate, X (0) gates, and arbitrary Z rotations.
Arbitrary Z(0) rotations are implemented in a virtual way
by accumulating a —@ phase in the subsequent gate oper-
ations. Indeed, Y(@) gates are simply phase-shifted X (&)
gates.

We implement the MS gate in a spin-phase-sensitive
configuration [45]. In this configuration, the rotation axis
is not exactly aligned with the XX axis due to mechan-
ical fluctuation in the optical path of the Raman beams.
We note the intrinsic phase instability and the slight dif-
ference of the ac Stark shift between single- and two-qubit
gates, and it is necessary to calibrate the phase between
these gates. The calibration is done using parity measure-
ment: We initialize the qubits in |00) state and implement
a XX (m/4) gate on them. Then we apply a single-qubit
/2 rotation on both qubits. The phase ¢ of the single-
qubit gates is varied from 0 to 2z. Finally, both qubits
are measured in Z basis. The measured parity P is fitted
to a sinusoid, P = A4 cos (¢o + 2¢), with a phase offset ¢y
from the parity-measurement results. In experiments, we
observe the phase offset drifts as much as 4° in a two-qubit
system within several hours. Right after calibration, we can
reduce the misalignment to as low as approximately 0.2°.

We know, due to the limits of our ability to stabilize
laser intensity and phase at the ion, that there will be
systematic errors between gates. For single-qubit gates,
we use gate-set tomography (GST) on both direct quan-
tum pulses and composite quantum pulses to characterize
systematic errors. The results of GST infer time-varying
over-rotations exist in our system that are stable for a time
> 1 ms. Details of the single-qubit GST experiment can be
found in Appendix C.

IV. HIDDEN INVERSE EXPERIMENTAL
PERFORMANCE

The base circuit for the hidden inverse experiment is the
portion highlighted by the dashed box in Fig. 3(c). A CNOT
gate is performed followed by a Z(8) rotation on the tar-
get qubit [33,39]. The second CNOT gate is applied either
with the same phase as the first (CNOT) or with a phase shift
of 7 relative to the first (CNOT'). The latter configuration
is the hidden inverse case. We reverse the gate sequence
order and each element gate’s sign in the CNOT decompo-
sition to conform to the Hermitian adjoint’s antidistributive
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FIG. 3. (a) Decomposition of the hidden inverse parity-controlled Z rotation circuit (» = 1) into native gates for trapped-ion qubits

where the second CNOT gate has a 180° relative phase shift with respect to the first CNOT gate. (b) Decomposition of the standard circuit
into trapped-ion qubit operations where the second CNOT gate is the same as the first one. (c) The two-qubit experimental circuit for
investigating the impact of hidden inverses. The portion of the circuit highlighted by the dashed box is repeated 5 times in order to

amplify the effects of the coherent errors.

property. The base circuit is repeated 5 times to amplify the
two-qubit gate over-rotation error and phase-misalignment
error between single-qubit and two-qubit gates, which are
the dominant coherent error sources in the circuit. We note
for the repeated circuits, we cannot experimentally distin-
guish cancellation of CNOT and cNot errors across Z(6)
with cancellation from the next CNOT. However, the circuit
in Fig. 3(c) is needed to amplify the error.

Two separate sets of experiments are conducted to
characterize the two-qubit gate over-rotations, phase mis-
alignment between single-qubit and two-qubit gate, and
the effectiveness of the hidden inverse scheme. In both
sets of experiments, the two-qubit gate fidelity is approx-
imately 99.4% before injecting the coherent errors. The
Z(0) rotation angle is varied. For the first set of experi-
ments, we introduce a e29 = 2.25 £ 0.04% two-qubit gate
over-rotation error into the circuits and maintain the phase
misalignment as small as possible (¢4 = —0.23 £ 0.17°).
The circuit in Fig. 3(c) is implemented with and without
the hidden inverses to quantify the suppression of over-
rotation errors. The system can be seen to significantly
suffer from two-qubit over-rotation error. Figure 4(al)
shows the probability of detecting the |00}, |10) & |01),
and |11) states at the end of the circuit with the hid-
den inverses, and Fig. 4(a2) shows the results without the
hidden inverses. The solid lines indicate fitted simulation
results with two free variables, the over-rotation error of
the XX gates and the phase misalignment between single-
qubit and two-qubit gates. When hidden inverses are used,
the contrast of the |00} is improved, and the residual popu-
lation in the odd-parity states is significantly reduced. This
indicates suppression of over-rotation errors from the XX
gates. Using the theoretical model and fitting results, final
state fidelities of the circuits in both configurations are

estimated. As shown in Fig. 4(a3), the final state fidelities
are improved from approximately 85% to 95% due to the
usage of hidden inverses. While the Z(@) rotation angle
increases, the improvement results from hidden inverses
decreases.

In the second set of experiments, we introduce a phase-
misalignment error of ¢gir = 3.89 £ 0.09° and minimize
the two-qubit gate over-rotation (e = —0.05 £ 0.22%).
We implement the circuit in both configurations to exam-
ine the suppression of phase-misalignment errors for the
hidden inverse circuit. Figures 4(b1) and 4(b2) show the
results of the circuits with and without hidden inverses,
respectively, for the set of experiments when phase mis-
alignment is dominant. With the hidden inverse configu-
ration, along with the improved contrast of the |00} popu-
lation and the reduced odd-parity population, the curves
regain symmetry about the 0° Z rotation. This shows
a correction of the phase misalignment between single-
qubit gates and two-qubit gates. Figure 4(b3) represents
the estimated final state fidelities of the circuits in both
configurations. The fidelities are improved from approxi-
mately 84% to 95%. In the case of phase misalignment,
we note the improvement from hidden inverses fades away
much slower than the case of over-rotation error as the
Z(0) rotation angle increases. It agrees with the analysis
in Sec. 1.

Limited by the systematic error drifts in the experi-
ment system and finite calibration time, we are not able
to suppress all coherent error to optimal at the same
time. A trade-off between amplitude error and phase error
exists. After the most “ideal” calibration, we observe over-
rotation €39 = 1.45(6)% and phase misalignment ¢gir =
—0.9(1)°. Data presented in Fig. 4(c) shows that a clear
fidelity improvement from hidden inverse configuration
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FIG. 4. Two-qubit hidden inverse experiment data and simulated final state fidelity. The top row (a), the XX (7 /4) gate experiences
€0 = 2.25 4 0.04% over-rotation error. The middle row (b), a ¢gir = 3.89 & 0.09° phase misalignment is introduced to the circuits
instead. Column (1) presents results for the case where our hidden inverse method is implemented, inverting the second CNOT, while
column (2) presents results for the standard case where the CNOT is left unchanged. The green points represent the population of the
|00) state, the red points represent the |01) and |10} state, and the blue points represent the |11) state. Solid lines show the results
of the simulation with the two types of coherent errors, as well as other dephasing errors. The error bars represent the standard error
of the data. Column (3) shows the simulated final state fidelity of the circuits with and without hidden inverses. Hidden inverse
circuits outperform the original circuits in both conditions. The bottom row (c) shows the most “ideal” results after a full calibration
process, during which both types of control error are suppressed as much as possible. An €79 = 1.45 £ 0.06% over-rotation error
and a ¢ogif = —0.86 £ 0.14° phase misalignment are observed. The eyp = 1.45 4= 0.06% over-rotation error causes a (0.05% average

gate-fidelity drop for one two-qubit gate.

is observed in the most “ideal” condition of our sys-
tem. We note that the fitting for all two-qubit circuit
results is done utilizing the error model described in
Appendix B.

Lastly, we extend the multiqubit parity control Z cir-
cuit to width n = 4, which is illustrated in Fig. 5(a). We
note the n = 4 experiments are done in a five-ion chain,
with one edge ion qubit idling during the experiment. With
two individual addressing beams, we access the two addi-
tional ion qubits by steering one addressing beam with
MEMS mirrors [39]. XX gates for all three ion pairs are
calibrated separately. The average CNOT gate fidelity is
approximately 90%. We assign this fidelity deduction to

increasing optical crosstalk (> 3%), optical power loss
from MEMS mirrors at large steering angles, and other
error sources to be investigated. Similarly, varying the rota-
tion angle 8, we measure final state probabilities for all 16
computational basis states. Figures 5(b) and 5(c) present
the final state results utilizing hidden inverses and standard
configuration, respectively. By suppressing over-rotation
error, the hidden inverse configuration improves the con-
trast of |0)®* from approximately 0.40 to approximately
0.47 and suppresses the average residual population of
states other than |0)®4 and |1)®” from approximately 0.55
to approximately 0.50. Moreover, hidden inverses help the
data points regain symmetry about & = 0, which indicates
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FIG. 5. (a) Ann = 4 experimental quantum circuit. The initial
Hadamards transform the qubits from |+)&* to |+)®*, the CNOTs
and Z(6) implement Eq. (1), and the final Hadamards map the X
basis to the Z basis for measurement. The blue and the pink high-
lights show the individual qubit addressing scheme by steering
tight-focused addressing beam [39]. (b) Probabilities of measur-
ing the four-qubit system in |0000) (green dots), |1111) (blue
dots), and others states (red dots) with hidden inverse configu-
ration. The error bars represent the standard error of the data.
The data is fitted with a model consists of coherent errors and
depolarizing channel. (c) State readout probabilities for standard
configuration. The color map is the same as (b).

a correction against phase misalignment. We fit the four-
qubit circuit results with a model consisting of coherent
error (parameter offsets) and stochastic error (depolarizing
channels). The qubits go through a depolarizing channel
after every two-qubit gate: with probability p = 0.87, the
state remains the same, while with probability 1 —p =
0.13, the state collapses to a totally mixed state. From
the fitting where we assume all two-qubit gates experi-
ence the same noise channel, we estimate the over-rotation
€09 ~ 5% and the phase misalignment @g;x ~ —8°. Due to
the strong stochastic noise from interbeam crosstalk [52],
hidden inverses provide only a limited improvement but
still at no experimental cost.

V. ALTERNATIVE METHODS FOR REDUCING
SYSTEMATIC ERRORS

Systematic errors can be reduced in a number of ways,
and we briefly compare our method with other techniques
in the context of the experiment. Hidden inverses work
well in experiments with multiple CNOTs and with com-
patible systematic errors, even with some stochastic noise.
It cannot be as powerful as total circuit optimization, but it
provides a local control solution that can be applied to any
quantum computer without additional time overhead.

A. Two-qubit Solovay-Kitaev-1 (SK1) composite pulses

Composite pulses developed for single-qubit gates to
fix over-rotations can be used to reduce over-rotations
in two-qubit gates using an isomorphism between one-
qubit Pauli operators and a subgroup of two-qubit Pauli
operators [53,54]. Previous calculations of hidden inverses
built from composite two-qubit pulses were shown to
greatly reduce circuit error in theory when the only error
is gate over-rotation [55]. In practice, we have not seen
an experimental advantage for these pulses. SK1 adds two
additional m MS gates resulting in a gate that is 3 times
longer.

We numerically consider the implementation of SK1
sequences for MS gate [55] using a simplified error model
to understand why these methods do not provide an advan-
tage. The average gate-fidelity difference is presented in
Fig. 6(a). When we consider only over-rotation error
(coherent) and motional heating (stochastic), we find for
an over-rotation error that is around 1% to 2% that the
motional heating rate would need to be as low as 20 quanta
per second for the SK1 sequence to improve gate per-
formance. This is one order of magnitude lower than the
heating rate in this system. When we consider all stochastic
and coherent error sources in our system, SK1 sequences
are predicted to severely limit the fidelity as shown in
Fig. 6(b).

7 300 M o.4
g __ L 0.3
S 200f 02
CA - 0.1
Jo! - 0.0
© L 0.1
g 100 | _0.2
= L —0.3
[1+]
v -0.4
=0 —0.5
100 XX(r/4)
raw i/
2 0.98 L (b)
L]
2 096
) : ) , SK1 XX(/4)

0 1 2 3 4 5
Over-rotation error (%)

FIG. 6. SK1 two-qubit gates’ performance. (a) Simulation
results of the average gate-fidelity improvement resulted from
SK1 compensating pulses under different over-rotation and
stochastic error conditions. Warm (cool) color represents a
fidelity improvement (degrading) comparing to the raw two-
qubit gate. The diagonal curve in black is where the compensate
pulses have a neutral impact. (b) Simulated fidelity of two-qubit
SK1 compensating pulses and raw two-qubit gate. All dominant
stochastic error sources in our experimental system are consid-
ered, including laser dephasing error, motional dephasing error,
and motional heating.
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B. Randomized compiling

Randomized compiling (RC) [14] is a protocol for con-
verting coherent errors into stochastic errors. RC intro-
duces independent random single-qubit gates into a cir-
cuit such that in the absence of noise, the overall ideal
unitary remains the same. In the presence of noise, RC
twirls the error channel into a stochastic Pauli channel.
RC improves circuit results by preventing the worst-case
cumulative errors and simplifies the prediction of algorith-
mic performance by reducing the complexity of the error
model.

In order to compare the performance of our hidden
inverse protocol with randomized compiling, we numer-
ically simulate each protocol on unitaries from Eq. (1)
under three different noise models: detuning error, over-
rotation, and phase misalignment. For the randomized
compiling part, we sample 100 equivalent circuits for each
value of @ [in Z(0) from Eq. (1)] and take the average gate
fidelity of this ensemble. The average gate-fidelity com-
parison is presented in Fig. 7. We find that hidden inverse
configurations provide benefit over randomized compiling
when the noise orientation of the error model is inverted
with the inverse gate [Figs. 7(b) and 7(c)]. For errors that
do not invert with the inverted gate controls, such as a
detuning error, randomized compiling limits the coherent

(a)
1.000 F ~ e

Randomized compiling
socoepboedpbodddoronnetnce
"""--...___S_t_z.mglarod -

Fidelity

Fidelity
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S 095}
i Rogetecttaiiitifpiodtoconeoospiipi
S~ e —==""" Phase error
L L e 1 1
-n —n/2 0 nf2 n
-]

FIG. 7. Randomized compiling performance. Final state
fidelity comparison among hidden inverse configuration (brown),
standard configuration (purple), and randomized compiling (red)
executing circuits of Eq. (1) with different noise channels. (a)
Detuning error § = 1% carrier Rabi frequency. (b) Two-qubit
over-rotation error €39 = 2% and single-qubit over-rotation
€19 = 0.2%. (c) Phase misalignment ¢gir = 3.5°.

error accumulation providing a clear benefit over hidden
inverses [Fig. 7(a)].

C. Hardware-specific compilation

Hidden inverses are developed in the context of a gate
model of quantum computation. These gates need to be
mapped onto a physical system and there are multiple
software, and hardware layers between the user and the
device. As a result, the operator of the quantum com-
puter often prefers to compile any algorithm to the most
hardware-efficient form to yield the highest overall fidelity.

Our running example circuit in this paper is the
multiqubit-parity controlled Z rotation described in Eq. (1).
We show one way to map it to ion trap hardware but there
are many hardware-specific ways to generate the same
functionality. A clear example is that the base n = 2 circuit
of a Z rotation by angle 6 surrounded two CNOTs, which
are composed of two XX (r/4). This can be replaced by
a single XX (0/2) gate surrounded by single-qubit gates.
Given that two-qubit gates are typically noisier than single-
qubit gates, this transformation is experimentally useful
for quantum systems with Ising-type two-qubit couplings
from nuclear magnetic resonance [56] to trapped ions [57].
The cost here is that one needs to calibrate the two-qubit
gate for multiple angles, which is inherently more error
prone than the control of the Z rotation, which in the exper-
iment is only advancing a digital phase. We recognize that
calibration may be less of a concern for near-term varia-
tional algorithms given the mismatch between algorithm
performance at the ideal angle versus the programmed
angle [58].

For n > 2, the additional CNOTs could still benefit from
hidden inverses, even if we change the internal primi-
tive. In some ion trap systems [59], the natural multiqubit
interaction is a global MS. In this case, there could be a
further reduction of the time complexity of the overall pro-
cedure. We have not considered this case in detail since
our micro-mirror system is not compatible with a global
MS gate.

D. Total optimization

Various noise-adaptive compilers have been proposed
recently in the literature. They include aggregation of mul-
tiple logical operations into larger units [28], mapping and
optimization of high-level quantum programs based on
hardware specifications [29], and using machine learning
and variational algorithms to develop noise-resilient cir-
cuits [60,61]. While these methods outperform standard
compilers for near-term devices with a few qubits and
short depths, they are not expected to scale efficiently to be
useful in large-scale fault-tolerant machines without trun-
cation. Hidden inverses, on the other hand, take advantage
of local optimization and can be efficiently included in
compilers for larger quantum systems.
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VI. CONCLUSIONS AND OUTLOOK

Slowly varying experimental noise sources can either
be corrected by frequent calibrations or by introducing
circuit-level protections such as composite pulses and hid-
den inverses. By recognizing sets of gates that are self-
adjoint, we can compile a circuit to cancel out coherent
errors as long as the drift occurs at a timescale slower
than the time between the two gates. We demonstrate a
reduction of over-rotations and phase misalignment for
CNOT gates in an ion-trap system without changing the
circuit length. Overall, these low-cost circuit compilation
schemes provide a robust platform for reducing systematic
error and have already been shown theoretically to provide
an advantage for quantum chemistry circuits [62].

Hidden inverses can be applied to any system where
the gates are derived from flexible pulse control. Hidden
inverses can be further expanded to include gates that are
only inverses on subspaces. From this viewpoint, we can
reconsider the cancellation of coherent errors in stabilizer
measurements by stabilizer slicing [18] as a hidden inverse
on the logical subspace. Hidden inverses also show the
utility of having multiple versions of the same basic gate
for improving circuit performance in the presence of sys-
tematic errors and suggest alternative user interfaces for
quantum computers between a static set of gates and full
pulse control.
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APPENDIX A: UNITARY cNoT ERROR MODEL

We consider the direct implementation of CNOT by a
Hamiltonian [36] in the context of hidden inverses.

CNOT, = exp (—:‘%crqm) CNOT, (A1)

CNoT! = cNoTexp (IECNOT) . (A2)

Here we consider the parity-controlled Z rotation and
calculate the average gate fidelity by calculating the entan-
glement fidelity.

The average gate fidelity between two unitary operations
U and ¥ on n qubits is

2"F (U, 1
Fup =200 (A3)
o ('T'[ﬂ ]'2) +1
= 7yl (ad)

where F, (U, V) is the entanglement fidelity. In this case,
the ideal unitary for an n — 1-qubit parity-controlled rota-
tion of the target qubit n is

6
U = exp (—1'5 ®F_, Zj) (A5)

the actual unitary applied due to the systematic error is Vi

n—1 n—1
Vy= l_[ e[ﬂ:ifz(:NOT{;‘,n)] U (1_[ e[—f%cr{m(k,ﬂ]) , (A6)
j=1 k=1

where V, corresponds to hidden inverses and V_ cor-
responds to the standard configuration. To calculate the
entanglement fidelity we need to calculate Tr[U'V.]. First,
we represent

n—1 n—1 —
_ l—[ e[ﬂfzcuom‘,n)] (l‘[ e[_i§CN0T(k,nJ]) , (A7)
i k=1

where CNOT = UcNOTU'. Next we rewrite CNOT(c, f) in
terms of Pauli matrices and single-qubit projectors

1 1
CNOT(c,f) = EU +7Z)+ 5(1 —Z)X: (A8
= o, + Iy X, (A9)

where I1,, , projects qubit a to the state ¥r. This allows us
to write

e HE/DINOTED — (TTg e/ 4 T1; .7 /P%) . (A10)

We can write

e_f(eﬂ)ﬁﬁﬁfr(c,n) _ (no ce—ieﬂ + 1, Ce—i(eﬂlf(;) , (A11)

wherej’; = cos(0)X, + sin(9)( }’=] ZJ) Y, and we define
X (0) = cos()X + sin(0)Y
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Due to the projectors, each string of bits on the first n
qubits will generate a residual unitary operation on the tar-
get qubit that depends only on the Haming weight w, the
number of 1’s in the bit string. The parity of the bit string
determines the sign of 8 in X(G)

Putting it all together we have

n—1 n—1
T U Vi) = l‘[ it/ DeNoT( ) l-[ o—i(€/2)NOT( )
Jj=1 j=1

n—1

_ Z("— 1) o—iln—1-w)e/21(~11)

x Try [e:I:r(we /20X e—!(we 12X (—178) ]

n—1
_ Z (" - 1)e—i[(n—]—w)eﬂ](—l:El)Bi(w, 0),
W

(A12)

where Tr; is the trace over a two-dimensional space and

Bi(w,0) =2 [cos (w%)2 + cos(6) sin (wg)z] . (A13)

We note that that By (w,8) = B_(w,8 + ) this leads to
the maximum fidelities happening at different 6 and the
fidelities oscillating 7 out of phase. We find for hidden
inverses Fe(U, V1)|p=0=1 and Fe(U, V;)|p=x = cos[(n —
1)e/2] cos(e/2)*™=D and for the standard configuration
F.(U,V_)|p—o = 1/4{1 + 2 cos[(n — 1)e] cos(e)"! + cos
(€)*™ D} and F,(U,V_)|p=r = cos(e/2)*™=D using the
mathematical identity

n—1
3 (" - l)e—*‘“’f — e =De2 D cos(e/2)]L . (Al4)

w=0 w

APPENDIX B: MS GATE ERROR MODEL

The MS gate error model can be found in the Sup-
plemental Material of Ref. [39]. We present it here for
convenience. We make some updates for the error model
to simulate quantum circuits efficiently.

The Hamiltonian of the MS evolution of the jth
motional mode with no modulation is written in terms of
spin raising and lowering operators (o, 0'_) and motional
mode raising and lowering operators (g;, ;) as [37,48,63]

i
E : (n) __(n)
E 7?; o4
n=1,2

(Qma Bt + QP s ) the.

(B1)

H(t)jms =

where Q0. QP Q@ and QY are the Rabi frequen-
cies of red and blue sideband transitions for the two
target ions, 3(1) 6( 3}23, and 6(2) are the detunings for
the jth motlonal mode ¢, and (bb are the laser phases
of the red and blue tone, respectively. With the expan-
sion in Eq. (Bl), we can simulate the number of error
mechanisms: power imbalance on two target ions, power
imbalance on red and blue tones, and detuning imbal-
ance due to Stark shift. For the full MS evolution, the
modes are sequentially simulated to minimize the comput-
ing resource. We save only the spin-state result for the next
round of simulation. The Hamiltonian of different modes
commute when Q) = Q" and Q@ = Q. which is a
reasonable assumption in the MS gate. For the evolution
of discrete segments in FM gates, we sequentially simulate
every segment to obtain the final state.

We use a master equation [64] to simulate an open-
quantum system considering multiple dissipative error
mechanisms: motional heating, motional dephasing, and
laser dephasing. The master equation is written in Lindblad
form [65]

dp 1 1 1
— = =[H.p]+ > (Lj,oL} - EL;LJ;,O - EpL}Lj),
J

where p is the density matrix of the system, H is the
Hamiltonian of the MS gate, L; is the Lindblad operator
for the jth decoherence process. The motional dephasing
can be described by the Lindblad operator of the form
L,, = +/2/ta’a, where 1,, is the motional coherence time.
The anomalous heating can be described by L, = +/Tat
and L_ = \/Fa, where I' is the heating rate. For these
two operators, we sequentially simulate the evolution of
each mode, then combine them to obtain the final state.
The master-equation simulations represent the full density-
matrix representation for a truncated state space of two
qubits and one motional mode truncated to the first 13
Fock states (n < 12). The laser dephasing can be described
by the Lindblad operator of L; = 4/1/1/(z1 + z2), where
77 is the laser coherence time. For this Lindblad oper-
ator, we perform a full master-equation simulation with
all motional modes and spin states included. We trun-
cate the far off-resonance motional modes, which have a
smaller motional excitation, to smaller Fock states to save
on computational resources. For the stochastic noise, we
also combine the simulation with the Monte Carlo method.
The simulations are performed using QuTip [66].

To avoid solving master equations whenever we
encounter a MS gate in the quantum circuit, we calculate
the Pauli transfer matrices (PTMs) before simulating the
circuit. The PTM is represented as

1
(Rp)y = S Tr{PAPF))), (B2)
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where P; is the Pauli basis, d = 2", n is the number of
qubits, and A is the linear map [67]. A(P;) is equivalent
to applying the master-equation simulation on Pauli basis
P;. Single-qubit gates suffer from negligible stochastic
noises. Therefore, we represent them with correspond-
ing quantum operation matrices subject to minor coherent
errors. In superoperator formalism, a quantum circuit com-
prised of quantum maps (the MS gates and the single-qubit
rotations) is equivalent to matrix multiplication of the
corresponding PTMs and can be calculated efficiently.

APPENDIX C: GATE-SET TOMOGRAPHY FOR
SINGLE-QUBIT GATES

We design an experiment to measure the performance
of SK1 gates and test how well GST predicts their per-
formance. The experiment serves as a preliminary sys-
tematic error characterization. First, we run GST on a
gate set composed of the SK1 compiled gates {Xsk1 (7 /2),
Yski1(/2)}, followed by an experiment where we run GST
on a gate set comprised of the raw gates that generate
SK1 sequences {X (/2), Y(rr/2), SK]}(ZN), SK1y(2m),
SK]J}C(2R), SK1y (2m)}. GST produces a completely pos-
itive trace-preserving map for each gate, represented as a
PTM.

We calculate the fidelity of the SK1 gates and the raw
gates from these PTMs. The PTMs allow us to calcu-
late any fidelity and we choose the average gate fidelity,
FU,E) = [ay (Y| UEY) (¥)U|¥) where U is the
ideal gate and £ is the actual gate [68]. From the GST
PTMs, we calculate a fidelity for SK1 X (7/2) and SK1
Y(/2) 0 0.999 36(5) and 0.999 27(3), respectively, while
the fidelity for raw-compiled X (7 /2) is 0.9982(1) and
for Y(m/2) is 0.9985(2). We see a clear improvement in
fidelity due to the SK1 composite pulses. Also, smaller
error bars in the calculated fidelity of SK1 gates indicate
that the gates are more uniform. The estimated error gener-
ator for each gate, which is a Lindbladian type operator that
acts after the ideal gate (G = €“Gy), describes how the gate
is failing to match the target. Specifically, the Hamiltonian
projection of this error generator produces the coherent
part of the error. We find that SK1 turns approximately
1% over-rotation into approximately 0.01% over-rotation
as expected.

We then combine the PTMs obtained from the raw-pulse
GST to construct SK1 X (;r/2) and ¥(r/2) gate PTMs.
Notice that the constructed PTMs are significantly different
from the direct SK1 gate PTMs obtained from compos-
ite pulse GST. The fidelity for the predicted SK1 X (7r/2)
gate is 0.9917(4), and for the Y(r/2) gate it is 0.9931(2).
Figure 8 contains box plots of the calculated fidelities.
It indicates that raw-pulse GST predicts SK1 compos-
ite pulses degrade gate fidelities. This result contradicts

Raw SK1 (Direct) SK1 (Prediction)
1.000 T T
— | !
2 0997 : : -
3 I |
i 0.994 1 | 7
I I =
0.991 1 1 1 1 1 1 % 1
X(n2)Y(n2) X(m/2)Y(n/2) X(n/2)Y(n/2)

FIG. 8. Average gate-fidelity comparison. We compare the
average gate fidelity of three instances of X (w/2) (red) and
Y(mr/2) (blue) gates. The three cases considered are direct char-
acterization of raw gates, direct characterization of SK1 gates,
and predicted characterization of SK1 gates based on the results
from GST on the raw gates. The boxplot displays the minimum,
the maximum, the sample median, and the first and third quartiles
of the dataset.

the experiment, where SK1 does improve the gate per-
formance. This discrepancy can be explained by an over-
rotation error that is slowly varying. The raw-pulse GST
averages over the time-varying over-rotations, yielding a
PTM that describes average raw pulses for which SK1
would not be useful. Simulations readily reproduce this
behavior.

We use pyGSTi (version 0.9.9.1) [25] for all GST-
related works. This section explains the experimental
design and data analysis for characterizing SK1 gates and
their elementary rotations.

Experiment design—The experimental circuits are gen-
erated by pyGSTi’s fiducial and germ selection algorithms.
Fiducial sequences are used to prepare and measure an
informationally complete set of operations. Germs are
designed to amplify all possible gate errors. Given a set
of operations (also called the gate set), we use the algo-
rithms to generate the appropriate fiducials and germs.
Our gate sets are {Xski(m/2), Yski(mw/2)} and {X (7/2),
Y(w/2), SK1}(2m), SK15(27), SK1F(27), SK1y (27)}.
Fiducials and germs in hand, we choose the length of the
experiments (number of times to repeat each germ between
fiducial pairs) as L = 256 and L = 32, respectively. The
experiment lengths are different for two gate sets because
raw gates are noisier than composite pulse gates, and raw
gates reach a similar noise level as composite pulse gates
with less noise amplification.

Data analysis—We run standard GST as implemented
in pyGSTi. Results of the gate set {Xski(7r/2), Yski1(7/2)}
follow directly from the output provided by GST (other
than error bars, which we discuss next). For the gate
set {X (/2), Y(r/2), SK1}(27), SK13(27), SK1§(27),
SK1y(2m)}, we get the PTMs for the elementary rota-
tions directly from GST. We calculate the predicted SK1
gate PTMs through matrix multiplication of the elementary
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rotation PTMs,
Rsk1(0.¢) = SK1y (2m)SKI1} (2m)R(7/2),

where R € {X,Y}. To generate the error bars on the
calculated fidelity metrics, we use a nonparametric
bootstrapping technique from pyGSTi. We take the final
estimate from running standard GST as the target model
for generating nonparametric bootstrapping samples and
then run gauge optimization on these raw bootstrapped
models to generate our final set of models. Error bars are
calculated from the standard deviation of average gate-
fidelity metrics on the set. GST provides information on
“Goodness of fit,” i.e., how well GST estimates the fit to
characterize the data, to provide confidence in the data
analysis. A rating scale from 1 to 5 summarizes various
statistical measures. For both gate sets, the experiments
receive a score higher than 4 indicating a good fit.

The noise in the PTMs can be better understood
using projections of the gate error generators. These are
Linbladian-like operators generated by projecting the error
generator into some subspace. We are primarily con-
cerned with the Hamiltonian projection, which produces
the coherent error. We use built-in pyGSTi functions to
calculate these projections and deduce the amount of
over-rotation error.
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