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Queues with Delayed Information: A Dynamical Systems Perspective\ast 

Faouzi Lakrad\dagger , Jamol Pender\ddagger , and Richard Rand\S 

Abstract. In this paper, we consider an N -dimensional queueing model where customers join according to a
multinomial logit choice model. However, we assume that the information that the customer receives
about the queue length is delayed by a constant \Delta . We review how a large customer scaling of the
stochastic model yields a system of delay differential equations. We also show how these limiting delay
differential equations approximate the stochastic mean dynamics of the original queueing model. To
gain insight about the queue length dynamics such as the amplitude, the frequency, and the value
of the critical delay we use the harmonic balance method and the method of multiple scales. We
show that the method of multiple scales is more accurate but is less tractable from a computational
perspective than the harmonic balance method. Using the method of multiple scales, we also prove
that the only stable mode is where all N queues have the same amplitude and frequency; however,
each queue is shifted by 2\pi 

N
from its neighbor. This analysis provides great insights for queues with

delayed information and how the oscillations manifest themselves.
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1. Introduction. Technology has allowed customers to get unprecedented access to in-
formation. One example of this information is delay announcements, which allow customers
to receive an estimated waiting time until they are served. As a result, there is tremendous
value in understanding the impact of providing waiting time or queue length information to
customers. These announcements can affect the decisions of customers as well as the queue
length dynamics of the system. Thus, the development of methods to support such announce-
ments and interaction with customers has attracted the attention of the operations research
and applied mathematics communities and is growing steadily.

Delay announcements are useful tools for managers of call centers and service systems to
be able to interact and notify customers of their expected waiting time. The majority of the
literature in queueing theory that analyzes delay announcements tends to focus on the impact
of delay announcements on customer abandonment. For the most part, the literature only
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QUEUES WITH DELAYED INFORMATION 677

explores how customers respond to the delay announcements and also assumes that there is
only one potential queue to join. Previous work by Armony and Maglaras [3], Avramidis and
L'Ecuyer [7], Guo and Zipkin [13], Hassin [17], Armony, Shimkin, and Whitt [4], Guo and
Zipkin [14], Jouini, Dallery, and Ak\c sin [23, 24], Allon and Bassamboo [1], Allon, Bassamboo,
and Gurvich [2], Ibrahim and Whitt [19], Thiongane, Chan, and L'Ecuyer [48, 49, 50], Jen-
nings and Pender [21], Ibrahim, Armony, and Bassamboo [20], Whitt [51], Bassamboo and
Ibrahim [8], Ibrahim [18], Shah, Wikum, and Pender [45], and references therein focus on this
aspect of the announcements. Thus, previous work does not focus on the situation where the
information given to customers in the form of an announcement is delayed and how this delay
in information can affect the dynamics of the underlying service.

Only recently has there been work that considers queues with delayed information that is
not written by the authors. One paper that arises is the work of Lipshutz and Williams [26]. In
this paper, the authors derive sufficient conditions for when oscillations will occur in reflected
delay differential equations when they are present in the nonreflected differential equations.
Since our work is based on the infinite server queue, our work does not consider the impact
of reflections on the delay differential equations, which is a very difficult problem. One other
major difference is that our queueing model is multidimensional while the model in Lipshutz
and Williams [26] is one-dimensional. This is mainly because in the reflected delay differential
equation setting, the reflections can be of many types and this causes many technical diffi-
culties. Finally, we are interested in computing exactly where the Hopf bifurcation occurs,
while Lipshutz and Williams [26] does not compute exactly when this bifurcation will occur
in the reflected model. In the case where the equilibrium is strictly positive, then the location
of the Hopf in the reflected system coincides with the unreflected system. However, in some
single server systems, this might not be the case when the queue is underloaded or critically
loaded since the equilibrium is not guaranteed to be strictly positive. A second paper that
discusses delay differential equations in the context of queueing theory is by Raina and Wis-
chik [43] and this paper uses Lindstedt's method to compute the amplitude of oscillations for
sizing router buffers in Internet infrastructure services. However, they do not compute closed
form expressions for the amplitude and frequency of oscillations and only provide numerical
examples in this regard. Our work fills this gap.

Recent work by the authors also considers queues with delayed information (Pender, Rand,
and Wesson [40, 41], Novitzky et al. [38, 37], Nirenberg, Daw, and Pender [36]). As a result,
we explain how our current work in this paper differs from the previous literature on the
topic. However, what makes this particular work different is that in this paper, we consider
in full context the N -dimensional queueing model. We show using harmonic balance that the
steady state oscillations can be described by sinusoidal functions that are each shifted by the
roots of unity. Previous work such as Pender, Rand, and Wesson [40, 41] has only explored
the two-dimensional case and did not analyze the amplitude of oscillations. Previous work
such as Novitzky et al. [38, 37] does study the amplitude of oscillations, but restricts the
analysis to the two-dimensional case. In fact the two-dimensional case is much easier than the
N -dimensional setting since a reduction can be made to a one-dimensional problem, which
has an explicit solution. The N -dimensional problem needs a more refined analysis because it
theoretically involves three-dimensional tensors. Finally, recent work such as Pender, Rand,
and Wesson [42], and Nirenberg, Daw, and Pender [36] analyzes stochastic versions of theD
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678 FAOUZI LAKRAD, JAMOL PENDER, AND RICHARD RAND

queueing system and tries to understand the impact of delayed information in the stochastic
setting. They find that the stochastic fluctuations can have a large impact on the oscillations
generated by the Hopf bifurcation in the deterministic model. However, this work does not
give a detailed analysis of the delay differential equations that result from the limit theorems
as we do here.

One potential application of our work is for amusement parks like Disneyland or Six
Flags. In Figure 1.1, we show a snapshot of the Disneyland app. The Disneyland app lists
waiting times and the rider's current distance from each ride in the themepark. Customers
obviously have the opportunity to choose which ride that they would want to go on; however,
this choice depends on the information that they are given through the app. However, the
wait times on the app might not be posted in real time or customers might need travel
time to get to their next ride, the information they make their decision on is essentially
delayed. Thus, our queueing analysis is useful for Disney to understand how their decision
to offer an app that displays waiting time information will affect the lines for rides in the
park.

Other applications of our work include healthcare systems and urban transportation net-
works. Even though we have considered an infinite server model, there is some precedent for
using them in healthcare settings; see, for example, Armony et al. [5], Worthington, Utley,
and Suen [52], Pender [39], and Gupta [15]. Recently, many healthcare providers have started
to post their waiting times and queue lengths online, on highway billboards, and even through
apps (Dong, Yom-Tov, and Yom-Tov [11], Ding, Nagarajan, and Zhang [10]). This has a large

Figure 1.1. Disney waiting times on smartphone app, displayed in list (left) and map (right) forms.

D
ow

nl
oa

de
d 

06
/2

7/
22

 to
 1

28
.8

4.
12

5.
23

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUEUES WITH DELAYED INFORMATION 679

impact on where patients will choose to receive care since they want their wait to be short.
This type of load balancing was also used in New York City during the COVID-19 pandemic
where patients are moved from crowded hospitals to less crowded hospitals. In this case, the
delay can be viewed as the travel time of a moved patient.

In the context of transportation, many systems such as scooter and bike sharing networks
provide riders with information about the availability of scooters and bikes. However, due to
data processing, the information that riders receive is delayed in most systems by one minute
(Tao and Pender [46, 47]). Also in the context of transportation, many road networks provide
information about a particular route and this information is often not given in real time.
Thus, delayed information has a large impact on our society and it is really important to
understand the effects of delaying information to large populations.

This paper introduces a stochastic queueing model, which describes the dynamics of cus-
tomer choice with delayed information. In the queueing model, the customer receives infor-
mation about the queue length which is delayed by a constant parameter \Delta . Our goal in this
work is not to prove that the stochastic model converges to the system of delay differential
equations, but instead to show how the methods of harmonic balance and multiple scales
can be used to uncover important insights about the limits of the stochastic queueing model.
Using these two methods we are able to show that the dynamics of the fluid limit depend on
the initial functions used to start the delay differential system and whether or not the delay in
information \Delta is larger or smaller than a critical delay, which we denote by \Delta c. We will show
in what follows that \Delta c is a function that will depend on the queueing model parameters.
Moreover, we find that the only stable mode of dynamics is one where all queues have the
same amplitude and frequency, however, each is shifted by the roots of unity, i.e., 2\pi 

N . Our
analysis combines theory from delay differential equations, customer choice models, stability
analysis of differential equations, and asymptotic analysis.

We conclude this section by giving the reader the roadmap for the remainder of the paper.
However, before we get there, we would like to note that this work combines techniques from
both queueing theory and dynamical systems. It is our hope that the queueing community
might see that dynamical systems are integral to understanding complex queueing systems
that involve large customer settings and delayed information. Moreover, we hope that the
dynamical systems community will see that the application of queueing theory is ripe for study
and could benefit tremendously from more dedicated collaborations with experts in nonlinear
dynamics. Our hope is that this work encourages both communities to work together to solve
interesting problems that arise from using dynamical systems as rigorous approximations for
complex queueing systems.

1.1. Main contributions of paper. The contributions of this work can be summarized as
follows:

\bullet Accurate analytical expressions of N queues length limit cycles using the harmonic
balance method (HBM) and the multiple scales method (MSM). Our analysis of the
N -dimensional case represents a significant advance over the two-dimensional case
since it involves a ``difference"" analysis and tensor analysis. The two-dimensional case
has a symmetry that reduces it to a one-dimensional problem, which is not present in
our higher dimensional problem.D
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680 FAOUZI LAKRAD, JAMOL PENDER, AND RICHARD RAND

\bullet We show that the system of N delay differential equations depends on the initial
function in a very important way. If any of the equations are initialized with the same
function, then they will remain the same throughout, which changes the dynamics.
However, if all equations are initialized with different values, then we show that when
the delay \Delta > \Delta c and time tends toward infinity, then the queue lengths can be
described by periodic functions that have the same amplitude and frequency and are
shifted from each other by the phase angle 2\pi 

N .
\bullet We show when \Delta > \Delta c, the amplitude of oscillations is increasing with increasing

the time delay and the rate of this increase is lowered when the number of queues
increases. Moreover, when \Delta > \Delta c, the frequency of oscillations is decreasing with
increasing the time delay and the rate of this decrease is lowered when the number of
queues increases.

1.2. Organization of paper. The remainder of this paper is organized as follows. Section 2
describes a constant delay fluid model. We derive the critical delay threshold under which the
queues are balanced if the delay is below the threshold and the queues are asynchronized if
the delay is above the threshold. In section 3, we analyze the N -dimensional dde system. We
calculate an explicit expression for the critical delay and frequency for our queueing model. We
make a connection to the Lambert-W function and show how a clever reduction can simplify
our analysis. In section 4, we describe the HBM and apply it to our queueing problem. We
show how to derive a first order approximation of the queue length amplitude, frequency, and
phase shift using harmonic balance. In section 5, we describe the method of multiple scales
and apply it to our problem. Using the method, we show that the only stable mode is one
where all queues are sinusoidal functions that are shifted by the roots of unity from their
neighbor. In section 6, we conclude with directions for future research related to this work.
Finally, we provide the proofs of our results in the appendix.

2. The queueing model. In this section, we present a new stochastic queueing model
with customer choice based on the queue length with a constant delay. Thus, we begin with
N infinite server queues operating in parallel, where customers make a choice of which queue
to join by taking the size of the queue length into account via a customer choice model. We
assume that the total arrival rate to the system (sum of all queues) is \lambda and the service rate
at each queue is given by \mu . However, we add the twist that the queue length information
that is given to the customer is delayed by a constant \Delta for all of the queues. Therefore, the
queue length that the customer receives is actually the queue length \Delta time units in the past.

Since customers will decide on which queue to join based on the queue length information,
the choice model that we use to model the choice that the customers choose dynamics is
identical to that of a generalized multinomial logit (MNL) model. Thus, in a stochastic
context with N queues, the probability of going to the nth queue is given by the following
expression:

pn(\scrQ (t),\Delta ) =
e - \gamma \scrQ n(t - \Delta )\sum N
j=1 e

 - \gamma \scrQ j(t - \Delta )
,(2.1)

where \scrQ (t) = (\scrQ 1(t),\scrQ 2(t), . . . ,\scrQ N (t)). In this choice model, the parameter \gamma represents the
sensitivity of customers to the queue length. The larger \gamma is, the more likely a customer is toD
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QUEUES WITH DELAYED INFORMATION 681

join the shortest queue. In fact, if one sends \gamma \rightarrow \infty , then the choice function converges to
join the shortest queue function.

It is evident from the above expression that if the queue length in station n is larger
than the other queue lengths, then the nth station has a smaller likelihood of receiving the
next arrival. This decrease in likelihood as the queue length increases represents the disdain
customers have for waiting in longer lines. We should also mention that the MNL model we
present in this work can be viewed as a smoothed and infinitely differentiable approximation
of the join the shortest queue model. Using these probabilities for joining each queue allows us
to construct the following stochastic model for the queue length process of our N -dimensional
system for t \geq 0:

\scrQ n(t) = \scrQ n([ - \Delta , 0]) + \Pi a
n

\Biggl( \int t

0

\lambda \cdot e - \gamma \scrQ n(s - \Delta )\sum N
j=1 e

 - \gamma \scrQ j(s - \Delta )
ds

\Biggr) 
 - \Pi d

n

\biggl( \int t

0
\mu \scrQ n(s)ds

\biggr) 
,(2.2)

where each \Pi (\cdot ) is a unit rate Poisson process, and \scrQ n([ - \Delta , 0]) is the initial function that
sets \scrQ n(s) = \varphi n(s) for all s \in [ - \Delta , 0] where \varphi n(s) is a Lipschitz continuous function. In this
model, for the ith queue, we have that

(2.3) \Pi a
n

\Biggl( \int t

0

\lambda \cdot e - \gamma \scrQ n(s - \Delta )\sum N
j=1 e

 - \gamma \scrQ j(s - \Delta )
ds

\Biggr) 

counts the number of customers that decide to join the ith queue in the time interval (0, t].
Note that the rate depends on the queue length at time t - \Delta and not time t, hence representing
the lag in information. Similarly

(2.4) \Pi d
n

\biggl( \int t

0
\mu \scrQ n(s)ds

\biggr) 

counts the number of customers that depart the ith queue having received service from an
agent or server in the time interval (0, t]. However, in contrast to the arrival process, the
service process depends on the current queue length and not the past queue length.

The reader might wonder why we choose to study the infinite server queueing model
instead of the multiserver queueing model. First, the infinite server queueing model with
delayed information yields nontrivial results. Another reason is that the infinite server model
is smooth. This is convenient for our Hopf bifurcation analysis that we will do later since the
multiserver queue is inherently not smooth. Last, infinite server queues have always been used
as good approximations for more complicated multiserver queues; see, for example, Jennings
et al. [22], Eick, Massey, and Whitt [12], and Massey and Whitt [30]. It can be useful to
use infinite server queues in some settings. The first setting is when one wants to obtain a
lower bound on the dynamics. The second setting is when one wants to have a high quality
of performance. In this setting, one might set the number of servers to be quite high, which
effectively turns the multiserver system into an infinite server system. Last, in an Erlang-AD
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682 FAOUZI LAKRAD, JAMOL PENDER, AND RICHARD RAND

model, when the service rate is equal to the abandonment rate, this model is equivalent to an
infinite server queue as well; see, for example, Daw and Pender [9], and Massey and Pender
[29].

2.1. Fluid limits and convergence. In many service systems, the arrival rate of customers
is high. For example, in Disneyland there are thousands of customers moving around the park
and deciding on which ride they should join. Motivated by the large number of customers, we
introduce the following scaled queue length process by a parameter \eta :

\scrQ \eta 
n(t) = \scrQ \eta 

n([ - \Delta , 0]) +
1

\eta 
\Pi a

n

\Biggl( 
\eta 

\int t

0

\lambda \cdot e - \gamma \scrQ \eta 
n(s - \Delta )\sum N

j=1 e
 - \gamma \scrQ \eta 

j (s - \Delta )
ds

\Biggr) 
 - 1

\eta 
\Pi d

n

\biggl( 
\eta 

\int t

0
\mu \scrQ \eta 

n(s)ds

\biggr) 
.(2.5)

Note that we scale the rates of both Poisson processes, which is different from the many-
server scaling, which would scale only the arrival rate. Scaling only the arrival rate would
yield a different limit than the one analyzed by Pender, Rand, and Wesson [40] since the
multinomial logit function is not a homogeneous function. Moreover, one should observe the
term Q\eta 

n([ - \Delta , 0]), which highlights an important difference between delayed systems and their
real-time counterparts. Q\eta 

n([ - \Delta , 0]) is a necessary function that keeps track of the past values
of the queue length on the interval [ - \Delta , 0]. Unlike the case when \Delta = 0, we need more
than an initial value Q\eta 

n(0) to initialize our stochastic queue length process. In fact in the
delayed setting, we need an initial function to initialize our stochastic queue length process.
We need these values since our arrival rate function is delayed and depends on previous queue
length information. By letting the scaling parameter \eta go to infinity, we obtain our first
result.

Theorem 2.1. Let \varphi i(s) be a Lipschitz continuous function that keeps track of the previous
values on the interval [ - \Delta , 0]. Then, if \scrQ \eta 

n(s) \rightarrow \varphi n(s) almost surely for all s \in [ - \Delta , 0] and for
all 1 \leq n \leq N , then the sequence of stochastic processes \{ \scrQ \eta (t) = (\scrQ \eta 

1(t),\scrQ 
\eta 
2(t), . . . ,\scrQ 

\eta 
N (t)\} \eta \in \BbbN 

converges almost surely and uniformly on compact sets of time to (q(t) = (q1(t), q2(t), . . . , qN (t))
where

\bullet 
qn(t) = \lambda \cdot e - \gamma qn(t - \Delta )\sum N

j=1 e
 - \gamma qj(t - \Delta )

 - \mu qn(t),(2.6)

qn(s) = \varphi n(s) for all s \in [ - \Delta , 0] and for all 1 \leq n \leq N .

Proof. See Pender, Rand, and Wesson [42] for the proof of this result.

Theorem 2.1 states that as we let \eta go toward infinity, the sequence of queueing processes
converges to a system of delay differential equations. Unlike ordinary differential equations,
the existence and uniqueness results for delay differential equations is much less well known.
However, we provide the result of existence and uniqueness for the delay differential system
that we analyze in this paper below.

Theorem 2.2. Given a Lipschitz continuous initial function \varphi i : [ - \Delta , 0] \rightarrow \BbbR for all 1 \leq 
i \leq N and a finite time horizon T > 0, there exists a unique Lipschitz continuous function
q(t) = \{ q(t)\}  - \Delta \leq t\leq T that is the solution to the delay differential equationD
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QUEUES WITH DELAYED INFORMATION 683

Table 1
Critical time delays and equilibria for various number of queues.

Number of queues N 2 3 4 5 6 7

Critical time delay \Delta c,N 0.362 0.590 0.865 1.209 1.661 2.300

Equilibrium qsN 5.00 3.33 2.50 2.00 1.67 1.43

\bullet 
qn(t) = \lambda \cdot e - \gamma qn(t - \Delta )\sum N

j=1 e
 - \gamma qj(t - \Delta )

 - \mu qn(t)(2.7)

and qn(s) = \varphi i(s) for all s \in [ - \Delta , 0] and for all 1 \leq i \leq N .

Proof. The proof of this result can be found in Hale [16].

2.2. Understanding through numerical examples. For the numerical integration, we use
the MATLAB dde23 solver and ideas from Shampine and Thompson [25]. For all numerical
integrations of (2.7), unless stated otherwise, we set \lambda = 10, \mu = 1, and \gamma = 1. Table 1
provides the critical time delays \Delta c,N and the equilibria qsN corresponding to N queues, where
the integer N = 2, . . . , 7.

In Figure 2.1 we show the time histories of the queue lengths in the case of four queues,
i.e., N = 4, for various time delays \Delta and initial conditions. In Figure 2.1(a), for \Delta =
0.86 < \Delta c,4 = 0.865 all four queues' lengths tend, in an oscillatory way, to the stable equi-
librium qs4 = 2.5. Figures 2.1(b), (c), and (d) show time histories of the four queues' lengths
for \Delta = 0.88 > \Delta c,4 with various initial conditions. In Figure 2.1(b), all four initial con-
ditions are taken as different, and the four queues' lengths are periodic with the same am-
plitude and period but they are identically shifted. In Figure 2.1(c) two queues' lengths
are initially identical, then three periodic solutions identically shifted with different ampli-
tudes are obtained. In Figure 2.1(d) three queues' lengths are initially identical. This case
is similar to the case of two queues studied in Pender, Rand, and Wesson [40]. The three
identical queues are out of phase with the fourth queue. In Figure 2.1(e), when all four
queues are initially identical, the queue lengths are not oscillating and they converge very
fast to the equilibrium qs4. These five figures show that the only stable solutions are given
in Figure 2.1(b); all the other cases are unstable since they are sensitive to initial condi-
tions.

Figure 2.2 shows, for various numbers of queues, the numerically computed amplitudes of
the periodically oscillating queues lengths versus the time delay \Delta . The amplitude increases
with increasing the time delay above the critical value. Moreover, the increase rate of the
amplitude is decreasing when the number N of queues increases; see Figure 2.2(b).

Figure 2.3 shows, for various numbers of queues, the numerically computed fundamental
frequencies of the periodically oscillating queues lengths versus \Delta  - \Delta c,N . The fundamental
frequency is decreasing with increasing the time delay \Delta and it is decreasing with increasing
the number N of queues. Moreover, the rate of frequency decrease is lower for higher numbers
of queues. Consequently, the frequency of oscillations become slower as we increase the number
of queues N .
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(a)\Delta = 0.86. For t \in [ - \Delta , 0]: q1(t) = 2.5, q2(t) = 2.51, q3(t) = 2.52 and q4(t) = 2.53
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(b)\Delta = 0.88. For t \in [ - \Delta , 0]: q1(t) = 1, q2(t) = 1.1, q3(t) = 1.2 and q4(t) = 1.3
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(c) \Delta = 0.88. For t \in [ - \Delta , 0]: q1(t) = 1, q2(t) = q3(t) = 1.1 and q4(t) = 1.2
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(d) \Delta = 0.88. For t \in [ - \Delta , 0]: q1(t) = 1, q2(t) = q3(t) = q4(t) = 1.1
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(e) \Delta = 0.88. For t \in [ - \Delta , 0]: q1(t) = q2(t) = q3(t) = q4(t) = 1.1

Figure 2.1. Time histories of (2.7) for N = 4, \gamma = 1 for various time delays and for diverse initial
conditions. q1(t) in black, q2(t) in blue, q3(t) in red, and q4(t) in green. The dashed line corresponds to the
equilibrium qs4.
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(a) Amplitudes versus the time delay \Delta . Circles are the numerically computed amplitudes.
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(b) Amplitudes versus \Delta  - \Delta c,N

Figure 2.2. Numerically computed amplitudes of N = 2, 3, 4, 5, 6, and 7 queues lengths versus \Delta  - \Delta c,N ,
the deviation of the time delay from its critical value.

3. Analysis of delay differential equation model.

3.1. Model reduction. The mathematical model of the queues lengths given in (2.7)
depends explicitly on the sensitivity of customers to the queue length parameter \gamma . We will
show in this subsection, through changes of variables, that the effect of \gamma can be reduced to
a change of the total arrival rate. Thus (without loss of generality), we can assume \gamma = 1 for
simplicity.
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Figure 2.3. Numerically computed fundamental frequencies of various number of oscillating queues lengths
versus \Delta  - \Delta c,N .

Setting Qn(t) = \gamma qn(t) as the nth new scaled queue length, (2.7) becomes

\bullet 
Qn(t) = \Lambda 

exp( - Qn(t - \Delta ))\sum N
k=1 exp( - Qk(t - \Delta ))

 - \mu Qn(t), where n = 1, . . . , N,(3.1)

where \Lambda = \gamma \lambda . Consequently, the exponential terms in (3.1) do not depend explicitly on \gamma .
This latter changes the total arrival rate \Lambda to the system. It is worth noting that the sum of
all scaled queues lengths S(t) =

\sum N
k=1Qk(t) is the solution to the following first order linear

ordinary differential equation:

\bullet 
S(t) = \Lambda  - \mu S(t).(3.2)

3.2. An equilibrium analysis. Indeed (3.2) has one equilibrium S\ast = \Lambda /\mu , and its solution
is given by

S(t) =
\Lambda 

\mu 
+ C exp( - \mu t),(3.3)

where C is a constant of integration. Consequently, the sum S(t) tends asymptotically to the
equilibrium S\ast . The equilibrium of the nth length queue Qs

n is obtained by dropping the time
derivative in the left-hand side of (3.1). It is a solution of the following equation:

\Lambda 
exp( - Qs

n)\sum N
k=1 exp( - Qs

k)
 - \mu Qs

n = 0, where n = 1, . . . , N.(3.4)

Since the equilibria of all queues obey the same equation in (3.4), then they are all equal.
Using the fact that their sum is constant, they are given by

Qs
n = Qs =

\Lambda 

N\mu 
, where n = 1, . . . , N.(3.5)
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3.3. Third order Taylor expansion. In order to use an analytical method to approxi-
mate solutions of the nonlinear delay differential equations (2.7) and (3.1), they are written
in polynomial form using the Taylor expansion around the equilibrium. At least the third
order Taylor expansion should be used, since the first and second order expansions will give
no information about the amplitude of the fundamental frequency. In fact, the first order
expansion will give the critical time delay and the frequency of the born periodic solution.
The second order expansion will give information about the amplitude of the first harmonic
corresponding to twice the fundamental frequency. Furthermore, the quadratic and the cubic
nonlinearities should be present in the truncated model in order to take into account the odd
and even nonlinearities present in the original delay differential equations. Admittedly, there
is a trade-off between analytical tractability and the precision since the greater the order of
the used polynomials, the bigger the validity domain and higher the precision of the truncated
model.

The nth queue length Qn(t) can be expressed as the following equation:

Qn(t) = Qs + Pn(t),(3.6)

where Pn(t) is a perturbation around the equilibrium Qs and we denote the term Pn\Delta \equiv 
Pn(t - \Delta ). Now by taking a Taylor expansion up to the third order, we obtain the following
equation:

\bullet 
Pn + \mu Pn +

\Lambda 

N

\biggl( 
1 - 1

N

\biggr) 
Pn\Delta =

\Lambda 

N

\Biggl[ 
1

N

N\sum 
k=1
k \not =n

Pk\Delta  - 1

N

N\sum 
k=1

\biggl( 
1

2
P 2
k\Delta  - 1

6
P 3
k\Delta 

\biggr) 

+
1

N2

\Biggl( 
N\sum 
k=1

\biggl( 
 - Pk\Delta +

1

2
P 2
k\Delta 

\biggr) \Biggr) 2

+
1

N3

\Biggl( 
N\sum 
k=1

Pk\Delta 

\Biggr) 3

+ Pn\Delta 

\left(  1

N

N\sum 
k=1

\biggl( 
 - Pk\Delta +

1

2
P 2
k\Delta 

\biggr) 
 - 1

N2

\Biggl( 
N\sum 
k=1

Pk\Delta 

\Biggr) 2
\right)  

+
1

2
P 2
n\Delta 

\Biggl( 
1 +

1

N

N\sum 
k=1

Pk\Delta 

\Biggr) 
 - 1

6
P 3
n\Delta 

\Biggr] 
.(3.7)

One should note that (3.7) demonstrates the queues are coupled linearly and nonlinearly. The
quadratic and cubic nonlinearities are proportional to N - 2 and N - 3, respectively. Conse-
quently, the effect of nonlinearities and the coupling are weakening with increasing the number
of queues N . In the limiting case N \rightarrow +\infty , the queue lengths equations are becoming linear
and independent. Asymptotically the solutions are given by

N\sum 
k=1

Qk(t) =
\Lambda 

\mu 
and

N\sum 
k=1

Pk(t) = 0.(3.8)

It should also be observed that the nonlinear couplings in (3.7) prevent the direct imple-
mentation of a perturbation technique to approximate the solutions. Hence, we define theD
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Jth queue length as a reference and define its difference with respect to the nth queue
length as

Dn(t) = QJ(t) - Qn(t).(3.9)

Consequently, DJ(t) = 0 and the N queues lead to N - 1 queue lengths differences Dn(t) with
n = 1, . . . , N and n \not = J . Hence, the nth queue length is the solution to the following delay
differential equation:

\bullet 
Dn(t) = \Lambda 

1 - exp(Dn(t - \Delta ))

1 +
\sum N

k=1
k \not =J

exp(Dk(t - \Delta ))
 - \mu Dn(t), where J \not = n = 1, . . . , N.(3.10)

One observes now that (3.10) has zero as an equilibrium solution. Using the Taylor series up
to the third order around this trivial equilibrium solution, (3.10) becomes

\bullet 
Dn(t) = \Lambda 

\left[     - 1

N
Dn(t - \Delta ) +

\biggl( 
2 - N

2N2

\biggr) 
D2

n(t - \Delta ) +
1

N2
Dn(t - \Delta )

N\sum 
k=1

k \not =\{ n,J\} 

Dk(t - \Delta )

+

\biggl( 
 - N2 + 6N  - 6

6N3

\biggr) 
D3

n(t - \Delta ) +

\biggl( 
N  - 4

2N3

\biggr) 
D2

n(t - \Delta )
N\sum 
k=1

k \not =\{ n,J\} 

Dk(t - \Delta )(3.11)

+
1

2N2
Dn(t - \Delta )

\left(    N\sum 
k=1

k \not =\{ n,J\} 

D2
k(t - \Delta ) - 2

N

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Dk(t - \Delta )

\right)    
2\right)    
\right]     - \mu Dn(t).

To the third order, the same results of (3.11) are obtained by using Dn(t) = PJ(t)  - Pn(t).
Moreover, (3.11) contains only nonlinear coupling terms. In the special case of two queues,
i.e., N = 2, the equation of the lengths difference D2(t) = q1(t) - q2(t) is given by

\bullet 
D2 = \Lambda 

\Biggl[ 
 - 1

2
D2(t - \Delta ) +

1

24
D3

2(t - \Delta )

\Biggr] 
 - \mu D2(t);(3.12)

this equation does not contain quadratic terms that break the symmetry of the problem. Con-
sequently, the lengths of the two queues oscillate out of phase around the equilibrium with
equal amplitudes. For more details see the work by Pender, Rand, and Wesson [40].

Using (3.8) and (3.9) and starting the system off at the equilibrium value, the nth modified
queue length Qn is given by

Qn(t) =
\Lambda 

N\mu 
+

1

N

N\sum 
k=1

Dk(t) - Dn(t) with n = 1, . . . , N.(3.13)
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3.4. Hopf bifurcation. The linear equations ruling the perturbation Pn(t) and the differ-
ence Dn(t) are deduced from (3.7) and (3.11) as follows:

\bullet 
Pn + \mu Pn +

\Lambda 

N
Pn\Delta =

\Lambda 

N2

N\sum 
k=1

Pk\Delta ,(3.14)

\bullet 
Dn + \mu Dn +

\Lambda 

N
Dn\Delta = 0.(3.15)

The linear equations of the differences (3.15) are decoupled while equations of the deviations
from the equilibrium (3.14) have the same coupling term. Moreover, (3.15) has D = 0 as
an equilibrium solution that corresponds to Qn(t) = QJ(t) for all n = 1, . . . , N . The lin-
ear stability of D = 0 is defined through solving the following transcendental characteristic
equation:

r + \mu +
\Lambda 

N
e - r\Delta = 0.(3.16)

Equation (3.16) has an infinite number of complex solutions that can be expressed in terms
of the kth branch Wk of the Lambert function as follows:

rk =
1

\Delta 
Wk (H) - \mu , where H =  - \Lambda \Delta 

N
e\mu \Delta , k \in \BbbZ .(3.17)

Equation (3.16) can have real roots, in the following cases:
\bullet If H \not = 0 or H = e - 1, (3.16) has one real root that is

r =  - W0(H) + \mu \Delta .(3.18)

\bullet If H \in ] - e - 1, 0[, (3.16) has two real roots that are

r =  - W0(H) + \mu \Delta and r =  - W - 1(H) + \mu \Delta .(3.19)

\bullet If H <  - e - 1, (3.16) has no real root.
For more details about the application of the Lambert function for linear delay differential
equations see Asl and Ulsoy [6].

Figure 3.1 shows the real and imaginary parts of 20 roots of the characteristic equation
(3.16), in the case of N = 4 queues, for various values of the time delay \Delta below and above
the critical value \Delta c,4 = 0.865. In Figures 3.1(a) and (b) the equilibrium D = 0 is stable and
in the remaining figures it is unstable.

The stability boundary of the equilibrium D = 0 is given by vanishing the real part of r
and thus it becomes purely imaginary and can be expressed by r = i\omega c. Then, separating the
real and the imaginary parts of (3.16) leads to the following equations:\left\{     

\mu + \Lambda 
N cos(\omega c\Delta c) = 0,

\omega c  - \Lambda 
N sin(\omega c\Delta c) = 0.

(3.20)
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(a) \Delta = 0.1 < \Delta c,4 = 0.865 (b) \Delta = 0.86 < \Delta c,4 = 0.865
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(c) \Delta = 0.87 > \Delta c,4 = 0.865 (d) \Delta = 0.90 > \Delta c,4 = 0.865

Figure 3.1. Twenty roots of the characteristic equation given in ( 3.16) for N = 4.

The existence of a real positive \omega c implies the birth of a periodic solution through a Hopf
bifurcation and the instability of the D = 0 equilibrium. The frequency \omega c of the born
periodic solution is given by

\omega c =

\sqrt{} \biggl( 
\Lambda 

N

\biggr) 2

 - \mu 2.(3.21)

The periodic solution exists if \gamma \lambda /\mu > N . When the number of queues N increases, the
frequency \omega c of the born periodic solution is decreasing. The critical time delay \Delta c that
causes this Hopf bifurcation is given by

\Delta c =
1

\omega c
arccos

\biggl( 
 - \mu N

\Lambda 

\biggr) 
=

N\sqrt{} 
\Lambda 2  - N2\mu 2

arccos

\biggl( 
 - \mu N

\Lambda 

\biggr) 
.(3.22)

Hence, if \Delta < \Delta c then the equilibrium D = 0 is stable; otherwise it is unstable and a
periodic solution is born. When the number of queues N increases, the critical delay time
\Delta c increases also. Moreover, \Delta c is decreasing with increasing \Lambda , \lambda , or \gamma . Equations (3.20),
(3.21), and (3.22) are also obtained by looking for a harmonic solution of two queues' difference
D(t) = ac cos(\omega ct) in (3.15). It is important to note that the linear analysis does not give any
information on the amplitude ac of the born periodic solution.

4. Harmonic balance method. In the previous section, it was shown that the queueing
system undergoes a Hopf bifurcation and consequently the queues lengths are oscillating peri-
odically. Since they are oscillating periodically, we can represent the queue length in terms ofD
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a Fourier series. Hence, in order to obtain an analytic approximation of periodic solutions of
(3.7), we will use the HBM. The method of harmonic balance has been used by many others
(Mickens [32], MacDonald [27], Mickens and Semwogerere [31], Mickens [33]) to determine the
approximate periodic solutions of nonlinear differential equation and nonlinear delay differ-
ential equations. If a periodic solution does exist, it may be sought in the form of a Fourier
series, whose coefficients are determined by requiring the Fourier series to satisfy the original
delay differential equation. Since a Fourier series generally involves an infinite number of
terms, it is necessary to truncate the series and approximate the solution by a finite sum of
trigonometric functions like below:

(4.1) qn(t) =
M\sum 
j=0

A
(n)
j cos(\omega jt) +B

(n)
j sin(\omega jt).

Generally, (4.1) is substituted into the delay differential equation that one would like to solve
and one also sets all of the coefficients of all of the harmonics to be equal to zero. This
leads to a system of algebraic equations that need to be solved to obtain an amplitude and
frequency for the dynamics of the original system. Often one or two terms might suffice to
achieve a good approximation. More insight on how the HBM is applied in nonlinear systems
can be obtained in the survey paper by Marinca and Herisanu [28]. In order to quantify the
contribution of the fundamental frequency and its harmonics to the periodic solution, their
powers are computed and represented in the frequency domain. Mathematically, the power
of a signal is proportional to the square of the modulus of its Fourier transform and here it is
computed using a fast Fourier transformation algorithm.

In Figure 4.1 we plot the numerical time histories and the corresponding power spectra of
(2.7) in the case of four and seven queues, for time delays larger than the respective critical
delay. The power spectra show that the fundamental frequency is the dominant contribu-
tor to the solution since the ratio of the power at the fundamental frequency to the power
at first harmonic is equal to 776.5 for N = 4 and to 288 for N = 7. Several numerical
integrations were performed for various numbers of queues and time delays and the funda-
mental frequency was all the time dominant. It is to be expected that the contribution of
harmonics would increase slightly for increasing the difference between the time delays \Delta and
\Delta c. It should be noted that the frequency, in the power spectra plots, is number of queues
lengths oscillations cycles per unit time and the frequency \omega is expressed in radians per unit
time.

4.1. Phase shifts of the born periodic solutions. First, we will apply the HBM to de-
termine the phase shifts of the born periodic solutions through the Hopf bifurcation. For a
given number of queues, the linear equation given in (3.14) of the queue length deviations
from the equilibrium qs are identical for all queues, thus the born periodic solutions are iden-
tical (the same amplitude a\ast and the same frequency \omega c) up to a phase shift. The HBM
is used to compute these phases shifts, and the nth queue deviation Pn(t) is expressed as
follows:

Pn(t) = a\ast cos(\omega ct - \phi n).(4.2)D
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(a) Case N = 4 for \Delta = 0.90 > \Delta c,4 = 0.865
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(b) Case N = 7 for \Delta = 3 > \Delta c7 = 2.30

Figure 4.1. Time histories and power spectra of (2.7) for N = 4 and N = 7.

Inserting the solution of (4.2) into (3.14) and equating terms in cos(\omega ct) and sin(\omega ct) leads to
the following two equations:

cos(\phi n)
\Bigl[ 
\mu +

\lambda \gamma 

N
cos(\omega c\Delta c)

\Bigr] 
+ sin(\phi n)

\Bigl[ 
\omega c  - 

\lambda \gamma 

N
sin(\omega c\Delta c)

\Bigr] 
=

\lambda \gamma 

N2

N\sum 
k=1

cos(\omega c\Delta c + \phi k),(4.3)

sin(\phi n)
\Bigl[ 
\mu +

\lambda \gamma 

N
cos(\omega c\Delta c)

\Bigr] 
 - cos(\phi n)

\Bigl[ 
\omega c  - 

\lambda \gamma 

N
sin(\omega c\Delta c)

\Bigr] 
=

\lambda \gamma 

N2

N\sum 
k=1

sin(\omega c\Delta c + \phi k).(4.4)

Terms multiplied by cos(\phi n) and sin(\phi n) are equal to zero since they are the same as the
terms of (3.20). Consequently,

N\sum 
k=1

cos(\omega c\Delta c + \phi k) = 0 ;

N\sum 
k=1

sin(\omega c\Delta c + \phi k) = 0.(4.5)

These two equations can be written as follows:

cos(\omega c\Delta c)
N\sum 
k=1

cos(\phi k) - sin(\omega c\Delta c)
N\sum 
k=1

sin(\phi k) = 0,(4.6)
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cos(\omega c\Delta c)
N\sum 
k=1

sin(\phi k) + sin(\omega c\Delta c)
N\sum 
k=1

cos(\phi k) = 0.(4.7)

Finally, phase shifts \phi k of the N queues are governed by the following two equations:

N\sum 
k=1

cos(\phi k) = 0 and
N\sum 
k=1

sin(\phi k) = 0.(4.8)

Hence, the phase shifts between the N queues lengths are \phi k = 2k\pi /N with k = 1, 2, . . . , N .

4.2. Amplitude and frequency of the periodic solution. In this subsection, an explicit
expression of the periodic solutions of (3.7) are derived, using the HBM, beyond the Hopf
bifurcation. Hence, the solutions are sought in the form

Pn(t) = a cos(\omega t - \phi n)(4.9)

where only one term of the Fourier series is used in order to have an explicit expression of the
amplitude a and the fundamental frequency \omega . Inserting (4.9) into (3.7) and equating terms
of cos(\omega t) and sin(\omega t) leads to the following two equations:

\bullet Equation of cos(\omega t):

(4.10)

\omega sin(\phi n) + \mu cos(\phi n) +
\Lambda 

N
cos(\omega \Delta + \phi n) =

\Lambda 

N2

N\sum 
k=1

cos(\omega \Delta + \phi k)

+ a2

\left[  \Lambda 

8N2

N\sum 
k=1

cos(\omega \Delta + \phi k) - 
\Lambda 

N3

\Bigl[ N
2

N\sum 
k=1

cos(\omega \Delta + \phi k) +
1

4

N\sum 
k=1

N\sum 
j=1

cos(\omega \Delta + 2\phi k + \phi j)
\Bigr] 

+
\Lambda 

N4

\left[  N\sum 
i=1

N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
cos(\omega \Delta + \phi i) +

cos(\omega \Delta + \phi j + \phi k  - \phi i)

4

\biggr) \right]  
+

\Lambda 

4N2

\Bigl[ 
N cos(\omega \Delta + \phi n) +

N\sum 
k=1

cos(\omega \Delta + 2\phi k  - \phi n)
\Bigr] 

 - \Lambda 

N3

\left[  N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi k  - \phi j)

2
cos(\omega \Delta + \phi n) +

cos(\omega \Delta  - \phi n + \phi j + \phi k)

4

\biggr) \right]  
+

\Lambda 

4N2

\Biggl[ 
N\sum 
k=1

\biggl( 
cos(\omega \Delta + \phi k) +

1

2
cos(\omega \Delta + 2\phi n  - \phi k)

\biggr) \Biggr] 
 - \Lambda 

8N
cos(\omega \Delta + \phi n)

\Biggr] 
.
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\bullet Equation of sin(\omega t):

(4.11)

 - \omega cos(\phi n) + \mu sin(\phi n) +
\Lambda 

N
sin(\omega \Delta + \phi n) =

\Lambda 

N2

N\sum 
k=1

sin(\omega \Delta + \phi k)

+ a2

\Biggl[ 
\Lambda 

8N2

N\sum 
k=1

sin(\omega \Delta + \phi k) - 
\Lambda 

N3

\Bigl[ N
2

N\sum 
k=1

sin(\omega \Delta + \phi k) +
1

4

N\sum 
k=1

N\sum 
j=1

sin(\omega \Delta + 2\phi k + \phi j)
\Bigr] 

+
\Lambda 

N4

\left[  N\sum 
i=1

N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
sin(\omega \Delta + \phi i) +

sin(\omega \Delta + \phi j + \phi k  - \phi i)

4

\biggr) \right]  
+

\Lambda 

4N2

\Bigl[ 
N sin(\omega \Delta + \phi n) +

N\sum 
k=1

sin(\omega \Delta + 2\phi k  - \phi n)
\Bigr] 

 - \Lambda 

N3

\left[  N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi k  - \phi j)

2
sin(\omega \Delta + \phi n) +

sin(\omega \Delta  - \phi n + \phi j + \phi k)

4

\biggr) \right]  
+

\Lambda 

4N2

\Biggl[ 
N\sum 
k=1

\biggl( 
sin(\omega \Delta + \phi k) +

1

2
sin(\omega \Delta + 2\phi n  - \phi k)

\biggr) \Biggr] 
 - \Lambda 

8N
sin(\omega \Delta + \phi n)

\Biggr] 
.

Perturb the time delay \Delta and the frequency \omega around the corresponding critical values as
follows:

\Delta = \Delta c + \delta and \omega = \omega c + \omega 1,(4.12)

where \delta and \omega 1 are the deviations from the critical time delay \Delta c and the critical frequency
\omega c, respectively. Then, applying a Taylor series around \Delta c and \omega c up to the second order,
(4.10) and (4.11) can be written as

\omega 1 sin(\phi n) - 
\Lambda 

N
(\omega c\delta +\Delta c\omega 1) sin(\omega c\Delta c + \phi n) = a2 (\Gamma 1 + \Gamma 2(\omega c\delta +\Delta c\omega 1)) ,(4.13)

\omega 1 cos(\phi n) - 
\Lambda 

N
(\omega c\delta +\Delta c\omega 1) cos(\omega c\Delta c + \phi n) = a2 (\Gamma 2  - \Gamma 1(\omega c\delta +\Delta c\omega 1)) .(4.14)

Equations (4.13) and (4.14) lead to the following frequency deviation \omega 1 and amplitude a:

\omega 1 =
 - (\alpha 2 + 2\alpha 1\omega c)\delta  - \alpha 3 \pm 

\sqrt{} 
(\alpha 2\delta + \alpha 3)2  - 4\delta \alpha 1\alpha 4

2\alpha 1\Delta c
,(4.15)

a =

\sqrt{} 
\omega 1 sin(\phi i) - \Lambda 

N (\omega c\delta +\Delta c\omega 1) sin(\omega c\Delta c + \phi i)

\Gamma 1 + \Gamma 2(\omega c\delta +\Delta c\omega 1)
.(4.16)

A positive amplitude a is the only physically acceptable solution. The parameters of (4.13),
(4.14), (4.15), and (4.16) are given in Appendix A.D
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Figure 4.2 shows the length amplitudes of various queue numbers given by the HBM
(4.16) and the numerically computed amplitudes of (2.7). Figure 4.2 shows that the derived
amplitude (4.16) is accurate, as expected, only in the vicinity of the critical time delays where
the fundamental frequency is dominant.

Figure 4.3 shows the queue length oscillation frequencies of various queue numbers given
by the HBM and the numerically computed frequencies of (2.7). Figure 4.3 shows that the
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Figure 4.2. Amplitude versus time delay for various number of queues. Continuous lines show the HBM
amplitude given by ( 4.16) and circles correspond to amplitudes computed by numerical integration of ( 2.7).
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Figure 4.3. Frequency versus the deviation \Delta  - \Delta c,N of the time delay from its critical values for various
number of queues. Continuous lines show the HBM frequencies and circles correspond to frequencies computed
by numerical integration of ( 2.7).D
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accuracy domain of the analytically derived frequencies improves by increasing the number of
queues. This result is due to the effect of nonlinearities that is decreasing with increasing the
number of queues.

5. Multiple scales method. The objective of this section is to obtain an accurate analyti-
cal expression of the limit cycles better than the one given by the HBM. Hence, we will use the
MSM (Nayfeh [34], Nayfeh, Mook, and Holmes [35]) adapted to delay differential equations
(Rand [44]). The MSM is a perturbation method that is characterized by the introduction of
independent scales of time and consequently the transformation of delay differential equations
to a set of linear delayed partial differential equations.

In comparison to the HBM, the MSM provides an analytical approximation of periodic
solutions, including higher harmonics, and their stabilities. It also makes it possible to study
the transient phase, which allows us to understand how the amplitude grows over time or
shrinks over time depending on whether a Hopf bifurcation has occurred.

5.1. Case of \bfitN queues. A small positive parameter \varepsilon is introduced into (3.11) in or-
der to scale nonlinearities and to trigger the perturbation process. Hence, the queue length
differences Dn(t) are written as follows:

Dn(t) = \varepsilon Xn(t) with n = 1, . . . , N \not = J.(5.1)

Hence, using the transformation (5.1), (3.11) becomes

\bullet 
Xn + \mu Xn +

\Lambda 

N
Xn\Delta = \Lambda 

\left[    \varepsilon \biggl[ \biggl( 2 - N

2N2

\biggr) 
X2

n\Delta +
1

N2
Xn\Delta 

N\sum 
k=1

k \not =\{ n,J\} 

Xk\Delta 

\biggr] 

+ \varepsilon 2

\left[    \biggl(  - N2 + 6N  - 6

6N3

\biggr) 
X3

n\Delta +

\biggl( 
N  - 4

2N3

\biggr) 
X2

n\Delta 

N\sum 
k=1

k \not =\{ n,J\} 

Xk\Delta 

+
1

2N2
Xn\Delta 

\left(    N\sum 
k=1

k \not =\{ n,J\} 

X2
k\Delta  - 2

N

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Xk\Delta 

\right)    
2\right)    
\right]    
\right]    .(5.2)

Moreover, the time delay \Delta is expanded in terms of \varepsilon , beyond the critical delay \Delta c that causes
a Hopf bifurcation, as follows: \Delta = \Delta c + \delta = \Delta c + \varepsilon 2\~\delta .

The presence of quadratic nonlinearities in the model necessitates the use of three time
scales, i.e., the time t = t(t0, t1, t2), where the different independent time scales are tn = \varepsilon nt,
with n \in \BbbN . Using the chain rule, the time derivative is expressed as follows:

d()

dt
=

\partial ()

\partial t0
+ \varepsilon 

\partial ()

\partial t1
+ \varepsilon 2

\partial ()

\partial t2
+\scrO (\varepsilon 3).(5.3)
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QUEUES WITH DELAYED INFORMATION 697

Solutions and their delayed versions are expressed in terms of the small parameter \varepsilon as follows:

Xn(t) = Xn,0(t0, t1, t2) + \varepsilon Xn,1(t0, t1, t2) + \varepsilon 2Xn,2(t0, t1, t2) +\scrO (\varepsilon 3)(5.4)

Xn(t - \Delta ) = Xn(t0  - \Delta , t1  - \varepsilon \Delta , t2  - \varepsilon 2\Delta , . . .)

(5.5)

= Xn,0(t0  - \Delta c, t1, t2) + \varepsilon 

\biggl( 
 - \Delta c

\partial Xn,0(t0  - \Delta c, t1, t2)

\partial t1
+Xn,1(t0  - \Delta c, t1, t2)

\biggr) 
+ \varepsilon 2

\biggl( 
 - \~\delta 

\partial Xn,0(t0  - \Delta , t1, t2)

\partial (t0  - \Delta c)
 - \Delta 2

c

2

\partial 2Xn,0(t0  - \Delta c, t1, t2)

\partial t21

 - \Delta c
\partial Xn,0(t0  - \Delta c, t1, t2)

\partial t2
 - \Delta c

\partial Xn,1(t0  - \Delta c, t1, t2)

\partial t1
+Xn,2(t0  - \Delta c, t1, t2)

\biggr) 
+\scrO (\varepsilon 3).

Inserting (5.3), (5.4), and (5.5) into (5.2), and equating coefficients of like powers of \varepsilon , we get
the following linear partial differential equations at different orders of \varepsilon :

\bullet Order \scrO (\varepsilon 0),

\partial Xn,0

\partial t0
+ \mu Xn,0 +

\lambda 

N
Xn,0(t0  - \Delta c) = 0.(5.6)

The solutions of (5.6) are given by

Xn,0(t) = An(t1, t2) exp(i\omega ct0) + \=An(t1, t2) exp( - i\omega ct0),(5.7)

where the frequency \omega c and the critical delay \Delta c at the Hopf bifurcation are

\omega c =

\sqrt{} 
\Lambda 2

N2
 - \mu 2 ; \Delta c =

 - 1\sqrt{} 
\Lambda 2

N2  - \mu 2
arctan

\Biggl( 
1

\mu 

\sqrt{} 
\Lambda 2

N2
 - \mu 2

\Biggr) 
.(5.8)

The complex amplitudes An and their conjugates \=An depend on the two slow time scales t1
and t2. They are determined by eliminating the secular terms at order \scrO (\varepsilon 2).

\bullet Order \scrO (\varepsilon 1),

\partial Xn,1

\partial t0
+ \mu Xn,1 +

\Lambda 

N
Xn,1(t0  - \Delta c) =  - \partial Xn,0

\partial t1
+

\Lambda \Delta c

N

\partial Xn,0(t0  - \Delta c)

\partial t1
(5.9)

+
\Lambda (2 - N)

2N2
X2

n,0(t0  - \Delta c)

+
\Lambda 

N2
Xn,0(t0  - \Delta c)

N\sum 
k=1

k \not =\{ i,J\} 

Xk,0(t - \Delta c).

The elimination of secular terms conditions are given by

\partial An(t1, t2)

\partial t1

\biggl( 
 - 1 +

\Lambda \Delta c

N
exp( - i\omega c\Delta c)

\biggr) 
= 0 \Rightarrow \partial An(t1, t2)

\partial t1
= 0.(5.10)
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698 FAOUZI LAKRAD, JAMOL PENDER, AND RICHARD RAND

The particular solution of (5.9) is given by

(5.11)

Xn,1(t) = H0

\Bigl[ 
(2 - N)An

\=An +An

N\sum 
k=1

k \not =\{ n,J\} 

\=Ak + \=An

N\sum 
k=1

k \not =\{ n,J\} 

Ak

\Bigr] 

+ H
\Bigl[ 
(2 - N)A2

n + 2An

N\sum 
k=1

k \not =\{ n,J\} 

Ak

\Bigr] 
ei2\omega ct0 + \=H

\Bigl[ 
(2 - N) \=A2

n + 2 \=An

N\sum 
k=1

k \not =\{ n,J\} 

\=Ak

\Bigr] 
e - i2\omega ct0 ,

where

H0 =
\Lambda 

N\Lambda +N2\mu 
; H =

\Lambda 

2N

\biggl( 
e - i2\omega c\Delta c

i2\omega cN + \Lambda e - i2\omega c\Delta c +N\mu 

\biggr) 
= Hr + iHi,(5.12)

where Hr and Hi are the real and imaginary parts of H, respectively. They are given by

Hr =

\biggl( 
\Lambda 

2N

\biggr) 
N\mu cos(2\omega c\Delta c) - 2N\omega c sin(2\omega c\Delta c) + \Lambda 

N2\mu 2 + 4N2\omega 2
c + \Lambda 2 + 2N\mu \Lambda cos(2\omega c\Delta c) - 4N\Lambda \omega c sin(2\omega c\Delta c)

,(5.13)

Hi =

\biggl( 
 - \Lambda 

2

\biggr) 
\mu sin(2\omega c\Delta c) + 2\omega c cos(2\omega c\Delta c)

N2\mu 2 + 4N2\omega 2
c + \Lambda 2 + 2N\mu \Lambda cos(2\omega c\Delta c) - 4N\Lambda \omega c sin(2\omega c\Delta c)

.(5.14)

\bullet Order \scrO (\varepsilon 2),

\partial Xn,2

\partial t0
+ \mu Xn,2 +

\Lambda 

N
Xn,2(t0  - \Delta c) =  - \partial Xn,0

\partial t2
 - \partial Xn,1

\partial t1

+
\Lambda 

N

\biggl[ 
\~\delta 
\partial Xn,0(t - \Delta c)

\partial (t0  - \Delta )
+

\Delta 2
c

2

\partial 2Xn,0(t0  - \Delta c)

\partial t21

+\Delta c
\partial Xn,0(t0  - \Delta )

\partial t2
+\Delta c

\partial Xn,1(t0  - \Delta c)

\partial t1

\biggr] 
+

\Lambda (2 - N)

N2
Xn,0(t0  - \Delta c)

\biggl( 
Xn,1(t0  - \Delta c) - \Delta c

\partial Xn,0(t0  - \Delta c)

\partial t1

\biggr) 
+

\Lambda 

N2
Xn,0(t0  - \Delta c)

N\sum 
k=1

k \not =\{ n,J\} 

\biggl( 
Xk,1(t0  - \Delta ) - \Delta c

\partial Xk,0(t0  - \Delta c)

\partial t1

\biggr) 

+
\Lambda 

N2

\biggl( 
Xn,1(t0  - \Delta ) - \Delta c

\partial Xn,0(t0  - \Delta c)

\partial t1

\biggr) N\sum 
k=1

k \not =\{ n,J\} 

Xk,0(t0  - \Delta c)
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+ \Lambda 

\biggl( 
 - N2 + 6N  - 6

6N3

\biggr) 
X3

n,0(t0  - \Delta c)

+ \Lambda 

\biggl( 
N  - 4

2N3

\biggr) 
X2

n,0(t0  - \Delta c)
N\sum 
k=1

k \not =\{ n,J\} 

Xk,0(t0  - \Delta )

+
\Lambda 

2N2
Xn,0(t - \Delta c)

\left(    N\sum 
k=1

k \not =\{ n,J\} 

X2
k,0(t0  - \Delta c)

 - 2

N

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Xk,0(t0  - \Delta c)

\right)    
2\right)    .(5.15)

The elimination of secular terms condition is given by

\partial An

\partial t2
=

\biggl( 
ei\omega c\Delta c

\lambda 
 - \Delta c

N

\biggr)  - 1

\left[    i \~\delta N \omega cAn +R1A
2
n
\=An +R2A

2
n

\left(    N\sum 
k=1

k \not =\{ n,J\} 

\=Ak

\right)    

+ \=An

\left[    R3

\left(    N\sum 
k=1

k \not =\{ n,J\} 

A2
k

\right)    +R4

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Ak

\right)    
2\right]    +R5An

\=An

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Ak

\right)    

+ An

\left[    N\sum 
k=1

k \not =\{ n,J\} 

\left(    R6Ak
\=Ak +R7Ak

N\sum 
j=1

j \not =\{ k,J,n\} 

\=Aj +R7
\=Ak

N\sum 
j=1

j \not =\{ k,J,n\} 

Aj

\right)    
\right]    

+ R8An

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Ak

\right)    
\left(    N\sum 

k=1
k \not =\{ n,J\} 

\=Ak

\right)    +R9
\=An

\left(    N\sum 
k=1

k \not =\{ n,J\} 

Ak

N\sum 
j=1

j \not =\{ k,J,n\} 

Aj

\right)    
\right]    ,(5.16)

where the parameters Rj(j = 1, . . . , 9) are given in Appendix B.
Write the complex amplitude An in polar form as follows:

An(t1, t2) =
an(t1, t2)

2
ei\theta n(t1,t2), where n = 1, . . . , N \not = J.(5.17)

Inserting the polar form (5.17) into the solvabibility condition (5.16) and separating real and
imaginary parts, we obtain the following modulations equations of the amplitude an(t) and
the phase \theta n(t):D
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\bullet 
an =

\Biggl[ 
G0\delta an +G1a

3
n + a2n

\biggl[ N\sum 
k=1

k \not =\{ n,J\} 

ak

\biggl( 
G2 cos(\Psi k) +G3 sin(\Psi k)

\biggr) \biggr] 

+ an

\biggl[ N\sum 
k=1

k \not =\{ n,J\} 

a2k

\biggl( 
G4 +G5 cos(2\Psi k) +G6 sin(2\Psi k)

\biggr) 

+
N\sum 
k=1

k \not =\{ n,J\} 

ak

\biggl( N\sum 
j=k+1
j \not =\{ n,J\} 

aj (G7 cos(\Psi k +\Psi j) +G8 sin(\Psi k +\Psi j) +G9 cos(\Psi k  - \Psi j))

+

N\sum 
j=1

j \not =\{ k,J,n\} 

aj (G10 cos(\Psi k +\Psi j) - G11 sin(\Psi k +\Psi j))

\biggr) \biggr] \Biggr] 
,(5.18)

\bullet 
\theta n =

\Biggl[ 
C0\delta + C1a

2
n + an

\biggl[ N\sum 
k=1

k \not =\{ n,J\} 

ak (C2 cos(\Psi k) + C3 sin(\Psi k))

\biggr] 

+

\biggl[ N\sum 
k=1

k \not =\{ n,J\} 

a2k

\biggl( 
C4 + C5 cos(2\Psi k) - C6 sin(2\Psi k)

\biggr) 

+

N\sum 
k=1

k \not =\{ n,J\} 

ak

\biggl( N\sum 
j=k+1
j \not =\{ n,J\} 

aj ( - C7 sin(\Psi k +\Psi j) + C8 cos(\Psi k +\Psi j) + C9 cos(\Psi k  - \Psi j))

+
N\sum 
j=1

j \not =\{ k,J,n\} 

aj (G11 cos(\Psi k +\Psi j) - G10 sin(\Psi k +\Psi j))

\biggr) \biggr] \Biggr] 
,(5.19)

where \Psi k = \theta n  - \theta k. The parameters Gj(j = 0, . . . , 11) and Cj(j = 0, . . . , 9) are given in
Appendix B.

A sufficient condition for a periodic solution of (5.1) is to have a nontrivial constant

amplitude a\ast n, zero of (5.18), and a constant
\bullet 
\theta n, given in (5.19). Up to the second order, the

nth queue length difference Dn(t), periodic solution of (3.11) is given by

Dn(t) = a\ast n cos(\Omega t+ \theta n0) +H0

\biggl[ 
2 - N

4
a\ast 2n +

a\ast n
2

N\sum 
k=1

k \not =\{ n,J\} 

a\ast k cos(\theta n0  - \theta k0)

\biggr] 

+Hnr

\biggl[ 
2 - N

2
a\ast 2n cos(2\Omega t+ 2\theta n0) + a\ast n

N\sum 
k=1

k \not =\{ n,J\} 

a\ast k cos(2\Omega t+ \theta k0 + \theta n0)

\biggr] 
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 - Hni

\biggl[ 
2 - N

2
a\ast 2n sin(2\Omega t+ 2\theta n0) + a\ast n

N\sum 
k=1

k \not =\{ n,J\} 

a\ast k sin(2\Omega t+ \theta k0 + \theta n0)

\biggr] 
,(5.20)

where \theta m0 = \theta m(0) for all m = 1, . . . , N .

5.2. Particular cases of two and three queues. In this subsection, the cases of two
and three queues are investigated since they correspond to the case where nonlinearities and
couplings are the strongest.

5.2.1. Case of two queues. Choosing the first queue as a reference J = 1, the amplitude
and phase modulation equations (5.18) and (5.19) of the queues lengths difference D2(t) =
Q1(t) - Q2(t) are given by

\bullet 
a2 = G0\delta a2 +G1a

3
2 ;

\bullet 
\theta 2 = C0\delta + C1a

2
2,(5.21)

where

G0 =  - \beta 2
\omega c2

2
; G1 =

\beta 1
32

; C0 = \beta 1
\omega c2

2
; C1 =

\beta 2
32

.(5.22)

The amplitude of the periodic solution, corresponding to \.a2 = 0, is given by

a\ast 2 =

\sqrt{} 
 - G0\delta 

G1
= 4

\sqrt{} 
\beta 2\omega c2

\beta 1
\delta .(5.23)

The phase \theta 2(t) is given by

\theta 2(t) =
\bigl( 
C0\delta + C1a

\ast 2
2

\bigr) 
t+ \theta 20.(5.24)

Consequently, the fundamental frequency \Omega of the periodic solution is given by

\Omega = \omega c2 + C0\delta + C1a
\ast 2
2 = \omega c2

\biggl( 
1 +

\biggl( 
\beta 2
1 + \beta 2

2

2\beta 1

\biggr) 
\delta 

\biggr) 
.(5.25)

The solution of the queue length difference (5.20) becomes in the case of two queues D2(t) up
to the second order

D2(t) = a\ast 2 cos(\Omega t+ \theta 20) +\scrO (\varepsilon 2).(5.26)

The queue length equation (3.13) leads to the following expressions:

Q1(t) =
\Lambda 

2\mu 
+

1

2
D2(t),(5.27)

Q2(t) =
\Lambda 

2\mu 
 - 1

2
D2(t) = Q1(t+ \pi ).(5.28)

These two solutions are out of phase.

5.2.2. Case of three queues. Choosing the first line as a reference J = 1, the length
differences are defined as D2(t) = Q1(t)  - Q2(t) and D3(t) = Q1(t)  - Q3(t). They are
governed by the following two nonlinear delay differential equations:D
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\bullet 
D2 =

\Lambda 

54

\Biggl[ 
 - 18D2\Delta  - 3D2

2\Delta +D3
2\Delta + 6D2\Delta D3\Delta  - D2

2\Delta D3\Delta +D2\Delta D
2
3\Delta 

\Biggr] 
 - \mu D2,(5.29)

\bullet 
D3 =

\Lambda 

54

\Biggl[ 
 - 18D3\Delta  - 3D2

3\Delta +D3
3\Delta + 6D3\Delta D2\Delta  - D2

3\Delta D2\Delta +D3\Delta D
2
2\Delta 

\Biggr] 
 - \mu D3.(5.30)

The amplitude and phase modulation equations (5.18) and (5.19) become in the case of three
queues as follows:

\bullet 
a2 = S1\delta a2 + S2a

3
2 + S3a2a

2
3 + ( - S2 cos(\Psi ) + S4 sin(\Psi )) a22a3(5.31)

+ (S5 cos(2\Psi ) - S4 sin(2\Psi )) a2a
2
3,

\bullet 
a3 = S1\delta a3 + S2a

3
3 + S3a3a

2
2  - (S2 cos(\Psi ) + S4 sin(\Psi )) a2a

2
3(5.32)

+ (S5 cos(2\Psi ) + S4 sin(2\Psi )) a22a3,
\bullet 
\Psi = (M2  - M3 + S4 cos(2\Psi )) (a22  - a23) + 2S5a2a3 sin(\Psi ) - S5(a

2
2 + a23) sin(2\Psi )

=  - S4 (1 - cos(2\Psi )) (a22  - a23) + 2S5a2a3 sin(\Psi ) - S5(a
2
2 + a23) sin(2\Psi ),(5.33)

where \Psi = \theta 2  - \theta 3 is the difference of phases. All the newly introduced parameters are given
in Appendix C.

The vector field of the slow flow equations, (5.31), (5.32), and (5.33), is invariant with
respect to the permutation \scrP (a2, a3) = (a3, a2) and the symmetry \scrT (\Psi ) =  - \Psi . Moreover, a
sufficient condition to have periodic solutions of the original equations (5.29) and (5.30) is to
use equilibria of (5.31), (5.32), and (5.33). The stability of these solutions can be investigated
by computing the eigenvalues of the Jacobian of the slow flow. Equations (5.31), (5.32),
and (5.33) have a family of equilibria corresponding to the case of equal amplitudes, i.e.,
a2 = a3 = a\ast 3. These equilibria are given, in the case of nonnegative \Psi s, by

\scrP 1 =

\biggl( 
a\ast 3 =

\sqrt{} 
 - \delta S1

S3 + S5
, a\ast 3 =

\sqrt{} 
 - \delta S1

S3 + S5
,\Psi s = 0

\biggr) 
,(5.34)

\scrP 2 =

\biggl( 
a\ast 3 =

\sqrt{} 
 - \delta S1

2S2 + S3 + S5
, a\ast 3 =

\sqrt{} 
 - \delta S1

2S2 + S3 + S5
,\Psi s = \pi 

\biggr) 
,(5.35)

\scrP 3 =

\biggl( 
a\ast 3 =

\sqrt{} 
 - 2\delta S1

S2 + 2S3  - S5
, a\ast 3 =

\sqrt{} 
 - 2\delta S1

S2 + 2S3  - S5
,\Psi s =

\pi 

3

\biggr) 
.(5.36)

In our case, only the fixed point \scrP 3 is stable; see Appendix D.
In Appendix E, it is proven that the fundamental frequency \Omega of the limit cycle is given

by

\Omega = \omega c + \delta 

\biggl( 
M1  - S1

M2 + 2M3 + S4

S2 + 2S3  - S5

\biggr) 
.(5.37)

The frequency \Omega is changing linearily with respect to \delta while the amplitude a\ast 3, given in (5.36),
is increasing proportional to

\surd 
\delta . The approximation of the limit cycles up to the second order,

of (5.29) and (5.30), is given byD
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D2(t) = a\ast 3 cos(\Omega t+ \theta 20) + a\ast 23

\biggl[ 
Hr

\biggl( 
 - 1

2
cos(2\Omega t+ 2\theta 20) + cos(2\Omega t+ \theta 20 + \theta 30)

\biggr) 
+ Hi

\biggl( 
1

2
sin(2\Omega t+ 2\theta 20) - sin(2\Omega t+ \theta 20 + \theta 30)

\biggr) \biggr] 
+\scrO (\varepsilon 2),(5.38)

D3(t) = a\ast 3 cos(\Omega t+ \theta 30) + a\ast 23

\biggl[ 
Hr

\biggl( 
 - 1

2
cos(2\Omega t+ 2\theta 30) + cos(2\Omega t+ \theta 20 + \theta 30)

\biggr) 
+ Hi

\biggl( 
1

2
sin(2\Omega t+ 2\theta 30) - sin(2\Omega t+ \theta 20 + \theta 30)

\biggr) \biggr] 
+\scrO (\varepsilon 2),(5.39)

where \theta 20 = \theta 2(0) and \theta 30 = \theta 3(0) are the phases at initial time t = 0 of D2(t) and D3(t),
respectively. They have to verify the constraint \theta 20  - \theta 30 = \Psi s = \pi /3.

The lengths of the three queues are found using the following three relations:

q1(t) - q2(t) =
D2(t)

\gamma 
; q1(t) - q3(t) =

D3(t)

\gamma 
; q1(t) + q2(t) + q3(t) =

\lambda 

\mu 
.(5.40)

Consequently, we get the following solutions:

q1(t) =
\lambda 

3\mu 
+

1

3\gamma 
(D2(t) +D3(t)),(5.41)

q2(t) =
\lambda 

3\mu 
+

1

3\gamma 
(D3(t) - 2D2(t)),(5.42)

q3(t) =
\lambda 

3\mu 
+

1

3\gamma 
(D2(t) - 2D3(t)).(5.43)

Up to the first order, using (5.38) and (5.39), the lengths of the three queues are given explicitly
by

q1(t) =
\lambda 

3\mu 
+

a\ast 3
\gamma 
\surd 
3
cos
\Bigl( 
\Omega t+ \theta 20  - 

\pi 

6

\Bigr) 
+\scrO (\varepsilon ),(5.44)

q2(t) = q1

\biggl( 
t - 2\pi 

3\Omega 

\biggr) 
=

\lambda 

3\mu 
+

a\ast 3
\gamma 
\surd 
3
cos

\biggl( 
\Omega t+ \theta 20  - 

5\pi 

6

\biggr) 
+\scrO (\varepsilon ),(5.45)

q3(t) = q1

\biggl( 
t+

2\pi 

3\Omega 

\biggr) 
=

\lambda 

3\mu 
+

a\ast 3
\gamma 
\surd 
3
cos
\Bigl( 
\Omega t+ \theta 20 +

\pi 

2

\Bigr) 
+\scrO (\varepsilon ).(5.46)

The length of each queue is oscillating around the equilibrium state with the same amplitude
and the shift between two queues is 2\pi /3.

5.3. Results. For all the numerical results \lambda = 10 and \mu = 1. Figure 5.1 shows the graphs
of the limit cycles in the plane (D2(t), D3(t)) for various values of the delay time \Delta . This
figure shows the good agreement between the numerical integration of the system of DDEs
and the MSM analytical solutions (5.38) and (5.39).

Figure 5.2 shows the limit cycles of the queue lengths in the space (q1(t), q2(t), q3(t), for
\Delta = 0.6, 0.7, 0.8, and 0.9. This figure shows that increasing the time delay \Delta increases theD
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-3 -2 -1 0 1 2 3

D
2
(t)

-3

-2

-1

0

1

2

3

D
3
(t

)
 = 0.6

 = 0.7

 = 0.8

Figure 5.1. of ( 5.29) and ( 5.30) for various time delays \Delta . The analytical solutions ( 5.38) and ( 5.39)
given by the MSM are shown in thick black lines and the numerical solutions are shown in blue, red, and green.

2
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Figure 5.2. Limit cycles of queues lengths q1(t), q2(t), and q3(t) for various time delays. The analytical
solutions ( 5.41), ( 5.42), and ( 5.43) given by the MSM are shown in black lines and the numerical solutions
are shown in green (\Delta = 0.6), red (\Delta = 0.7), blue (\Delta = 0.8), and yellow (\Delta = 0.9).
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(a) q1(t) = 1, q2(t) = 1.01, q3(t) = 0.99, for t \in [ - \Delta , 0]
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(b) q1(t) = q2(t) = 1, q3(t) = 0.99, for t \in [ - \Delta , 0]
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(c) q1(t) = q2(t) = q3(t) = 1, for t \in [ - \Delta , 0]

Figure 5.3. Time histories of queues lengths for N = 3, \gamma = 1, and \Delta = 0.65 and for various initial
conditions.

amplitude of the limit cycles. It proves the validity of analytical solutions obtained by the
MSM up to the second order.

Figure 5.3 shows the numerical time histories of the three queues q1(t), q2(t), and q3(t)
for various initial starting function in the domain [ - \Delta , 0]. Figure 5.3(a) shows that when
the starting functions are different, the three queues have the same amplitude and frequencyD
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Figure 5.4. Amplitude of the periodic solution of the queues lengths versus the time delay \Delta for two
and three queues. The continuous line is obtained through the MSM and circles are obtained by numerical
integrations.

with a shift of 2\pi /3 between each other. Figure 5.3(b) shows that if two queues are initially
identical, they remain identical for all times with an amplitude equal one half the amplitude
of the third queue. In this case, the three queues are behaving like two queues and they are
out of phase. When the three queues are initially identical, Figure 5.3(c) shows that they
are not oscillating and they converge to the static equilibrium \lambda \gamma /3\mu . Figure 5.3 shows the
sensitivity to the initial conditions and illustrate our result stating that when \Delta > \Delta c the
stable solution of the three queues problem is given in Figure 5.3(a).

Figure 5.4 shows, in the case of two and three queues, the amplitudes of the periodic queues
lengths, qn(t), versus the time delay \Delta . We define the amplitude in the numerical simulations
as the half of the difference between the maximum and the minimum of the steady state
solution. The MSM amplitudes of the queues lengths oscillations qn(t) are a\ast 2/2 for N = 2
and a\ast 3/(\gamma 

\surd 
3) for N = 3. Figure 5.4 shows the good agreement between the MSM results and

the numerical results in comparison to the HBM results.

6. Conclusion and future work. This paper answers important questions with regards to
service systems using delayed information into their delay announcements. We consider that
the information passed to the customers about each of N queues is delayed by a constant \Delta ,
which can be interpreted as the time of customers traveling to the selected queue. We prove
explicit expressions for the critical delay, the amplitude, the frequency, and the phases of each
queue using the harmonic balance and the method of multiple scales. Unlike the harmonic
balance method, the method of multiple scales provides the transient path of the amplitude
dynamics.D
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There are many possible research topics for future work. The first would be to generalize
the constant delay to a random delay. This would generalize the delay differential equations
to distributed delay equations. It is an open problem to understand not only how the critical
delay depends on the distribution of the random variable, but also how the amplitude and
the frequency depend on it as well. A second generalization would be to apply the delayed
information to more complicated queueing models. We do not mean applying it to the Erlang-
A as the infinite server case analysis can be easily applied to the Erlang-A model. One example
would be models that are not symmetric and perhaps queues that are connected, i.e., a Jackson
network. We plan to pursue these extensions in future work.

Appendix A. Parameters of the HBM. The parameters, obtained through the HBM, of
(4.13), (4.14), (4.15), and (4.16) are given by

\Gamma 1 =  - \Lambda 

4N3

N\sum 
k=1

N\sum 
j=1

(cos(\omega c\Delta c + 2\phi k + \phi j))

+
\Lambda 

N4

N\sum 
i=1

N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
cos(\omega c\Delta c + \phi i) +

1

4
cos(\omega c\Delta c + \phi j + \phi k  - \phi i)

\biggr) 

+
\Lambda 

4N2

\Bigl[ 
N cos(\omega c\Delta c + \phi n) +

N\sum 
k=1

cos(\omega c\Delta c + 2\phi k  - \phi n)
\Bigr] 

 - \Lambda 

N3

\left[  N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
cos(\omega c\Delta c + \phi n) +

1

4
cos(\omega c\Delta c + \phi j + \phi k  - \phi n)

\biggr) \right]  
+

\Lambda 

8N2

N\sum 
k=1

cos(\omega c\Delta c + 2\phi n  - \phi k) - 
\Lambda 

8N
cos(\omega c\Delta c + \phi n),(A.1)

\Gamma 2 =
\Lambda 

4N3

N\sum 
k=1

N\sum 
j=1

(sin(\omega c\Delta c + 2\phi k + \phi j))

 - \Lambda 

N4

N\sum 
i=1

N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
sin(\omega c\Delta c + \phi i) +

1

4
sin(\omega c\Delta c + \phi j + \phi k  - \phi i)

\biggr) 

 - \Lambda 

4N2

\Bigl[ 
N sin(\omega c\Delta c + \phi n) +

N\sum 
k=1

sin(\omega c\Delta c + 2\phi k  - \phi n)
\Bigr] 

+
\Lambda 

N3

\left[  N\sum 
k=1

N\sum 
j=1

\biggl( 
cos(\phi j  - \phi k)

2
sin(\omega c\Delta c + \phi n) +

1

4
sin(\omega c\Delta c + \phi j + \phi k  - \phi n)

\biggr) \right]  
 - \Lambda 

8N2

N\sum 
k=1

sin(\omega c\Delta c + 2\phi n  - \phi k) +
\Lambda 

8N
sin(\omega c\Delta c + \phi n),(A.2)
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\alpha 1 =  - \Gamma 1

\biggl( 
sin(\phi n)

\Delta c
 - \Lambda 

N
sin(\omega c\Delta c + \phi n)

\biggr) 
 - \Gamma 2

\biggl( 
cos(\phi n)

\Delta c
 - \Lambda 

N
cos(\omega c\Delta c + \phi n)

\biggr) 
,(A.3)

\alpha 2 =
\omega c(\Gamma 1 sin(\phi n) + \Gamma 2 cos(\phi n))

\Delta c
,(A.4)

\alpha 3 =  - \Gamma 1

\biggl( 
cos(\phi n)

\Delta c
 - \Lambda 

N
cos(\omega c\Delta c + \phi n)

\biggr) 
+ \Gamma 2

\biggl( 
sin(\phi n)

\Delta c
 - \Lambda 

N
sin(\omega c\Delta c + \phi n)

\biggr) 
,(A.5)

\alpha 4 =  - \omega c

\Delta c
(\Gamma 2 sin(\phi n) - \Gamma 1 cos(\phi n)) .(A.6)

Appendix B. Parameters of the MSM. The following parameters were introduced in the
secular term elimination equation (5.16):

R1 = (H0 +H)
(2 - N)2

N2
+

\biggl( 
 - N2 + 6N  - 6

2N3

\biggr) 
,(B.1)

R2 =
2 - N

N2
H +

3 - N

N2
H0 +

\biggl( 
N  - 4

2N3

\biggr) 
,(B.2)

R3 =
1 + 2H(2 - N)

2N2
,(B.3)

R4 =
H0

N2
 - 1

N3
,(B.4)

R5 =
(5 - 2N)

N2
H0 +

2(3 - N)

N2
H +

N  - 4

N3
,(B.5)

R6 =
(3 - N)H0 + 2H

N2
,(B.6)

R7 =
H0

N2
,(B.7)

R8 =
N  - 2

N3
,(B.8)

R9 =
2H

N2
.(B.9)

The real and imaginary parts of each parameter Rj are denoted Rjr and Rji, respectively.

\beta 1 + i\beta 2 =

\biggl( 
ei\omega c\Delta c

\lambda 
 - \Delta c

N

\biggr)  - 1

,(B.10)

where

\beta 1 =
N2\Lambda cos(\omega c\Delta c) - N\Lambda 2\Delta c

N2  - 2N\Lambda \Delta c cos(\omega c\Delta c) + \Delta 2
c\Lambda 

2
,(B.11)

\beta 2 =
 - N2\Lambda sin(\omega c\Delta c)

N2  - 2N\Lambda \Delta c cos(\omega c\Delta c) + \Delta 2
c\Lambda 

2
.(B.12)
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Parameters introduced in the amplitude and phase modulations equations (5.18 ) and (5.19)
are given by

G0 =  - \beta 2
\omega c

N
; G1 =

1

4
(\beta 1R1r  - \beta 2R1i) ; G2 =

\beta 1
4
(R2r +R5r) - 

\beta 2
4
(R2i +R5i),

G3 = (\beta 1R5i + \beta 2R5r)/4 - (\beta 1R2i + \beta 2R2r)/4 ; G4 = (\beta 1(R6r +R8) - \beta 2R6i) /4,

G5 = (\beta 1R3r  - \beta 2R3i)/4 + \beta 1R4/4 ; G6 = (\beta 1R3i + \beta 2R3r)/4 + \beta 2R4/4,

G7 = \beta 1R4/2 ; G8 = \beta 2R4/2 ; G9 = (\beta 1R8r  - \beta 2R8i)/4 + \beta 1R7/2,

G10 = (\beta 1R9r  - \beta 2R9i)/4 ; G11 = (\beta 1R9i + \beta 2R9r)/4 ; C0 = \beta 1
\omega c

N
,

C1 = (\beta 2R1r + \beta 1R1i)/4 ; C2 = (\beta 1R2i + \beta 2R2r)/4 + (\beta 1R5i + \beta 2R5r)/4,

C3 = (\beta 1R2r  - \beta 2R2i)/4 - (\beta 1R5r  - \beta 2R5i)/4 ; C4 = (\beta 1R6i + \beta 2(R6r + \beta 8))/4,

C5 = (\beta 1R3i + \beta 2R3r)/4 + \beta 2R4/4 ; C6 = (\beta 1R3r  - \beta 2R3i)/4 + \beta 1R4/4,

C7 = \beta 1R4/2 ; C8 = \beta 2R4/2 ; C9 = \beta 2R7/2 + (R8r\beta 2 +R8i\beta 1)/4.

Appendix C. Case of 3-queues. In the case of N = 3, the parameters \beta 1 and \beta 2 are
given by

\beta 1 =
9\Lambda cos(\omega c\Delta c) - 3\Lambda 2\Delta c

9 + \Lambda 2\Delta 2
c  - 6\Lambda \Delta c cos(\omega c\Delta c)

,(C.1)

\beta 2 =
 - 9\Lambda sin(\omega c\Delta c)

9 + \Lambda 2\Delta 2
c  - 6\Lambda \Delta c cos(\omega c\Delta c)

.(C.2)

The parameters of the modulations equations (5.31), (5.32), and (5.33) are

S1 =  - \beta 2
3
\omega cS2 =

\beta 1
72

(1 + 2H0 + 2Hr) - 
\beta 2Hi

36
S3 =

\beta 1
108

(1 + 6Hr) - 
\beta 2Hi

18
,

S4 =
\beta 1Hi

36
 - \beta 2

216
(1 + 6H0  - 6Hr) = M3  - M2S5 =

\beta 1
216

(1 + 6H0  - 6Hr) +
\beta 2Hi

36
,

M1 =
\beta 1
3
\omega cM2 =

\beta 1
36

Hi +
\beta 2
72

(1 + 2H0 + 2Hr)M3 =
\beta 1
18

Hi +
\beta 2
108

(1 + 6Hr).(C.3)

Appendix D. Stability of the periodic solutions. The sign of the eigenvalues of the Jaco-
bian matrix \BbbJ give information about the linear stability of equilibria. Hence, an equilibrium
is stable if all the eigenvalues of its \BbbJ have negative real parts. It is unstable if at least one of
the eigenvalues has a positive real part.

The three eigenvalues of the Jacobian matrix of (5.31), (5.32), and (5.33) of the fixed
points \scrP 1,\scrP 2, and \scrP 3 given in (5.34), (5.35), and (5.36) are given by

\bullet for \scrP 1, \biggl( 
 - 2\delta S1,

2\delta S1S5

S3 + S5
,
 - 2\delta S1(S2  - S3  - S5)

S3 + S5

\biggr) 
,

.
\bullet for \scrP 2, \biggl( 

 - 2\delta S1,
6\delta S1S5

2S2 + S3 + S5
,
 - 2\delta S1(S2  - S3  - S5)

2S2 + S3 + S5

\biggr) 
,
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\bullet for \scrP 3, \biggl( 
 - 2\delta S1,

\delta S1(\sigma 1 + 2
\surd 
\sigma 2)

S2 + 2S3  - S5
,
\delta S1(\sigma 1  - 2

\surd 
\sigma 2)

S2 + 2S3  - S5

\biggr) 
,

where \sigma 1 =  - 2S2 + 2S3  - 4S5 and \sigma 2 = (S2  - S3  - S5)
2  - 9S2

4 .
For the numerical values considered in our case, i.e., \lambda = 10 and \mu = 1, the eigenvalues of

the Jacobian matrix are for \scrP 1, (1.679\delta , - 3.345\delta , 0); for \scrP 2, (1.679\delta , - 3.345\delta , 0); and for \scrP 3,
( - 3.345\delta , ( - 3.370 + i0.965)\delta , ( - 3.370 - i0.965)\delta ). Consequently, the only stable equilibrium
is \scrP 3.

Appendix E. In the case of three queues, modulation equations of the phases \theta 2 and \theta 3
are given by

a2
\bullet 
\theta 2 = M1\delta a2 +M2a

3
2 +M3a2a

2
3 + ( - M2 cos(\Psi ) + S5 sin(\Psi )) a22a3(E.1)

+ ( - S4 cos(2\Psi ) - S5 sin(2\Psi )) a2a
2
3,

a3
\bullet 
\theta 3 = M1\delta a3 +M2a

3
3 +M3a

2
2a3 + ( - M2 cos(\Psi ) - S5 sin(\Psi )) a2a

2
3(E.2)

+ ( - S4 cos(2\Psi ) + S5 sin(2\Psi )) a22a3.

If both a2 and a3 are not trivial, then we define the phases difference by \Psi = \theta 2  - \theta 3. It is
governed by the following equation:

\bullet 
\Psi =  - S4 (1 - cos(2\Psi )) (a22  - a23) + 2S5a2a3 sin(\Psi ) - S5(a

2
2 + a23) sin(2\Psi ).(E.3)

In the particular case where a2 = a3 = a\ast 3, we get

\bullet 
\Psi = 2S5a

\ast 2
3 sin(\Psi ) (1 - 2 cos(\Psi )) .(E.4)

The \Psi will converge to the stable equilibrium \Psi s = \pi /3; consequently, the phase modulation
equations (E.1) and (E.2) become

\bullet 
\theta 2 = M1\delta +

\biggl( 
M2

2
+M3 +

S4

2

\biggr) 
a\ast 23 ,(E.5)

\bullet 
\theta 3 = M1\delta +

\biggl( 
M2

2
+M3 +

S4

2

\biggr) 
a\ast 23 .(E.6)

The phases \theta 2 and \theta 3 are given by

\theta 2(t) =

\biggl( 
\delta M1 + (M2 + 2M3 + S4)

a\ast 23
2

\biggr) 
t+ \theta 20,(E.7)

\theta 3(t) =

\biggl( 
\delta M1 + (M2 + 2M3 + S4)

a\ast 23
2

\biggr) 
t+ \theta 30.(E.8)

Solutions of lengths differences given by the MSM up to the order \scrO (1) are given by

D2(t) = a\ast 3 cos(\Omega t+ \theta 20) +\scrO (\varepsilon ),(E.9)

D3(t) = a\ast 3 cos(\Omega t+ \theta 30) +\scrO (\varepsilon ),(E.10)D
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where the fundamental frequency of D2(t) and D3(t) is given by

\Omega = \omega c +

\biggl( 
\delta M1 + (M2 + 2M3 + S4)

a\ast 23
2

\biggr) 
.(E.11)
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