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Neutral alkaline earth(like) atoms have recently been employed in atomic arrays with individual readout,
control, and high-fidelity Rydberg-mediated entanglement. This emerging platform offers a wide range of new
quantum science applications that leverage the unique properties of such atoms: ultranarrow optical “clock”
transitions and isolated nuclear spins. Specifically, these properties offer an optical qubit (o) as well as ground
(g) and metastable (m) nuclear spin qubits, all within a single atom. We consider experimentally realistic control
of this omg architecture and its coupling to Rydberg states for entanglement generation, focusing specifically on
ytterbium-171 (171Yb) with nuclear spin I = 1

2 . We analyze the S-series Rydberg states of 171Yb, described by
the three spin- 1

2 constituents (two electrons and the nucleus). We confirm that the F = 3
2 manifold, a unique spin

configuration, is well suited for entangling nuclear spin qubits. Further, we analyze the F = 1
2 series, described

by two overlapping spin configurations, using a multichannel quantum defect theory. We study the multilevel
dynamics of the nuclear spin states when driving the clock or Rydberg transition with Rabi frequency �c =
2π × 200 kHz or �R = 2π × 6 MHz, respectively, finding that a modest magnetic field (≈200 G) and feasible
laser polarization intensity purity (�0.99) are sufficient for gate fidelities exceeding 0.99. We also study single-
beam Raman rotations of the nuclear spin qubits and identify a “magic” linear polarization angle with respect to
the magnetic field at which purely σx rotations are possible.

DOI: 10.1103/PhysRevA.105.052438

I. INTRODUCTION

Individually trapped neutral atoms with interactions me-
diated by highly excited Rydberg states have become a
prominent platform for quantum science [1–3]. Most research
to date with arrays of neutral atoms has been conducted with
alkali-metal species, but alkaline earth(like) atoms (AEAs)
are gaining prominence after bosonic (I = 0) [4–16] and
fermionic (I > 0) [17–19] isotopes recently joined this field.
AEAs offer qualitative differences and quantitative advan-
tages over alkali metals. For example, they offer long-lived
metastable states useful for applications including optical
metrology [20]; high-fidelity, lossless, state-resolved detec-
tion via “shelving” [7–9]; and high-fidelity Rydberg-mediated
entanglement [12,14,15].

Fermionic isotopes have two potential advantages over
their bosonic counterparts: (1) their optical “clock” transition
is significantly stronger due to hyperfine mixing [21], and
(2) the ground and metastable “clock” states have a nuclear
spin degree of freedom decoupled from electronic spin, which
was recently utilized as a high-fidelity qubit [17–19]. These
optical and nuclear degrees of freedom can be identically
trapped at a “magic” wavelength [7,8,22] where coherence
times approach the minute scale [13,17]. Such access to mul-
tiple highly coherent qubit types within a single atom may
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obviate the need for heterogeneous qubit architectures, which
have become ubiquitous in myriad quantum science platforms
[23–27]. We extend the term omg (“optical, metastable, and
ground”) from a recent trapped ion proposal [28] to describe
neutral fermionic AEAs in this context.

Here, we analyze the Rydberg-based omg architecture for
171Yb nuclear spins. We consider a “g” qubit {↓g,↑g} encoded
in the ground state 1S0 and a “m” qubit {↓m,↑m} encoded in
the metastable clock state 3P0 [see Fig. 1(a)]. These nuclear
qubits can be manipulated by stimulated Raman transitions
via other states [17,18], as is common for hyperfine qubits
in neutral alkali-metal atoms [29] and trapped ions [28].
The “g” and “m” qubits are connected via the “o” qubit on
the clock transition, and identical trapping conditions for all
four states can be realized at the clock-magic wavelength of
759 nm where long coherence times are available [20,22].
We propose an architecture centered around the “m” qubit
to leverage these degrees of freedom. We show that the
combination of a modest magnetic field (B ≈ 200 G) and
optical polarization intensity purity (≈99%) is sufficient to
perform >0.99 fidelity operations on the nuclear qubits via
the clock, Rydberg, and Raman transitions, approaching the
fault-tolerance threshold [30,31]. We assume a coherence
time of T ∗

2 ≈ 1 s, limited by mG-level magnetic field noise
(see Appendix D) as well as off-resonant scattering from
the tweezer traps (see Appendix E). This decoherence rate
(∼2π × 1 Hz) can be compared to the limiting gate operation
rate, the anticipated optical qubit Rabi frequency (�c ≈ 2π ×
200 kHz), suggesting a promising platform for Rydberg-based
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FIG. 1. Overview of the 171Yb omg architecture. (a) The relevant level structure, showing the metastable (“m”) and ground (“g”) qubit
encoded in the “clock” and ground states, respectively, as well as the “clock” (yellow arrow) and Rydberg (purple arrow) transitions. Qubit
rotations can be performed with stimulated Raman processes via other, strong transitions (green and red arrows). (b) Overview of operations for
“m” qubits. (i) State preparation begins with cooling and optical pumping (solid arrows are laser pulses and wiggly arrows are emitted photons)
in the ground state via an auxiliary transition to 1P1 or 3P1 (green), followed by a global π pulse on the optical qubit transition (yellow). (ii)
Qubit rotations of “m” qubits (red) are performed with stimulated Raman transitions via other states. (The case is identical for “g” qubits). (iii)
Rydberg-mediated two-qubit gates (purple), where targeted operations can be achieved in two ways (see text). (iv) Global readout is performed
with the “o” qubit, where only the “g” sector fluoresces (translucent green) from light resonant with the auxiliary transition (green). (v) The
“m” qubit can be used for storage that is immune to operations on the “g” qubit, including readout or rotations. (vi) The “m” qubit must be
mapped to the “o” qubit (yellow) to perform readout with state-dependent fluorescence. There are two ways to perform a targeted read enable
operation (see text).

entanglement in quantum computers and simulators [32–36],
networks [37,38], and optical clocks [39–41].

II. THE omg ARCHITECTURE

There are countless ways to use the o, m, and g qubits, and
the optimal variant of the omg architecture depends critically
on the application. For example, an optical atomic clock [20]
with programmable entanglement [16] for achieving precision
below the standard quantum limit [39–41] will primarily focus
on the o qubit. In this work, we focus on an architecture
centered around the m qubit for three reasons: (1) the clock
state is well suited for high-fidelity, single-photon coupling to
Rydberg states in the 3S1 series [12,14,16], obviating the need
for two-photon transitions limited by off-resonant scattering
from the intermediate state [19,29]; (2) the clock state is well
suited for shelving of quantum information during readout
based on fluorescence from the ground state [7,42,43]; and
(3) the clock state of Yb has strong, telecom-band transi-
tions to the 3DJ series that offer opportunities for quantum
networking [37,38].

For concreteness and to motivate the following analysis,
we focus on the operations shown in Fig. 1(b). The m qubit
will be used for computation and storage. Qubits will be
globally initialized by cooling and optical pumping in the
ground state via 1P1 or 3P1 followed by a π pulse on the clock
transition to generate a fiducial register in |↑m〉. Rotations of
m qubits will be performed with single-beam [18] stimulated
Raman transitions via 3S1 or 3D1, which can be applied at
the individual-qubit level via a tightly focused beam [17]
(see Appendix J for an assessment of technical challenges
with tightly focused beams). Two-qubit and multiqubit gates
will be performed by coupling |↑m〉 to a Rydberg state |r〉,

which can be applied at the individual-qubit level with tightly
focused beams to drive the transition [44] or Stark-shift in-
dividual sites [15,19], or with coherent transport techniques
based on the 1/r6 scaling of the Rydberg-Rydberg interactions
that map proximity onto connectivity [45–47]. Although the
latter approach excites all qubits to |r〉 which introduces a
larger error rate, the use of only global pulses offers an elegant
simplicity. Lossless, state-resolved readout is performed by
mapping qubits to the o type and then collecting fluorescence
from the ground state via its transition to 1P1 or 3P1 [7,8,12,17].
Fluorescence in the g manifold does not affect quantum in-
formation in the m manifold, and thus storage in m enables
parallel processes in g such as single-qubit readout [42,43]
and remote entanglement generation [38].

Control of the o qubit plays a crucial role for type-casting
and read enabling. Single-qubit, mid-circuit readout requires
a π pulse on the clock transition to be performed at the
individual qubit level. This can be accomplished with a tightly
focused beam or with a global [8,9], two-component pulse
combined with coherent transport of the target qubit. Specif-
ically, this technique would leverage the spatial variation of
the optical phase combined with the ability to move a single
atom by half a wavelength, corresponding to a π -phase shift,
to perform a net 1π pulse on the target atom and a net 0π

pulse on the spectator atoms [48,49]. While we leave further
analysis of this approach for future work, we note that the spa-
tial precision available with adaptive optical elements such as
acousto-optic deflectors (AODs) is sufficient. Typical AOD-
based tweezer systems have a position-to-radio-frequency (rf)
conversion of ≈10 μm/MHz [7,50], and thus the ≈10 nm
precision required for this protocol to be performed with a
fidelity at the 0.99 fidelity level corresponds to only kHz-level
precision of the rf signals.
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III. RYDBERG TRANSITION

We now discuss the required operations of this architec-
ture in detail, beginning with the Rydberg-based operations.
Inspired by recent work [12,14,16], we consider Rydberg-
mediated entanglement via the 3P0 ↔ 3S1 transition, where
the latter has a principal quantum number of n ≈ 60 [see
Fig. 1(a)]. However, we note that a two-photon transition from
the 1S0 ground state could be used instead [10,15,19,51] at the
expense of higher optical power and additional complexity,
and was recently used to perform two-qubit gates on the
nuclear spin qubit in the ground state of 171Yb at low field
(≈4 G) [19]. We require a protocol by which only one of the
qubit states couples to the Rydberg level [29,52]. Although we
specifically consider the m qubit, the requirements on the iso-
lation of the Rydberg drive from unwanted “spectator” states
is stringent for all qubit choices. The nuclear spins present
a unique challenge due to their relatively small energy split-
tings (≈kHz/G). Hence, the development of a high-fidelity
two-qubit or mutliqubit gate protocol for fermionic AEAs will
require a detailed understanding of the Rydberg level structure
[19,51,53–55]. We use multichannel quantum defect theory
[56] (see Appendix A) to gain new insight on this structure.
We consider S-series Rydberg states (L = 0), but our analysis
can be applied to L > 0.

The presence of a nuclear spin in an AEA creates a sce-
nario that is qualitatively different from both alkali-metal and
bosonic AEA Rydberg structures. In the case of alkali-metal
species, the electron-nucleus coupling is small due to the
large orbit of the Rydberg electron, and thus the total electron
angular momentum J is a good quantum number. In the case
of bosonic AEAs, there are two electron spins but no nuclear
spin, so electron total spin S (i.e., singlet and triplet) and J are
good quantum numbers. Fermionic AEAs present a system
in which there are three coupled spins: two electrons and
a nucleus. Indeed, the hyperfine structure of the ionic core
describes the Rydberg ionization thresholds [see Fig. 2(a)].
The Rydberg series corresponding to total angular momen-
tum F = 1

2 is not well described by Stot, meaning that the
singlet or triplet designation is inappropriate since two con-
figurations ( fc = 0 and 1) both contribute, and a multichannel
quantum defect theory [56] is required. Conversely, the series
corresponding to F = 3

2 can only be obtained from one con-
figuration ( fc = 1) and is thus well described by Stot = 1. Due
to its clean structure for all n (assuming no perturbers) and its
designation as a “spin triplet,” we target this F = 3

2 series as
being ideally suited for our two-qubit or multiqubit entangling
operations [19].

Figures 2(b) and 2(c) show the spectrum of the F = 1
2 and

3
2 series of the S manifold at low principal quantum number
n and effective principal quantum number near n∗ ≈ 55, re-
spectively. In the small-n limit [57], the singlet-triplet splitting
is much larger than the hyperfine splitting of F = { 1

2 , 3
2 }

in the 3S1 manifold (≈10 GHz [57]). Near n∗ = 55, the two
configurations of F = 1

2 , analyzed with multichannel quan-
tum defect theory [56] (see Appendix A), follow the same
trend line before separating to asymptotically approach the
fc = {0, 1} limits [see Fig. 2(a)]. The F = 3

2 series has only a
single configuration asymptotically approaching fc = 1. The
state energies in this series can thus be modeled using the
known energies of the 3S1 series in the bosonic isotope 174Yb

fc

fc

fc

fc fc

FIG. 2. The S-series Rydberg structure of 171Yb. (a) The energy
levels and spin configurations of the two S series described by total
angular momentum F = { 1

2 , 3
2 } versus principal quantum number

(n). They asymptotically approach the hyperfine levels of the core
ion fc = {0, 1} split by 12.6 GHz. The F = 3

2 series is uniquely
described by Stot = 1 since all three spins must be aligned. The
F = 1

2 series results from two configurations of the three spins, so
Stot is not a good quantum number in this case. (b) The two series at
small n, where the hyperfine splitting of the 3S1 term into F = { 1

2 , 3
2 }

is smaller than the singlet-triplet splitting. (c) The two series at
n∗ ≈ 50–65 (n ≈ 55–70) using multichannel quantum defect theory
for the F = 1

2 series. The lower inset shows a separation of ≈�HFS

between the two series at n∗ ≈ 55, while the upper inset shows a near
degeneracy at n∗ ≈ 65.

(obtained from Ref. [10]) plus the hyperfine splitting �HFS =
2π × 12.6 GHz of the 171Yb ionic core (see Appendix B).
Figure 2(c) shows both the F = 1

2 and 3
2 series near n∗ = 55,

where the figure of merit is the energy separation between the
two series and the associated resolvability of a given state.
Near n∗ = 55 (lower inset), the ≈13 GHz separation of the
states in the F = 3

2 series from the closest ones in the F = 1
2

series suggests excellent isolation in the presence of strong
laser coupling. However, there are near degeneracies between
the two series, such as near n∗ = 65 (upper inset), that must
be avoided. This is quantified more precisely by Lu-Fano plots
[58] of the two series (see Appendix A).

We consider the use of the σ+-polarized “stretched”
transition between 3P0 |mF = 1

2 〉 ≡ |↑m〉 and 3S1 (n ≈ 60)
|mF = 3

2 〉 ≡ |r〉 [see Fig. 3(a)] to obviate the coupling with
|↓m〉 in the presence of a slight polarization impurity [dashed
arrows in Fig. 3(a)]. (See Appendix H for analysis of the
π -polarized case.) The nature of the F = 3

2 series allows for
the standard Landé g factors to be used to compute Zeeman
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FIG. 3. Analysis of the Rydberg transition. (a) The six-level
system showing the nuclear qubit {↓m, ↑m} in the clock state and
the four mF states in the F = 3

2 Rydberg state. We target the σ+

“stretched” transition |↑m〉 ↔ |r〉, but imperfect polarization creates
off-resonant couplings to other states. We parametrize the strengths
of these couplings with

√
χ/2 since polarization intensity purity

is associated with optical power P, and � ∼ √
P. Weighting by

Clebsch-Gordan coefficients is included. (b) The magnetic field maps
of the clock (including hyperfine interaction [21]) and Rydberg (in-
cluding the diamagnetic shift [12]) states. (c) Single-atom π -pulse
infidelity, initialized in |↑m〉, under various polarization impurities χ

and magnetic fields B. The color scale is the population not in |r〉,
1 − Pr . The shapes indicate the conditions under which Rabi oscil-
lations are shown in Fig. 4. (d) Single-atom relative phase accrual
on the {↓m, ↑m} qubit resulting from a 2π pulse on the |↑m〉 ↔ |r〉
transition under various χ and B. The color scale shows the phase
accrual in units of π radians, where π is expected in the ideal case.
(e) Two-atom π -pulse infidelity, initialized in |↑m↑m〉, under various
χ and B. The color scale is the population not in the |B〉 Bell state PB
(see text). The black lines in (c) and (e) show where P = 0.99.

splittings. We find �Z/(2π ) = mF × 1.9 MHz/G in the
low-field limit and we include the well-known [12] mF -
independent diamagnetic interaction �DM ∼ |d × B|2 that
dominates at B � 800 G. We neglect hyperfine mixing
between Rydberg manifolds as there is no significant contri-
bution for the conditions considered here (see Appendix B).
The magnetic field shifts of the Rydberg states and the 3P0

clock states are shown in Fig. 3(b).
To assess the prospect of gate operations on the |↑m〉 ↔ |r〉

transition, we numerically simulate a drive of strength �R =
2π × 6 MHz on the six-level system (see Appendix D) for
various magnetic fields B and polarization intensity impurities
χ [defined in Fig. 3(a)]. We assume magnetic field magnitude
and orientation uniformity at the 10−4 level in a well-designed
Helmholtz field [59,60]. This value of �R was chosen based
on similar work with global Rydberg pulses for strontium
[12]; tightly focused pulses would require less power, albeit

FIG. 4. Single-atom Rydberg Rabi oscillations. Populations |↑m〉
(blue) and |r〉 (orange) versus time under various χ and B conditions.
Note that population is not conserved due to leakage to other states
in the six-state system when χ > 0. (a) χ = 2

3 (fully unpolarized)
and B = 0 G. (b) χ = 10−2 and B = 0 G. (c) χ = 2

3 and B = 150 G.
(d) χ = 10−2 and B = 150 G. Note that dephasing mechanisms (see
text) are not included to avoid obfuscating the atomic structure
considerations.

with added technical challenges (see Appendix J). The π -
pulse infidelity (population not in |r〉, 1 − Pr) for a single atom
is shown in Fig. 3(c), where even 90% polarization intensity
purity (χ = 10−1) at B ≈ 10 G gives a transfer fidelity of
F ≈ 0.99. The shapes included in Fig. 3(c) denote the plots
in Fig. 4 showing Rabi oscillations during a prolonged pulse
under those conditions.

We also consider the accrued relative phase on the
{↓m,↑m} qubit due to the undesired couplings during a
|↑m〉 ↔ |r〉 pulse. Although finite-phase accrual due to light
shifts during gates can be tolerated, fluctuations in this phase
due to, e.g., intensity fluctuations can have deleterious ef-
fects on the quantum circuit. To obviate this problem, it is
clearly optimal to minimize the phase accrual due to parasitic
couplings. To probe this effect in our system, we consider
the accrued phase during a 2π pulse on |↑m〉 ↔ |r〉 (see
Appendix D3) for various magnetic fields and polarization
intensity impurities [Fig. 3(d)]. We find that the accrued phase
relative to the ideal case with zero coupling to other Rydberg
states is �φ � 0.01π for B � 150 G for a wide range of χ .
Percent-level fluctuations in this phase are negligible, and the
phase itself is expected to be sufficiently small for a fidelity
approaching 0.99 in intolerant applications.

Finally, we consider the prospects for two-qubit entan-
glement. Although we are interested in entanglement of
low-lying states such as {↓m, ↑m} via protocols such as in
Refs. [16,29,52,61], we consider only the {↑m, r} qubit here
since operation of this transition is required in any protocol
and thus presents a fidelity limit. We look at the pulse fidelity
in the two-atom case, assumingC6(n∗ = 55) ≈ 300 GHz μm6

based on recently measured values [19] that give a Ry-
dberg interaction shift UVdW/h̄ ≈ 2π × 160 MHz (≈27�)
for an interatom separation of r = 3.5 μm, deep within the
Rydberg blockade limit. We consider the entangled “bright”
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Bell state |B〉 ≡ (|↑m r〉 + |r ↑m〉)/
√

2, where the two ele-
ments in the state refer to the two atoms [12,62]. We study the
population not in |B〉, 1 − PB, after a π pulse from |↑m ↑m〉
to |B〉 for various magnetic fields and polarization inten-
sity purities [Fig. 3(e)]. Resonances with the Rydberg states
|{r⇓, r↓, r↑}〉 ≡ |mF = {− 3

2 , − 1
2 , + 1

2 }〉 occur at magnetic
fields where UVdW = [�z(mF = 3

2 ) − �z(mF )] × B. The res-
onances corresponding to |r↓〉 and |r↑〉 manifest in Fig. 4(e) as
regions with low pulse fidelity, exacerbated by high χ , while
the resonance with |r⇓〉 is not apparent only because the initial
state |↑m↑m〉 does not couple to it. This effect is irrelevant at
fields of B � 200 G that we later identify as optimal, and can
be entirely removed by instead driving the |↓m〉 ↔ |r⇓〉 (σ+)
transition since UVdW > 0.

This analysis suggests that our nuclear spin qubit is a viable
platform for quantum science with Rydberg states, enabling
two-qubit entanglement and many-body dynamics at or be-
yond the current fidelity record [12,14,29,63]. We briefly con-
sider in Appendix K the well-known limitations to coherent
Rydberg excitation: laser frequency noise, finite Rydberg state
lifetime, dc Stark and Zeeman shifts, and random Doppler
shifts due to finite atom temperature. There are also challenges
associated with individual-qubit addressing [17,44], which we
consider in Appendix J. However, these technical limitations
are ubiquitous across species and qubit encodings and are
thoroughly addressed elsewhere [10,12,62,64], but some are
perhaps easier to mitigate with AEAs due to their access to
higher Rydberg-excitation Rabi frequencies and colder tem-
peratures [12,15,16,18]. The point of this analysis is rather to
demonstrate that the entanglement of nuclear spin qubits is
not limited by atomic structure under the correct conditions.

IV. CLOCK TRANSITION

We now turn to a discussion of the optical clock transi-
tion. As discussed above, global clock pulses are needed for
initialization in the m qubit. Also, targeted clock operations
for read enabling can be performed with either tightly focused
clock beams, or potentially with global pulses combined with
targeted position shifts [48,49]. For the purposes of this dis-
cussion, the most important parameters are the Rabi frequency
�c and the trapping frequency ω along the k vector of the
clock pulse. In either case we assume �c ≈ 2π × 200 kHz
is realistic (see Appendix E), which naturally requires more
optical power in the global addressing case. Specifically,
based on the well-known transition strength [65], P = 50 mW
would be required for a beam of waist radius w0 = 20 μm
aligned along a one-dimensional array [8,9]. The relevant
level structure is shown in Fig. 5(a). We again choose to drive
a σ+-transition to limit the possible undesired couplings. The
Zeeman energies of the nuclear states are shown in Fig. 5(b),
where hyperfine interactions affect the trend in the 3P0 state.
The differential g factor at low field is ≈200 Hz/G (see
Appendix C), so we are reliant on polarization selectivity
since the drive bandwidth will exceed the energy separation.

We analyze a π pulse of the clock transition, initialized
in |↓g〉, for various polarization intensity purities and mag-
netic fields. In Appendix F, we consider phase noise since
it constitutes a liability unique to optical qubits. However,
we neglect phase noise here to avoid obfuscating the internal

FIG. 5. Analysis of the clock transition. (a) The four-level sys-
tem showing the nuclear qubits {↓g, ↑g, ↓m, ↑m} in the ground and
clock states. We target the σ+ “stretched” transition |↓g〉 ↔ |↑m〉,
but imperfect polarization creates off-resonant couplings to other
states. We parametrize this identically to the Rydberg case in Fig. 3.
(b) The magnetic field maps of the ground and clock states (including
hyperfine interaction [21]). (c) π -pulse infidelity, initialized in |↓g〉,
under various χ and B. The shapes indicate the conditions under
which Rabi oscillations are shown in Fig. 6. The color scale is the
population not in |↑m〉, 1 − P↑m , and the black line shows where
P↑m = 0.99. (d) Relative phase accrual on the {↓g, ↑g} qubit resulting
from a 2π pulse on the |↑g〉 ↔ |↓m〉 transition under various χ and
B. The color scale shows the phase accrual in units of π radians,
where π is expected in the ideal case. (e) Infidelity at B = 500 G due
to finite-temperature effects in the four-level system (not including
phase noise). 1 − P↑m versus temperature and Rabi frequency. The
shapes refer to Fig. 6.

dynamics and to keep the results general. Figure 5(c) shows
the population not in |↑m〉, 1 − P↑m , and we find that a field
strength of B � 200 G with χ � 10−2 polarization intensity
purity is sufficient for population transfer exceeding 0.99. As
a more stringent requirement than the π -pulse fidelity, we
again consider relative phase accrual, now on the {↓g, ↑g}
qubit, resulting from undesired couplings (see Appendix D3).
Specifically, we consider a 2π pulse on the |↓g〉 ↔ |↑m〉 tran-
sition. We find a relative phase accrual of �φ � 0.01π for
B � 200 G and χ � 10−2, sufficient for operations with a
fidelity of �0.99.

Finally, the analysis in Figs. 5(c) and 5(d) was performed
without considering motional degrees of freedom. We now
consider finite-temperature and atomic motion effects. For
concreteness, we now assume a global pulse with k vector
along the radial direction of the tweezer traps. In Appendix J,
we consider pulses propagating in the axial direction, where
the performance in this respect is improved due to the larger
disparity between �c and ω. Other technical challenges natu-
rally emerge, however (see Appendix J). We assume a radial
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FIG. 6. Clock Rabi oscillations. The population in |↑m〉 (blue)
and |↓g〉 (orange) versus time under various χ and B conditions.
Note that population in these two states is not conserved as it leaks
to |↑g〉 (purple) and |↓m〉 (yellow) when χ > 0. (a) χ = 2

3 , B =
100 G, and �/2π = 200 kHz; no motion. (b) χ = 10−2, B = 500 G,
and �/2π = 200 kHz; no motion. (c) χ = 10−2, B = 500 G, and
�/2π = 100 kHz; with motion (T = 20 μK). (d) χ = 10−2, B =
500 G, and �/2π = 200 kHz; with motion (T = 20 μK).

trap frequency in the tweezer of ωr = 2π × 70 kHz (corre-
sponding to a tweezer with 1/e2 waist radius of 700 nm
and depth of 500 μK), which is significantly smaller than
the Rabi frequency �c = 2π × 200 kHz. These trap condi-
tions correspond to a Lamb-Dicke parameter of ηr = 0.22,
where η = kx0 depends on the wave number k of the driving
laser and the harmonic oscillator length x0 = √

h̄/(2mYbωr )
of the atom in the trap. In the �c � ωr limit with “magic”
trapping conditions (under which the trap frequencies in the
ground and clock states are equal [7,22]), we choose the basis
states [18,66] to be |g, n〉 = |g〉 ⊗ |n〉 and |e, ξ (n)〉 = |e〉 ⊗
eiη(â+â† )|n〉, where g (e) is the electronic ground (excited)
state and n is the motional quantum number. We perform this
analysis with all four states in the ground-clock manifold, but
only list two here for brevity. This basis greatly simplifies
the calculation for the case of a strong driving field since the
Hamiltonian becomes sparse. See Appendix G for details.

At B = 500 G and χ = 10−2, we study the dependence
of the π -pulse fidelity on temperature over the range of
T ∈ [2, 20] μK (where temperatures of T � 5 μK are ex-
pected [7,8,18,19]), studied for Rabi frequencies � ∈ 2π ×
[100, 200] kHz [see Fig. 5(e)]. Intuitively, higher �c is more
forgiving of higher T , and we predict pulse fidelities ex-
ceeding 0.99 with �c = 2π × 200 kHz for T � 10 μK. Note
that although we focus here on a single, relatively high trap
frequency [8,9,13,17], the situation improves with lower ωr ,
as shown nicely in Ref. [18]. Conceptually, a lower trap
frequency gives slower atomic motion which decreases the
Doppler shift. Figure 6 shows Rabi oscillations under the
conditions indicated with shapes in Fig. 5. Indeed, we find the
limit �c � ωr to be relatively immune to thermal effects, as
shown for T = 20 μK in Fig. 6(d). Note that, depending on B,
the π -pulse fidelity will begin to decrease with increasing �

simply because of the increasing coupling to the “spectator”
states. We study this interplay of � and B in Appendix I.

FIG. 7. Single-beam Raman gates. (a) The polarization axis
(electric field) of the linearly polarized Raman beam with respect
to the quantization axis (magnetic field), given by θ , determines
the projections of the electric field onto the vertical and horizontal
axes (parallel and perpendicular to the magnetic field, respectively).
(b) The m qubit in the clock state is off resonantly coupled to an ad-
ditional excited state (3S1 or 3D1) via its F = 1

2 level. The vertical and
horizontal components of the electric field drive π and σ transitions
with Rabi frequencies �V and �H , respectively (see Appendix D).
(c) The π -pulse infidelity of the m qubit versus θ and magnetic field
with constant drive strength of the Raman beam, detuned from |e1〉
by �R = 2π × 200 MHz. The “magic” region showing improved
transfer depends on B and narrows for larger fields. The contour lines
show the 10−1 and 10−2 infidelity levels. Spontaneous emission is not
included. (d) �eff and P↑m and Pe1 (populations in the target m state
and intermediate state |e1〉, respectively) after a π pulse versus �R

for constant intensity corresponding to �V = 2π × 20 MHz when
θ = 0.

V. SINGLE-BEAM RAMAN GATES

We now turn to a discussion of rotations of the nuclear
qubits (single-qubit gates) via stimulated Raman pulses. In-
spired by recent work demonstrating Raman-based control
of the g qubit [18], we focus on single-beam Raman gates.
Crucially, the splitting of the nuclear qubits is much smaller,
even in modest field (� kHz/G), than the target effective Rabi
frequency of �eff ≈ 2π × 1 MHz [18,28,29]. Thus, a single
beam with a linear polarization tilted by an angle θ with
respect to the quantization axis (magnetic field) [see Fig. 7(a)]
can provide components that drive both the π and σ transi-
tions of the Raman coupling [18] [see Fig. 7(b)]. As shown in
Fig. 1(a), the g and m qubits can be controlled identically, only
via a different intermediate state. For clarity, and to match our
proposed architecture shown in Fig. 1(b), we focus on the m
qubit which can be controlled via the 3D1 or 3S1 state.

The analysis of the clock transition suggests that opera-
tion at a magnetic field of �200 G is required for effective
implementation of the omg architecture. This large field sig-
nificantly affects the gate operation not because of the Zeeman
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shift of m qubit itself, but because of the shift on the intermedi-
ate state which has electronic angular momentum (∼MHz/G).
Crucially, the detuning from the intermediate state �R is ap-
proximately equal to the Zeeman splitting on its sublevels �e

under the conditions considered here [see Fig. 7(b)]. There-
fore, the use of a F = 3

2 level for the intermediate state at
high field would be drastically different than the low-field case
studied recently where �R � �e [18].

Instead, we consider a F = 1
2 level, which is available for

both 3S1 and 3D1. At a high field where �R ≈ �e, the inter-
mediate state coupling via mF = − 1

2 is significantly stronger
than via mF = 1

2 for a red-detuned laser, which also means
that mF = − 1

2 contributes more to the light shifts on the m
qubit from the Raman pulse. This presents a unique opportu-
nity: we predict a “magic” polarization angle θ = θm(B) for
which the differential light shift on the m qubit, �LS, exactly
cancels its Zeeman splitting �g. Performing the Raman gates
at this magic angle constitutes a pure σx rotation on the Bloch
sphere, obviating complications due to the inevitable ασx +
βσz nature of the rotation when �g is left uncompensated.
Figure 7(c) shows the π -pulse infidelity for the m qubit versus
θ and the magnetic field, clearly showing excellent transfer
in a region around θm(B) that narrows as B increases. These
data use �R = 2π × 200 kHz, and �eff ≈ 2π × 1 MHz.
Figure 7(d) shows �eff and P↑m and Pe1 (populations in the
target m state and intermediate state |e1〉, respectively) after
a π -pulse versus �R for constant intensity corresponding to
�V = 2π × 20 MHz when θ = 0 (see Appendix D). Techni-
cal challenges for targeted gates with a tightly focused beam
are considered in Appendix J.

We focus on �R = 2π × 200 kHz, which is used in
Fig. 7(c). As shown in Fig. 7(d), the population in |e1〉 is
Pe1 ≈ 4 × 10−3 under this value of �R. Since the intermediate
state has a total decay rate of �e ≈ 2π × 500 kHz for 3D1,
the effective scattering rate from |e1〉 is �eff

e � 2π × 2 kHz,
which we should compare to �eff � 2π × 1 MHz, suggesting
that Raman π -pulse fidelities well above 0.99 are possible.
Arbitrary rotations on the Bloch sphere can be accomplished
by using additional pulses with θ = 0 or π/2 such that there is
no Raman condition and the pulse only provides a light shift
for the |↓m〉 or |↑m〉 state, respectively, thereby providing a
controlled σz rotation [18].

VI. CONCLUSION AND OUTLOOK

This analysis demonstrates that the structure of 171Yb
is well suited for high-fidelity quantum circuits featuring
multiple-qubit modalities within the same atom. For con-
creteness, we focus on ground-clock and clock-Rydberg Rabi
frequencies of �c = 2π × 200 kHz and �R = 2π × 6 MHz,
respectively, and we show operation fidelities on both tran-
sitions exceeding 0.99 under magnetic fields of B � 200 G
and polarization impurities of χ � 10−2. Additionally, we
analyze temperature effects on the clock transition (and refer
to Refs. [12,64] and Appendix K for consideration of such
effects on the Rydberg transition), finding that T � 10 μK
is sufficient for clock pulses with fidelity exceeding 0.99.
Finally, we analyze single-beam Raman gates for rotations of
nuclear spin qubits and identify a “magic” linear polarization

angle where the pulse-induced light shift perfectly cancels
the nuclear Zeeman shift. We show the feasibility of purely
σx rotations with �eff ≈ 2π × 1 MHz at fidelities exceeding
0.99. All these conditions are readily available in current
experiments.

We specifically considered 171Yb to exploit its I = 1
2 ,

built-in nuclear spin qubits; however, other isotopes including
173Yb and 87Sr with larger I offer similar opportunities albeit
with additional control fields required to isolate only two
nuclear spin states [17]. Nevertheless, larger-I isotopes offer
unique opportunities for SU(N ) physics [34,67] and higher-
dimensional computational spaces such as qudecimals [68]
that could be leveraged for robust encoding [69]. In terms of
the structure of S-series Rydberg states for isotopes with I >
1
2 , we expect a similar behavior where the 3S1 Fmax = 1 + I is
well behaved since it is a unique configuration of electron and
nuclear spins [51,53–55].

The omg architecture discussed in this work uniquely en-
ables opportunities for shelving-based readout [7,17,42,43]
as well as remote entanglement [37,38]. However, we note
that other variants of this versatile omg architecture offer
additional opportunities not discussed here. More generally,
this platform holds promise for programmable entanglement
in atomic clocks [39–41], quantum networking [37,38], and
quantum computation [32–34,36]. A similar omg architecture
has recently been proposed [28] and demonstrated [70] for
trapped ions, where the additional required primitive opera-
tions are already compatible with existing large-scale systems.
We believe the same is true for the neutral AEA-based plat-
form [13–15,17–19].

Note added. Recently, we became aware of another work
considering Rydberg-mediated gates for metastable 3P0 nu-
clear spin qubits in 171Yb [71].
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APPENDIX A: MULTICHANNEL QUANTUM DEFECT
THEORY

Previous studies of neutral Yb Rydberg levels have deter-
mined a multichannel quantum defect theory (MQDT) rep-
resentation of the energy-level spectrum, including perturbing
levels of valence character (such as 6p2 or 4 f 135d26p). For the
spin-0 isotopes of Yb, this provides a nearly complete charac-
terization of many symmetries of the Rydberg series in the
energy range extending to approximately 0.05 eV (12.1 THz)
below the lowest ionization threshold. However, for a nuclear
spin I = 1

2 isotope such as 171Yb, the hyperfine splitting can
couple different J channels, and in particular the hyperfine
interaction causes a strong coupling between the 6sns 1S0 and
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6sns 3S1 Rydberg series that gets very strong for Rydberg state
binding energies that are comparable to the hyperfine splitting
in the Yb+ ion.

The basic theory that describes hyperfine-induced coupling
of different electronic angular momentum channels in an atom
follows the basic ideas of the frame transformation theory
introduced into MQDT (FT-MQDT) by Fano, Lu, and Lee
[58,72,73]. The theory was adapted to the specific context of
hyperfine coupling by Sun and Lu [74,75] and extended to
heavier complex atoms by Robicheaux et al. [53]. Our imple-
mentation of the theory in the present context focuses on the
two channels that have singlet and triplet character mixed pri-
marily by the hyperfine splitting of the Yb+(6s1/2) ionic core.
We omit the closed subshell 4 f 14 from our notation except in
contexts where its open-shell excitations arise. In FT-MQDT,
the key quantity to determine is the reaction matrix K , in an
appropriate representation of the long-range channels.

For the 6sns Rydberg states of interest here, the only an-
gular momentum quantum numbers are the ionic core spin
sc = 1

2 , the Rydberg electron spin s = 1
2 , and the nuclear spin

I = 1
2 for 171Yb. The reaction matrix is first determined for

each value J = S of the electronic angular momentum, which
is a good quantum number when neglecting the hyperfine
interaction altogether. The singlet quantum defect μ0 used
here has been taken from Ref. [76], while the triplet μ1

is taken from Ref. [10]. Specifically, the electronic reaction
matrix is diagonal in the singlet-triplet representation, i.e.,
KSS′ = δSS′ tan πμS . Note that we have approximated the sin-
glet and triplet quantum defects as energy independent, but
this could easily be improved to obtain spectroscopic accuracy
for these calculations. When the nuclear spin Hilbert space
is included, this “eigenchannel representation” [56] of the
reaction matrix for the quantum number F = 1

2 characterizing
the total angular momentum F = I + S has the structure

〈[I (scs)S]FMF |K|[I (scs)S
′]FMF 〉. (A1)

The first step of the FT-MQDT is application of a straight-
forward recoupling into a representation that includes the
total angular momentum quantum number of the core. That is
needed because the ionization thresholds depend on the ionic
core total angular momentum fc = 0 or 1, where fc = I + sc.
The recoupling coefficient looks like 〈(Isc) fc|[I (scs)S]〉(F ),
which is proportional to a 6 j coefficient as in standard refer-
ences. The resulting two-channel FT-MQDT K matrix which
can be viewed as energy independent for sufficiently high
Rydberg states with n � 35 is equal to

K =
(

4.1088 1.6922
1.6922 2.1549

)
, (A2)

where the first channel corresponds to the lower ionic hyper-
fine threshold fc = 0 and the second channel corresponds to
the upper threshold fc = 1. If we set the zero of our energy
scale to the degeneracy-weighted average of the two hyperfine
thresholds, the two threshold energies Efc are given in terms
of the hyperfine splitting �HFS = 2π × 12.642 812 1 GHz as
{E0/h = −9.482 109, E1/h = 3.160 703} GHz.

At this point, bound-state energies En are determined by
solving for roots of the following equation:

det {K + tan πν} = 0, (A3)

FIG. 8. Lu-Fano plots for the bound-state quantum defects of
the two-channel F = 1

2 series. Shown in (a) is the periodic version
of the Lu-Fano plot [58], with the quantum defect relative to the
lower ( fc = 0) hyperfine ionization threshold on the y axis, modulo
1, and the effective quantum number relative to the upper ( fc = 1)
threshold on the x axis, also modulo 1. In the approximation used
here, namely, with an energy-independent K matrix as is written
above, the plot is exactly periodic. The extent of the channel coupling
is reflected in the strength of the avoided crossing near the center of
the figure. In (b) the plot shows the same bound levels, but without
applying the (modulo 1) to the x axis effective quantum number data.
The approximately horizontal branch is close to the 3S1 quantum
defect value, and from (b) it can be deduced that no significant level
perturbations to that series should occur for ν1 in the range 40 to 75.

where the diagonal matrix ν consists of effective quantum
numbers in the two channels, defined for energies below the
lower threshold, by

ν fc (E ) =
√

Ry(171Yb)

Efc − E
. (A4)

Here, Ry(171Yb) is the Rydberg constant for this electron-ion
system, i.e., the infinite mass Rydberg constant multiplied by
the ratio between the reduced electron-171Yb+ mass and the
bare electron mass.

The resulting bound-state Rydberg energy levels are dis-
played in the form of Lu-Fano plots [58] in Fig. 8. These
Lu-Fano plots illustrate the behavior of the F = 1

2 Rydberg
series as the principal quantum number increases. The energy
levels with respect to the ground state are obtained by invert-
ing (A4) to calculate Efc , and subsequently shifting them by
the energy of the lower ionic hyperfine threshold relative to
the ground state. These values are plotted in Fig. 2(d). We
note that near degeneracies occur between the two series in the
region where they begin to diverge and then slip by modulo 1
in Fig. 8. It is thus best to avoid this regime, which is why we
focus on n∗ ≈ 55.

It should be noted that the present two-channel model of
the 6sns Rydberg series does not include some of the channels
that can cause additional perturbations, as have been studied
in the literature. See Figs. 4 and 5 of Ref. [76], for example,
which shows that level perturbations such as 4 f 146p2 and
4 f 135d6s6p occur for low principal quantum numbers below
about n ≈ 25, but these are unlikely to occur for any of the
Rydberg series considered in this study. Strictly speaking, the
F = 1

2 Rydberg series and Lu-Fano plot should include the
6snd 3 D1 Rydberg series as well, but our estimates suggest
that the amplitude of mixing with the 6sns 3 S1 series is small
and only of order 10−3, and for this reason the 6snd series
are not included in our MQDT model. Moreover, the 3D1
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and 3D2 quantum defects are in the range 0.72–0.76 and thus
well separated from the 6sns levels of interest here. Similarly,
an exact treatment of the F = 3

2 series would include the
coupling of 3S1 states to 1D2,

3D1, and 3D2 series, but those
are also neglected here because the coupling is expected to be
small for this total angular momentum as well.

APPENDIX B: THE F = 3
2

3S1 RYDBERG SERIES

1. Bare energies relative to F = 1
2

The F = 3
2

3S1 Rydberg series is a simpler series to handle
than the F = 1

2 series due to the fact that it is a single channel
converging to the fc = 1 ionization threshold. In order to cal-
culate the energy levels, however, we require the knowledge
of the quantum defect of the 3S1 Rydberg series. Due to a lack
of experimental spectroscopic data for 171Yb, we draw upon
available data for the bosonic 174Yb isotope to deduce the
quantum defect. In particular, the 3S1 series has been mapped
out in Ref. [10]. The energy levels for the 171Yb F = 3

2
3S1

series are obtained by finding the effective quantum numbers
from the measured levels and applying them in (A4). Note that
we use the fc = 1 ionization threshold. This shows that the
F = 3

2 and 1
2 series are well separated by at least ≈10 GHz

over the range of effective quantum number n∗ shown in
Fig. 2(d), eventually widening to the hyperfine splitting of the
ionic core of �HFS = 2π × 12.6 GHz.

2. g factor of the F = 3
2 series

Due to the simplicity of the single-channel nature of this
series, the respective Stot, J , and F angular momenta are well
defined, with the caveats mentioned at the end of Appendix A.
This permits the use of the standard result for calculating the g
factor for this series at low magnetic fields. At low fields, the
total angular momentum F precesses about the applied field.
Thus, we aim to write

EZ = −〈μ · B〉 = gFmFμBB, (B1)

where gF is the g factor of interest.
The magnetic moment depends on the total spin of the

electrons S and the nuclear spin I. Since F = S + I, we can
project the respective angular momenta onto F to evaluate the
matrix element:

〈A〉 = 〈A · F〉
F (F + 1)

〈F〉. (B2)

The dot product can be evaluated easily as

〈S · F〉 = h̄mF

2F (F + 1)
[F (F + 1) + S(S + 1) − I (I + 1)],

(B3)

〈I · F〉 = h̄mF

2F (F + 1)
[F (F + 1) + I (I + 1) − S(S + 1)].

(B4)

Packaging everything together gives

gF = gS
F (F + 1) + S(S + 1) − I (I + 1)

2F (F + 1)

− gI
μN

μB

F (F + 1) − S(S + 1) + I (I + 1)

2F (F + 1)
. (B5)

With gS = 2, gI = 0.4919, F = 3
2 , S = 1, I = 1

2 , the g factor
evaluates to 1.9 MHz/G.

3. Diamagnetic shift of the Rydberg series

As mentioned in the main text, the Rydberg states expe-
rience an additional diamagnetic shift in its energy due to a
magnetic field. The diamagnetic Hamiltonian, given by

HDM = 1

8me
|d × B|2, (B6)

arises from the term quadratic in the vector potential A in
the Hamiltonian for a charged particle in an external electro-
magnetic field. This quadratic term is typically neglected in
comparison to the linear term (A · p), which is responsible for
the linear Zeeman effect. However, due to the scaling of d as
n2 for Rydberg atoms, we anticipate that the quadratic term
is comparable or even larger than the linear term. Thus, it is
important to explicitly determine the energy shift due to the
diamagnetic interaction.

To calculate the diamagnetic shift, it will be fruitful to
expose the angular dependence of the Hamiltonian by writing
it in terms of spherical harmonics Ylm(θ, φ). Since the cross
product squared yields a factor of sin2 θ = 1 − cos2 θ , we can
rewrite it as

�EDM = e2B2

8me
〈r2 sin2 θ〉 (B7)

= e2B2

8me

4
√

π

3

〈
r2

(
Y00 − 1√

5
Y20

)〉
. (B8)

An application of the Wigner-Eckart theorem reduces the
problem to calculating the reduced matrix element of the r2

operator and the factors arising from the angular dependence.
The former can be dealt with using a variety of numerical
tools developed in recent years to calculate matrix elements
of Rydberg states. In particular, we utilize the ALKALINE RY-
DBERG CALCULATOR(ARC) 3.0 package [77] as the code has
been expanded recently to support calculations for AEAs. For
the angular-dependent factors, we find that for the 3S1, F = 3

2
manifold, onlyY00 contributes a nonzero value. Moreover, it is
independent of the mF values. It follows that the four Zeeman
states experience the same diamagnetic shift which scales as

�EDM/h = 2.4 kHz/G2. (B9)

Comparing with the linear Zeeman shift of 1.9 MHz/G, we
see that the two shifts become comparable at ∼800 G. Thus,
we may neglect the diamagnetic shifts for most purposes. In
any case, the diamagnetic shift does not affect the energy
selectivity due to the equal shifts of all mF states.

4. Hyperfine mixing between Rydberg series

We address the possibility of hyperfine mixing within the
3S1 Ryberg manifold by diagonalizing the full Zeeman Hamil-
tonian for the Rydberg atom, treating the nucleus, the 6s core
electron, and the Rydberg electron as separate entities. The
basis of choice is the hyperfine basis |[(Isc) fcs]FMF 〉. We find
that the Zeeman shift is linear for the mF = ± 1

2 states in the
two series, up to 1000 G, indicating that there is no significant
mixing between the Rydberg series.
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Another possible mixing channel is the diamagnetic cou-
pling between the 3S1 and 3DJ manifolds. This arises from
the Y20 term in the diamagnetic Hamiltonian. We assume that
the coupling is significant when |〈3S1|HDM|3DJ〉|/|E (3DJ ) −
E (3S1)| � 0.1, corresponding to ≈10% amplitude admixture.
To get an order-of-magnitude estimate, we neglect the angular
dependency in 〈r2 sin2 θ〉 by taking 〈r2〉 ∼ 5n4/2, effectively
setting an upper bound for the matrix element, and use
|E (3DJ ) − E (3S1)| ∼ 0.3/n3 (atomic units). For n∗ ≈ 55, the
10% amplitude admixture occurs at B ≈ 600 G, rendering this
effect negligible at ≈200 G.

APPENDIX C: HYPERFINE MIXING IN THE “CLOCK”
STATE

For the bosonic species of AEAs, the clock transition is
typically doubly forbidden as it is a J = 0 to J ′ = 0 transition,
with �S = 1. On the other hand, the fermionic species has a
weak admixture of the 3P0 clock state with the 1P1 state arising
from the hyperfine mixing of states with the same F . This
small 1P1 character in the clock state enables a nonzero electric
dipole coupling between the clock and ground states.

Although the hyperfine mixing allows us to drive the tran-
sition between the ground and clock states at large Rabi
frequencies (∼200 kHz as stated in the main text), the hyper-
fine mixing complicates the Zeeman effect experienced by the
clock hyperfine sublevels in the presence of a magnetic field.
The full Zeeman effect is described by the total Hamiltonian

Htotal = HZ + HA + HQ, (C1)

where we have the usual Zeeman Hamiltonian

HZ = −μ · B, (C2)

and the corrections from the hyperfine and quadrupole effects

HA + HQ = AI · J + Q
3
2 I · J(2I · J + 1) − IJ (I + 1)(J + 1)

2IJ (2I − 1)(2J − 1)
.

(C3)
We will need to diagonalize (C1) in order to describe the
Zeeman effect across all values of the applied magnetic field.
We adopt the methods and convention of [21] to calculate
the Zeeman map of the clock state across a large range of
magnetic field values. Accordingly, the Zeeman Hamiltonian
of (C2) is written as

HZ = (gsSz + glLz − gI Iz )μ0B, (C4)

where gs ≈ 2, gl = 1, gI = μI

μB|I| are the g factors of the
electron spin, orbital angular momentum, and nuclear spin,
respectively; and μ0 = μB/h is the Bohr magneton in units of
Hz/T. The angular momentum operators here are dimension-
less. The quadrupole Hamiltonian can be dropped as Q = 0
for I = 1

2 [57]. Thus, the only correction that we need to
include is HA.

For the 1S0 ground state, it experiences only a linear Zee-
man shift due to the fact that J = 0, hence, there is no
hyperfine correction. Thus, the energy shift (in units of Hz)
is

�ν(1S0,mF ) = −gImFμ0B. (C5)

TABLE I. Table of parameters for 171Yb. Parameters with † are
taken from [78].

Parameter Value

|α|† 0.996
|β|† 0.125
δg† 2.73×10−4

|α0| 1.41×10−4

|β0| 3.33×10−5

For the 3P0 clock state, the hyperfine mixing between the 3P0

and 3P1 states leads to a Breit-Rabi expression given by

ν(3P0,mF ) = 1

2
[ν(3P0) + ν(3P1)] + 1

2
[ν(3P0) − ν(3P1)]

×

√√√√1 + 4

∑
F ′ α2

∣∣〈3P0
0 ,F

∣∣HZ

∣∣3P1,F ′〉∣∣2

[ν(3P0) − ν(3P1)]2
,

,

(C6)

where

ν
(

3P0
) = ν

(
3P0

0

) + 〈
3P0

0

∣∣HZ

∣∣3P0
0

〉
+ 2(α0α − β0β )

〈3P0
1 ,F = I

∣∣HZ

∣∣3P0
0

〉
, (C7)

ν
(3P1

) = ν
(3P0

1

) +
∑
F ′

(
α2〈3P0

1 ,F ′∣∣HZ

∣∣3P0
1 ,F ′〉

+β2
〈
1P0

1 ,F ′∣∣HZ

∣∣1P0
1 ,F ′〉). (C8)

The matrix elements are taken between states of pure LS
nature, as denoted by the superscript 0. The constants {α, β}
and {α0, β0} are known as the intermediate coupling and
hyperfine mixing coefficients as they characterize the extent
of the admixture of the atomic states:

|3P0〉 = ∣∣3P0
0

〉
, (C9)

|3P1〉 = α
∣∣3P0

1

〉 + β
∣∣1P0

1

〉
, (C10)

and

|3P0, I,F 〉 = ∣∣3P0
0

〉 + (α0α − β0β )
∣∣3P0

1

〉
+ (α0β + β0α)

∣∣1P0
1

〉
.

(C11)

Most importantly, these coefficients are related to experimen-
tally measurable quantities:

τ (3P1) =
(

ν(1P1)

ν(3P1)

)3
α2

β2
τ (1P1); (C12)

τ (3P0) =
(

ν(3P1)

ν(3P0)

)3
β2

(α0β + β0α)2
τ (3P1); (C13)

δg = (α0α − β0β )

√
8

3I (I + 1)
, (C14)

where τ is the lifetime of the state, and δg is the differential g
factor for the clock state, such that gI (3P0) = gI + δg at weak
magnetic fields. These expressions can be used to estimate
the values of the coupling constants, which are summarized
in Table I.
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APPENDIX D: NUMERICAL SIMULATION OF
MULTILEVEL DYNAMICS

1. Method overview

We employ a numerical model to analyze the dynamics
of the clock and Rydberg multilevel systems. For a general
system of n states composing the basis S = {|1〉, . . . , |n〉} with
energies h̄ × {ω1, . . . , ωn}, we write the total, time-dependent
state |ψ (t )〉 as

|ψ (t )〉 =
n∑

k=1

ak (t )e−iωkt |k〉, (D1)

where its “free-evolving” components have been explicitly
divided out from the amplitudes a1, . . . , an. This choice is
convenient for the later computation of phases discussed in
Appendix D 3. In this frame, the Hamiltonian for the system
in the presence of a drive of strength � and frequency ω has
only off-diagonal components,

Ĥ (t ) = h̄
n∑

b=1

∑
a<b

�

2
gba(χ, q)ei(ω−ω0−ω̃b

a )t |b〉〈a| + H.c., (D2)

where the usual rotating-wave approximation comparing ω

to some chosen reference energy ω0 (e.g., the difference in
mean energies of the ground and clock or clock and Ryd-
berg manifolds) has been used, and ω̃b

a is the energy of the
a ↔ b transition relative to it. We also consider a transition-
dependent factor gba(χ, q) modulating the “principal” drive
strength � of the targeted transition. gba(χ, q) provides the
correct couplings for specific polarizations q ∈ {0,±1} of
the drive field, with additional weighting for impurities χ

therein as well as Clebsch-Gordan coefficients, as discussed
in the main text. In general, � and ω may be time dependent
as well to account for intensity and/or phase noise, respec-
tively (see Appendix F), in which case we take ωt → φ(t ) =∫ t

0 ω(t ′) dt ′ .
Expanding further on the transition-dependent drive

strength modulation factor gba(χ, q), we formally define this
quantity in terms of two distinct parts

gba(χ, q) = ρ
(
χ ;ma

F ,mb
F , q

)
×W

(
Fa,ma

F ,Fb,mb
F , q

)
. (D3)

The first, ρ(χ ;ma
F ,mb

F , q), accounts for effects due to polar-
ization impurity in terms of the parameter χ introduced in the

TABLE II. Table of Clebsch-Gordan weighting factors for all
transitions of interest in this work in the presence of a σ+ (q = 1)
drive, according to Eq. (D5).

Fa ma
F Fb mb

F W (Fa,ma
F ,Fb,mb

F , 1)

Ground-clock (1S0 ↔ 3P0)

+1/2 +1/2
√

1/2
+1/2 −1/2 1

1/2 1/2
−1/2 +1/2 1
−1/2 −1/2

√
1/2

Clock-Rydberg (3P0 ↔ 3S1)

+1/2 +3/2 1
+1/2 +1/2

√
2/3

+1/2 −1/2
√

1/3
1/2 3/2

−1/2 +1/2
√

1/3
−1/2 −1/2

√
2/3

−1/2 −3/2 1

main text. With q held fixed for a given drive polarization,
the corresponding weighting factor is

√
1 − χ for transitions

satisfying mb
F − ma

F = q, while for all other, “parasitic” tran-
sitions, the factor is

√
χ/2 to conserve total power in the drive

across all three possible polarizations:

ρ
(
χ ;ma

F ,mb
F , q

) =
{√

1 − χ if mb
F − ma

F = q,√
χ/2 otherwise.

(D4)

The second, W (Fa,ma
F ,Fb,mb

F , q), imposes weighting by
Clebsch-Gordan coefficients and dipole selection rules on all
nonprincipal transitions, normalized to that for the targeted
transition. This factor is conveniently defined in terms of the
usual Wigner 3 j symbols,

W
(
Fa,ma

F ,Fb,mb
F , q

) =

(
Fb 1 Fa

mb
F ma

F − mb
F −ma

F

)
(
Fb 1 Fa

m̄b
F −q −m̄a

F

) ,

(D5)
where m̄a

F and m̄b
F = m̄a

F + q are the quantum numbers of the
principal transition. The values of this function used for our
calculations are shown in Table II.

With these definitions, we include as an example the form
of the Hamiltonian for the six-level clock-Rydberg manifold,
subject to a σ+ drive on resonance with the |↑m〉 ↔ |r〉
transition:

Ĥc↔R = h̄
�

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 H.c. H.c. H.c. 0
0 0 0 H.c. H.c. H.c.√

χ

2 w
(− 1

2 ,− 3
2

)
ei(3�+δ)t 0 0 0 0 0√

χ

2 w
(− 1

2 ,− 1
2

)
ei(2�+δ)t

√
χ

2 w
(+ 1

2 ,− 1
2

)
ei2�t 0 0 0 0

√
1 − χw

(− 1
2 ,+ 1

2

)
ei(�+δ)t

√
χ

2 w
(+ 1

2 ,+ 1
2

)
ei�t 0 0 0 0

0
√

1 − χ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|↓m〉
|↑m〉
|r⇓〉
|r↓〉
|r↑〉
|r〉

. (D6)

Here, we write the six-state basis for the clock-Rydberg mani-
fold as {|↓m〉, |↑m〉, |r⇓〉, |r↓〉, |r↑〉, |r〉}, where the Rydberg

states |rX 〉 are ordered by their mF values. For brevity, we also
use w(ma

F ,mb
F ) ≡ W ( 1

2 ,ma
F , 3

2 ,mb
F ) and define � and δ as the
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differences in energy (up to a factor of h̄) between the adjacent
mF states in the Rydberg and clock manifolds, respectively.

For the multiatom case of the clock-Rydberg transition,
we generate the appropriate Hamiltonian for N atoms in the
product-state basis S = SN using the single-atom form in
Eq. (D2):

ĤN (t ) =
N∑

k=1

Î⊗k−1 ⊗ Ĥk ⊗ Î⊗N−k +
∑

|A〉,|B〉∈S
VA,B|A〉〈B|,

(D7)
where Î is the n × n identity operator for a single atom, Ĥk

is the single-atom Hamiltonian for the kth constituent, and ⊗
denotes the Kronecker product. VA,B encodes interactions at
the atom-atom level between the N-atom states |A〉 and |B〉
including, for instance, the UVdW Rydberg interaction.

Numerical simulation is accomplished using the standard
fourth-order Runge-Kutta integration scheme [79] for the
Schrödinger equation. We define the grid of discretized times
t k = k dt , k = 0, . . . ,Nt over which the state vector is inte-
grated using the time-discretized Hamiltonian Ĥk = Ĥ (t k ) for
dt � 2π/� suitably short and Nt dt appropriately long.

2. Magnetic field noise

We are additionally interested in analyzing the effect of
magnetic field noise on the atomic dynamics. We first note
that fluctuations should occur over timescales corresponding
to � kHz frequencies due to large inductances expected in
coils found in realistic experimental apparatuses. Thus, we
can assume that the field noise is slow compared to our laser
pulses, and hence we consider a field that varies only on
a shot-to-shot basis. To simulate this, we average the time
evolution of the state vector over a series of N trials (we use
N = 30 in our calculations), for each of which the magnetic
field strength B is sampled from a Gaussian distribution with
standard deviation 1 mG and variable mean value held fixed
for all trials. We choose the standard deviation as a good
approximation to the Johnson white noise found in servos
that are typically used to control the current in magnetic
coils [59,60].

We consider magnetic field noise in this way for the anal-
yses of both the ground-clock and clock-Rydberg dynamics.
We find that in both cases the effect of this noise is negligible,
and in the latter it is indiscernible. We therefore only include it
in this work for the ground-clock dynamics. The main effect
of this noise, as stated in the main text, is to reduce the co-
herence time of the nuclear spin qubits to T ∗

2 � 1 s. However,
this effect can be mitigated by, e.g., dynamical decoupling.

3. Relative phase accrual on a qubit

Since we calculate the full evolution of the state vector,
the integration scheme described above may also be used to
find the relative phase accrued between two basis states over
some time interval. Given the calculated time-dependent state
vector |ψk〉 = |ψ (t k )〉, it is straightforward to find the relative
phase between two components |a〉 and |b〉 of |ψk〉 as

�ϕk
a,b = arg

( 〈a|ψk〉
〈b|ψk〉

)
. (D8)

We note here that, recalling Eq. (D1), the free-evolving com-
ponents of the phase have already been explicitly removed,
and hence Eq. (D8) gives the accrued phase due only to
externally applied drives to the dynamics.

For use in our numerical analysis of both the clock and
Rydberg transitions, we are interested in calculating this rela-
tive phase between the two mF states of the ground- (clock-)
state manifold after an effective 2π pulse has been applied
on the ground-clock (clock-Rydberg) transition. While the
dynamics governing the value of this phase are in general
complicated for the systems featured in this work, it is use-
ful to consider the limit of strong magnetic field and small
polarization impurity. In this limit, there are essentially no
undesirable couplings, and hence both transitions simplify to
a two-level system (states |g〉, |e〉 representing one state of a
qubit and its corresponding excited state) undergoing Rabi
oscillations with dressing from a third, uncoupled spectator
state |s〉 (representing the other state of the qubit). We model
the time dependence of the total state as

|ζ (t )〉 = cos

(
θ0

2

)[
cos

(
�

2
t

)
|g〉 + sin

(
�

2
t

)
eiγ (t )|e〉

]
+ sin

(
θ0

2

)
eiϕ0 |s〉, (D9)

where � is the Rabi frequency (defined in terms of oscilla-
tions in probability, not amplitude), and γ (t ) depends on the
polarization and detuning of the drive. The constants θ0 and
ϕ0 describe the initial state dressing, and we note that it is
necessary to have 0 < θ0 < π (i.e., to have nonzero initial
population in both |g〉 and |s〉) in order for the desired relative
phase to be well defined. For the targeted case of a resonant
drive in this work, we also take γ (t ) = 0. From this, it is easily
seen that at the targeted 2π time τ2π = 2π/�, the relative
phase accrued between the ground and spectator states over
the duration of the drive is invariably π for all θ0, ϕ0:

|ζ (τ2π )〉 = −
[

cos

(
θ0

2

)
|g〉 + sin

(
θ0

2

)
ei(ϕ0+π )|s〉

]
. (D10)

We note that, as seen in Figs. 3 and 5, the numerical calcula-
tions agree well with this expected behavior.

4. Modeling the single-beam Raman transitions

In order to show the existence of the “magic angle” for the
single-beam Raman transitions between adjacent “m”-qubit
states as in Fig. 7, we now move to a model featuring an
atom in the presence of a driving field that has well-defined
polarization. In this model, we consider a linearly polarized
plane wave incident on an atom with k vector perpendicu-
lar to a surrounding magnetic field. Rather than its impurity
χ , we parametrize the wave’s polarization by θ , the angle
between the electric and magnetic fields. Computationally,
this amounts to replacing the weighting factor ρ defined in
Eq. (D4) with another formulation ρ̃ to be derived below.

We consider a cylindrically symmetric system (spanned by
orthogonal unit vectors r̂, ϕ̂, and ẑ in the typical fashion) with
magnetic field oriented along the z axis. The incident plane
wave is then defined to have k vector pointed along r̂ and
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polarization vector

ε̂(θ ) = ϕ̂ sin θ + ẑ cos θ. (D11)

Next, we define an additional set of orthogonal unit vectors ε̂q
to describe the space of possible ways that a classical dipole
moment may rotate,

ε̂±1 = 1√
2

(ϕ̂ ± ir̂), ε̂0 = ẑ, (D12)

where the first two correspond to right-hand (parallel to ẑ) and
left-hand (antiparallel to ẑ) rotation about the z axis, associ-
ated with σ± transitions, and the last to simple oscillation
on the axis, associated with the π transition. Without loss
of generality we may associate ε̂+1 with the σ+ transition
specifically, and find the appropriate form for ρ̃ as

ρ̃
(
θ ;ma

F ,mb
F

) = ε̂∗
mb

F−ma
F

· ε̂(θ ) (D13)

=
{ 1√

2
sin θ if

∣∣mb
F − ma

F

∣∣ = 1,

cos θ if mb
F − ma

F = 0.
(D14)

This modified polarization weight ρ̃ is then inserted into
Eq. (D3), replacing each instance of ρ.

To produce the results shown in Figs. 7(c) and 7(d), we
consider driving the Raman transition specifically between
the two m qubits, using the 3D1 F = 1

2 , mF = − 1
2 state as

the intermediary, although this system is easily mapped to
cases where the use of a 3S1 intermediary may be desirable, or
when driving the “g” qubits (for equivalent F and mF quantum
numbers of the intermediary state), as shown in Fig. 1(a).
In our simulations, we use a drive strength corresponding to
�V = 2π × 20 MHz when the angle θ between the driving
electric and surrounding magnetic fields is zero. Estimating
the reduced dipole matrix element for the 3P0 ↔ 3D1 transi-
tion from a mixture of past determinations [80], said drive
strength requires approximately 2 mW of power in a beam
of 1 mm waist radius. Of course, the required power will be
much lower for targeted Raman gates with a tightly focused
beam.

The subsequent analysis of the simulated dynamics of this
system is identical to that for the clock and Rydberg tran-
sitions above: we evolve the system initialized to the |↓m〉
clock state using a Hamiltonian of the form given by Eq. (D2)
and calculate π -pulse fidelity based on the resulting Rabi
oscillations of the target |↑m〉 state, with the exception that
here the effective Rabi frequency �eff is also computed. Due
to programmatic considerations, this is done in two ways.
Specifically, we find that conditions corresponding to large
regions of the considered parameter space give dynamics
featuring high-frequency probability oscillations of sufficient
amplitude as to make the determination of the effective 2π

time (and by extension the effective Rabi frequency) difficult
using only the time-domain oscillations. To combat this effect,
we compute �eff by two methods: The first-maximum (FM)
method is to simply find the time corresponding to the first
local maximum in the probability oscillations of the initial
state and invert it to find the corresponding frequency. The
second method (FT) is to find the frequency as the lowest-
frequency component of the Fourier transform of either the
target or initial states. The FM method is cheap to compute

with good precision, but strongly affected by the aforemen-
tioned problem with high-frequency oscillations. On the other
hand, the FT method escapes this problem, but requires one
to simulate the dynamics out to longer times in order to give
good resolution at low frequencies. For each set of conditions,
�eff is obtained via both methods; if the two results agree to
within 5% of the FT value, then the FM result is preferred,
otherwise the FT. We find that simulating to 25 μs gives
good low-frequency resolution under the range of conditions
considered.

APPENDIX E: OFF-RESONANT LIGHT SHIFTS AND
SCATTER FROM CLOCK PULSES AND TWEEZERS

Beyond magnetic field stability, another important consid-
eration for the fundamental limitation on coherent evolution
is off-resonant dressing and scattering of the atoms from both
the optical pulses and the tweezers. We focus on the clock
pulse in particular since the proposed use case is unique, while
this effect from the Rydberg pulse is universal and similar to
other recent work [12,19].

When an atom is placed into a laser beam, the electrical
field E causes the atomic dipole moment p to oscillate at the
driving frequency according to p = αE, where α is defined
as the polarizability of the atom. The real part of the polariz-
ability introduces the light shift and the imaginary part gives
the scattering of the photons. The calculation of the atom’s
polarizability gives us the evaluation of both the light shift and
scattering rate, which we consider for both the clock pulse and
tweezers.

As we discussed previously, a Rabi frequency �c = 2π ×
200 kHz for the clock transition is a realistic value with
reasonable polarization purity, temperature and magnetic field
stability requirement. On the other hand, as we increase
the Rabi frequency it is also accompanied with the sharp
increasing of the clock pulse intensity due to the relation
�c ∝ √

Pc, where Pc is power of the clock laser. Since the
light shift is proportional to the intensity, the increasing of
the Rabi frequency will also introduce a significant differ-
ential light shift between the ground and clock states that
comes from the off-resonant coupling of the clock laser to
all the other transitions. For the tweezers, this differential
light shift is fully canceled under the given clock-magic
wavelength [22].

In Fig. 9(a), we calculate both the Rabi frequency and
the differential light shift introduced by the clock laser un-
der various laser power for an assumed beam waist radius
of w = 20 μm. (We focus on global pulses here, but will
return to tightly focused pulses in Appendix J.) This sug-
gests the off-resonant light shift is comparable to the Rabi
frequency under our typical experiment condition, and thus
laser intensity noise can be converted into a noticeable noise
of laser detuning �. To evaluate the effect of this power
fluctuation, we consider a simple two-level system, where
a π pulse of �c = 2π × 200 kHz indicates a square pulse
length of τ = 2.5 μs, which corresponds to a window func-
tion W (δ) = [sin(δτ/2)/(δτ/2)]2 that filters out all the noise
with a frequency significant higher than 1/τ , where δ is the
frequency of the noise. Within this noise bandwidth, a stability
better than 1% is trivial for an active power stabilization setup.
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FIG. 9. Off-resonant light shifts and scatter from clock pulses
and tweezers. (a) The Rabi frequency �c and off-resonant differential
light shift of the clock transition versus the clock laser power for a
global readout beam (20 μm beam waist). (b), (c) The off-resonant
scattering rate of ground (1S0) and metastable (3P0) states versus the
clock laser power (b) and tweezer power (c).

For the atom’s transition under this effective frequency noise,
a shot-to-shot population fluctuation of the excited state is
(�/�c)2 < (0.01)2 where the differential off-resonant light
shift is significantly smaller than the Rabi frequency. Thus, the
effect of this differential off-resonant light shifts is negligible
under our usual conditions, but would become significant as
�c/2π approaches the MHz scale. On the other hand, a laser
pointing error of 1.4 μm will also cause a 1% change of a laser
intensity for a beam waist around 20 μm. This pointing error
noise can either be removed by the occasionally checking the
Rabi frequency during the experiment or by adding the active
position feedback to the mirrors.

Beyond the effect of the differential light shift, the lifetime
and the coherent time of the atom will be limited by the off-
resonance scattering from both the clock pulse and tweezers.
Figure 9(b) shows the calculation of the scattering rate on
the relevant states of the atoms. The upper plot shows the
calculated scattering rate from the clock laser to the ground
and clock states. Under typical clock pulse intensity, we can
find this off-resonance scattering rate is negligible compared
to the �c. Figure 9(c) gives the scattering rate of the tweezers
at the clock-magic wavelength, which indicates a more than
1-s lifetime for both the ground- and metastable-state atoms
under the typical power of the tweezers. This off-resonance
scattering is also negligible for a 2.5-μs clock pulse, and we
again emphasize that clock pulses are the slowest operation in
our proposed architecture.

APPENDIX F: PHASE-NOISE ANALYSIS

Here we are interested in the dephasing effect of laser
phase noise on Rabi oscillations [64] occurring within the
ground-clock manifold. To analyze this effect under realistic
conditions and demonstrate the robustness of our scheme, we
characterize the phase noise from one of our own lasers, tuned
to the |↓g〉 ↔ |↑m〉 clock transition discussed in the main text,
and use the measured data in a simulated drive of the four-state
ground-clock manifold following the procedure described in
Appendix D.

First, we describe the procedure to characterize the phase
noise in the laser. Our “clock” laser (λ = 578 nm) is generated

FIG. 10. Phase-noise effects from the clock laser. (a) Measured
frequency noise spectrum from our cavity reflection without correct-
ing for cavity rolloff. This is an approximation of the transmitted
signal through the cavity that filters phase noise above the cavity
bandwidth (≈5 kHz). (b) We simulate the ground-clock manifold in
the presence of a drive with a time-dependent frequency as described
in Sec. IV and Appendix D. This drive is measured data, which was
used to generate the noise spectrum in (a). We find that high-contrast
oscillations can be sustained for �20 cycles before dephasing causes
decay.

from the second harmonic of an infrared “master” laser at
λIR = 1156 nm, which is locked via the Pound-Drever-Hall
(PDH) technique to an ultrastable cavity system produced by
Stable Laser Systems. We then use the slope of the in-loop
PDH error signal from light reflected from the cavity to obtain
the locked laser’s frequency as a function of time and hence
compute Allan deviation and the power spectral density (PSD)
of this signal. The measured cavity response is limited by its
linewidth νc ≈ 5 kHz, which gives significant attenuation of
the signal near the frequency band of interest at ≈100 kHz.
We could correct for this effect by including a “cavity rolloff
factor” [81] to accurately portray the phase noise on our
laser, but in this work we consider using the transmitted light
through the cavity to filter this phase noise [62]. Hence, the
phase noise of the transmitted light is accurately represented
by our measurement of the reflected light directly, without
including the cavity rolloff factor. We believe this approach
will make our analysis more generally applicable. With this
procedure we calculate the Allan deviation of the measured
signal to be σ � 2 × 10−15 at a τ = 1 s averaging time and
estimate the linewidth of the laser to be �ν ≈ 2 Hz from
the PSD, shown in Fig. 10(a), using the β-separation line
method [82].

The phase-noise data were then used to generate a realistic,
time-dependent drive to a simulated four-level ground-clock
manifold. This is accomplished by taking a sum over Fourier
components that are weighted by the calculated PSD with
random phase shifts sampled from a uniform distribution.
When applied in simulation following the description given
in Appendix D, we find that high-contrast Rabi oscillations
can be sustained over more than 20 cycles with this drive, as
shown in Fig. 10(b).

APPENDIX G: FINITE-TEMPERATURE MODELING

We now incorporate finite-temperature effects in our anal-
ysis of single-atom dynamics. In an optical tweezer, a single
atom at nonzero temperature is delocalized over lengths com-
parable to the wavelength of the laser; hence, we must include
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a position-dependent motional phase factor exp(ik · x) into
the drive �, where k is the wave vector of the driving
laser. η = kx0 is the Lamb-Dicke parameter (see the main
text). For simplicity, we approximate the tweezer with a one-
dimensional harmonic trapping potential [18,66] and write
the motional phase factor as exp[iη(â + â†)], where â and
â† are ladder operators operating on the Fock basis {|n〉}
corresponding to the usual harmonic oscillator states. For
brevity, we denote the motional phase factor and its adjoint
as ξ̂ = exp[iη(â + â†)] and ξ̂ † = exp[−iη(â + â†)]. For the
case of a “magic” wavelength trap (where the atomic ground
and excited states experience the same trap frequency), the
Hamiltonian of the system is [18,66]

Ĥ = h̄
∑
g,e

�

2

(
geg(χ, q)ei(ω−ω0−ω̃e

g)ξ̂ ⊗ |e〉〈g| + H.c.
)

+ h̄ωt

(
â†â + 1

2

)
⊗ Î, (G1)

where |g〉 ∈ {|↓g〉, |↑g〉} and |e〉 ∈ {|↓m〉, |↑m〉}. Î is the 4 ×
4 identity operator for the four-level ground-clock manifold.
�geg(χ, q) is the driving term which includes both the effects
of polarization impurity and Clebsch-Gordan weighting factor
(see Appendix D).

For our purposes, we consider � � ωr for a high-fidelity
state transfer. The higher-order terms of ξ̂ are also no longer
strongly suppressed and couple a single motional state to
many other excited motional states at the same time. To sim-
plify calculations we rewrite the basis states of the combined
atom Fock Hilbert space as |g, n〉 = |g〉 ⊗ |n〉 and |e, ξ (n)〉 =
|e〉 ⊗ ξ̂ |n〉. We then rewrite the Hamiltonian by inserting the
identity resolved in this basis to the left and right,

Ĥ →
( ∑
n′,g′,e′

|g′, n′〉〈g′, n′| + |e′, ξ (n′)〉〈e′, ξ (n′)|
)
Ĥ

×
(∑
n,g,e

|g, n〉〈g, n| + |e, ξ (n)〉〈e, ξ (n)|
)

, (G2)

and define a four-level state vector Gn for the nth motional
state

Gn = (|↑m, ξ (n)〉, |↓m, ξ (n)〉, |↑g, n〉, |↓g, n〉). (G3)

Thus, the Hamiltonian can be simplified as

Ĥ →
(∑

n′
Gn′G†

n′

)
Ĥ

(∑
n

GnG
†
n

)

=
∑
n,n′

G†
n′ (Gn′ĤG†

n)Gn, (G4)

where Gn′ĤG†
n is a 4 × 4 matrix. The Hamiltonian can then

be understood as a 4 × 4 matrix under N2 different conditions
that describe the transitions between different motional states.
These individual 4 × 4 matrices can then be assembled into
a N × N table to reduce computer memory usage in numer-
ical computation, where N is the highest motional state we
want to include in the calculation. For our calculations, we
use N = 100 � kBT/h̄ωr . For a given temperature, we use

FIG. 11. Comparison of π -pulse infidelity for linearly (π ) and
circularly (σ+) polarized drives. (a) Infidelity for the clock-Rydberg
transition case for the linear (left) and circular (right) drive. (b) In-
fidelity for the ground-clock transition case for the linear (left) and
circular (right) drive. The black line indicates where the infidelity
crosses 0.01.

the appropriate Boltzmann distribution to construct an initial-
state vector, and numerical simulation is accomplished by the
method described in Appendix D.

APPENDIX H: LINEARLY POLARIZED DRIVES

In this analysis, we compare the cases of driving the
aforementioned transitions with linearly polarized (π ) and cir-
cularly polarized (σ+) light. The π -polarized drives target the
ground-clock |↓g〉 ↔ |↓m〉 and clock-Rydberg |↑m〉 ↔ |r↑〉
transitions, giving �mF = 0 as opposed to �mF = +1 for
the σ+ transitions. Figure 11 shows the π -pulse infidelities
for both cases, providing a direct comparison between the π

and σ+ transitions under various polarization impurities χ and
magnetic field strengths B.

The π drives introduce greater sensitivity to polarization
impurity, particularly for the clock-Rydberg case, because a
resonant Raman condition exists between the two nuclear spin
states for χ > 0. In contrast, this condition does not exist for
the clock-Rydberg case with σ+ drives since the target state
is stretched to maximum mF . Hence, driving the π transition
with high fidelity requires very low polarization impurity
(χ < 10−2) and shows minimal improvement with larger
magnetic fields. In contrast, σ+ drives yield significantly
greater populations in the target state |r〉 while exhibiting
a much higher tolerance to impurity. Driving the four-level
ground-clock transition with π polarization is also inferior to
σ+ with similar reasoning. Figure 11(b) highlights important
distinctions between the drives across lower magnetic fields.
We find that π -driven clock transitions with χ > 10−2 require
larger magnetic field for the same pulse fidelity compared to
the σ+ case.
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FIG. 12. Driving the clock transition for various Rabi and trap
frequencies. (a) π pulse and (b) 9π pulse, initialized in |↓g〉, under
various magnetic field (B) and Rabi frequency (�) with χ = 10−2.
We neglect motion and thermal effects. The color scale is the pop-
ulation in |↑m〉, P↑m . (b) Shows that some nonmonotonic behavior
develops at high � due to increased coupling to the spectator states.
(c) Diagram of targeted and global pulses and the corresponding
relevant tweezer trapping axes. (d) The infidelity due to the finite-
temperature effects for a clock beam on the axial direction.

APPENDIX I: VARYING THE CLOCK-TRANSITION RABI
FREQUENCY

In the main text, we primarily consider the use of �/2π =
200 kHz for the clock-transition Rabi frequency. Here, we
vary �, neglecting motion and thermal effects, to identify
conditions under which the nuclear spin splitting will limit
the π -pulse fidelity and Rabi coherence time. We study the
population P↑m in |↑m〉 after a π and 9π pulse from |↓g〉
versus magnetic field and Rabi frequency with χ = 10−2 (see
Fig. 12). For sufficiently high �, the pulse fidelity after 9π

is worse than that of π , which indicates the onset of non-
negligible coupling to the spectator states. Interestingly, we
observe nonmonotonic behavior with respect to varying �,
which we attribute to resonance effects where the Zeeman
shift of the spectator transition (which depends on B) is within
the bandwidth of �. For higher χ this effect would become
crippling even for relatively short pulses.

APPENDIX J: AXIAL ADDRESSING AND DRIVING THE
CLOCK TRANSITION AT LOWER TRAP FREQUENCY

Aside from the global clock pulse, a tightly focused beam
could be useful for single-qubit, mid-circuit readout. In a
tweezer system, this can be accomplished by overlapping
the clock laser together with a tweezer. Since a tweezer has
much weaker confinement on the axial direction compared to
the radial direction, the consideration of the motional states
changes dramatically.

Similar to the calculation for the radial direction in
Appendix G and assuming a Gaussian beam profile with
fixed waist–Rayleigh length relationship, we assume an axial

trap frequency in the tweezer of ωz = 2π × 17 kHz [corre-
sponding to the same tweezer parameter in the main text; see
Fig. 12(c)]. Under this lower trap frequency, the simulation
shown in Fig. 12(d) indicates a significantly higher fidelity for
most cases when compared with the radial direction. This re-
sult can be understood by considering that an atomic transition
is mostly affected by phase noise around the Rabi frequency.
The atomic sloshing motion can introduce an effective phase
noise around the trap frequency, which is particularly delete-
rious when the trap frequency is still comparable to the Rabi
frequency. For the case of axial addressing, since the Rabi
frequency is much higher than the trap frequency, the atom
is nearly static during the clock pulse time.

However, other technical problems arise when we apply the
axial driving beam, which also pertains to focused Raman-
based single-qubit gates and focused Rydberg-mediated
two-qubit gates [see Fig. 1(b)]. One issue is the motional
stability of the tweezers and clock laser beams, which requires
a relative displacement smaller than 100 nm for an intensity
fluctuation smaller than 1% assuming a waist of 800 nm. This
issue can be solved by adding a flat-top beam shaper, which
gives a homogeneous clock laser intensity within the beam
diameter. Another potential problem is the crosstalk between
the target atom and its neighbors. However, considering a
tweezer spacing of 2 (3) μm and an addressing beam waist
radius of 800 nm, the laser Rabi crosstalk of the neighboring
atoms is ≈10−3 (≈10−6), which suggests that the operations
in our architecture can exceed the 0.99 fidelity level.

Another insidious technical issue for tightly focused beams
of highly constrained polarization (especially if it is circu-
lar such as the clock and Rydberg beams) is the need to
maintain this polarization for all sites to be addressed by the
tightly focused beams. However, this may be accomplished
by carefully designing the optical system to put polarizers
in the appropriate plane, perhaps combined with the use of
metallic mirrors rather than dielectric mirrors. Additionally,
the Pockels electro-optic effect could be used to adjust the
polarization in a calibrated map via a polarimeter. Although
we leave a careful study of this effect for future work, we note
that trapped ion systems have been engineering solutions to
such problems for over a decade [83].

APPENDIX K: TECHNICAL LIMITATIONS FOR THE
RYDBERG TRANSITION

As stated above, we believe that the technical limitations
of driving ground-Rydberg transitions for use in Rydberg-
mediated entanglement are thoroughly described elsewhere
[12,62,64], but we briefly consider them in the context of
our architecture. A recurring theme is the disparate timescales
between the clock drives and Rydberg drives (�R > 10�c),
rendering the Rydberg drives less sensitive to several technical
limitations.

1. Laser frequency noise

Closed-loop frequency stabilization systems introduce
noise peaks, called “servo bumps,” that typically span ≈
100 kHz to ≈1 MHz. This frequency noise gives rise to
a �(t )σz term that must be considered in addition to the
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�σx Rabi drive term, and is well known to have particu-
larly deleterious effects when its characteristic timescale τ

matches 1/� [12,62,64]. As described above, we consider
�c = 2π × 200 kHz for the clock transition and �R = 2π ×
6 MHz for the Rydberg transition. Therefore, the clock drive is
substantially more sensitive to laser frequency noise than the
Rydberg drive. Indeed, this setting for the Rydberg transition
was recently used in a nearly identical system with 88Sr [12],
showing long-time Rabi coherence with contrast exceeding
0.99.

2. Motional and trapping effects

Unlike the clock transition for which the differential polar-
izability is zero at 759 nm, there is a significant differential
polarizability at this wavelength for the Rydberg transition
[12]. It is common to blink the traps off during Rydberg
pulses. (The intended Rydberg-based gates will not leave pop-
ulation in the Rydberg state after the pulse.) With the atom in
free flight, its motion gives rise to random Doppler shifts given
by �ω = 2π/λ

√
kBT/m, where λ is the optical wavelength,

T is the temperature, kB is Boltzmann’s constant, and m is
the mass. Assuming a temperature of 500 nK at a trap depth
of 5 μK (adiabatically ramping down from a temperature
of 5 μK in a 500-μK-deep trap), �ω ≈ 2π × 16 kHz. This
effect is negligible compared to �R = 2π × 6 MHz.

Alternatively, one could leave the tweezer traps on during
the pulses. As discussed above, the trap frequencies in a
500-μK-deep trap are at most ≈70 kHz. While this is com-
parable to �c, it is much smaller than �R. Moreover, it is
common to ramp the trap depth down by a factor of 100
bringing us toU = 5 μK ≈100 kHz, for which this frequency
is ≈7 kHz. In this setting, �R � U . In this limit, the domi-
nant effect from the trap is the random differential light shift
due to the deviation of the atomic position from the trap

bottom. Similar to the free-space case, this corresponds to
�ω ≈ 2π × 15 kHz when assuming an atomic temperature
of 500 nK in the 5-μK-deep trap, and assuming a relative
polarizability of αR/αc ≈ −0.5 [10,12]. The recent work with
Sr [12] also studied the case with the traps on, finding minimal
difference versus blinking them off.

3. Rydberg state lifetime

Here again, large �R helps to mitigate the effects of decay
from the Rydberg state, which again has been discussed in
detail [64]. We consider the use of a Rydberg state with
n∗ ≈ 55, for which we anticipate a lifetime of τ ≈ 100 μs.
The 2π pulse of our Rydberg gates is τ2π = 2π/�R = 167 ns,
which suggests that pulses with fidelity up to �0.999 are
possible when integrating over the population of the Rydberg
state during the pulse. Working at cryogenic temperatures can
further improve the Rydberg state lifetimes.

4. DC Stark and Zeeman effects

Finally, we consider dc drifts in the resonance frequency
of the Rydberg transition originating from magnetic and elec-
tric field instability. The former is already considered in
Appendix D where we assumed a 1-mG field instability and
showed negligible effects, again owing to the large separation
between �R = 2π × 6 MHz and �B = 2π × 1.9 MHz/G ×
10−3 G = 2π × 1.9 kHz. We do not anticipate dc Stark shifts
that are significantly different than those of other atomic
species with comparable n∗ [12,29], and thus we do not an-
ticipate limitations even well beyond the 0.99 level due to
this effect for n∗ ≈ 55, albeit perhaps requiring interleaved
line-shape measurements or active atomic locking [12,14].
In-vacuum electrode systems [10,64,84] can further suppress
the effect of electric field transients, and so can operation at
cryogenic temperatures.
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