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Mode Structure and Orbital Angular Momentum
of Spatiotemporal Optical Vortex Pulses
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We identify a class of modal solutions for spatiotemporal optical vortex (STOV) electromagnetic pulses
propagating in dispersive media with orbital angular momentum (OAM) orthogonal to propagation. We
find that symmetric STOVs in vacuum can carry half-integer intrinsic OAM; for general asymmetric
STOVs in a dispersive medium, the OAM is quantized in integer multiples of a parameter that depends on
the STOV symmetry and the group velocity dispersion. Our results suggest that STOVs propagating in
dispersive media are accompanied by a polaritonlike quasiparticle. The modal theory is in excellent
agreement with measurements of free space propagation of STOVs.
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Several years ago, we reported the first measurement of
spatiotemporal optical vortices (STOVs), which were found
to emerge from the nonlinear self-focusing collapse arrest
and filamentation of femtosecond optical pulses in air [1].
A STOV is a polychromatic electromagnetic structure with
orbital angular momentum (OAM) and optical phase
circulation defined in spacetime, with the OAM vector
perpendicular to the direction of propagation. STOVs
appear to underlie all self-focusing collapse scenarios,
including relativistic self-focusing in plasmas and filamen-
tation in transparent solids. More recently, we have
demonstrated generation of STOV-carrying pulses using
a 4f pulse shaper and studied their free space propagation
from near field to far field, capturing their evolving
spatiotemporal amplitude and phase [2], with this work
later verified in experiments observing STOVs in the far
field [3]. Our recent experiments demonstrating STOV
OAM conservation in second harmonic generation verifies
that STOV OAM applies at the single photon level [4-6].

The subject of optical vortices garnered renewed interest
when Allen et al. [7] demonstrated a fundamental con-
nection between intrinsic spatial OAM and Laguerre-
Gaussian modes of integer topological charge [: such
beams carried OAM of [# per photon. In contrast to
STOVs, the beams considered by Allen et al. are mono-
chromatic, with the vortex axis, angular momentum, and
linear momentum all aligned. Closer to our situation, the
possibility of measuring spatiotemporal vortices has been
suggested in [8] and dispersionless vortices have been
considered in the spatiotemporal domain [9].

In this Letter, we present a theoretical description of
STOV-carrying pulses in both vacuum and in dispersive
material media, with emphasis on their mode structure,
propagation, and spatiotemporal orbital angular momen-
tum. Recent theoretical work [10] has also considered
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spatiotemporal vortex pulses, but without a full modal
analysis in dispersive media.

We start by looking for STOV-supporting modal sol-
utions of the paraxial wave equation. To account for
possible medium dispersion, we use the Fourier trans-
formed wave equation for a uniform isotropic medium
with dielectric function ¢(w) and wave number given by
K (w) = w*e(w)/c?,

2 ~
(V24 g+ @) Arszo) =0, (1)

where A is the ¢— w Fourier-transformed vector
potential, pulse propagation is along %, r; represents
transverse coordinates orthogonal to Z, and V3 is the
corresponding  transverse = Laplacian. We  assume
A(r, . z,0) = A(r,,z.0 — wy)e™?, where A is a slowly
varying envelope and ky = k(@) is the wave number at
the central frequency. This yields (V3 + 2ik,0/0z)A +
[K2(w) — kZJA =0 for ko|OA/Oz| > |0*A/0Z?|. Using
kK (w) — k% ~ 2kolk(w) —ky) and expanding k(w)=
ko -+ ki (@ —wq) + ki (@ —@g)? )2+~ gives 2ikyDA Dz =
—V2 A —2ky(kyw+kjo* +---)A, where k) = (0k/0w), =
v;l is the inverse group velocity at @,, and
ki = (0%*k/0w?)y = (8v,'/0w), is the group velocity
dispersion (GVD). Assuming that the pulse bandwidth is
not too large (Aw/wy < 1), keeping terms in the k(w)
expansion to second order is an excellent approximation.
This gives, after transforming back to the time domain,
2ikgOA )0z =—(V3 +2ikokl,0/ 0t —kok O/ O1*) A where
A =A(r,,z,t). Finally, we make the substitutions
&=w,t—z and f, = vikok( to give
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= HA(r,& 7). (2)

Here, £ is a (local timelike) space coordinate in the
frame of the pulse, f, is the dimensionless GVD, H =
(=V2 + B,07/0&%) is the spacetime propagator, and we
separate z with a semicolon as it plays the role of a timelike
running parameter.

Next, we assume a uniformly polarized beam
A(r,&z7) =A(r,, & z)€é, where € is the complex polari-
zation (here we take &€ = ¥ as in our experiments [2], where
there are no effects of spin angular momentum [10]), and
find modal solutions to Eq. (2) for r;, = (x,y):

Ampa(%, 7, & 2) = ASpqu, (6 2y (v; 2)u§ (E:2), (3)

where

C 2 .
uy(&2) = ——2=H <f§>eéz/ W) ikl /26:Re(2)

we(z) T \we(2)
X ei(4+1/2)l/’§(z) (4a)
and
uy(x;z) = Con H, ( V2 ) e /Wi(2) ko /2R (2)
Vwi(2) wy(z)

X e_i(m+1/2)‘/’x(z>‘ (4b)

Here, C,, = (2/z)/*(2"m!)""/2, H, is a Hermite
polynomial of order m, w,(z) = wo[l + (z/z0:)?]"/%
R(2) = z[1 + (20:/2)*]. w(z) = tan™! (z/20,), and 2o, =
kow3,/2 is the x-based Rayleigh range. The expression for
u,(y) is identical to Eq. (4b) with the substitution x — y
everywhere. Associated with uj(£; z) are Zoe = kow} /212,

we(z) =woe[1+ (1/205)2}1/2, Re(z) = z[1 + (205/2)2]1/2,
and y¢(z) = sgn(fy)tan"'(z/zgz). The quantities w(z),
R(z), and w(z) express the z variation in beam size,
phase front curvature and Gouy phase shift as they do
for standard transverse modes, except that here they also
apply in the £ domain.

The “spot sizes” wy,, wy,, and wy: describe the trans-
verse space and temporal shape of the beam envelope of
the lowest order mode [(m, p,q) = (0,0,0)] at z =0,
Agol. 3. &2 = 0) = AQ WD) €M which
approximates the input beam to our pulse shaper. The
effective wave number ky/f, associated with ug(f; )
accounts for the different rate of spreading in temporal
dispersion compared to transverse beam diffraction. We
have allowed the beam to have elliptical envelopes in
both the x-y (space) and x-£ (spacetime) planes, and
different phase curvatures in x, y, and . The choice of
Hermite-Gaussian (HG) basis functions for the solution of

Eq. (2) is motivated by our experimental generation of
STOV-carrying pulses using a 4f pulse shaper [2], which
imposes rectilinearly-oriented ellipticity and astigmatism in
both the space and spacetime domains.

We now consider propagation of the simplest STOV-
carrying pulse generated by our pulse shaper, one with a
spatiotemporal winding of topological charge [ =1 or
= —1. At z =0, this pulse is constructed as

Al (x,y,82=0)

= Ay (i + ii> e (IR g8 (5)
Woe Wox

As we will see, the spacetime eccentricity, @ = wog/ W,
is extremely important and will show up throughout these
calculations. In the experiments, the y direction is orthogo-
nal to the pulse shaper grating rulings, and so after pulse
reconstruction at the shaper output, the y-dependent
envelope of the input pulse is reproduced [2].

In vacuum or in the very dilute medium (air) of the

experiments of [2], f, =0 and v, =c, ug(é;z =0) =

quaél/qu(\/if/woé)ef‘fz/W()é, and Eq. (5) can be written
as a linear combination of spacetime modes [Egs. (4)] at
z=0:

Al (x,y, &2 = 0) = Agu)(y: 0) 1 (x; 0)uf (£: 0)
+ iuf (x; 0)ug (£;0)]. (6)

Given this initial STOV field at z = 0, the propagator
H = (—V% + B,0*/0&*) of Eq. (2) generates the full
z-dependent evolution

AT (x,y. & 2) = A (v: 2) [ (x: 2)us (£:2)
+ i (x: 2)u (& 2)]. (7)

For the case wo, = wo:(a = 1), the factor uf(x;z)u; (& 2)+

i (x;2)us(£;2) is analogous to the superposition of the Oth
and 1st order Hermite-Gaussian transverse modes (HG,
and HG,) to give the Laguerre-Gaussian (LG) spatial mode
LGGuie = HGo(x)HG (y) £ iHG, (x)HGy(y).

Figure 1 compares theory and experiment, where
Fig. 1(a) shows the amplitude and phase of AL *!(x,y =
0,&;z) from z = —0.85z¢, to z = 0.24z,,, computed with
Eq. (7). It is seen that the field is a donut at the beam waist
(z = 0) (as constructed) and evolves into spatiotemporally
offset lobes with opposite spacetime tilt on either side of
z = 0, with transverse diffractive spreading widening the
beam. Here, we have used @ = w;/w, = 0.3 to match our
measured eccentricity. The experimental results are shown
in Fig. 1(b). To capture the in-flight amplitude and phase
profiles of these pulsed spatiotemporal structures, we have
employed a new diagnostic, transient-grating single-shot
supercontinuum spectral interferometry (TG-SSSI), which
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is described in [11]. The measurements are in excellent
agreement with our mode-based calculation, capturing the
STOV field’s evolution from a donut into spatiotemporally
offset lobes, and matching the phase winding in each panel.
For a more direct analysis of angular momentum of
STOVs, we now express our HG-based mode solutions in
|

spacetime polar coordinates (p, ®), where x = p sin @ and
& = pcos®. Here, we can describe the spacetime phase
winding by the topological charge / and the single function
@, even for our general case of elliptical and astigmatic
STOV pulses. The fundamental rectangular mode based on
Eq. (3) is now written as

WoxWoyWoe prEi’® - y?  pleos’®
A 2 Piz) =Aoy [
000 (p: ¥, @3 2) 0 w(2)wy(z)we(z) eXP( wi(z)  wy(2) W?(Z)
2 2
p?sin’>® y p cos“®
X exp {lk()( IR (2) T 2BR )]
(2)  2BaRe(z
X exp { w.(z) +y,(z) — Wf(z)]] ®)

z/Zgy

0.24 0.02 -0.20 -0.41 -0.63 -0.85
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§/a (um)

FIG. 1. (a) Propagation evolution from z/z,, = —0.85 to 0.24
ofthe/ = 1STOV A(x,y = 0,¢&; z)(l:H), plotted using the modal
solution, Eq. (7). Top row: Normalized intensity |AL ! (x,y =
0,&;7)|>. Bottom row: Phase ®(x,&) =arg (A5 (x,y=0,£;7)).
The phase color map and red arrows show the direction of
increasing phase ®. (b) Experiment: An [ = 1 STOV is generated
by passing a near-Gaussian pulse through a 4f pulse shaper with
an [ = +1 spiral phase plate at the shaper’s Fourier plane
(experimental details in [2]), and the STOV amplitude and phase
is captured in flight by TG-SSSI (details in [2,11]). The
experimental Rayleigh length is zy, = 46 mm. The horizontal
axis for both (a) and (b) is normalized to the experimental
spacetime eccentricity a = wgz/wq, = 0.3. The phase plots in (b)
are blanked out in regions of low intensity where phase extraction
fails [11]. Within each panel, the pulse propagates from right
to left.

|
and the / = £1 STOV pulse from our pulse shaper is

Ai = (p.y, ©32)

= Agoo(p, ¥, P; 2) <m eve(@) 3 (PSP el'%(z)) .
Wﬁ(Z Wx(z)
9)

In our experiments, the y-dependent beam envelope
shape, aside from transverse diffractive spreading, is
preserved in propagation. So, we henceforth neglect y
variations in the beam by setting y = 0, noting that any
3D mode can be constructed by multiplying the (x,&)-
dependent results by u)(y; z).

We now examine the STOV angular momentum yL,,
which is orthogonal to the x-£ plane of spatiotemporal
phase circulation. First, we must find the appropriate
angular momentum operator L,. To do so, we consider
Eq. (2) along with the conservation of energy density
flux j [12], 8|A]*/0z=—V-j, where j=j, +j.
ji = —i(2ky)"(A*V A — AV  A*), and J= ifr(2ky) ' x
[A*(8/0)A—A(D/DE)A*)E, where & is unit vector
along increasing & This gives j=ky!'|AP[V, ® —
Bo(0®/OE)E] = ky'|A|PV,, @, where A = |A|e® and we

identify V, =V, —&p,(0/0E) as the spacetime
gradient. Therefore, the spacetime linear momentum
operator is p=—iVy, giving L, = (—irxVy), =

—i(0/0x + xp,0/0&). In spacetime polar coordinates,
this becomes

0
2F A il
(cos*® — fi,sin q)>8d)

=L¢+Li, (10)

0
L,=—i|psin®@cos®(1 +ﬁ2)a—+
p

where we identify the first term as the extrinsic STOV
angular momentum L¢, and the second term as the intrinsic
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STOV angular momentum Li Here, intrinsic refers to the
origin-independent spatiotemporal angular momentum
contribution, and extrinsic refers to the origin-dependent
contribution which integrates to zero, (Lj) =0, when
calculating the expectation value (()) of L, by integrating
over p (0 - o0) and @ (0 — 2x).

To calculate the STOV OAM associated with A (p,y,
®; 7), we note that it is sufficient to do so at the beam waist
z = 0. This is because (L,) is invariant with propagation,
namely (d/dz)(L,)=1i(2ke)™'([H.L,]) =0, owing to the
fact that [H,L,] = 0; L, commutes with the propagation
operator. This procedure greatly simplifies the calculation,
especially for nonzero f,, where we consider the beam
waist to be placed just inside the material interface (z = 0)
without additional chirp from the material yet induced. At
z =20, Eq. (9) becomes

AEEL = AEE(p y = 0,®; 7 = 0)

o in @
= AOOO(/O’ O, (I), 0) <p cos + lp s >

Woe Wox

p s
= Ay—exp (——2 (cos’® + azsinZCI)))
Woe Wog

x ((lia)e"%r(l $O’)e—fq’). (11)

This is nearly a linear combination of LG%*!' modes
except for the d-dependent exponential prefactor, which
loses its angle dependence for a@ = 1, yielding the sym-
metric spacetime Laguerre Gaussian mode AL%! =
LGgéietime = AO(;O/WO:f) exp(_pZ/Wgé)eizd)'

For arbitrary topological charge [, the /th order STOV
pulse is

AL = Al(p,y = 0,02 =0)

p\! P .
= A, <—> exp {—M (—2 (cos’® + a2s1n2<I>>]
W()é W()éf

x [cos @ + iasgn(l) sin @], (12)

For a STOV with a phase winding of charge [ and
eccentricity ¢ = 1, and for general «a,

<Ly>1,a=1 = <Aée:l |le =+ L;‘AL:1>
. 1
= (Al LAl =510 =), (1%)
(Ly),, = (ALIL} + L$|AL)
. 1
= (ALY = Sl pofa). (13b)

where (L§) =0, and where (L,) depends explicitly on
topological charge [, STOV eccentricity «, and material
dispersion f3,.

This is a remarkable result, for which we will first
consider the case a = 1, a space-time symmetric STOV.
For the case of vacuum (5, = 0), (L,) = 1/2: STOV OAM
is quantized in half integer units. For dispersive media
(f» #0), a quantum interpretation of the role of S, is
strongly suggested, where one might consider the material
disturbance induced by a STOV-encoded photon field as a
new type of quasiparticle, a “STOV polariton.”

A physical explanation for half-integer STOV orbital
angular momentum in vacuum is that electromagnetic energy
density flow in the pulse frame is purely along £x, or along
V. In our coordinates, for [ = +1, energy density flows
along —x in advance of the STOV singularity and along +x
behind it, as seen in experiments and calculations in Fig. 1
and in Ref. [2]. Because #, = 0 or is negligible in vacuum or
extremely dilute media, there is no energy flow along &. This
is in contrast to a standard LG5l mode, where electro-
magnetic energy density circulates clockwise or counter-
clockwise around the singularity.

We now examine the physical meanings of f, and @ in
Egs. (13). For simplicity, we first consider @« = 1 and later
return to the interpretation of a. Note that in Eq. (12) we
used the vacuum STOV (ff, = 0)—with its original spectral
phase—implicitly at z = 0" (just inside the material) to
calculate (L,),. But in reality, even at z = 0, the STOV
spectral phase would have been modified by the dispersive
material. Therefore, for a given phase winding /, the added
term —(I/2)p, in (L,),, which is imposed by the f,-
dependent L, operator [Eq. (10)], represents sharing of the
pulse OAM with the material. This suggests that the
material has an electromagnetic OAM response quantized
in half integer steps of /,—we identify this object as a bulk
medium STOV polariton. For the case f, = 1, (L,), =0
and the medium has apparently taken up /2 units of
angular momentum from the STOV field. It is interesting
to note that B, =1 for materials with a quadratic
dispersion relation (@ o k?) or effective mass for photons.
This is a known dispersion dependence for polaritons
[13,14]. For a negatively dispersive material with
pr = —1, we get (L), = [, which we interpret as either
that the STOV OAM is split between the photon and
polariton field, or that the self-consistent electromagnetic
object in the dispersive material has integer spatiotemporal
OAM. Other values of f, give a range of OAM contribu-
tions between photons and polaritons.

We now discuss the asymmetry parameter a. In the
context of spatial OAM [7], there is nothing sacrosanct
about circular symmetry except that the OAM for such
beams coincides with the topological charge / of the vortex.
References [15,16] show that the intrinsic spatial OAM
per photon of monochromatic beams with wy, # wy, is
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determined by the ratio wy,/wy,. That is, the transverse
beam shape is encoded onto the photon OAM. Although
our spacetime paraxial wave equation (PWE) [Eq. (2)] is
different than the spatial PWE, and our STOV OAM
operator is different than the spatial OAM operator, our
conclusions regarding the STOV eccentricity parameter
a = wog/w, are the same: a is encoded onto the intrinsic
STOV OAM. In vacuum, STOV OAM is quantized in
integer steps of a/2 (or half-integer steps of «), while in a
dispersive medium, it is quantized in integer steps of
(a — fpy/a)/2. For normally dispersive material with
pr >0, (L), =0 for a = /f,; the polariton most effi-
ciently takes up STOV OAM when the eccentricity is tuned
to the material’s normalized GVD.

Considering the limit @ — 0 in vacuum [and ignoring the
breakdown in the slowly varying envelope approximation
used to obtain Eq. (2)], (L,), = 0 as is appropriate: the
pulse loses the timelike contribution to its vorticity. In a
dispersive medium, a — 0 corresponds to a shrinking
temporal pulse width accompanied by increasing band-
width, for which dispersion and the phase gradient con-
tribution of EB,0®/IE to (Ly), increase significantly.

In classical terms, electromagnetic energy flow in 3
dominates that in X. To be consistent with the given
topological charge I, [(L,),| must become large. For
a — oo, the pulse becomes very long and the effect of
dispersion goes away (f,/a — 0). Then, to be consistent
for a given /, the phase gradient X0®/Jx must become very
large, as does (L,),. In general, heuristic electromagnetic
energy flow arguments like these provide good physical
insight into the effects of varying a and f,.

Figure 2(a) shows plots of STOV intensity |[A’Z! (x,y =
0, & z)|* and energy density flux j, computed using Eq. (7),
forl=1,a=1,and p, = 1,0.5,0,—0.5, —1, and Fig. 2(b)
shows similar results for a spacetime-eccentric / = 1 STOV
with @ = 0.5. For each row of Fig. 2, (L,) =1 (a— f,/a)
is a constant. The purely diffractive contributions to j
have been subtracted out, leaving the flow contributing to
OAM [17]. The red arrows show the direction of the
spatiotemporal phase gradient V®(x,¢), and the red
diagonals mark the boundary across which there is a phase
jump of z. In the panels with the red diagonal, even though
the phase winding has disappeared, (L,) remains at the
constant value of that particular row. It is seen that for a
STOV propagating in a medium with f, > 0, the energy
density flow exhibits a “saddle” pattern with respect to the
singularity, while for f, < O the flow is spiral and, for
P> = 0, the flow is restricted to +x. Note that for f, = 1,
where (L) =3 (1 —f,) « [dxd&(r x j), = 0 and OAM
is shared equally by the electromagnetic and polariton
response, j vanishes everywhere at 7 = z,.

A range of interesting behavior is observed in Fig. 2,
with the main points summarized as follows: (1) In
normally dispersive materials (f, > 0), the directions of

Z/Zy, = + +1 0 -1 —o0

—
{[IT]
3

0.5

non
RS

p=0
a=1

B, =—0.5
a=1

| —
ol
3

Bz

a=05

B2

p=0
a=0.5

a=205

B=-1

FIG. 2. (a) Plots of STOV intensity |[A’Z! (x,y = 0,&z)[* and
energy density flux j (depicted by overlaid black arrows), computed
using Eq. (7) for /=1, a =1, and , = 1,0.5,0,—-0.5, —1. The
purely diffractive contributions to j have been subtracted out,
leaving the flow contributing to OAM [17]. Propagation is shown
through the beam waist (z/zy, = 0) and into the far field [( & o0)].
The red arrows indicate the direction of spatiotemporal phase
gradient V®(x, £) and the red diagonals mark the boundary across
which there is a phase jump of z. (b) Similar plots for spacetime-
eccentric / = 1 STOVs with a = 0.5 and 5, = 1,0, —1. For each
row in (a) and (b), the value of (L,) is shown in the z = 0 (center)
panels. Within each panel of (a) and (b), the pulse propagates
right to left.

the OAM and the phase gradient are not always consistent;
the phase winding direction can flip to maintain OAM
conservation [see rows (i), (ii), and (vi)]. (2) The phase
winding can disappear, yet nonzero (L,) remains [rows (iii)
and (vi)]. (3) A donut-shaped STOV launched in vacuum
or dilute media does not stay together as a donut; the
spatiotemporal energy flow component j, forces the donut
into spatiotemporally offset lobes [rows (iii) and (vii)].
(4) For p, # 0, the near and far field intensity profiles are
self-similar [all rows except (iii) and (vii)]. (5) There exists
a self-similar STOV mode with integer OAM for a = 1 and
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P> = —1 [row (v)]. Classically, this is visualized as bal-

anced STOV energy flow along X and %

In summary, we have presented an analysis for a
new class of light states, spatiotemporal optical vortices
(STOVs), with orbital angular momentum (OAM) orthogo-
nal to propagation. In vacuum, the OAM of these states is
quantized in integer multiples of @/2, where « is the STOV
eccentricity parameter. For a symmetric STOV (a = 1) in
vacuum, the OAM is quantized in multiples of %2. In a
dispersive medium, it is quantized in integer multiples of
(a — fB,/a)/2, where f3, is the normalized group velocity
dispersion of the material, where we consider the OAM as
shared between a photon and a STOV polariton. We expect
that our results will motivate further studies into the physics
and applications of STOVs.
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