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Abstract. We revisit the old problem of the self-force on a particle moving in a
weak-field spacetime in the context of renewed interest in two-body gravitational
scattering. We analytically calculate the scalar, electromagnetic, and gravitational
self-force on a particle moving on a straight-line trajectory at a large distance from a
Newtonian star, and use these results to find the associated correction to its motion.
In the gravitational case we must also include the matter-mediated force, which acts
at the same perturbative order as the gravitational self-force. We further augment the
gravitational results with geodesic calculations at second order in the central body mass
to determine the full, explicit solution to the two-body gravitational scattering problem
at second post-Minkowskian order (2PM). We calculate the momentum transfer (which
reproduces Westpfahl’s old result), the change in mechanical angular momentum
(which matches the radiative flux recently computed by Damour), and the change
in mechanical mass moment (the time-space components of the angular momentum
tensor), which has not previously appeared. Besides the new 2PM results of explicit
trajectories and all conserved quantities, this work clarifies the role of gravitational self-
force in PM scattering theory and provides a foundation for higher-order calculations.
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1. Introduction

The study of self-force effects in curved spacetime began in 1960 with DeWitt and
Brehme’s foundational paper deriving the “tail integral” formula for electromagnetic
self-force [1]. A few years later, DeWitt and DeWitt [2] evaluated this integral in the
leading post-Newtonian (PN) approximation, i.e., for a charged particle moving slowly
in the weak gravitational field of a point mass. This calculation was extended to the
leading post- Minkowskian (PM) approximation (small-angle scattering with arbitrary
initial velocity) by Westpfahl and Goller in 1980 [3] and the results were incorporated
into Westpfahl’s 1985 treatise on relativistic scattering [4]. These early PN and PM
calculations illustrated the interesting physical effects of the self-force, but were (to
quote the original) of “conceptual interest only, since the forces involved are far too
small to be detected experimentally” [1].

In the 1990’s new interest in the self-force emerged with the realization that
gravitational self-force effects may in fact be of practical interest for gravitational-
wave astronomy. The equations of gravitational self-force were formulated [5, 6] and
it was realized that a scalar toy model [7] would provide a simpler starting point
for computations. In light of these developments, Pfenning and Poisson [8] revisited
the DeWitt-DeWitt PN calculation, clarifying the electromagnetic case and deriving
analogous scalar and gravitational results. They illustrated the necessity of including
additional “matter-mediated” forces in a consistent treatment of binary systems and
connected the self-force method with the standard PN approach. Pfenning and Poisson’s
calculations clarified the role of the self-force formalism in binary dynamics and—in our
view—were invaluable in establishing context for its more ambitious goal of providing
accurate gravitational waveforms for relativistic binaries [9].

Motivated by the realization that gravitational scattering provides important
information about binary dynamics and has deep connections to quantum processes
and methods [10-33], in this paper we will analogously revisit the Westpfahl-Goller PM
self-force calculations. We consider a particle moving on a nearly-straight trajectory
at a great distance from a Newtonian star and calculate the leading effects of its
(scalar, electromagnetic, or gravitational) self-field. We rederive the Westfpahl-Goller
electromagnetic self-force and provide analogous scalar and gravitational results. For the
gravitational case, we review the necessity of including the matter-mediated force and
calculate it in closed form. We explicitly integrate the perturbed equations of motion in
all three cases, providing parameterized trajectories in terms of elementary functions.

These results give the motion of the particle (mass m) in the initial rest frame of
the star (mass M), meaning the frame where the star has asymptotically zero velocity in
the infinite past. For gravitational scattering, we also determine the motion of the star
by invoking the mass exchange symmetry of the problem. This requires augmenting our
O(Mm) self-force calculation with test-mass results at order O(M?) and changing to the
center of energy-momentum (CEM) frame, where the symmetry is manifest as M < m
together with rotation by 7. This procedure yields the full parameterized trajectories
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of both bodies in 2PM scattering.

While the 2PM scattering problem has been studied by many different groups over
the years, it appears that the full trajectories are a new result. From these trajectories we
may compute any mechanical property of 2PM scattering. We rederive the momentum
transfer (scattering angle) first computed by Westpfahl [4]. We compute the change
in mechanical angular momentum, which matches the radiative angular momentum
flux calculated by Damour [34]. We also compute the change in mechanical mass
moment (the time-space component of the relativistic angular momentum tensor), a
new result. We will be exploring further aspects of this change in mass moment in
future publications [35,36].

This paper is organized as follows. We begin with a prelude on the scattering angle
that places our work in the context of the extensive recent interest in this quantity
(Sec. 2). The remaining sections then derive the results, as follows. In Sec. 3 we
review the construction of the scalar, electromagnetic, and gravitational retarded Green
functions in a weakly curved spacetime at O(M). In Sec. 4 we evaluate the tail integral
to derive the self-forces at this order in the three cases. In Sec. 5 we derive the matter-
mediated force that must be included in the gravitational case. In Sec. 6 we integrate the
equations of motion and discuss physical quantities defined in the star frame. In Sec. 7
we add higher-order geodesic calculations and change to the CEM frame, providing
the full 2PM trajectories and calculating associated physical quantities. Our metric
signature is — + ++ and we use Gaussian units with G = ¢ = 1. Covariant derivatives
are denoted with a V or a semicolon, while partial derivatives are denoted with a 0 or
a comma. Symmetrization is denoted with parentheses, e.g., Tiag) = (1/2)(Tap + T3a).

2. Prelude: scattering angle

The PM scattering angle has been the subject of intensive interest since Damour’s 2016
analysis of its close relationship to the conservative dynamics of bound systems [10]. In
order to place our work in the context of this active area of research, we now describe
our approach through the lens of the scattering angle. Our calculation is organized in
a joint perturbation series in the mass M of the star and the “charge” @ of the body,
taken to be either the scalar charge ¢, the electric charge e, or the mass m. The relevant
dimensionless parameters are

M Q?

bU_Q < 1, % < 1, (1)
where b is the impact parameter and v is the initial relative velocity. We take the star
to be at rest at zeroth order, and compute the leading self-force effects on the particle
by evaluating the tail integral along straight line motion in the linearized Schwarzschild
metric. In the gravitational case we must additionally solve for the O(m/b) motion
of the star and take into account the corrected gravitational forces on the particle—
the so-called matter-mediated forces introduced by [8]. Integrating the equations gives
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the motion of the particle in the “star frame”, meaning the frame where the star has
asymptotically zero velocity in the distant past.
For the particle’s scattering angle 0 in the star frame, we find

_M 2y 4T 2 M
Oscalar = b2 (2(1—|—v) mb4(v +46(1—0)+... |+ 0O 72 (2)
M 9 e, M?
5em—w(2<1+v>—%z(v —‘—2)4‘)"‘0(? (3)
M oy M3, M?
(Sgrav—w(2<].+v)+zz(v +4)+)+0(?>7 (4)

where ¢ is the scalar coupling to curvature (see Eq. (7) below). To obtain the 2PM
CEM-frame scattering angle x, we first augment the O(mM) result of (4) with an
O(M 2) test mass calculation. This geodesic contribution to the deflection dgy,, turns
out to have precisely the same numerical coefficient as the O(Mm) term we computed:

M o M3T, m? M?3r, , M3
5grav—w(2<1+v)+zz<v +4)+O(ﬁ>)+wz(v +4)+ 0O )
(5)

Eq. (5) is the deflection angle of the particle as measured in the star frame. Denoting
the CEM-frame deflection angle by ¥, from a simple boost we find y = (E/M)é at this
order of approximation, where E = VM2 +m?2 + 2Mmyy is the initial total energy in
the initial CEM frame (with v = (1 — v?)~!/2 the initial Lorentz factor). We therefore
derive

X = b—i (2(1 + v?) + (% + %) ?%(v2 + 4)> : (6)

which is consistent to 2PM in the sense that it contains all terms that scale as A* under
M — AM and m — Am. The parameter v is now interpreted as the relative velocity.

At this stage x is the CEM-frame deflection angle of the particle (mass m).
However, as the CEM frame is invariant under exchange of the two bodies, the CEM-
frame deflection angle of the star (mass M) is determined by simply sending m < M
in Eq. (6). But this formula is symmetric under the exchange, and we conclude that
the star deflects by the same angle as the particle. We may therefore speak of the
CEM-frame deflection angle at 2PM, given by Eq. (6). This reproduces Westpfahl’s
result [4].

It is worth emphasizing the logical role played by the exchange symmetry. The
symmetry implies that x3; = xm(M <> m), where x,, is the CEM-frame deflection angle
of the mass M (the “star”) and x,, is the CEM-frame deflection angle of the mass m (the
“particle”). In our approach, we derive that xy = x., via direct calculation, resulting
from the fact that the same coefficient 37 (v? + 4)/4 appears in a self-force calculation
and in a geodesic calculation. If one is willing to instead assume that x; = X, then the
agreement of these coefficients is guaranteed, and one can predict the self-force result
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from a geodesic calculation. Damour [17] has made this observation in the context of
the “conservative dynamics” at all orders, where the two bodies by definition deflect
by the same amount. While this is an enormously useful trick to obtain a portion
of the dynamics from simple calculations, we emphasize that, without an independent
argument that xas = xm, geodesic calculations alone cannot derive the scattering angle
at 2PM or higher.

In this section we have given a preview of some results in a manner that illustrates
key features of the approach. Our ensuing derivation of the complete 2PM trajectories
follows a similar pattern: First, we first obtain the O(Mm/b?) trajectory of the particle
in the star frame. Next we add in the O(M?/b*) geodesic corrections. Finally, we
calculate the particle trajectory in the the CEM frame and invoke the mass exchange
symmetry to determine the trajectory of the star. We now describe these results.

3. Green functions in a weakly curved spacetime

In this section we review the construction of scalar, electromagnetic, and gravitational
Green functions in a weakly curved spacetime. In any spacetime g,,, these Green
functions are defined by [§]

OG — ERG = —4mdy(x, 1), (7)
DGaa/ — RaﬁGﬂa/ = —47?5“a/54(x,$') (8)
Déaﬁalﬁ/ + Ravﬁgéﬂﬂsa/ﬁ/ = _471-5(040/65)6,54(1‘7 fL’/) (9)

where R is the Ricci scalar, R, is the Ricci tensor, R,,qs is the Riemann tensor, and

Ruavs = 2Ruavp + 2Ruw9p)y — Ruwgop — 2Rapgpn — R9uo9p)y + RGuwGas- (10)

We have written [ = g*#V,V for the wave operator and d4(z,2') = 0® (z — 2')/\/—¢g
for the invariant Dirac delta function. The scalar Green function G is a Green function
for a massless scalar field with curvature coupling . The electromagnetic Green function
G“. is a Green function for the gauge field A* in Lorenz gauge, V,A* = 0. The
gravitational Green function G*?,/5 is a Green function for the trace-reversed metric
perturbation h,s = hap — (1/2)h* ,g0p in Lorenz gauge, Vhas = 0. A Green function
for the metric perturbation h,, is given by

«Q o 1 feY a
G /80/6’ =G Ba’ﬁ’ - 59 ﬂg’y5G76a’ﬁ" (11)

Our normalization for the gravitational Green function follows Ref. [8], differing from
the conventional one by a factor of four. (In particular, the integral [ GT gives one-
quarter the trace-reversed metric perturbation.) In all cases we consider the retarded
Green function, i.e., the solution that vanishes when 2z’ is not in the causal past of x.
We will construct these Green functions in a weakly curved spacetime following the
approach of Pfenning and Poisson [8]. The spacetime is described by a static Newtonian
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potential ®(z,y, z), with metric
ds® = —(1+2®)dt* + (1 — 2®)(dz* + dy? + dz*) + O(d?). (12)
The Newtonian mass density is given by Poisson’s equation,
V20 = 4rp. (13)

Pfenning and Poisson [8] define three key biscalars from which all the Green functions
follow by differentiation. These are the retarded Green function in flat spacetime

it —1t —|x—x|)

Gat(,2") = — , (14)
together with additional biscalars A and B defined by
Az, 2') = %/Gﬂat(f,ZE”)CI)(.I'”)Gﬂat(xﬂ,l’/)d4l‘” (15)
B(z,2') = /Gﬂat(:ﬂ,a:")p(a:")Gﬂat(x”,x’)d4x". (16)
The scalar Green function is given by Egs. (3.11) and (3.14) of Ref. [8],
G = Gay — 2A 4 — 26B + O(9?), (17)

while electromagnetic and gravitational Green functions are similarly expressed in terms
of A and B in Egs. (3.17), (3.21), (3.30), and (3.32).1

These results hold for any weak-field spacetime. We now specialize to a star (mass
M) that is compactly supported within some radius R and consider the Green functions
only at distant spatial points,

x|, |x'| > R. (18)

The Newtonian potential at these distances can be approximated by ® = —M /r, but
the integrals (15) and (16) defining the biscalars (and ultimately providing the Green
functions) involve the entire spacetime, including regions where this approximation is
invalid. However, it turns out nevertheless to be consistent to make this replacement,

M
b — —— p— Mé(x), (19)
r
after which the integrals yield [1, 8]
/
R
M log % T<r+r
A=-—OT-R{ "TI- (20)
g ot Tsrty
g T—R rer,
M
B= 7’_7“’5(T_T_T,)7 (21)

I For Eq. (3.21), the reader should refer to the arXiv version of [8], since the journal version contains
a typographical error.
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where r = |x|, v = |2/|, R = |# — &'|, and T" = ¢t — t'. Note that with the
substitution ® = —M/r, the metric (12) agrees with the Schwarzschild metric in
isotropic coordinates, expanded to first order in M.

We now justify the substitution (19) under the approximation (18). For the B
integral, we will rely on the careful arguments of Sec. IVD of Ref. [8], which derive
Eq. (21) directly. For the A integral, we note that the portion of the integration region
where @ differs significantly from —M/r is negligible in the approximation (18). This
may be visualized noting that the the integration region in (15) (and (16)) may be
identified with the ellipsoid (2" — x)? + (2" — «')> = (¢t — ¢')* in Euclidean space
parameterized by x”, which has foci at the two spatial points &’ and x”. As these two
foci are by assumption located at large distances from the region of the star (Eq. (18)),
that region occupies only a parametrically small portion of the ellipsoid, which can be
neglected in the integral at leading order. Formally, one may approximate the integral
using matched asymptotic expansions with small parameter b/R, where b is the greater
of r and 7/, defining a near-zone near-zone r”’ < b and a far-zone r” > R. One finds
that the near-zone contribution vanishes at leading order in b/R.

We now illustrate the properties of the resulting Green functions, using the scalar
case as an example. Plugging Eqs. (14), (20) and (21) in to Eq. (17) and dropping the
O(®?) error, one finds

G = Gdirect + Gtaﬂ (22)
with
. S(T—R) 2M. r+r+R
direct — . / T _ 9
¢ R Rl g (23)
. 4M 2M SMT
tail __ . I L st W
G"™ = <T2 T grr’ > NT —r—1") 77— R2)2@<T r—r'). (24)

We have grouped the terms into the “direct” and “tail” pieces in the Hadamard
decomposition (e.g., [37]).

The direct piece of the Green function by definition has support only on the past
light cone (i.e., when a future-directed null geodesic runs from z’ to z). Here we see this
property reflected in a series expansion in M; the first term involves the flat spacetime
past light cone T" = R, while the term proportional to M gives the first correction.
Consistent to this perturbative order, the direct term can equivalently be written

r+r +R

. 1
Gdirect — = 5% Y=T—-R-2M1
(%), B - R

R

where ¥ = 0 describes the past light cone of x. On general grounds, it is also possible
to express this term as G4t = \/AO(T)d(o), where A is the Van Vleck determinant
and o is Synge’s world function (one-half the squared geodesic distance) [37]. This form

(25)

of the Green function was explored in Ref. [38].
The tail portion of the Green function has support within the past light cone.
Generically this support extends throughout the past light cone, but in the weakly
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Figure 1. Support of the retarded Green function (scalar, electromagnetic, or
gravitational) in the spacetime of a Newtonian star, when both points are at large
spatial distances from the star. The star can be idealized as occupying a worldline
at the spatial origin of coordinates, shown as a vertical line. The direct portion of
the Green function has support on the past light cone, which can be represented as
delta functions and derivatives on the flat-spacetime past light cone T = R (gold).
The tail portion of the Green function has support only on and within a secondary
cone T = r + r’ emanating from the intersection of the past light cone with the star’s
worldline (beige).

curved spacetime when both points of Green function are at large distances from the
star, the support is in fact only within a restricted region of the past light cone (Fig. 1).
In particular, the tail portion vanishes when the spacetime points are sufficiently close
together, becoming non-zero only when a signal has had time to “bounce” off the star
(T > r+7'). In this approximation, therefore, the tail may be viewed as being caused by
scattering of the direct part off of the singularity at » = 0. These properties extend to
the electromagnetic and gravitational Green’s functions, and in fact were first discussed
in the electromagnetic case in the original work of DeWitt and DeWitt [1]. We are
unaware of a deeper explanation for this surprising behavior of the retarded Green
function.

4. Self-forces

Consider a point particle moving on a timelike geodesic z#(7) of a spacetime g,
parameterized by proper time 7 with four-velocity u*. The scalar, electromagnetic,
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and gravitational self-forces are given by (in the conventions of Ref. [8])

fip(r) = / (VG +uu’VG) dr', (26)
fiy(r) = 62/ (VOGpo — VG%y) uPu dr’ (27)

f(o;n)<7') = 2m2/ (VQGB,W/,/ — QV,YGagu/,/ - uo‘u‘SV(;GﬁW/V/) uﬂuvu“lu”/dT’. (28)

Here ¢ is the scalar charge, e is the electric charge, and m is the mass; we denote the
corresponding forces with a subscript featuring the associated symbol in parentheses.
In these expressions, both spacetime points x and z’ are evaluated on the worldline,
i.e., z = 2z(7) and 2’ = z(7’). For the bitenors VG and the tensor u, the prime (or lack
thereof) on the index indicates which spacetime point is being considered. The upper
limit 7~ indicates that the integral is to be stopped at 7 = 7 — € for some € > 0, with
the limit € — 0 taken after integration. This excludes the singular behavior of the Green
function at coincidence, having the effect of picking out the tail contribution only.

We will consider the weakly curved spacetime (12) of a compact star and choose a
geodesic that remains always distant from its typical radius R. In computing the self-
force, both points in the Green function are thus always in the large-distance regime
(18), so we may use the definite expressions (20) and (21) for the biscalars underlying
the Green functions. Letting b denote the impact parameter, we may summarize the
key assumptions as

O(z,y,2) < 1, b>R. (29)
That is, the spacetime is weakly curved everywhere, and the particle remains far from
the star.

Under these approximations at first order beyond flat spacetime, the (scalar,
electromagnetic, or gravitational) Green function is constructed from A and B given
in Egs. (20) and (21) and hence is sensitive only to the total mass M of the star. Thus,
all results may be expressed in terms of a single small parameter,

M
— <1 (30)

We will organize our results in terms of this parameter; however, it should be borne in
mind that the more restrictive conditions (29) must hold for the results to be valid.

To zeroth order in M /b, spacetime is flat and the particle geodesic is a straight line.
We will choose the motion to be in the z direction, with separation from the star in the
x direction,

2M(1) = (t,b,0,0t) + O(M/b), (31)
where v > 0 is the (constant) velocity. The four-velocity is thus

u® =~(1,0,0,v) + O(M/b), (32)
where v = 1/y/1 — 02,
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4.1. Results

The tail portion of the Green function is non-zero first at O(M/b), meaning that the
O(M/b) self-force depends only on the O(1) straight-line motion of the charge. That is,
for the purposes of computing the leading, O(M/b) self-force, we may consistently take
the particle to move on a straight line. Our task is therefore to compute the integrals
(26), (27), and (28) for the worldline (31) and Green function constructed from (20)
and (21) according to Eq. (17) and the description below.

The y component of the self-force is zero by symmetry (the motion is confined to the
xz plane), while the ¢ component is related to the z component by f* = vf* according
to the orthogonality condition f#u, = 0. We find that the  and z components can be
expressed in terms of nine master integrals {A;, B;,C;} as

fi = =20°77" (P Ai + Ao+ €9"vBy + €B;) (33)
[y = —2¢%y71 (As + £Bs) (34)
I = —e%y (C5 — 204, — 272 Ay — vB; + (14 v°)By) (35)
floy = —e%y (Co +vCy — 2y 2 Az + (1 +0v*) Bs) (36)
fomy = —2m%y (772 A2 — 2C5 + v AL + 20(2 +770%) By — 20°By) (37)
fim) = —2m?y (y2 Az — 2C, — 20C; — 20°B3) . (38)

The definitions and results for the integrals are§

" d Muv? (r? (1 — 3v?) + 4rvz + 2% (v? — 3))
= —Apdt’ =
A /_oo dt " 2r(r —vz)* (39)
4 — /t Aot = Muv (r — 3vz) (r*(1 — 3v?) —i—;l?“zv + 2%(v? — 3)) (40)
o 6r (r — vz)
- 2,3 _ 2y _ (12 2
.,43:/ Att/zdt,:va(Qrv rz (14 3v%) — (v 3)1}2)’ (41)
oo 2r(r —vz)b
and
"od Muv (r*v — 2rz + v2?)
= — Bdt' = 42
Bi /_OO dt r3(r — vz)? (42)
Bzz/tBzdt,:_Mz(r2(v2~|—1)—37"vz+0222) (13)
oo r3(r —vz)?
- 20,2 _ 2,2
B'g,:/ Bxdt’:—Mb(T (v +1) 3rvz+vz)’ (44)
oo r3(r —wvz)?

§ Note that the form of the self-force in terms of the master integrals holds for any weakly curved
spacetime, but the expressions we calculate for the integrals are valid only at large distances from a
Newtonian star.
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and
o[ b
Cy — / : C%(A,xt, _ Ade = M (ffj(: - Z';f v2) (46)
I R e e

In formulating these integrals, we have changed variables from 7/ to ¢/, with the notation
t~ indicating that the integration is to be stopped at ¢t~ + € for € > 0, after which the
¢ — 0 limit is to be taken. The unprimed total derivative is defined to be d/dt = 0;+v0.,
or equivalently ordinary differentiation after evaluation on the worldline. In these
expressions, it is implicit that both the primed and unprimed points are to be evaluated
on the worldline (x = 2/ = b,y =y’ = 0, z = vt, 2’ = vt’) after derivatives are taken. The
displayed results of these integrals are likewise to be evaluated at the present position
of the particle, i.e., z = vt and r = +/b? + v2t2. In this sense, the nine integrals are
functions of ¢ alone.

Our results for the electromagnetic self-force agree with Ref. [3]. Our results for
the gravitational self-force are new, although analogous statements undoubtedly exist
inside Westpfahl’s 2PM calculation [4]. Our results for the scalar self-force are new.

4.2. Method of computation

We now describe our method of computation for the integrals (39)-(47). As explained
in Sec. (3) above, the Green functions contain terms supported on 7" = R (the direct
portion, supported on the past light cone), terms supported on 7" = r — ' (the part
of the tail supported on the secondary light cone), and terms supported on 7' < r — ¢’/
(the remainder of the tail). Given a spacetime point (¢, z,y, z), the intersection of its
past light cone with the worldline defines a retarded time t¢;, while the intersection of
its secondary light cone defines a “doubly retarded” time ¢,. Since the direct portion of
the Green function by construction does not contribute to the self-force, the important
time is the doubly-retarded one,

ty = 2 (t — 1 — /b2y 2 u2(t — r)2> : (48)

We also define doubly-retarded versions of some associated quantities,

Ty = £/ b% + v2t3 (49)

Ty =t —ty (50)
R2 = \/(l’ — b>2 + y2 + (Z — Ut2)2. (51)
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The delta functions §(7° — r — ') appearing in the Green function may be changed to
the integration variable t' via

/
St —t' —r — Vb2 +0%?) = % (if t' < 1), (52)
T2
where the restriction to ¢ < t has allowed us to drop a second, unphysical root that
does not contribute to the integral involving only ¢’ < ¢.

Using Egs. (48) and (52), the evaluation of the integrals is straightforward
(especially for computer algebra software), but produces unduly complicated
expressions. In order to obtain the simple forms given in Eqgs. (39)-(47), we have made
judicious choices (described below) of the order of differentiation, evaluation on the
worldline, and integration, and also employed a number intermediate formulas holding
after evaluation on the worldline. These formulas are

ta =" (1 +0*)t —2r), (53)
ry = Y2((1 4 v?*)r — 20%t), (54)
Ty + vty =1 — vt (55)
z —T2
rt e
Ortz r— vt (56)
z _'U2t2
0rry T (57)
as well as
R =0T (58)
Ty = 292 (r — v*t) (59)
Ty — R3S = 49*(r — v*t)? (60)
. —44%b
0.(T} — R2) = . (1 + v*)r — 20%) (61)
2 2\ 2 v, o, 2 2,2
0.(Ty — R3) = " (r* —rt(1 4 2v%) + 20°t?), (62)

z

where the symbol = indicates that the equality holds when evaluated on the worldline
(x = b,y = 0,z = vt) after differentiation. The partial derivative with respect to r is
used only for ¢, and 79, in which case it means that ¢ is held fixed.

We now illustrate the method of computation with a few examples, starting with

B;. Plugging Eq. (21) into the integral in (42), we have

t Y
5’1:(/ d Mo(t—t —r—1r")

. % rr!

, (63)

dt’)
P =T o2 2

x=b, y=0, z=vt

where we remind the reader that d/dt = 0; + v0,. Since the integrand vanishes in a
neighborhood of ¢ = ¢ (having support only at ¢ = ¢ — r — '), we have replaced the
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original upper limit ¢t~ with ¢. We can also pull the time derivative out of the integral
for the same reason. Furthermore, for this total derivative we may evaluate on the

2

worldline “early,” i.e.

d [t Mé{t—t —r—1")
&:—/ ;e dt (64)
dt J_ rr’ P/

Using the delta function change of variables (52), the integral is calculated to be

d [ Mot —t
oo I LV S
d (M 1
(] )
dt T o+ tg r=vVb2 022
d M
(il )
dt \ r(r —v?t)|,_ oz
Mv2(b* + 2t(tv* + 7)) (68)
) S My —

where we use (55) in the third step. Eq. (68) reproduces the claimed result (42) after
use of z = vt.

The integrals for By and Bs proceed similarly, except that the evaluation on the
worldline must now be done after the unprimed derivative is taken. After moving the
derivative outside the integral and performing the integral using Eq. (52), we are left

with
o (M 1
By= — | ————
2 8z<r7“2+'112t2)

The expression for B; identical except the derivative is d/0z. These derivatives may

(69)

r=b, y=0, z=vt

be evaluated and expressed back in terms of  and ¢ using Eqs. (53)-(57), resulting in
Egs. (43) and (44) for By and Bs.

We next turn to the C integrals. These are composed of derivatives of the biscalar
A, which in general have (1) delta functions at 7' = R, (2) delta functions at 7" = r + 7/,
and (3) smooth functional dependence away from these special points. For the special
combination of derivatives appearing in the C integrals, however, the smooth parts
cancel out, leaving only the delta functions. The delta functions at T = R are part of
the direct portion of the Green function and do not contribute to the integration range
t' < t. What remains is supported purely at T'=r — 1/,

2M (z2' — x2')

Ay — A= T—r—1 if T
2M x , .
A,.’L’t/ - A,t:ﬂ/ — m (; _'_ ?) (5<T —Tr—=rr ), (1f T # R) (71)

2M z Z , .
A — A = T (;—I—F) NT —r—1"), (it T # R). (72)
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The method of evaluation of the C integrals parallels that of B;, where one can first
evaluate on the worldline, then perform the integral, and finally take the total derivative.
The results may be simplified using Eqs. (53)-(62).

Finally, we turn to the A integrals, which are constructed from derivatives of Ay .
Over the range of integration ¢ < ¢’ we may again drop the “direct” terms supported on
T = R, which leaves

Ay — %@(T ey RffMTQ(S(T —r—y))  GET£R).  (73)
Evidently, the A integrals involve terms proportional to ©(T — r — r’) in addition to
the delta functions we have already encountered. The Heaviside integrands turn out to
be very simple once evaluated on the worldline—for Ay and A3 this means the relevant
derivative must be taken before integration—and are easily expressed in terms of anti-
derivatives evaluated at the doubly-retarded time ¢;. The delta-function terms can be

treated as before, and full expressions can be simplified using the formulas (53)-(62).

4.3. Limits

Egs. (33)-(47) provide expressions for the scalar, electromagnetic, and gravitational
self-forces as functions of time ¢, expressed as a ratio of polynomials in v, b, r =
V0% + 0212, and z = vt. Although relatively compact expressions can be obtained in the
electromagnetic case, we find no additional insight from writing out these polynomials.
However, it is helpful to examine the limits of low and high velocity.

For the low-velocity limit, we consider v to be small but allow vt to have any size,
since the range of ¢ is unbounded. Thus we expand Eqgs. (33)-(38) in v at fixed r and z.
Keeping through O(v), we find that the results can be repackaged in vector notation as

2M 1 ,dg
_ 2 ~ -2 2 4
f(q) q 73 T+ 3q dt +O(U )7 (7 )
M 2 ,dg
2 M o 2 2
o) =€ — —q¢°— + O(v?), 75
T STt (v%) (75)
11 ,dg 2
m) = ——m"— + O(v7), 76
fomy = =5 m— +0(7) (76)
where g = —M /r*# is the Newtonian gravitational acceleration and # is the radial unit

vector. This reproduces the low-velocity results derived in Refs. [1,8], where we have
made the additional assumption of straight-line motion. As observed in these references,
the scalar and electromagnetic forces each consist of a dissipative piece equal to the self-
force on a particle moving in flat spacetime subject to a Newtonian gravitational force
(terms proportional to dg/dt), together with a conservative force that must be attributed
purely to the curvature of spacetime (terms proportional to M/r3). The gravitational
force contains a dissipative-type term with a “wrong sign” suggestive of radiation anti-
damping instead of damping. While perhaps surprising, this should not be alarming
since (1) the gravitational self-force is gauge-dependent, with the particle position not
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directly observable and (2) there are additional, matter-mediated forces that must be
taken into account in this problem (Sec. 5 below). These issues were first discussed in
Ref. [8] in the case of bound motion.

For the large-velocity limit, we begin by substituting v = y/1 — 72 in Egs. (33)-
(38) and expanding for large v. We find that the coefficients in this large-y series
blow up at r = z, a behavior that originates from the denominators in Eqs. (39)-(47).
This divergence at t — —oo signals the need for a separate expansion adapted to the
distant past, which can be matched to the usual expansion to provide a uniformly valid
approximation. The need for a second expansion is physically natural since the time to
bounce a light signal off the star and return to the particle diverges in the ultrarelativistic
limit.

5. Matter-mediated Force

The gravitational self-force provides an O(mM /b?) correction to the acceleration of
the particle, which may be interpreted as the action of the particle’s own gravitational
field on its motion. A second physical effect acts at this same perturbative order: the
particle’s gravitational field accelerates the star at O(m/b), and the new motion of
the star changes the acceleration of the particle at O(mM/b*). Before tackling the
calculation, it is helpful to review the formal origin of this additional force, which arises
for any spacetime containing matter [8].

The derivation [5, 6, 39, 40] of the gravitational self-force assumes that the
background spacetime is a vacuum solution of Einstein’s equation. However, the key
assumptions are local to the particle and will still hold if the particle is restricted to
a vacuum region of an otherwise non-vacuum spacetime. The main difference is that
the (far-zone) metric perturbation h,, will have a new source term §77,** representing
the perturbation to the background stress-energy that is induced by the presence of
the particle, in addition to the point-particle stress-energy T}jjr“de of the particle itself.
(For clarity we refer to the perturbed matter stress-energy as that of a star, although
our comments apply more generally.) The metric perturbation similarly gains an extra

term,
O A o (77)

with
hzirticle _ / Gwp/y'TlljlaLrlticle V=g d'z, (78)
hetar — / G ST/ —gd'x, (79)

where G* . is the gravitational Green function defined in Sec. 3 above. We may regard
hbarticle as the metric perturbation generated directly by the particle (i.e., the self-field,
which diverges at the particle) and hffyar as the metric perturbation due to the shift
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in the star’s stress-energy induced by the presence of the particle (which is smooth at
the particle). Both perturbations are proportional to the particle mass m; every use of
h,. in this paper represents a term linear in m. The two terms propagate through the
derivation, giving two corresponding terms in the final force on the particle,

f* = Sy + Lo (80)

The first term is standard expression (28) for the self-force, while the second is an
additional “matter-mediated” force [8],

1 12 v star star «

b= —5m (g" + u'u”) (2Vghe" — VR uu’. (81)

The matter-mediated force takes the form of a perturbed geodesic equation, i.e., ignoring
the self-force, the particle would move on a geodesic of g, + hffjr.

This elegant presentation of the matter-mediated force belies a severe practical

difficulty: the perturbed star stress-energy 5TS’§;§/ will in general be required to satisfy

additional equations that involve the metric perturbation A% (and hfjr“de), making

Eq. (79) of little use in actually computing A%52". Followingu Ref. [8], we will be able
to circumvent this difficulty by taking advantage of the series expansion in M and
modeling the star as a delta function to leading order. We are confident in the delta-
function assumption because (1) no infinities arise in the subsequent calculation and
(2) the more careful arguments given above for the computation of the Green function
are equivalent to the assumption of a delta-function star. Still, we emphasize that this
choice has not been justified with the same rigor as analogous claims made in Sec. 3
above.

In order to obtain the matter-mediated force (81) at O(m?M) as desired, we will
need the star’s perturbation 252" at order O(mM). To determine this perturbation from
Eq. (79), we will need the stress-energy of the star at O(mM). In a given spacetime g,

with timelike coordinate ¢, a point particle stress-energy tensor takes the form

dax— Z(t))
TG

where the second equation follows from conservation of stress-energy and indicates that

T = MUMU" UPv, U =0, (82)

Z(t) (four-velocity U*) is a geodesic of the spacetime. We will assume that this form
holds for our star at first order in M. Consistent to this order, we may drop all M-
dependent terms in Z, U*, and §. We will also drop terms of O(m?), since these are
neglected everywhere in our calculation. Thus we use that

G = N + hﬂf, + O<M) + O(mQ), (83)

where hﬁfj (pf for “particle flat”) is the metric perturbation due to the particle at
O(M°m?), i.e., the leading piece of hP¥tcle. This is just the Lorenz-gauge linearized
field of a point particle moving on a straight line in flat spacetime, which may be
obtained by translating and boosting the linearized Schwarzschild metric in isotropic
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coordinates (or, alternatively, constructed using the M = 0 limit of the Green function
discussed in Sec. 3 with a point particle source). For our choices (31) and (32) for the
particle worldline, the non-zero components are

2m

5 = et = (1) 2 (34)
p
his = —2721}% (85)
HL = hif = 2, (86)
where
rp = V(= b)2 + 92 +42(z — vt)% (87)

Assuming that the point particle form (82) holds for the star’s stress-energy to O(M)
then gives

mM~?(3v? — 1)

/b2 + ,-}/21}2152

Toser = Mé(x) — MZ(t)0;6(x) + §(x) + O(m*M) + O(M?), (88)

T3 = M () + 0> M) + O(02), (39)
T3 = O(m*M) + O(M?), (90)

where we have used the fact that Z* = O(m) to expand the delta function.
The motion of the star Z(t) is determined by the geodesic equation in the spacetime
G With Z# = (¢,0,0,0) to leading order, which takes the form

d*zt 1
a2 2

O;hB — Aol 4+ O(Mm) + O(m?). (91)

Integrating Eq. (91) once, we find for the velocity V¢ = dZ'/dt that

my(3v? — 1)

v/ 022
V() = M (1 + vt ) , (93)

VE(t) = (92)

bu b2y =2 + v2t?

where we suppress the O(Mm) and O(m?) error terms. We have fixed the integration
constants by demanding that the star velocity vanish at early times. Integrating again,
we find for the position Z¢ = (XY, Z) that

2
-1
2@ty =" 7 ctanh Y (94)
v /0272 + 022
1 2
X(t) = % (vt + /02y 2 + v2t2> ' (95)
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For the X position, we have chosen the integration constant such that X (¢t — —oo) = 0.
The analogous choice for the Z position is not possible since Z(t) diverges logarithmically
and early (and late) times. In the low-velocity limit of ordinary Newtonian dynamics,
this divergence can be attributed to the 1/r? force, which gives a log when twice
integrated. Here we have chosen the integration constant so that Z =0 at ¢t = 0.

The metric perturbation hffjr of the star is given by Eq. (79). To determine the
O(mM) metric perturbation we will need only the O(M") part of the Greeen function,
i.e., the flat spacetime Green function. From the fundamental equation (9), the trace-
reversed Green function is simply related to the scalar Green function Gya (14) as

ot —t — |z —2a|)
|z — |

G_jaﬁa,ﬁ/ = 5(040/56)5/ + O(M), (96)

star to the relevant order O(Mm) by

meaning that we can determine hj

&, (97)

_ 1 -~ B 5T5tar<t
star __ 7 star a3 7 star star __ 124
h;w = huv - 577“1,77 haﬁ , h;w = 4/

The star’s perturbed stress-energy tensor 677, is identified as as the O(m) piece
of Egs. (88)-(90) (recalling that Z* = O(m)), and performing the integral gives

oM [ ([ Zi,. i 3?2 — 1
i = 2 () £y 0B ) (98)
r r /By Rt — )2
AMV,,
iy = M e (99)
r
hi™ = hog" i (100)

where the notation Z;|;_, means to evaluate the function Z;(t) at t — r, i.e., Z;|;_, =
Zi(t — r) (and likewise for V*). These functions are given in Eq. (92)-(95) above.

The matter-mediated force is now given by Eq. (81). As hff™ is already O(M), the
O(M?®) metric and particle four-velocity may be used, giving

2 d d

Fim = T (L B+ 2002 — 03 - A i~ 2P 0] (1o)
2 d

= T (0 g+ 20 = 20, (102

where the terms are to be evaluated on the particle worldline (z = b,y =0,z = vt). In
writing this expression, we have used Eq. (100) to eliminate hj;*.

To simplify the expressions (101) and (102) for the matter-mediated force, it is
helpful to note that the square root in (98) is related to the doubly-retarded time o
defined in (48) by

VP22t —r)2 =t —1r — . (103)
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This square root also arises in the expressions (92)-(95) for V; and Z; after sending
t — t—r, as appears in 15" via Egs. (98)-(100). After eliminating all such square roots
in favor of t5, one may use Egs. (53)-(57) to simplify the expressions when evaluated on

the worldline. Doing so, we find

5,02
v m=M
PG b U S Y 104
mm U27”5(7’ . UZ)gf (T’ v Z) ( )
3,72
v’m*M  Fu(r,v,z)
A 105
Jinmn v2ré(r —vz)3 b ’ (105)
where
F. =1 (21}8 — 808 +0° + 9t —20% + 202 — 30 — 1)
—riz (41}8 + 30" — 5v® — 6v° + 370! — 90® — 1507 + 3)
+ 3r?2? (US + 507 — 20 + 180° — 150° + 20% + 4v — 1)
— 22 (US + 50" — 208 + 480° + 240v* — 670 + 180 4 18v — 9)
+ 3rzt? (92}4 — 120 + 6v* + v — 3)
— 32°0° (—3U5 + 30" — 20° + 20% + v — 1)
—(r*=32%) (vz—1r)* (1 - 31}2)2 arctanh[(rv — 2)/(r — vz)] (106)
and
Fo = —2r%(1 + 03 (1 — 40* 4 05)
—7°2(2 — 9v + 8v* — 12v% + 60" + 390° — 6v7)
+ 7422 (3 4 6v — 150* + 24v* — 23v* + 18v° + 110°)
—r223(=3 4+ 120 — 5v° + 210" — 620° + 18v° + 3v")
—7r?2%(9 — 18v + 16v% — 3v® 4+ v + 320° — 60° +v7)
+ 3r2°v*(1 + v?)(3 — 4v + 30?)
+32°(=1 + v)o* (1 + v*)?
— 3b%2(—7r +v2)?(1 4+ v*) (=1 + 3v?)arctanh[(rv — 2)/(r — vz)]. (107)

This completes the calculation of the matter-mediated force.

Note that the matter-mediated force arises only because our background spacetime
contains matter. If we had repeated our calculation using a black hole background
instead of a star background, there would be no matter-mediated force at all, and
the entire O(mM) dynamics would be given by the gravitational self-force. Since we
expect the binary dynamics to be independent of the body compositions at this order
of approximation, the natural conclusion is that the Lorenz-gauge gravitational self-
force must depend in detail on the central body composition, even in the limit where
the particle is very distant compared to the typical size of the central body. This
phenomenon has been seen previously for nonminimally coupled scalar fields, but not
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for minimally coupled scalar fields or electromagnetic fields [8,41-43]. We note, however,
that the issue of the back-reaction of black hole motion on the particle is closely tied up
with the question of the choice of gauge [44,45].

6. Motion of the particle

In any spacetime, the equations of motion for a mass m moving under a four-force f*
are

R ) (108)
T T

We will integrate these equations in the weakly curved spacetime (12) with background
particle trajectory (31), where the force is either the scalar self-force, the electromagnetic
self-force, or the sum of the gravitational self-force and the matter-mediated force. In
this section we work consistently to O(M), dropping all terms of order O(M?) or higher.
Expanding (108) gives

d*t 2Mz vfz

- _ 109
dr? 4 m (109)
d2 fz
s _ 7= 110
dr? 7”3 m (110)
Az o Mz fw
d7'2 = —”y (1 +v ) (111)

where the right-hand sides are to be evaluated on the background worldline (z = b,
z =wvt, and r = Vb? + 0?2, with t = 7). In writing these equations we have used the
fact that f© = vf* to this order, as discussed above Eq. (33). In the scalar theory the
rest mass m is not constant (see Appendix A), but the variation begins at O(Mg?) and
hence contributes an O(M?) term to Eqgs. (109)-(111), which is neglected. We therefore
treat m as a constant.

Integrating once and choosing the perturbed four-velocity to vanish in the infinite
past, we find consistent to O(M) that

dt 2M~

pr (112)
d M 1 [

E o — 4+ — [ (113)
dr yor o ym J_

dx M~

2= 1 (1 — “dt, 114
=) (D) [y (114)
where the right-hand sides are evaluated on the background worldline. That is, we
set x = b, y = 0 and z = vy7 in the terms without integrals, and the integrals are
taken along the background worldline parameterized by t', i.e., f* and f* are to be
evaluated at * = b, y = 0, z = vt’. (The prime distinguishes this parameter ¢’ from



Self-force effects in post-Minkowskian scattering 21

the t appearing on the left-hand side of (112), which represents the ¢ coordinate of the
particle’s perturbed motion at proper time 7.) Integrating a second time, we find

2M
t=n~1+ 2% arctanh” + vG* (1), (115)
v r
z=vyT + 5 arctanh% + G*(v1), (116)
M 9 -
x:b—w(l—l—v )+ 2) + G*(y7), (117)

where again the background motion (x = b, y = 0, z = vy7) is to be inserted on
the right-hand side, and we define

G*(t) ) dt N at” fH(t"). (118)

In these integrals, the force f# is evaluated on the background trajectory
parameterized by t”, i.e., with x = b, y = 0, z = vt”. In writing the solution this
way, we have chosen the integration constants so that the background quantities retain
their physical meaning as initial values. That is, v is the initial velocity (with v the
initial Lorentz factor), and b is the initial x position, i.e., the impact parameter. Note
that the integration constants associated with the position integrals for ¢t and z do not
affect the meaning of b and v and have been chosen for mathematical convenience. It
is not possible to choose these so that the perturbation vanishes at early times, due to
the logarithmic divergences associated with the long-range nature of the gravitational
force (see discussion below Eq. (95)).

Sometimes it is more convenient to use ¢ as the parameter. From Eqs. (115)-(117),
consistent to O(M), we have

9.2
z=vt+ Ml—ﬁv)arc’canhz +y2GA(1), (119)
v r
M
xzb—w(1+02)(r+z)+Gx(t), (120)

where the right-hand-sides are now evaluated at x = b,y = 0, 2 = vt. The integrals for
G*(t) and G*(t) are straightforward, if tedious, and in Appendix B we present the results
for z(t) and z(¢) in the scalar, electromagnetic, and gravitational cases. We also provide
separate formulas for G* and G* in (B.18)-(B.23), so that the reader can efficiently
reconstruct the proper-time parameterized trajectories given in Eqgs. (115)-(117) above.
This completes the derivation of the star-frame trajectories.

6.1. Physical Quantities

We now use the particle trajectories to compute physical quantities defined in the star
frame. We will begin with the energy and momentum. The four-momentum of a point
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particle is given by p# = mdz*/dr. The initial energy-momentum pfy of the particle is
by definition

ph =mv(1,0,0,0), (121)

which also follows from the 7 — —oo limit of Eqgs. (115)—(117), or equivalently from the
t — —oo limit of Egs. (119) and (120). The final energy-momentum p/ and is instead
calculated from the late-time limit of these equations, using the different forces f* as
appropriate. We will present the results as

P scatar = Pb T AD(ar) + A1, (122)
Prem = Po + APy + Apl,, (123)
P grav = Db + AP(ary + APy + Al (124)
where
M
Aplyyy = = (0,201 +%),0,0) (125)
Mq?y s
no 2 -2
APly) = Ty (0, 7 (7 +4677)0, 0) (126)
Me*y/ )
Aoy = 5, @ T (2+0%),0,0) (127)
Mm?2~y T
APy = —( —— ) 12
p(m) b2’U Oa 4 ) 07 0 ( 8)
Mm?y 2y 2\2 2 2y 212
Ay = = (= A0 —m (3-07) 0= 5+ P). (120)

Notice that the geodesic term (125) and the self-forces (126), (127), and (128) only
modify the x component of the four-momentum, while the matter-mediated piece
changes p' and p* as well.

The momentum change is directly related to the scattering angle §, which for our
initial conditions (121) is given by

tand = —-5 (130)

Py

For our small-angle scattering problem, (i.e., consistent to O(M)) this may be
approximated by

Py
ymu

0= —

(131)

The deflection angles then follow from Egs. (122)—(129). The explicit expressions in
the scalar, electromagnetic, and gravitational cases were displayed in Egs. (2), (3), and
(4) above. In those equations, we have also restored the explicit O(M/b)? errors as
well as inserted dots (...) to indicate the presence of higher-order terms in the small
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parameters ¢?/(mb), e*/(mb), and m/b. Although the scalar and electromagnetic field
equations are linear, these higher-order terms will still arise at least from iterating a
self-force calculation using the corrected motion.

Finally, we discuss angular momentum. The angular momentum of a point particle
ijk

about the origin of coordinates is J! = €“*2/p¥ where z# is the position and p* is the

four-momentum. The initial angular momentum J; of the particle is by definition
Jo = —J§ = ymuvb, (132)

which also follows from the 7 — —oo limit of Eqgs. (115)—(117) or the ¢ — —oo limit of
Egs. (119) and (120). The final angular momentum follows from the late-time limit of
these equations. In the scalar and electromagnetic cases, we find

Scalar 27(1 + U2) q2
Jaler — gy (1 o a lm"bQ (133)
4~(14v*) Me?
EM
- _Z . 4
/i Jo (1 3 v mb? (134)

In the gravitational case we find that the corresponding “final angular momentum”
of the particle diverges logarithmically in time, indicating that the star frame is not
suitable for discussing the particle angular momentum. We will see in Sec. 7 that the
difficulty disappears in the CEM frame.

7. 2PM gravitational scattering

In the previous section we determined the motion of the particle in the frame of the star,
meaning the frame where the star has asymptotically zero velocity in the distant past.
In the scalar and electromagnetic cases, it was consistent to keep the star at rest for the
purposes of computing the particle trajectories at the given order of approximation. By
contrast, in the gravitational case we required the O(m) motion of the star (Egs. (95)
and (94)) in order to determine the O(Mm) motion of the particle. However, for a
complete 2PM treatment we are still missing the O(mM ) motion of the star as well as
the second-order contributions, O(M?) and O(m?), to the motion.

Our strategy for determining these missing pieces is to determine the O(M?) motion
of the particle from the geodesic equation in the Schwarzschild spacetime (Appendix B)
and to invoke a body exchange symmetry in order to determine the motion of the
star. It is intuitively clear that such a symmetry should exist, since the assignment
of the words “particle” and “star” to the two bodies should not affect their motion in
a framework where only the respective masses m and M appear in the final answer.
However, our calculation has made coordinate choices which break this symmetry: our
background configuration takes the star to be at rest, and our perturbation theory is
correspondingly asymmetric, with gauge choices made in different ways for the star and
particle. To make the exchange symmetry manifest we will have to change coordinates
to treat the bodies symmetrically.
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For clarity, let us first discuss the situation for two non-interacting point particles,
which we name “particle” (mass m) and “star” (mass M) for consistency. In this case
we can define the star frame, where the star has position (X,Y,Z) = (0,0,0) and the
particle has position (z,y,2) = (b,0,vt), and the center of energy-momentum (CEM)
frame, where there is no net momentum and the center of energy is at the spatial
coordinate origin. If the star frame has Minkowski coordinates (¢, z,y, z) and the CEM
frame has Minkowski coordinates (%, ¥, 7, Z), then the frames are related by

M + m, _

i= v, (135)
B E
M
o Mtam _amu, (136)
E E
M
Fogo M Em) (137)
E2

where v = (1 — v2)~/2 as before in this paper, and E denotes the total energy in the
CEM frame,

E = +/m2+ M2+ 2yMm. (138)

This transformation involves a boost in the z direction to eliminate the net momentum,
together with a translation in the x direction to eliminate the non-zero center of energy.

In the CEM frame of these non-interacting bodies, swapping the bodies is equivalent
to rotation by 180°. That is, we have

Z(t, M, m) = —2(t,m, M), X(t, M, m) = —i(t,m, M), (139)

where Z = (X,Y, Z) is the CEM-frame spatial position of the star, while z = (Z, 7, 3)
is the CEM-frame spatial position of the particle. For the gravitational scattering
problem, we will define the “initial CEM frame” (CEM frame for short) by the same
transformation (135)—(137) applied to what we have called the initial star frame, and
then impose the swapping symmetry (139) in order to determine the motion of the star. ||
This is logically equivalent to repeating our entire calculation with the words “particle”
and “star” interchanged and finding a coordinate transformation to make the combined
solution respect the exchange symmetry.

The particle trajectory in the star frame, z(t), is given as Eq. (B.3) together with
later supporting equations. Plugging these expressions into Eqs. (136) and (137) gives
the CEM-frame trajectory z(t), but still parameterized by star-frame time ¢. To express
in terms of the CEM-frame time #, we plug the trajectory z(¢) [Eq. (B.3)] into Eq. (135)

|| The 1PM trajectory of the star used in the derivation of the matter-mediated force [Egs.(94) and
(95)] agrees with the 1PM trajectory determined from this method, showing that no further gauge
transformations are required.
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and solve for ¢, order by order in the PM expansion. Accurate to 2PM, we have

it mM  +* (1 — 3v?) tanh vto
— arctanh—————
P mr M v V0% + vt
m2M? 4t (1= 30?)? vty
+ 5 > arctanhﬁ
(m+yM)* /b2 4 0282 VO + 022
2
Y mu
L Caalto) 2t + (). (140)
where we have defined
VB
to = ———t. 141
" m +yM (141)

This completes the derivation of the 2PM trajectories of the particle and star, expressed
in the initial CEM frame. The particle trajectory z(t) is given by Egs. (B.3), (B.6)-

(B.9), (B.14)—(B.17), (136), (137), and (140), and the star trajectory Z(t) is then given
by Eq. (139).

7.1. Initial conditions

It is instructive to consider the “initial conditions” for the CEM-frame scattering
problem, i.e., the f — —oo behavior of the trajectories. Expanding at early times,

we find
. M(M + ~ym) M~ - (1-3®)E 2Evlt| log [¢|
= = b, 0 t— 1 Ol ———
z ( E? " m+yM ! v? ©8 b(m +yM) N t
(142)
N m(m +~yM) —mry - (1-32)E 2Eyli] log |{|
( E2 M+ ym ! v? °8 b(M + ym) * t
(143)

The 1PM logarithmic correction is an unavoidable consequence of the long-range nature
of the gravitational force, as already discussed below Egs. (94) and (95). Notice,
however, that there is no 2PM logarithmic correction.

The final trajectories of the bodies can be analogously calculated from the ¢ — 400
limit of the trajectories derived in the previous subsection. We will now report the initial
and final values of the various conserved quantities.

7.2. Energy, momentum, and scattering angle

The initial four-momentum of the particle is

. m 4+ yM 7MU)
e L 144
= (" : (144
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The final four-momentum of the particle is given as py = pjj + Ap* with

o, ymM 9 3T, m + M 9 , E
Apt = 0,—2 1) — — 4) ——,0,-2 H)*— 1. 145
B R R TR Icy BT
The four-momentum of the star is determined by sending M < m and x — —x (i.e.,
flipping the sign of the spatial components of the four-momentum). This shows that
the mechanical energy is separately conserved for particle and star, and that mechanical
momentum is exchanged, with the total mechanical momentum conserved. In particular,

the particle and star deflect by the same amount x satisfying tany = —ﬁﬂf”/ﬁj}.
Expanding this equation to 2PM order, we find
E 3m M+m
= — (200 + 1)+ —(v*+4 : 146
x= g (202 + )+ 4 )2 (146)

This result can also be derived by boosting the lab-frame deflection angle 4, as we did
to arrive at (6) above.

7.8. Angular momentum

We define the initial and final angular momentum using the special-relativistic formula
evaluated at early and late times, where the particles are widely separated. For the
particle, the angular momentum formula is

J=—JY =i —j°z. (147)

Since #(#) and Z(#) can diverge like # at early and late times, in principle the 1/
corrections to p* may contribute to the early and late-time limits of Eq. (147). These
corrections involve both the 1/ behavior of the trajectory as well as corrections due
to the metric of the star. However, we find that the 1/¢ terms end up canceling in the
expression (147) for the angular momentum at 2PM order. In practice, this means that
one may use the initial and final momenta (144) and (145) in evaluating the angular
momentum (147).

Taking the ¢ — —oo limit of Eq. (147), we find that the initial angular momentum
of the particle is given by

mM M (M + ym)

7o _ 7Y _
Jo=—Jj =byv 7 2 (148)

From the ¢ — 400 limit, we find that the final angular momentum is given by
Jf = J() + AJ with

272M2m2

AJ =212
Ebv3

(1+07) (§v3 — v+ (1 — 3v?)arctanh U) : (149)
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The angular momentum of the star is given by sending m <> M in these equations. The
total initial angular momentum is thus

Jeot = L ——— (150)

The particle and star each lose the same amount of angular momentum, with the
fractional change in the total mechanical angular momentum given by

A Jtot _ 4yMm
jgot O p2t

(140 (gvs — v+ (1 — 3v?)arctanh v) . (151)

This agrees with Eq. (4.6) of Ref. [34], providing a direct check that the mechanical
angular momentum lost matches the angular momentum radiated away in gravitational
waves.

7.4. Mass moment

Information about center of energy is encoded in the time-space cross-terms of the
relativistic angular momentum tensor, which we will refer to as the mass moment IN.
The special-relativistic formula for the mass moment of the particle is

N =’z — pt. (152)
Expanding at £ — —oo, we find

N =0 (10g~|£|) (153)

t

- M 20E|t log |t
N* = —y(1 — 3v?) U;n <log( v ||>b_1>+0(%||) (154)

m +yM

The presence of the log? means that the the initial particle mass moment is not well-
defined. Note also that the —1 in Eq. (154) arises from a 1/ correction to the late-time
momentum. However, according to the symmetry (139), the star’s early-time mass
moment is given by sending m <+ M and multiplying by —1. Thus these features cancel
out of the total system mass moment, which has the well-defined initial value of

NP* =0 (155)
Mm M+ ym

Ng* = —7(1 = 3v*)—5- log m+yM’

(156)

12

That is, provided we discuss the total mass moment, we may compute from (152) using
the initial value (144) of the four-momentum, just as in the case of angular momentum.

The non-zero initial value of the system mass moment may suggest that we are not,
after all, in the initial CEM frame. However, we have considered only the mechanical
contribution to the mass moment, ignoring any effects of the gravitational field. In
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the electromagnetic analog problem [36], a contribution from the electromagnetic field
precisely cancels this mechanical portion, such that the initial mass moment is indeed
zero. The name “initial CEM frame” is thus fully justified in the electromagnetic case,
and we will continue to use it in the gravitational case studied here.

The late-time behavior of the mass moment is precisely analogous to the early-time
limit: the particle and star contributions are individually logarithmically divergent, but
the total is well-defined and sensitive only to the late-time four-momentum. The final
value of the system mass moment is given by

~ Mm M +~vym M —m
Nt = T2 gy (1 157
! v? ( v) | los m + yM " ~v2b (157)
~ EMm M +~ym
NCE,tOt — 2 1 2 fy _ 1 _ 3 2 1 o
f 1+ bt ( v)log m +yM
8 M? —m?
+ (v - §v3 - (1- 3v2)arctanhv) Tm] : (158)
Consistent to 2PM, this may be written as
- ~ Mm M —m
z,tot z,tot 2
N = =Ny + 7 o (1 —3v%) T (159)
- - AJ M? —m?
Na:,tot — Nz,tot =7 . 1

We thus find that there is a change in the system’s mechanical mass moment as a result
of the scattering, an effect we will refer to as a “scoot”. Notice that there is a scoot
at first post-Minkowksian order (the logarithmic term in N J‘f’t(’t), together with 2PM
corrections (the remaining terms in Nj’f’mt and Nf’mt). We will discuss more details of
this effect in a future publication [35].
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Appendix A. Mass evolution in the scalar theory

The equations of motion for a scalar charge do not preserve the rest mass m, but rather
involve an evolution equation [7] analogous to the self-force (26),

dm

o = —qz/ utV,Gdr'. (A.1)

—00
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With the approximations of Sec. (4), this becomes

dm
-
where A; and B; are defined and given in Egs. (39) and (42). Denoting the value of the
mass in the asymptotic past by mg, the time evolution of the mass is

2q2 YT
m(T) =mg — - (Ay +EBy)dt'. (A.3)

where the integral is over the background worldline parameterized by t', i.e., x = b,
y =0, z = vt’. Using Egs. (39) and (42), this integral is easily evaluated in closed
form to give the full mass evolution m(7). A notable property of this function is that it
returns to mg in the future, i.e.,

m(T — +oo) = my. (A.4)

That is, there is no change in rest mass over the scattering process.

Appendix B. Parameterized Trajectories

In this appendix we provide explicit formulae for the trajectory of the particle in the
frame of the star, using the ¢ coordinate as a parameter. For the gravitational case,
the CEM-frame trajectories can be determined from these in the manner described in
below Eq. (141) of the main text. We distinguish the contributions to the motion from
the various forces as follows:

Zscalar = (0 + g1 + 24, 0,0t + 251 + 2,) (B.1)
ZEM = (b—l—xgl +$€,O,’Ut+zgl +Ze) (BQ)
Zgray = (b + Tg1 + L g2 + Ty + Toom, 07 vt + Zg1 + Zg2 + 2m + me) (BB)

The subscript ¢ refers to the scalar self-force, the subscript e refers to the electromagnetic
self-force, and the subscript m refers to the gravitational self-force. The subscript mm
refers to the matter-mediated force, which acts at the same order as the gravitational
self-force. The subscriptions g1 and g2 refer to the geodesic terms (gravitational forces)
at order M and M?, respectively. In presenting the results, we will evaluate all functions
explicitly in terms of ¢, with the exceptions of

r= Vi + 02 (B.4)

s =0+t (B.5)

Here 7 is just the radius of the particle as measured in flat spacetime with the background
straight-line motion, while s is a positive quantity with no clear interpretation.
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The first-order geodesic terms are given by

M
Ty = _W(l +v?)(r + vt) (B.6)
M(1—3v° t
Zg1 = warctanhv—. (B.7)
v r

These were already provided in Egs. (116) and (117) (and again in (119) and (120)),
where the notation z = vt was used. The second-order geodesic terms follow from a
straightforward calculation using the Schwarzschild metric in isotropic coordinates. The
results are

M? (8w +1) vt r4+ot 3wt
Tg(t) = o ( . +8(v*+1) (30> — 1) log P (4 +v?)
8 (3vt + 202 — 1) vt t 6(v*+4)vt t
+2(v* - 2)2 + (Bv” +2v Jv arctanh - — Marctanv— (B.8)
r r b b
rlt) = M2 [ 84D (PR (P + 1) +20%72) 80+ 1) ot
92 8bv? br b

8b (1 — 3v2)°
+#

t t
arctanh " + 2¢? (120" — 430* + 16) (arctan% + g) ) . (B.9)
r

The self-force terms result from the integrals described in Sec. (6). The scalar
results are

Zo(t) = 24b*m s 283 ~2

M2 (263 (—12€ + 4(3€ — 1) 2t [ 2620%2
=7 q( (Z126+4@ - D' +3) T< O (<126 4 3(4€ + 1) + v 4 4)

+ bt (=126 + (126 + 5)v* — 6v* +4) + % (—126 + (126 + 1)v° + 4) )

_ bt ((4€ = Do* — 4¢) (arctan T + arctan U—t) -

1667v* N 4b°v? (3v* + 4)

Yv yvb vb s3 52
12 4
+2b (—12§+—f—4u——+3)> (B.10)
v v
yMa? [ 207 (=126 +4(36 — 2)v* +3) vt 20%r <2b2v2t2 )
t) = - 12 —4
za(t) 24b2m ( 125 2usB\ A (12¢ + 3v )
4 2 4 vt 9 166505t
01 (126 + (5 — 126)0? + 20" — 4) - r (—12¢ + 3(4¢ — 3)v +4)> o

b((46+ 1)v? —4 t 4b* (v* 4+ 4) v3¢
+ 6b((4e+ o 3 arctan —— + arctan — | + W+ 4 (B.11)
yv2 ~ub ~vb 252
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) e2yM [ —4b5v* (302 + 4) N 20302 (1002 + 3) N 160705
ze(t) =
24b?mu? 52 s s3
2007t (92022 (0 — 4t + 02 4+2) + B (6 + 02 +2) + e (502 42
- gt 07 (0 — vt 07 +2) + (v+v+)+?(v+)
6vt , 4 r vt 3 9
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T 1253
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m(t) = - b (44v" — 21 44) —
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69vb —ty 2 + 1? 69mvb
+ 27 aretan oty Tr+ b)) 69my (B.15)
vy b(r+ tv?) 2



Self-force effects in post-Minkowskian scattering 32

M (263 (3 —v?)0* b
T (t) = 727;;1}4 ( ( - vt 2b (3v* + 20% — 1) <log T arctanh(v)>
2b(v — 1) (b? (V% 4+ v° — 20 — 303 + 202 + 1) + t20% (v° — 4v? — 303 + 0?2 + 1)) vt
rs

2b (3v* + 20 — 1) vt —t

— (Bv” +2v Jv arctanhM—Qb (115—21)44—2113—1-112—1—11—1)
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2b%v4 s rs
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20,2 3)b
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Y

The G* and G* integrals defined in Sec. 6 are given in terms of these definitions by

Seatar (t) = 7724(t) (B.18)
catar (t) = (1) (B.19)
() = 7" ze(t) (B.20)
Enm(t) = ze(t) (B.21)
Girav(t) = 7 (2 + 2mm) (B.22)
Garay(t) = Tm + Trum (B.23)
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