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Abstract—Multiagent reinforcement learning (MARL) has
recently attracted considerable attention from both academics
and practitioners. Core issues, e.g., the curse of dimensionality
due to the exponential growth of agent interactions and nonsta-
tionary environments due to simultaneous learning, hinder the
large-scale proliferation of MARL. These problems deteriorate
with an increased number of agents. To address these challenges,
we propose an adversarial collaborative learning method in a
mixed cooperative—competitive environment, exploiting friend-or-
foe Q-learning and mean-field theory. We first treat neighbors
of agent i as two coalitions (i’s friend and opponent coalition,
respectively), and convert the Markov game into a two-player
zero-sum game with an extended action set. By exploiting mean-
field theory, this new game simplifies the interactions as those
between a single agent and the mean effects of friends and oppo-
nents. A neural network is employed to learn the optimal mean
effects of these two coalitions, which are trained via adversarial
max and min steps. In the max step, with fixed policies of oppo-
nents, we optimize the friends’ mean action to maximize their
rewards. In the min step, the mean action of opponents is trained
to minimize the friends’ rewards when the policies of friends are
frozen. These two steps are proved to converge to a Nash equi-
librium. Then, another neural network is applied to learn the
best response of each agent toward the mean effects. Finally,
the adversarial max and min steps can jointly optimize the two
networks. Experiments on two platforms demonstrate the learn-
ing effectiveness and strength of our approach, especially with
many agents.
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I. INTRODUCTION

EEP reinforcement learning (DRL) [1] is a booming
Darea of artificial intelligence, which has emerged as
a powerful approach for sequential decision-making prob-
lems. The goal of DRL is to learn a behavior policy for
each agent through trial and error, such that the cumula-
tive reward is maximized, without knowing the underlying
dynamics of the environment [2], which is formalized using
the Markov decision process (MDP). Classical dynamic pro-
gramming methods [3]-[6] achieve significant performance
for MDP with an exact mathematical model. As for MDP
with an unknown model, DRL is a more attractive alterna-
tive. DRL has achieved outstanding success in a wide range
of fields, that is, superhuman performance on various chal-
lenging tasks, such as video games and board games [7], etc.
The flourishing and prosperity of DRL have driven the study of
multiagent reinforcement learning (MARL) [8]-[11] in a wide
variety of domains, including robotic teams [12], network con-
trol [13], collaborative decision support systems [14], urban
traffic control [15], autonomous driving [16], etc.

Existing DRL approaches, such as Q-learning or policy
gradient, are poorly suited to MARL [17]. In MARL, individ-
ual agents can no longer perceive their environment as being
stationary since it is also influenced by other agents’ activi-
ties [18]. This environment nonstationarity prevents the system
from a proper convergence to an equilibrium. Techniques,
such as centralized training and exploration with decentralized
execution (CTEDE) [19], opponent modeling [20], and com-
munications between agents [21], have been proposed recently
to alleviate the nonstationarity environment problem. Besides,
the increased number of agents would result in the exponen-
tial growth of agent interactions, since changes in the policy
of one agent will affect that of the others. This phenomenon
is known as the curse of dimensionality problem [22], which
makes MARL difficult to scale up to realistic multiagent prob-
lems [23]. Deep neural networks, with powerful generalization
ability, have been widely applied to directly approximate the
policy or the value function.

The nature of the interactions between agents can either
be cooperative, competitive, or both, and many algorithms
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are designed only for a particular nature of interaction [24]-
[27]. In a mixed cooperative—competitive MARL system, an
agent can cooperate with other agents to perform collaborative
strategies to maximize their rewards, which may be minimized
by other competitive agents [28]. In such a scenario, equilib-
rium plays a vital role in optimizing the strategies, since each
agent learns not only the cooperative strategies but also com-
petitive behavior to confront the adversary [29]. Littman [30]
treated agents as either friends or foes in a multiagent general-
sum game, with friends being assumed to work together to
maximize their values, while foes are supposed to coopera-
tively minimize the friends’ rewards, which has been proved to
converge to a Nash equilibrium. However, it still suffers from
the curse of dimensionality due to joint state—action pairs of
a large population of agents.

This article proposes an adversarial collaborative learning
(ACL) method that captures the nature of cooperation and
competition in a distributed MARL system. ACL gradually
addresses two simplified tasks sequentially rather than the
complex approximation task directly. Inspired by friend-or-foe
Q-learning [30], we treat all (neighboring) agents as two coali-
tions, that is, friend and opponent coalition. In the adversarial
process, these two coalitions sequentially improve their strate-
gies via adversarial training, which has proven to converge to a
Nash equilibrium. Meanwhile, the mean-field theory is applied
to reduce the dimensionality, which simplifies the interactions
as those between a single agent and the mean effects of two
coalitions.

Specifically, we first convert a Markov game into a two-
player zero-sum game with an extended action set, with each
coalition as a super player, that is, for each agent, its friends
in the neighborhood act as a coalition, which maximizes their
rewards, and its opponents are treated as another coalition,
which minimizes the rewards of the first coalition (friends).
With the help of mean-field theory, we first learn the mean
actions of two coalitions via adversarial training, which con-
sists of max and min steps. During the max step, we first froze
the strategies of opponents, and try to optimize the strate-
gies of friends to maximize their rewards. In the min step,
the opponents are trained to minimize the friends’ rewards.
We theoretically prove that iterating the above two adversarial
training steps would result in a Nash equilibrium. Furthermore,
another network is adopted to respond optimally to the mean
effects. The adversarial training is further applied to jointly
optimize the two networks, iterating over max and min steps.
Experiments on the battle game and multiagent particle envi-
ronment (MPE) demonstrate the learning effectiveness and
strength of our approach.

In particular, the main contributions of this article are
summarized as follows.

1) We propose an ACL method in a mixed cooperative—
competitive environment, in which each agent can effi-
ciently learn not only the cooperative strategies with
teammates but also competitive behaviors to confront
the adversaries.

2) We convert the N-player Markov game into a two-player
zero-sum game with an extended action set, which trans-
lates the complex approximation task into two simplified
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tasks. Specifically, we first learn the mean effects of
two coalitions via adversarial training. Then, another
network is adopted to respond optimally for each agent
to the mean effects.

3) We theoretically prove that our proposed approach con-

verges to a Nash equilibrium.

The remainder of this article is organized as follows.
Section II reviews related works. Section III introduces the
background and preliminary for MARL. In Section IV, we
introduce the ACL formalism and in Section V, we present
the implementation details for the ACL algorithm. The exper-
imental evaluation and results are discussed in Section VI.
Finally, Section VII concludes this work.

II. RELATED WORK

The environment nonstationarity and the curse of dimen-
sionality hinder the large-scale applications of MARL. A
tremendous number of research works have been reported
recently to address the above challenges, e.g., CTEDE, oppo-
nents modeling, communications between agents, and mean-
field theory.

A. Centralized Training and Exploration With Decentralized
Execution

By accessing the observations and actions of the opponents
during training, agents do not experience unexpected changes
in the dynamics of the environment, which results in the sta-
bilization of the procedure [31]. Foerster et al. [19] proposed
a multiagent actor—critic (AC) method, which adopted a single
centralized critic to estimate the Q-function and decentral-
ized actors to optimize the agents’ policies. Furthermore, they
used a counterfactual baseline that marginalizes out a sin-
gle agent’s action, while keeping the other agents’ actions
fixed, to address the challenge of multiagent credit assign-
ment. Lowe er al. [28] proposed a simple extension of the
deterministic policy gradient (MADDPG) method [32] where
the critic is augmented with extra information about the poli-
cies of other agents, while the actor only has access to local
information. Another extension of MADDPG is proposed
by Li et al. [33], who adopted Minimax Q-learning in the
critic to exhibit robustness against different opponents with
altered policies. Corder et al. [17] augmented the centralized
training phase with generative modeling so that agents may
infer other agents’ observations when provided with locally
available context. COMA [19] is a new multiagent policy gra-
dient method to address the challenges of multiagent credit
assignment. They adopt the framework of centralized train-
ing with decentralized execution, which allows the use of
joint action and all available state information in training and
only uses local information (i.e., the agent’s observations)
at test time.

B. Opponents Modeling

By reasoning about other agents’ intentions and predicting
their behavior, the training process of the agents might be sta-
bilized. Modeling other agents in multiagent systems has been
widely studied and offers many research opportunities [20].
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He et al. [34] presented neural-based models that jointly learn
a policy and the behavior of opponents. Their approach con-
sists of a policy learning module that predicts Q-values and an
opponent learning module that infers opponent strategy. The
combination of the two modules is done either by concatenat-
ing their hidden states or by the use of a mixture of experts,
which enables faster learning and even allows modeling of
changing opponent behavior. Raileanu et al. [35] proposed an
approach where agents use their policy to predict the behavior
of other agents. This method employs an AC architecture and
reuses the same network for estimating the goals of the other
agents. Foerster et al. [36] proposed a method in which each
agent shapes the anticipated learning of the other agents in
the environment. The proposed learning rule includes an addi-
tional term that accounts for the impact of one agent’s policy
on the anticipated parameter update of the other agents.

C. Communications Between Agents

Agents exchange information about their observations,
actions, and intentions through communications, which could
potentially stabilize the training. Foerster et al. [21] proposed
deep distributed recurrent Q-Networks, where all agents share
the same hidden layers and learn to communicate to solve
riddles. Singh et al. [37] controlled continuous communi-
cation with a gating mechanism and adopted individualized
rewards for each agent to gain better performance and scal-
ability while fixing credit assignment issues. The gate either
allows or blocks communication between agents. These two
approaches assume that all agents have access to the hidden
layers of the other agents. Mordatch and Abbeel [38] proposed
a model that takes the messages of other agents as input and
learns to output action and a new communication message.

D. Mean-Field Theory

Scalability is of great significance to MARL, since an
agent also observes the other agents as part of the envi-
ronment. Consequently, as the number of agents increases,
the dimension of joint action increases exponentially. There
have been several approaches applying mean-field approxi-
mation for reinforcement learning to improve the scalability.
Mguni et al. [39] proposed a method for computing closed-
loop optimal policies that scales independently of the number
of agents, using mean-field games. Their method converges
to optimal behavior with an unbounded number of interacting
adaptive learners. Yang et al. [40] adopted mean-field theory
to approximate the interactions within the population of agents
as those between a single agent and the average effect from
the overall population or neighboring agents. Yang et al. [40]
exploited a discrete-time mean-field game to understand the
aggregate effect of individual actions and predict the tempo-
ral evolution of the population distributions. Hu et al. [41]
approximated the effect of other agents on a single agent by
an averaged effect. They derived a Fokker—Planck equation
that describes the evolution of the probability distribution of
Q-value in the agent population.

Our work follows the same direction as Littman [42],
Hu and Wellman [43], and Bowling and Veloso [44]. In
particular, Littman [42] introduced a Q-learning algorithm

called Minimax-Q for zero-sum two-player games. Hu and
Wellman [43] extended it to the general-sum stochastic games
by using a Nash equilibrium computation in the learning
rule. Unfortunately, the convergence proof is incomplete. To
deal with this, Bowling [45] proposed a thorough proof by
strengthening the convergence conditions of the algorithm.
Littman [30] presented the friend-or-foe Q-learning algorithm
in which a learner is told to treat each agent as either a “friend”
or “foe.” Bowling and Veloso [44] examined the learning
problem in the framework of Markov games to improve the
convergence.

However, as these above approaches still correlate to the
joint state—action space, the curse of dimensionality cannot
be avoided as the number of agents grows larger. Our work
addresses this issue by employing the mean-field approxima-
tion over the joint action space. The closest to our problem
setting is that of Yang et al. [40], who treated the interactions
within the population of agents as those between a single agent
and the mean effect of the neighboring agents. There exist the
following differences between this method and our proposed
ACL algorithm.

1) During the training phase, we treat the neighboring

agents as two coalitions, the friends and opponents.
The friends work together to maximize their rewards
while the opponents cooperate to minimize the friends’
rewards.

2) We apply adversarial training to guide each coalition

on how to cooperate as well as how to compete, which
consists of max and min steps.

III. PRELIMINARY
A. Markov Game

MARL can be modeled as an extended MDP, which is also
known as a Markov game. A Markov game with N players can
be represented by (N, S, {A,’}fvzl,P, {r,'}ﬁ\;], y), where S is
the state space describing the environment and .4; is the action
space for agent i. The environment responds to the joint action
a2 (a,...,ay) by changing its state from s € S to some
s’ € 8 according to the transition function P. This transition
function characterizes the stochastic evolution of states, that is,
with current state s € S, the agents take actions a and the state
transitions to s’ with probability P(s'/s). Agent i will receive
a reward ri(s,a). y € (0, 1) is the discount factor across time.

The behavior of agents is described by their policies, which
specifies how an agent responds to their observations. The joint
policy of all agents can be denoted as & = [y, 72, ..., TN].
The value function of agent i at state s € S is defined as the
expected cumulative discounted future reward

o
VI(s) =Y y'Ex plrit)lso = 5, 7.
t=0

€]

The action-value function (also known as Q-function) QF
gives the expected reward obtained by the joint policy & from
any state—action (s, @) pair, which is defined by

Q7 (s,a) = ri(s,a) + yEy~p[V] ()]

where s is the state at the next time step.

(@)
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B. Nash Q-Learning

Each one-stage general-sum N-player game has a Nash
equilibrium. This equilibrium is defined for a set of one-stage
policies #* =[x}, 5, ..., wx], if single player i has nothing
to gain by unilaterally changing only its own strategy, that is

ri([7f, . owt L wy]) = (A y]) 3

for all other policies 7w; and 1 < i < N. A game can have
more than one Nash equilibrium, and the expected payoff of
player i can vary depending on the equilibrium considered.

The Nash Q-learning rule [43] updates a set of
approximate Q-functions each time with an experience
(s,a, s, {ri(s,a), r(s,a),...,ry(s,a)}) by the following
equation:

yTTiy o v

Q7 (s,a) £ (1 — a(1)QF (s, @)

+ a(t)(ri(s,a) + Nashi(s'", Q1, 02, ..., On))

“4)

where «(f) is a set of learning rate, and
Nash;(s’, 01, 02, ...,0n) = Vi(s',n*), n* are a set of
Nash equilibrium for the one-stage game defined by the Q-
functions (Q1, 02, ..., On) at the state s". For a single-player
game, the Nash; function is a simple maximization, that is,
Nash(s', ) = max, Q(s, @), which is Q-learning.

C. Friend or Foe

Littman proposed friend-or-foe Q-learning [30], which
treated all other players as friends or foes, where player i’s
friends are assumed to work together to maximize i’s value
function, while i’s foes are supposed to work together to min-
imize i’s value function. Therefore, the Nash; function is

defined as
Nashi(sl, Ql, Q2, PR QN) = max
ey = A
a min Z n(ag) -7 (ay,)Qi(s, @) 5)
(e k aflx"'xafm
where {f1, f2, ..., fm} is the set of friends and {01, 02, ..., o}

is the set of foes. However, it still suffers from the curse of
dimensionality, since the Q function is related to the joint
action of all players.

D. Mean-Field Theory

The mean-field theory first appeared in physics for describ-
ing phase transitions in the work of Pierre Curie [46]. It studies
the behavior of high-dimensional random (stochastic) models,
with many individual components that interact with each other.
In mean-field theory, the effect of all the other individuals on
any given individual is approximated by a single averaged
effect, thus reducing a many-body problem to an effective
one-body problem. By replacing all interactions to any one
body with an average or effective interaction, the behavior of
a complex system can be obtained at a lower computational
cost.

IEEE TRANSACTIONS ON CYBERNETICS

The mean-field theory has been applied to a wide range
of fields outside of physics, including graphical models, neu-
roscience, artificial intelligence, epidemic models, queueing
theory, computer network performance, and game theory.

IV. ADVERSARIAL COLLABORATIVE LEARNING

In an MARL system, all agents strategically and simul-
taneously evaluate their value functions based on the joint
actions a. Consequently, the dimension of joint action @ grows
proportionally with the number of agents N. To address this
challenge, inspired by friend-or-foe Q-learning [30] and mean-
field theory [40], we first convert the N-player Markov game
into a two-player zero-sum game with an extended action
set, which learns the Nash-equilibrium actions of these two
players. Then, another network is adopted to learn the best
response toward the Nash-equilibrium actions.

A. Constructed Two-Player Zero-Sum Game

This article investigates a mixed cooperative—competitive
MARL, where agents require to collaborating with friends
while competing with opponents. Each player i can iden-
tify its friends as Q{ £ {fi,fo, ..., fm} (denoted thereafter
as friends or friend coalition) and its opponents as €Y =
{o1,02,...,0r} (denoted thereafter as opponents or oppo-
nent coalition), where m and k are the number of friends
and opponents, respectively, Q7 U Q’; = ;. For clarity,
we assume i € ;. We treat friend coalition Q}; and oppo-
nent coalition Q7 as two super agents with an extended action
set and thus convert the multiplayer game into a two-player
Zero-sum game. Consequently, the original N-player Markov
game (N, S, {A,}l > ,{r,-}?’zl, y) can be converted into a
new two-player Markov game, denoted by

(2.s.[Ar.Ar].pv. [ ] ) ©)

A;p = [Afl’Afz"' Afm] Azp =
(Ao Aos - Agls 17 = (1/|Q’|)Zf€drf,, and

rp = (17127 |) ZU cq? Toj- The super player (friend coalition)

takes action a [af1 ,ap, ..., af,] to maximize its expected
cumulative dlscounted reward and another super player
(opponent coalition) responds with al = [Goy, Aoys -+ -5 Go, ]
to minimize the reward of friend coalition. The Q-function of
the first super player can be denoted by

where

o0
0/ (Y a4, a S”Ins”) = ZV’En,P[rﬁp(t)ls,as-p,af,”]
=0
o0
= Z VtEn,'P
t=0

1
sp
X ‘F E rﬁ(l) |Sa aSP

i| e

1 o0
el Y Y VEnp|y0ls.af a¥]
1

| e =0
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2 0y a?)

e

> 056 a). 7
fieq]

K= R

In the constructed two-player Markov game, the two super
players compete with each other, since one super player con-
sists of friends, cooperating with each other to maximize their
total rewards, and the other super player is formed by oppo-
nents, working together to minimize value function of the first
super player. Consequently, the value function of the first super
player can be denoted as

Sp sp spy
) = e e 2%
X n}p(a‘fp)nz (azp)QJ} ( ;’n, 2’7) (8)

where 7 is the policy of the opponents and 7% = [}, w7’ ]

Given a fixed policy of opponents ;"
be denoted as

sp sp(,.sp\ AP P Asp ASD . ASD
Vf () = max T, (af )Qf (s, a.a, ), a, T, .
a,\p
f

, the value function can

fw Afw
)]

Then, given a fixed policy of friends ", the value function
can be denoted as

v;”(s)

min
YP

sp P P Sp AS[)N A Sp
un, Tth ( )Qf(saf,ao), a T

4

(10)

Based on (9) and (10), we can train the multiagent system
sequentially. First, given an initial (random) scheme of the
opponents, the friend coalition learns to maximize the total
rewards (max step). Then, with the fixed improved policy of
the friends, the opponents adjust their strategies to minimize
the rewards of the first super player (min step). According to
Theorem 1, repeat the above two steps can result in a Nash
equilibrium.

Theorem 1: In a finite-state stochastic game, the Nash
Q-learning with Nash;(s’, Q1, Q2, ..., Qy) that is computed
by (8) converges to the Nash Q-value, under several
assumptions.

Proof: The proof can be found in the Appendix. |

B. Mean-Field Theory Approximation

All agents act strategically and evaluate simultaneously
their value functions based on the actions of other agents.
Meanwhile, the dimension of joint action grows proportionally
with the number of agents. Consequently, it becomes infea-
sible to learn the standard Q-function directly [40]. In our
constructed two-player zero-sum game, each super player has
a tremendous action space Ap or A;. Inspired by mean-
field theory [40], we apply it to this constructed two-player
zero-sum game to reduce the dimensionality.

During the max step, given a fixed policy of opponents
7., we factorize the Q-function usmg only the pairwise local

1nteract10ns between f; € Qf and @ ~

Q@ﬁ“)\ 2 0y(vaa)

f,eQ
| | N
~ o] > o7 > O5(s.a5.aY)
‘ i| fed ‘ i| fed

Y

Assume ar as the mean action of friends Qf that is,
=1/ IQ/)

be expressed as the mean action ay plus a fluctuation Jy;, that

is, af; = ag + dr,. Assume QO (s, a) is twice differentiable with

respect to each action ay;, then, ij (s, ay, &f)p ) can be expended

and expressed as

Oy (s, s, dy') ~

> fea! Y Consequently, each action ay; can

)+Qf (s. ar, @)y,

2)3;

O (s, ar,a
+ 0. SQf (s af,
Combining (11) and (12), we have

(o i) = o 5

0| e

12)

x ‘é > [os(s.ar.a)

i fes

+ O (5. ar. a)dy

+ 0.50] (s. a7, &) |

1

~ o 2o | @l ar @) + Q5 (s @, @)
‘Qi fie@]
1
X — Z Sﬁ
‘Q{ f/eﬂf
1
+ —— > Of(s.ar.a))s;
Z‘Q{ fies, J /
— > O5(s. ar, @y
‘Q{ f,enf j
——5 > K
2‘9) oot
— > O(s.ar.a (13)
‘Q{ fieq

where R(ap) ZﬁEQf Qf (s, af, )82 denotes the Taylor

polynomial’s remainder. The first- order term of (13) is ignored
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since (1/|Q’f|)2ﬁm;5ﬁ - (1/|Qf|)2ﬁ69§aﬁ —a = 0.
Meanwhile, if Oy (s, ar, @) is M-smooth, the remainder R(ay;)
is bounded within a symmetric interval [—2M,2M] [40].
Consequently, Q;p (s,al,&r) is related to only the mean

action ay of friends £2;. Therefore, we have

(14)

oF(s,a’, a?) ~ QY (s, ar,a’),a’ ~a’.
! 1o %o 4G ) Co 0

Similarly, in the min step, with a fixed policy of friends 7,

S| ASP s ~ NS ASp — AP ASP
Qf(s,af ,ao”) ~ Qf(s,af ,ao),af L

Iterations over the max step and min step would result in
an equilibrium over the mean action of friends (ar) and oppo-
nents (a,). This equilibrium converges to the Nash Q-value,
which has been proved in the Appendix. Then, the influence
between agent i and its neighbors €2; is simplified as that
between agent i and two virtual agents, the friend coalition
and the opponent coalition, which is abstracted by the mean
effects of both super players. Consequently, Q;(s,a) can be
simplified as Q;(s, a;, ar, a,). This simplification can be inter-
preted as each agent i responses optimally to the mean effects
(ar, a,) of two coalition. Finally, this improved Q-function
Qi(s, a;, ag, a,) can be improved via max and min step in
return. This Q-function will eventually converge to the Nash
Q-value as well, which has been proved in [40].

It is worth noting that the triplewise approximation of the
agent, friend coalition, and opponent coalition, which sig-
nificantly reduces the complexity of the interactions among
agents, still preserves global interactions between any pair
of agents implicitly [40]. The approximation error of the
mean-field theory can be found in [47] and [48].

15)

V. IMPLEMENTATION

We adopt neural networks to implement the ACL Q-
functions ij’(s, ar,al), Qi,”(s,&;”,zz(,), and Qi(s, a;, ay, d,).
We first adopt adversarial training to train Qj}p (s, ar, @) and

P(s,ar,a,) via the max and min step, which is referred to
as adversarial training initialization (ATI). This training would
output an equilibrium mean action ar and a,. Then, we design
another network to learn Q;(s, a;, ar, a,), which will learn an
action a; for each agent to optimally respond to the mean
effects. We could also incorporate the max and min step to fur-
ther improve Q;p (s, a,a;) and Qy (s, &;p , d,), Tespectively,
which we refer to as min—max enhancement (MME).

A. Centralized Training and Exploration With Decentralized
Execution

Each agent must learn the cooperative strategy as well as
adversarial strategy, since the agent can cooperate with its
friends to maximize reward and also confront the opponents.
Therefore, it is significantly challenging for the agent to learn
an equilibrated strategy. To handle this challenge, we adopt the
centralized training to guide each agent in learning coopera-
tive strategy as well as adversarial strategy. During the training
phase, friends and opponents are distinguished. The friends

0 .
: and opponents QY for agent i are treated as two super
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agents, which help in converting the multiplayer Markov game
into a two-player zero-sum game with an extended action set.
We first adopt neural networks to approximate Q;p (s, ar, al)
and QF (s,&;p ,d,). These networks learn the mean effects
of two coalitions. However, during the execution phase, each
agent cannot distinguish the friends or opponents. Each agent
has learned the mean effects of the two coalitions given a
state during the centralized training phase. Consequently, using
Q}p (s,ar,a;) and QF (s,&‘;p ,d,), each agent can respond
optimally to the mean effects ay and a,.

During the experiments, we evaluate the proposed ACL
algorithm with several other approaches. The experiments
are conducted with the same condition during the execution
phase, that is, each agent has no information about friends and
opponents.

B. Adversarial Training Initialization

We first learn Q}”(s, ar,a’) and Q (s, &;” ,4,) via the max
and min step, which is shown in Fig. 1(a).

1) Max Step: With an experience (s, a, s, [r1, 72, ..., N]),
for each agent i, we can distinguish its friends Q’: and oppo-
nents Q7. The mean action of friends can be denoted as

ar = (1/ |Q’; D Z_ﬁeszf ay, and the reward can be denoted as
= /19 )3 jcq/ 7 Then, the mean-field Q-function
Q}p (s, ar, @) of the friend coalition is updated in a recurrent
manner as

Q;{?(z+1)(5v ar, ay ) = Q;{)(z) (s, ar.ay) +a(n)
target - A
x (0 = oF (5. a.a)))  16)

where «(?) is the learning rate and the target value Q}mget is
represented by
0 =1 +y o 0F (s ar,ay). (17)

Finally, agent j € Q’: adopt a Boltzmann exploration policy
expressed as

exp (—,B Qj‘{)(z) (5. ar. ‘A’f;p))
24 exp(—,B Q;{’(r) (s, a, &2”))

By iterating (16)—(18), the mean actions ay and the corre-
sponding policies 7; € ]t;p Jj € Q’: for friends improve
alternatively.

2) Min Step: In the min step, the opponents Q¢ cooper-
ate with each other to minimize the reward of the friends.

Therefore, the target value 0" in min step is expressed as

0yt =1l +y H;})n o) (S/’ a’, El")'

wi(ajls. ag.a%) = (18)

19)

Then, each opponent j € QY takes the action with min-
imum value and the Boltzmann exploration policy can be
expressed as

exp (ﬂ 0 (s a7 a"))
5o ep (807 (5.47.a0) )

nj<aj|s, ar, ao) = (20)
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Fig. 1.
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ACL in a mixed cooperative—competitive environment. In (a), the mean effects (ar and a,) of friends and opponents are trained via adversarial

max and min step, respectively. In the max step ( Q;p(s, ar, @), with fixed policies of opponents, we optimize the friends’ mean action to maximize their

rewards. In the min step (sz (s, ﬁ;p ,dp)), the mean action of opponents is trained to minimize the friends’ rewards when the policies of friends are frozen. In
(b) and (c), each agent learns the best response toward the mean effects, via the adversarial max and min steps. (a) Initialization. (b) Max step. (c) Min step.

In the max step, the exploration policy shown in (18) would
guide each friend to choose an action that would maximize the
Q-function. However, in the min step, the exploration policy
shown in (20) always chooses an action that would minimize
the Q-function. Iterating these two steps, this algorithm would
generate a Nash equilibrium, which is proved in the Appendix.

At the ATI phase, different from existing opponent modeling

approaches, each agent controlled by ACL models the inten-
tions and policies of other agents by learning the mean
actions of its friends and opponents via adversarial train-
ing. Our proposed approach achieves significant improvements
over existing opponent modeling approaches for application in
large-scale agents from the following aspects.

1) Reduced Complexity and Improved Efficiency: Take the
opponent modeling approach in [35] as an example, it
suggested an approach where agents apply their network
for estimating the goals of the other agents. Therefore,
in the case of large-scale agents, each agent requires
evaluating all other agents, which is of low efficiency.
However, in our proposed approach, each agent only
evaluates the mean actions of the friend coalition and
opponent coalition, which can be proceeded at low
computational complexity.

2) Characteristics of Agents: In a mixed cooperative—
competitive MARL system, agents with different roles
have different behaviors, e.g., the friends Q’: cooperate
with agent i in maximizing their rewards while the oppo-
nents Q27 compete with agent i in minimizing the reward
of agent i. Therefore, the existing opponent modeling
approaches (e.g., [35]) could not seize these differences.
However, our proposed approach considers the charac-
teristics of agents, modeling the mean action of friends
and opponents separately, via adversarial training. By
modeling the intentions and policies of other agents, the
training process of the agents might be stabilized, which

could potentially deal with the nonstationarity problem
in MARL [31].

C. Min—-Max Enhancement

The ATI network would foresee the mean action of friends
ay and opponents a,. For each agent i with state s, ar and a,
can be regarded as the empirical distribution of the behavior
of their neighbors. Its friends and opponents act with different
strategies, with the friends maximizing their rewards while the
opponents minimizing the friends’ reward. Each agent reacts
to ar and a, accordingly, and we achieve this by training
the Q-function Q;(s, a;, ar, a,) via standard Q-learning. Each
agent i is trained with experience (s,a, s, [r1, 12, ..., ry]) by
minimizing the loss function

2
g MME _ (r,- + max 0i(s', ai, ar, ao) — Qi(s, ai, ay. Zzo)> :
(21

This new experience can further be applied to improve the
ATT network. We could also incorporate max and min step
into this improvement, which are shown in Fig. 1(b) and (c),
respectively.

In the max step, we froze the min network to stabilize the
opponents’ strategies, and train the max network to maximize
the rewards of friends. With ar = (1/|§2];|)Zﬁ€9,; as, and

;f]f.p = (1/|Q’:.|) Zﬁeglf 1, we can iterate (16)—(18) to improve

the strategies of the friends. Therefore, we jointly minimize

the loss EMME and the loss £/ = (Q}arget — 0 (s, a, @)
Similarly, in the min step, we froze the max network and

train the min network to minimize the rewz_lrds of friends.

We jointly minimize EMME and the loss £™" = (oureet _
zp(s’ &;p9 C_l(}))z'
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Fig. 2. Ilustrations of tasks. (a) Physical deception in the MPE.
(b) Predator—prey in the MPE.
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Fig. 3. Comparison between our proposed algorithm and MADDPG [28] in
the MPE. Our proposed approach achieves a higher score than MADDPG in
these two games.

VI. EXPERIMENTS

The strength and effectiveness of our algorithm are validated
in the MPE [38] and the battle game [50] as compared with
several state-of-the-art methods (deep deterministic policy
gradient (DDPG) [49], multiagent DDPG (MADDPG) [28],
mean-field Q-learning [40], mean-field actor—critic [40], etc.).
We adopt the centralized training, which is also used by
MADDPG, mean-field Q-learning, and mean-field actor—critic.
Each agent can distinguish its friends and opponents only
during the centralized training phase. Each agent has no
information about friends and opponents during the experi-
ment evaluation as compared with other baseline approaches.

A. Multiagent Particle Environment

Environments: MPE [38] is a physically simulated 2-D
environment in continuous space and discrete time. This envi-
ronment consists of cooperative agents, adversarial agents, and
landmarks. Both agent and landmark entities inhabit a physical
location in space and poss descriptive physical characteristics,
such as color and shape type. Besides, agents can direct their
gaze to a location and act to move in the environment and
direct their gaze. Also, they are affected by physical inter-
actions with other agents. We perform experiments in two
mixed cooperative and competitive scenarios, as shown in
Fig. 2, to demonstrate the collaborative and adversarial strate-
gies learned by our proposed ACL algorithm. We introduce
these two scenarios as follows.

1) Physical Deception: In this game, three agents (one
adversary and two good agents) cooperate to reach a sin-
gle target landmark from a total of two landmarks. These
agents are rewarded based on the minimum distance of
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Fig. 4. Comparison between our proposed algorithm and DDPG [49] in the
MPE. Our proposed approach achieves a higher score than DDPG in these
two games.

any agent to the target. Only one agent needs to reach the
target landmark. However, an adversary also desires to
reach the target landmark. The adversary does not know
which landmark is the correct one. These agents learn
to spread out cooperatively and cover all landmarks to
deceive the adversary.

2) Predator—Prey: In this variant of the classic predator—
prey game, three slower cooperating agents must chase
one faster adversary around a randomly generated envi-
ronment with two large landmarks impeding the way.
Each time the cooperative agents collide with an adver-
sary, the agents are rewarded while the adversary is
penalized.

Baseline Approaches: We compare our proposed approach
against two baselines, which are proved successful in the
MPE. The two baselines are DDPG [49] and MADDPG [28],
respectively. To present a fair comparison, the same train-
ing configurations as in [28] are adopted. The environment
requires both collaborations and competitions. Therefore, the
agents and the adversary present diverse strategies. We design
different algorithm combinations for these agents to evalu-
ate the quality of policies learned in adversarial settings, that
is, our proposed versus MADDPG, our proposed versus our
proposed, MADDPG versus our proposed, and MADDPG ver-
sus MADDPG. These models are trained until convergence
and then evaluated over 100 iterations. We take the averaged
metrics as the final performance indicator.

Experimental Results: For the physical deception task,
agents trained with our proposed algorithm are able to suc-
cessfully deceive the adversary by covering all landmarks.
Furthermore, the adversary score is quite low, especially when
the adversary is trained with DDPG. A similar situation
arises for the predator—prey task since agents trained with our
proposed algorithm can achieve the highest score, as compet-
ing against the adversary controlled by other algorithms. The
experimental results are shown in Figs. 3 and 4, respectively.
ACL efficiently learns the correct behavior in both cases: in
the physical deception, the agents learn to spread out coopera-
tively and cover all landmarks to deceive the adversary, while
in the predator—prey, the slower agents can cooperatively catch
the faster adversary.

However, this platform supports only a limited number
of agents, and cannot be extended to the scenario of hun-
dreds of agents. Our proposed ACL algorithm can effectively
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Fig. 5. Battle game is a mixed cooperative—competitive battle scenario.
There exist two armies fighting against each other in a configured grid world.
Agents must learn the GSC, LSC, and strategic competition, that is, cooperate
with friends and compete with opponents. (a) Illustration of the battle game.
(b) Action space in this game, with 13 actions for move and 8 actions for
attack.

address the challenges of the curse of dimensionality due to
the exponential growth of agent interactions and nonstation-
ary environments due to simultaneous learning. Besides, ACL
can learn very fast and efficiently since we divide the com-
plex task into two simplified tasks. To further demonstrate the
learning effectiveness and strength of our approach, especially
with many agents, we adopt the battle game that supports the
tasks and the applications that require hundreds to millions of
agents.

B. Battle Game

Environments: The battle game is a mixed cooperative—
competitive battle scenario developed by [50], which supports
the tasks and the applications that require hundreds to millions
of agents. The battle game involves two armies fighting against
each other in a configured grid world, each empowered by a
different MARL algorithm. As shown in Fig. 5(a), each army
is initialized with the same number of homogeneous agents,
and each agent can take action to move to a nearby empty
grid or attack nearby agents. The discounted factor y is set
to be 0.95 and the mini-batch size is set to be 128. T = 0.01
is applied for updating the target networks. The size of the
replay buffer is 10°. The Adam optimizer with a learning rate
of 0.001 and 0.0001 (learning rate is o = 1074, and with
a dynamic exploration rate linearly decays from 1.0 to 0.05)
for the ATI phase and the MME phase, respectively. The view
range for each agent is a circle with a radius of 6 and the attack
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Fig. 6. Performance evaluations of ACL as compared with IL, AC, MF-Q,
and MF-AC in terms of the win rate and total rewards. Our proposed ACL
achieves the highest reward and win rate than other baseline methods. (a) Win
rate. (b) Total rewards.

range is a circle with a radius of 1.5. Each action is responded
with a reward: —0.005 for every move, 0.2 for attacking an
enemy, 5 for killing an enemy, —0.1 for attacking an empty
grid, and —0.1 for being attacked or killed (the default reward
setting). Agents should learn to collaborate with teammates to
destroy the adversaries, getting higher rewards.

Baseline Approaches: We evaluate our proposed ACL algo-
rithm as compared with four baselines, which are proved
successful in the battle game. The four baselines are inde-
pendent Q-learning (IL) [51], advantageous AC [52], and
their counterparts that adopt mean-field theory, mean-field IL
(MF-Q) [40], and mean-field AC (MF-AC) [40], respectively.

Experimental Results: We have conducted extensive exper-
iments to illustrate the learning effectiveness and strength of
our proposed approach. First, we evaluate the performance of
our proposed ACL algorithm as compared with other baseline
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Fig. 7. Visualization for the mean effects leaned by the adversarial training
initialization under four scenarios, shown in (a), (b), (c) and (d), respec-
tively. The reference agent can see the states with the view range, and then
it will learn or predict the mean actions of friends and opponents, which are
encoded in the O (s, sz,&ip y and QY (s,a¥, a,), respectively. These two
Q-functions are visualized by the histogram, indicating the potential rewards
for each action under four different states.

methods in terms of the win rate and total reward, which is
shown in Fig. 6. Second, the learned mean effects of these two
coalitions are visualized under four different states, which is
shown in Fig. 7. This visualization demonstrates the effective-
ness of ATI. Then, the hexbin plot of the number of survivors
over 2000 round of competitions is shown in Fig. 8. Finally,
we illustrate the states of agents at different time steps to fur-
ther validate the effectiveness of the proposed ACL algorithm,
which is shown in Fig. 9.

We train the above five models by self-plays and then use
them for comparative battles. During the training phase, each
army 1is initialized with 64 homogeneous agents. Agents can
quickly learn the global strategic cooperation (GSC) and local
strategic cooperation (LSC). GSC is shown in the right fig-
ure of Fig. 5(a)—the red army cooperates with each other
trying to surround the blue army. However, as for the LSC,
agents within a small local area can cooperate to chase and
hunt. In the test phase, two armies that are controlled by
the well-trained model of different algorithms compete with
each other, that is, the agents within the same army cooperate
with each other, while competing with the agents of another
army (for clarity, these two armies are referred to as me and
opponent, respectively). Fig. 6(a) and (b) show the win rate
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Fig. 8. Hexbin plot of the number of survivors over 2000 round of competi-
tions. Each hexbin shows the number of survivors for two armies under 400
steps. This plot further demonstrates the performance of these algorithms. The
army controlled by ACL has a greater number of survivors while another army
controlled by other algorithms has a less number of survivors. (a) ACL versus
IL. (b) ACL versus AC. (c) ACL versus MF-Q. (d) ACL versus MF-AC.

and total rewards over 2000 round cross-comparative experi-
ments, respectively. Our proposed algorithm ACL outperforms
MEF-Q with a 76% win rate, even though that MF-Q can defeat
other algorithms IL, AC, and MF-AC with a higher win rate.
Specifically, ACL achieves 87%, 87%, and 91% win rate as
competed against IL, AC, and MF-AC, respectively. The same
results can also be found for total rewards.

Furthermore, we present the hexbin plot to show the rela-
tionship between the survivors of two armies over 2000 round
of competitions, which is shown in Fig. 8. ACL can kill almost
all other opponents, since the number of survivors concentrates
on 0, which is shown in the density curve (the green one).
However, the army controlled by ACL has a larger number of
survivors, demonstrating its superiority. Opponents controlled
by different algorithms have a distinct density curve of the
survivor, e.g., the number of survivors is focused on 23 for
the battle of ACL versus AC, while it is mainly distributed in
10 for the battle ACL versus IL.

To present a better evaluation of the cooperative and
competitive strategies learned by our proposed algorithm,
we have presented the snapshots of two games, which
are shown in Fig. 9, where the red army is controlled
by our proposed ACL algorithm, while another army is
controlled by MF-AC and MF-Q, respectively. As can
be shown from this figure, the army controlled by our
proposed ACL algorithm can learn the cooperative strate-
gies to besiege another army, thus having a large number
of survivors.
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Fig. 9. Snapshots of two games. The red army is controlled by our proposed ACL algorithm, while another army is controlled by (a) MF-AC and (b) MF-Q,
respectively. As can be shown from this figure, the army controlled by our proposed ACL algorithm can learn the cooperative strategies to besiege another

army, thus having a large number of survivors.

VII. CONCLUSION

This article has proposed ACL in a mixed cooperative—
competitive environment, which exploits the mean-field theory
and friend-or-foe Q-learning. The proposed method first learns
the mean action of friends and opponents through adversar-
ial learning (AL), with friends cooperatively maximizing the
reward while opponents minimizing it. Meanwhile, AL is also
adopted to learn each agent’s best response to the mean effects.
Theoretical analysis of the convergence of the proposed algo-
rithm to the Nash Q-value is provided. Experiments on
the battle game and MPE have demonstrated the learning
effectiveness and strength of our approach.

Our proposed ACL algorithm could address the challenges
of the curse of dimensionality and nonstationary environments.
The positive results in experiments indicate that it is possible
for ACL to be applied in real-world applications, especially
with many agents. However, in many large-scale MARL appli-
cations, agents could only interact directly with their neighbors
(a small fraction of agents). Consequently, the actions and
intentions are not consistent, which significantly impact the
cooperative strategies. Communications between agents, or
communications between the dominating agents potentially
coordinate the inconsistent actions due to different view range.
Besides, we will also extend ACL algorithms to the scenario
with multiple coalitions, rather than only two coalitions, that
is, friends and opponents. The strategies in such scenarios
are more challenging since the interesting relationship is frail,
that is, two agents may perform cooperatively or competitively
under different situations.

APPENDIX
PROOF OF CONVERGENCE
We now prove the convergence of @ =
1A t 13 13
[Qf1 e Qfm’ s Ok] to the Nash Q-value

oF £ [Q}‘l, R Q}"m, 31’ e jk] when using the iteration
of the ACL method. The proof is presented by showing that

the operator H, which is denoted as

HO(s.ar, a,) =r(s, a5, a,) +y ZP(S, ar,a,,s)

S

max  min Q(s/,a},a’o) (22)

aje 7 a, e AT
forms a contraction mapping with the fixed point, that is,

IHQ" — HO oo < 710" — @l
Proof:

et -me?|

— /
= max|y Z’P(s, ar,a,,s)
S

x | max min Ql(s’,a},a;)
acAY a,e AY

— max min Qz(s/,a},a;)
aje F a,e AT
§Hs12‘11xy E P(s,af,ao,s’)
s =

X | max min Q1<s/,a},a/0>
aje 7 a,e AT

— max min Q2 s, a,,a
/ sp sp %o
ae a)e

< maxy E P(s. ar,a,,s")
5,
S/

gl’%)in (S*, a*) _ gl’%zf QZ(S*, a*)

= maxy Y _P(s.ar.a0.5) ”Ql -0 ”oo

X

=v|e'-¢* . 23)
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The ACL learning algorithm determines the optimal
Q-function using point samples. Let & be some random policy
such that

Pr[A; =a|s; =5] >0 (24)
for all state—action pairs (s, a). Then, given any initial Q°,
ACL uses the following update rule:

Q" (s1.ar,a0) = (1 = o (s, a7, a,))Q' (s, ar, @)
+ o'(s, ar, a,)

x |7 +y max min Q’(s’,a’,a’) .
( edredy T
(25)

This leads to the main theorem in Theorem 2.

Theorem 2: Given a finite-state stochastic game, the ACL
learning algorithm converges to the optimal Q-value Q =
[O7F. ..., Oy, given by the update rule

0"t (s,ar,a,) = (1 — (s, ar,a,))Q' (s, ar, a,)
+ o'(s,ar, a,)

x [# 4+ 7y max min Q’(s’,a’-,a’)
( Gedlaqedyr T
(26)

as long as the following conditions are met.

Condition 1: All state—action pairs should be visited
infinitely often, and the reward is bounded by some constant K.

Condition ~ 2: Y ,d'(s,ar,a,) = oo and
> (s, af,a(,))2 < oo for all (s,ar,a,) € S x A.

Condition 3: Agent’s policy is greedy in the limit with infi-
nite exploration (GLIE). In the case with the Boltzmann policy,
the policy becomes greedy with respect to the Q-function in
the limit as the temperature decays asymptotically to zero.

To establish Theorem 2, we need an auxiliary result from
stochastic approximation which can be indicated as follows.

Theorem 3: A random iterative process Al = (1 -
al(x))A'(x) + &' (x)F'(x) converges to zero with probability 1
under the following assumptions.

1) The state space is finite.

2) 0<al <1,Y,a'x) =00, and Y, (o (x))? < o0.

3) IE{F'(0)|F }Hlw = yIIA"[lw, where y € (0, 1).

4) var{F'(x)|F'} > C(1 + ||AY|w)2, where C is some

constant.

Here, ! = {A™"! A, ... F',... o'} stands for the past
at step t; o', A, F' € F" and ||.||w is a weighted maximum
norm.

Proof: See [53]. |

By substarcting Q (s, ar, a,) on both sides of (26) and letting
Al(s,ar,a,) = Q' (s, ar, a,) — Q*(s, ar,a,), we can have

A’“(s, ar.a,) = (1 —a'(s,ar,a,))A' (s, a5, a,)
+ o'(s,ar, a,)

x |+ y max min Q'(s’,a}-,a;)
ae Al a,e AY ‘

— Q%(s. ar, a) 27)

IEEE TRANSACTIONS ON CYBERNETICS

From the comparison with the random iterative process in
Theorem 2, we present the relation such that

F'(x,a,b) =r' + y maxminQ'(s', a’, b') — Q*(s, a, b). (28)
a b

We need to prove that the operator 7{ meets Theorem 2’s
third and fourth conditions. According to (28), we have that
F'(s,ar,a,) =r'+y maxy ming Q' (s, a}, a,)—Q*(s,ar, a,)

E[F'(s.ar.a,)|F'] = 3 P(s.ar.a0.5)

x| r'y max min Q’(s’, a}, a;)
aj’ a,

— Q" (s. a5, a,)

=HQ'(s.ar, a,) — Q*(s. ar, a,). (29)

As the operator H forms a contraction mapping on the com-
plete metric space with the fixed point Q* being the Nash
Q-value of the entire game, we have that HQ* = Q%
For details of the proof of this equation, we refer readers
to [54]. By using this fact, (29) can further be illustrated
by E[F'(s, ar,a,)|F'] = HO,(s, ar, a,) — HQ*(s, ay, a,), and
IELF' (s, ar, @)l F'llloo < ¥ 10" = Q%lloo = ¥ 1A [lcc-

Furthermore, it can be proved that the fourth condition is
also met

var[F'(s, as, a,)| F']
=E[|r+y n}lgx n;}n Ql(s’, a}, ai,) —Q*(s, ar,a,)
7
2

— (HQ' (s, ar,a,) — Q" (s, ar, a,))

2

=E||r +y maxmin Q’(s’, ay, a/o) — HQ' (s, a5, a,)
a4

= var|r' +y max n;}n 0 (s/, a;, aﬁ,) |F! (30)

af 0
Since r' is bounded when employ Condition 1, it is clearly
verifies var[F'(s, as, a,)|F'] < C(1 + | A||3,) for some con-
stant C. Finally, with all conditions met, it follows Theorem
2 that A’ converges to zero with probability 1, that is to say,
0, converges to O, with probability 1. |
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