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Abstract—For graph-based multi-view clustering, a critical issue is to capture consensus cluster structures via a two-stage learning
scheme. Specifically, first learn similarity graph matrices of multiple views and then fuse them into a unified superior graph matrix. Most
current methods learn pairwise similarities between data points for each view independently, which is widely used in single view.
However, the consensus information contained in multiple views are ignored, and the involved biases lead to an undesirable unified
graph matrix. To this end, we propose a bipartite graph based multi-view clustering (BIGMC) approach. The consensus information can
be represented by a small number of representative uniform anchor points for different views. A bipartite graph is constructed between
data points and the anchor points. BIGMC constructs the bipartite graph matrices of all views and fuses them to produce a unified
bipartite graph matrix. The unified bipartite graph matrix in turn improves the bipartite graph similarity matrix of each view and updates
the anchor points. The final unified graph matrix forms the final clusters directly. In BIGMC, an adaptive weight is added for each view
to avoid outlier views. A low-rank constraint is imposed on the Laplacian matrix of the unified matrix to construct a multi-component
unified bipartite graph, where the component number corresponds to the required cluster number. The objective function is optimized in
an alternating optimization fashion. Experimental results on synthetic and real-world data sets demonstrate its effectiveness and

superiority compared with the state-of-the-art baselines.

Index Terms—Multi-view clustering, similarity matrix, consensus information, bipartite graph.

1 INTRODUCTION

LUSTERING has long been serving as a critical unsuper-
Cvised technique in pattern recognition, data mining,
and machine learning. The aim of clustering is to group
data objects into clusters such that data objects in the same
cluster are more similar than those in different clusters.
However, most existing clustering methods are concerned
about single-view learning [1]. As Internet and communi-
cation technologies develop rapidly, many real-world data
can be extracted from multiple sources [2, 3], which makes
it possible to produce multi-view data. In multi-view data,
each object is associated with much richer information [4].
How to make full use of the information contained in
multiple views to improve clustering results is referred to
as be multi-view clustering [5].

Obviously, each view has its biases. If the multi-view clus-
tering algorithms cannot explore valuable information and
cope appropriately with multiple views, the clustering per-
formance may be poorer than that by single-view clustering
methods [6]. Thus, compared with single-view clustering,
multi-view clustering is expected to achieve more robust
and precise clustering results via exploiting the complemen-
tary information in multiple views [7]. Three main chal-
lenges need to overcome. The first one is how to extract the
valuable information from multiple views [8]. The second
one is how to integrate these extracted information effec-
tively [9, 10]. The third one is how to learn the importance
of each view for the clustering task [11]. Note that these
three issues should be figured out simultaneously. To this
end, a variety of multi-view clustering methods have been
proposed. Among existing studies, graph-based methods

This work was supported by the National Science Foundation under grant
ECCS 1917275. (Corresponding author: H. He).

L. Li and H. He are with the Department of Electrical, Computer and
Biomedical Engineering, University of Rhode Island, Kingston, RI 02881 USA
(e-mail: {lusi_li, haibohe}@uri.edu).

are representative [12, 13]. The structures of graphs consist
of sets of vertexes and weighted edges among them. The
similarity between any two vertexes is represented by the
weight associated with the edge that connects them. Hence,
graphs can effectively express the relationships among var-
ious types of data objects [14]. In graphs, each vertex
corresponds to one data object and each weighted edge
represents the similarity relationship between two objects
it connects.

In practice, the similarity relationships are expressed dif-
ferently in different views [15]. Graph-based multi-view
clustering methods aim to encode the similarity relation-
ships among the data objects in the form of a unified
graph matrix by combining the graph matrices of all views
[16]. For the unified graph matrix, each non-zero element
indicates the complementary similarity between two data
objects. The final clusters are formed by employing an
additional clustering method on the unified graph matrix.
The clustering performance depends on the quality of each
view graph and the fusion strategy. Although they have
achieved some successes, there still exist several limitations.
First, the consensus information of different views are not
considered when learning each view graph matrix. Most
existing methods learn pairwise similarities between objects
for each view independently. This often leads to that the
involved biases affect the quality of each view graph ma-
trix. Motivated by [17], our method captures the consensus
information by learning a small number of representative
uniform anchor points for different views. Each anchor
point is the centroid of the corresponding sub-cluster. That is
to say, each view has an anchor set and these anchor points
in different views preserve the information within the same
sub-clusters. Second, they keep both the pre-given anchor
set and the learned view graph matrix fixed in the fusion
process (e.g., [17]). In this case, they are sensitive to the
initialization and easy to trap in local optimum. Our method
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Fig. 1. The framework of our proposed BIGMC.

learns each view bipartite graph matrix, the unified graph
matrix, and uniform anchor points jointly in a mutuall

weight of each view without an additive hyper-parameter.
The optimal value of the additive hyper-parameter needs
to search in a large range [18]. Our method can determine
an optimal weight for each view adaptively based on the
corresponding learned view bipartite graph and the unified
graph matrix.

To address these limitations simultaneously, we propose a
novel multi-view clustering approach, denoted by Blpar-
tite Graph-based Multi-view Clustering (BIGMC). The overall
framework of BIGMC is shown in Fig. 1. To be specific,
from the input of multi-view data matrices, we create ¢
initial uniform anchor points for different views denoted
as A. Then the graph of each view is generated based on
the similarity between data points and the anchor points,
which is referred to as “data-to-anchor" similarity graph
and denoted as S§. Afterwards, all Ss from multiple views
are employed to learn a unified graph matrix U in the
fusion procedure. At the meantime, a weight for each view
(6) is added adaptively based on Ss and U indicating
its importance. A low rank constraint is imposed on the
Laplacian matrix of a unified bipartite graph associated
with U, which aims to constrain that the bipartite graph
has ¢ number of connected components corresponding to
the required number of clusters. Next, the obtained unified
matrix U would go back to improve the Ss and ¢ of each
view until convergence. According to the converged unified
graph matrix U, we can get the unified anchor points A
for each view. If they are different from the initial anchor
points, we would improve all As to in turn update the Ss,
the unified graph matrix U, and the weight 6 until they are
identical. The final clusters are formed directly based on U.
Hence, the main contributions can be summarized as fol-
lows.

« We propose a novel bipartite graph based multi-view

clustering (BIGMC) approach. BIGMC can learn and
make good use of the consensus information repre-

multiple views.

o BIGMC jointly learns the similarity bipartite graph
for each view, the unified bipartite graph, and the
consensus anchors in a mutually reinforcing way.
It can also determine the weight for each bipartite
graph automatically without introducing an additive
hyper-parameter. The final clusters are generated
directly based on the unified bipartite graph when
the anchors are identical in different views.

« BIGMC employs an efficient alternating iterative op-
timization strategy to solve the variable optimization
problem step by step, where each sub-problem has
an optimal solution.

o Experimental results on both synthetic and real-
world data sets demonstrate the effectiveness of the
proposed BIGMC and the superiority than the state-
of-the-art baselines.

The rest of this paper is organized as follows. Section 2 gives
a brief introduction of related multi-view clustering meth-
ods. Section 3 presents the proposed bipartite graph based
multi-view clustering approach. The optimization strategy
of this problem is given in Section 4. Extensive experiments
are shown in Section 5. At last, Section 6 concludes this

paper.

2 RELATED WORK

Numerous multi-view clustering approaches have been pro-
posed, and can be roughly divided into four categories
based on different learning strategies: co-training learning
[19, 20], multi-kernel learning [21, 22], subspace learning
[23, 24], and spectral learning [25, 26]. Among them, the
co-training learning aims to produce a learner for each
view by using the learned knowledge from one another
for the partitions of different views. The authors in [20]
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combine linear discriminant analysis and K-means method
[27] with co-training into a unified framework. The main
idea of multi-kernel learning is to combine multiple kernels
in a linearly or non-linearly manner to perform multi-view
clustering, where a base kernel is predefined for each view.
The work in [21] combines the kernel matrix learning and
the spectral clustering to improve clustering performance.
The subspace learning [28-30] tries to find a shared latent
representation for all views for constructing a similarity
matrix and then perform spectral clustering method to
obtain clustering results. For example, Wang et al. in [31]
incorporate the local manifold regularization into concept
factorization to drive a common representation for multiple
views. The authors in [32] propose two methods to perform
multi-view clustering based on low-rank representation and
sparse subspace learning. While spectral learning [33-35]
is to fuse low-dimensional embedding representations from
multiple views, and then perform K-means method on the
fused embedding representation to generate the final clus-
ters. Generally, co-training based approaches depend on the
conditional independence of multiple views. The differences
among multiple views are ignored. Our proposed BIGMC
method deals with the differences by automatically learning
the weight for each view. Subspace based algorithms are
sensitive to the quality of original feature representations.
That is to say, they cannot find the underlying representa-
tion of the data with outliers. Our method constructs the
induced sub-graph of the neighboring anchors for each data
point and thus reduces the negative effect of outliers for the
entire dataset. Additionally, multi-kernel based methods are
sensitive to the selection of base kernels. Our method uses
an effective initialization method to initialize anchors, and
the experiments in Section 6.2.1 demonstrate its robustness.
Most spectral based methods need an additional clustering
step to generate the final clusters. Our method can obtain
them directly without the additional clustering step.

The existing graph-based multi-view clustering methods are
related to the above-mentioned multi-view spectral clus-
tering methods [36, 37]. The difference is that the former
method forms clusters on the unified graph of multiple
views not on the embedding representation [38]. For most
graph-based multi-view clustering methods, they still can-
not simultaneously address the limitations mentioned in the
introduction. For example, the authors in [37] utilize a two-
state learning strategy, where they first construct the initial
graph of each view and then optimize as well as integrate
them into a global graph. Both [33] and [36] propose to
learn a common graph directly without considering the
discriminative information contained in different views. A
graph-based multi-view clustering method [16] is proposed
to jointly learn multiple view graphs and a fusion graph.
It does not take the consensus information into account
and also has a high computational complexity. To this end,
two multi-view spectral clustering methods via bipartite
graph are presented [17, 39]. While [17] keeps the selected
salient points fixed and thus is sensitive to the initialization.
Both [17] and [39] construct the Laplacian matrix for each
view and keep them fixed during fusion. Additionally, K-
means is required to obtain the final clusters. Our proposed
BIGMC can alleviate all these limitations. In the experiment
section, some representative methods will be compared to

our method.

3 PROPOSED METHOD

Before presenting our proposed BIGMC method, we first in-
troduce some notations. Throughout the paper, for a matrix
X € R let x; be the j-th column vector, x;; be the (i, j)-th
entry, Tr(X) be the trace, and ||X||r be the Frobenius norm
respectively. For a vector x € R¥!, we denote x; as j-th
entry, x as the transpose, and ||x||, = (Zid':l |x;[P)/P as Iy-
norm. The identity matrix can be denoted by I, and a vector
with all entries of one can be denoted by 1.

The bipartite graph can be learned based on the similar-
ities between data points and their corresponding neigh-
bor anchor points [17]. For a multi-view data set with
m views, we denote X1,...,X™ as the data matrices and
XV = [x],....x)] € R4*" ag the v-th view data with d,
dimensions as well as n data points. For XV, let X} be the j-th
column vector and xl.Vj be the (i, j)-th entry. Let Al ... A" be
the uniform anchor matrices and AY = [a‘l’, ....a)] € RAv<t
as the anchor matrix of XV with d,, dimensions as well as ¢
anchor points. ¢ is the required number of clusters. It is note-
worthy that all view data have ¢ consensus anchor points,
where each anchor point is the centroid of the corresponding
sub-cluster. When ¢ = ¢, each cluster only has one anchor
point. When ¢ < t < n, each cluster can be represented by
several sub-clusters and thus has several anchor points. The
specific number of the anchor points for each cluster can be
learned by our proposed BIGMC method.

3.1 View Graph Learning

The similarity matrices between data and anchors can be
denoted as S1,...,5™, where S € R"™. For the i-th data
point x! of X, we can connect the j-th anchor a} to it
as a neighboring anchor with the probability s}. In gen-
eral, closer x! and a’ are likely to have larger connection
probability s7; [16]. Thus s/ is inversely proportional to
the distance between them, e.g. [|x] - a}f [|. Therefore, when
{Av}m | are fixed, the graphs for all views can be learned as
follow:

m n t m
: 2 2
min 3> DI - alEsy wa QIS
v=l p=1 =1 j=1 v=l @

s.t. Vv, s}’j >0, 1Ts:.’ =1.

where the second term is a regularization term, and the
parameter a is employed to control the connection sparsity
between data points and multiple anchors. If @ = 0, there
is a trivial solution for problem (1), i.e., s}, = 1 indicating
that only its nearest anchor a’/ can be connected to x'. This
is called hard partition. If « is large enough, the connections
from all ¢ anchors {a‘; }:_, to x! can be built with the same
probability 1/¢. The value of @ can be determined adaptively
as shown in Section 4.1. The normalization 1's} = 1 can be
considered as the sparse constraint on S”.

Here, we learn the view graphs independently via construct-
ing a similarity matrix for each view when fixing the anchor
set. The reason is that each graph is only related to each
other by the anchor set. Then, we produce a unified bipartite
graph matrix and use it to update {A"}", adaptively until
convergence.
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3.2 Unified Graph Learning

As mentioned above, our proposed BIGMC can jointly learn
the graphs of all views, construct a unified bipartite graph,
and automatically determine the importance of each view.
To be specific, the unified bipartite graph can be obtained

through a unified matrix U € R™ from {$*}",. Thus we
have the following problem:
min ¥ ||U-S"||% 6,
v Z; " @)

s.t. Vi, uij > 0, lTu[ =1.

where 6, represents the weight of v-th view, u; € R™! is
a column vector of U, and u;; is the j-th entry of u;. The
values of the weights § = {61,...,0} can be determined
automatically according to Theorem 1 [16] as follows:

Theorem 1. The weight &, can be determined by
1

Oy = ———.
2,/IlU = 8113

Proof. An auxiliary function is defined as follows:

m
minz U-8Y
in Y"1V - "
v=1

®)
st Vi, u; >0, 17w =1
The Lagrange function of Problem (3) can be written as:
DU = $"llp +O(A, U) @)

v=1

where O(A,U) is the formalized term derived from the
constraints in problem (3), and A is the Lagrange multiplier.
Then we take the derivative of Problem (4) with respect to
U and set it to zero.

0|IU S”II2 , 99(AU)
5, =
E (6v) 50 0 %)
where &, is given by
oy = ;- (6)

2\l - V|17

Then we obtain the Lagrange function of Eq. (2) as follows:
& O = S
;(m) T

From Eq. (5) and (7), we can get the same solution to Eq. (3)
and Eq. (2) if §, = §,. In this case, the solution to the weight
0, is

JO(A, U)
au

=0 @)

5, = ; ®)

U~ $I7

Eq. (5) cannot be solved directly since 6, depends on the
target variable U when S" is given. However, if §, is set
stationary, Eq. (5) can be regarded as the solution to Eq.
(2). In this case, the calculated U from Eq. (5) (it is in fact
Eq. (22) shown below) will be further employed to update
6, via Eq. (8). This strategy inspires us to solve the Prob-
lem (3) through an iterative way. Moreover, if the iterative
optimization strategy converges (shown in Section 4), the

4

converged values of U and §” are optimal. Similarly, the
weight 6, is correspondingly tuned to an optimal value by
Eq. (8). Hence, Problem (2) can be transformed into problem
(3) when the weights § are determined by Eq. (8), where the
values of U and S" are obtained in the last iteration.
Problem (1) and Problem (2) can be combined to learn
{8"}, and U jointly as follows:

m n m

2

{SV E E E lIx; —aj ||25”+a§ 1Nl
=11 v=1

)
+Z||U—S”||,%6V
s.t. Vv, s >0, 17s) =1, u;; >0, 1"y, = 1.

We notice that the matrices {S"}" , and U can be learned
jointly in a problem when {A"}" are fixed. In the next
subsection, we can adaptively find the consensus anchor
points of all views.

3.3 Consensus Anchor Learning

When the unified matrix U is updated, we can explore the
consensus anchors and reposition them in all views. For j-th
subcluster of v-th view data, its anchor ajV. can be obtained
based on the mean of all data points connected to it by

n
b Dy WifX]
T Xl uij

where a¥ € R¥*1 and j =1,...,t. Then the anchor matrices
{A"}, can be updated. At last, we combine Eq. (10) with
problem (9) and learn the matrices {S*}",, U, and {A"}]",
jointly such that they can assist each other in the iteration

process.

(10)

m n

{SV}'" U{Av ZZZ“X - a; ||2S”+(IZ||SV||F
=11
+ i [|U - S¥|[% 6,

V20178 =1, u; 20, 1My = 1.

(11)

s.t. sz sy

3.4 Optimal Bipartite Graph Learning

As mentioned above, the edge weights of the bipartite graph
can be represented by U € R, where each element, u;;, is
a weight of the edge that connects x; and the corresponding
a; of all views [40]. In this case, the weighted adjacency
matrix, Z € RO+0Xn+) and the degree matrix, Dy, can have
the following block structures:

Z:[o U’DU:

ur o

D1 0
0 Dy

where Dy € R™"; j-th vector of D, is d% = 25':1 uij; Dy € R
Jj-th vector of D; is djz. = X1, u;j. Hence, the normalized
Laplacian matrix is given by

Ly =1- (Dy) ' 2Z(Dy) 2. (12)

The neighbor anchor assignment is optimal for each data
point in all views when there exist exactly ¢ connected
components in the bipartite graph. It can be achieved by
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imposing a rank constraint on Ly of the bipartite graph
Z associated with U. As pointed out by [41], first, the
eigenvalues of Ly are in a normalized form that enables the
spectra relate better to graph invariants for general graphs
to some extent than a standard form. Second, there is an
important property of Dy if U is non-negative:

Theorem 2. The multiplicity ¢ of the eigenvalue O of the nor-
malized Laplacian matrix Ly equals the number of connected
components in the bipartite graph associated with U.

The proof of Theorem 2 has been shown in [41]. The
Theorem 1 says that the n data points and ¢ anchors can
be partitioned into ¢ clusters based on Z related to U if
rank(Ly) = (n + t) — c¢. Hence, the final subclusters and
clusters can be generated without need to perform an ad-
ditional clustering method. The optimal bipartite graph can
be learned by solving the following problem:

n 3

m
SIDI)
(s U Ay,

m

2 2

lIx = ayli3sy; +a D NIS"IIE
i=1 j=1 v=1

+ U =81 6 (13)
v=1

st Vv, s 20, 17s) =1, uy; 20, 17w =1,
rank(Ly) = (n+1) —c.

It can be noticed that the constraint rank(Ly) = (n+1) — ¢
is nonlinear and hard to solve. To relax this constraint,
we introduce c-smallest eigenvalues of Ly, denoted by
{Uq(LU)};:y in which 74(Ly) = 0 since Ly is positive semi-
definite. Thus let 22:1 nq(Ly) = 0 so that the rank constraint
can be achieved. From Ky Fan’s Theorem [42], this problem
can be turned into

2 Ng (Ly) =
g=1

Therefore, we can obtain the objective function by plugging
problem (14) into problem (13).

min Tr(FTLyF).

F ER(nH)xc,FT F=I

(14)

n t

m

2 2

DIk =aylizsy +a ) NIVl
v=1

m
DY
v=1""" v=toy=1 =1 j=1

o ) - (15)
+ DU =117 6, + BTr(F" Ly F)

v=1
s.t. Y, i, sivj >0, lTs}’ =1, wj 20, 1"y, =1LFTF=1

When the parameter g is large enough, the optimal U
obtained by solving problem (15) can make ¢ _; 14(Ly) =0
achieved. Note that we can use § to control t?le number of
connected components in the bipartite graph, denoted by 7.
B will be increased when y < ¢ and decreased when y > ¢ in
each iteration. Hence, the resulting bipartite graph matrix Z
has exact ¢ connected components, and groups n data points
as well as ¢ anchors into ¢ clusters. We can solve the problem
(15) by an alternating optimization strategy.

4 OPTIMIZATION STRATEGY

It has been a challenging issue that each variable in problem
(15) can have an optimized solution since they are coupled
together. An alternating iterative strategy [17] can effectively

5

transform a constrained optimization problem into a series
of unconstrained sub-problems by plugging some penalty
terms into the objective function. In this paper, we have
variables {S}" ., {6,}I" |, U, F, and {A,}" | to be optimized.
The strategy is that one of them is updated when the others
are fixed. Specifically, the updated rules are presented in the

subsections.

41 Fix {6,}",, U, F,and {A,}" ,, Update {S}"

When we fix {6, }"31:1, U, F, and {A, my of the problem
(15), which makes the last term a constant. In this case, the
problem becomes:

min

m n t m

v V2V V2

R PIDIPN[ —ajllzswaZlIIS I
V=

v=ly=1 =1 j=1
m

+ U - 81 6
v=1

s.t. Vv, i, s:-’j >0, lTs:.’ =1.

(16)

It is easy to be noticed that the updates of {S}", are
independent for all views and not coupled together. Thus,
SV can be updated individually by the following problem:

n 13

. 2 2

min ° X} - a} s +olIS"I2
i=1 j=1 17)

2

BRI

s.t. Vi, sl-vj >0, 1Ts}’ =1.

Besides, we can also find that updating s! for each vector
is independent and get s by optimizing the following
function:

t
. ) )
min 3 lIx} - I} + alls? 1l
i A
V12 (18)
+[Ju; =87 [l5 6y
st Vi, ;2 0, 17s) = 1.

For the convenience of calculation, let 8; as a vector with
Jj-th element 6;; = ||x - ajv.||. Then the problem (18) can be
rewritten as
1 i 2 2
min =||s} + —||5 + =—||w; = sY||5 6
in 5 7 + 51 + 5ol = s} 6, )

s.t. Vi, ;2 0, 1Ts;’ =1.

The problem (19) can be tackled with a closed form if we
constrain s? having k nonzero elements. That is to say,
only k-nearest anchors for each data point x! are taken into
account instead of k-nearest data points. This assignment
of multiple neighboring anchors contributes to preserving
both the invariant and discriminative local structures since
each object in different views has not only invariances but
also discrepancies. From [16], we have

k
1
a= E(ké’i,kﬂ - ; Oia — 2k6,u; k41 — 26,) (20

and the final optimized solution of s};

Oikcs1 — 05 + 26, (uij — u g11)

j<k
Sij = | Kbiks1 = S 1 Oia = 2k6yui g1 + 25K Syutia
0 j>k
(21)
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U, F,and {A,}"

4.2 Fix {S},, " ,» Update {6},
When we fix {S}T:v U, F,and {A, }:”:1, solving problem (15)
to update {4, }]; can be turned into solving problem (2). As
mentioned above, the final solution of each 4, in {8, };":1 can
be obtained according to Eq. (8).

4.3 Fix {S}" ,{6,}",, F,and {A,}" , Update U
When we fix {S}",, {6,}",, F, and {A,}" |, the problem

(15) can be transformed into

m
min Y ||U-S"||26, + BTr(FT Ly F)
U ; F Ov U (22)

s.t. Vi, Ujj 2 0, 1T11i =1.

where all Ly, Dy, and Z depend on U. Specifically, the last
term reveals the mutual relations as follows:

1 n+t n+t f f
Tr(F" LyF) = 5 Zzz[,nd—‘l - d—’2||§
nt:l[j:l i J (23)
= Z ujj Mij
i=1 j=1
f; £,
where y;; = ”E - Ellz. Then, the problem (22) can be
i J

rewritten as:
m n t
. 2
min ) ([U = S"IF 60+ B ) > wijhis
v=1 i=1 j=1
s.t. Vi, Uij >0, 1Tul~ =1.

(24)

Similarly, updating u; for each row in U is independent. We
can have

m
min Y ||u; —s|?6, + Bul w;
u; VZ:; i i 12"y i (25)

s.t. Vi, Uij = 0, lTu,- =1.

We denote ¢ and ¢ as the Lagrange multipliers for the
two constraints. Thus we can have the Lagrange function
of problem (25):

L(ur ¢,9) = ) llui = 57156, + By w;
2 29
-1 - 1) - ¢"u;.

Then, we take the derivative of £ with respect to u;, set it to

zero, and obtain the following equation:
20; )06, =2 516, + i — 91— ¢ =0 27)

v=1 v=1

From [43], only the optimal u;, ¢*, and ¢* can satisfy the
Eq. (27). Additionally, B8 can be adaptively determined and
thus be treated as a known parameter. Leta =23 ; 6, and
pi =220, 878, — Bu; for the constants. On the basis of the

Karush—KuhrlvTucker (KKT) conditions, we can have

wa-pi—¢1-—¢" =0 (28)
where Vj,u;, > 0, ¢; 2 Ouje; = 0. According to the
constraint 171u,~ =1,1ie, lTu:.‘ =1 we can obtain

a— lTpi _ 1T§0*

¢ = 29)

6
Plugging ¢* into Eq. (28), we can have
; 1T il T, * *
u*f:}i_k}_i_l‘pl_kﬂ
Yoa ot at at a (30)
=(w; -0,
; 1 1T il 1T * *
wherewi:p—+—— p,0'*= "D,S’;ZO/('%:

t at .
max(-,0), and u;.*j = (w;j — 0*);. We can also derive go’;.

23:1(0'* - Wij)s . ;Fh

a(o-*—wij+ufj) = a(o*-w;j)+. Thus o = ; e
solution o* can be obtained by finding the root of problem

as ‘
ijl(O' - Wij)+

flo) =0~ t

where o > 0 and f’(07) > 0. It can be noted that f(o) is a
linear and convex function. The Newton-Raphson method
as a root-finding algorithm can generate a successively
approximation to the root of a real-valued function. Hence, a
sufficiently precise value of o (i.e., 0*) is reached by iterating
computing a better approximation, o1, to the root. Solving

for o741 gives

@1

flo)

=0r — —— 2
Or41 (o f’(O') (3 )
Therefore, u; can be obtained by Eq. (30) for each row of U.

4.4 Fix {S}",, {6,}",, U,and {A,}" , Update F
When we fix {S}",, {6,}.,, U, and {A,})",, F can be

updated by handling the following problem:

min Tr(FTLyF) s.t. FTF =1 (33)

We can rewrite F as the block matrix
_ |
r-[
where F; € R"™€ and F, € R"”*“. According to Eq. (12), the
problem (33) can be rewritten as

max Tr(FT(Dy)™?Z(Dy) V*F)

FTF=1

(34)

= max
FIFi+F] F>=1

The problem (34) can be solved by Lemma 1 [40, 44]. In
Lemma 1, B = (D) Y2U(D,) /2.

Lemma 1. Given F; € R™°, B € R™, gnd F, € R™°. The
optimal solutions to the problem

Tr(F (D) V2U(Dy) V)

max  Tr(F/ BF)

FI'Fi+F] F=1

2 2 . . )

are F; = £Bl and F> = £Bz, in which By are the leading c
left singular vectors of B ang' By are the leading c¢ right singular
vectors of B.

The optimal F is composed of the optimal F; and F>.
4.5 Fix {S}" ,{6,}",, U, and F, Update {A,}"
When we fix {S}",, {6,}",,
updated by Eq. (10).

The details are shown in Algorithm 1.

U, and F, each ajV. can be
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Algorithm 1 BIGMC Optimization Method

Input: Data set of m views X!, ..., X" with X" € R%»*", the
number of anchor points ¢, the number of clusters c, the
number of anchor neighbors k, initial parameter S.

Output: The final cluster labels ¥

1: Initialize ¢ uniform anchor points for each anchor set

A using an initialization method (e.g., k-means) on

concatenate data from all views.

Construct the bipartite graph matrix S for each view.

Set the weight for each view 6, = 1/m.

Construct U based on {S"}", and 6.

Calculate F by solving problem (32).

repeat

e
L N

repeat
Fix 6, U, F, and A, update {S*}" | by Eq. (21).
Fix {$"},, U, F, and A, update 6 by Eq. (8).
Fix {$"} ,, 6, F, and A, update U by Eq. (30).
Fix {SV}’V":l, 6, U, and A, update F by Lemma 1.
until Theorem 1 or the maximum iteration reached.
Fix {sV 'vnzl, 6, U, and F, update A by Eq. (10).
: until converge
The final clusters Y are the exact ¢ components in the
unified bipartite graph matrix U.

5 COMPLEXITY AND CONVERGENCE ANALYSIS
5.1

From Algorithm 1, the computational complexity of our pro-
posed BIGMC method consists mainly of six parts, which
correspond the initialization and updates of our variables
respectively. To be more specific, the update of {S¥}" , takes
O(mnt), where m is the number of views; n is the number of
data objects; ¢ is the number of anchor points and ¢ <t < n;
¢ is the number of required number of clusters. The update
of weights of all views 6 has the computational complexity
of O(mnt). The update of the unified graph matrix U is
achieved by solving Eq. (28) taking O(cn). The learning
of F takes O(cnt). Hence, this sub-iteration procedure is
O((2mt + ¢ + ct)nl1), where (1 is the number of iterations.
Updating the anchor points A needs to cost O(mntd), where
d = max(d,...,d™). Moreover, we initialize the anchors
{AY}™ | by taking O(ndt) with Var-Part method. The initial-
ization of {SV}" , takes O(mndt).

Overall, the computational complexity of BIGMC takes
o((2mt + ¢ + ct)1 + mtd)ndp + ndt(m + 1)), in which & is
the number of iterations.

Complexity Analysis

5.2 Convergence Analysis

The overall objective function Eq. (15) is not a joint convex
optimization problem of variables. Acquiring a globally op-
timal solution is still an open problem. The problem (15) is
solved using the optimization strategy proposed in Section
4. After alternating optimizing variables, the corresponding
each sub-problem is convex and the optimal solution of it is
given. Specifically, the convergences of all sub-problems can
be shown as follows.

For the update of {S}",, the objective function of problem
(19) is a convex function. The reason for this conclusion
is that its second order derivative with respect to s! is

7

equal to 1. Therefore, it is monotonic decreasing using the
optimization strategy.

For the update of weights §, the objective function of prob-
lem (2) is a linear convex problem. A closed-form solution
of ¢ is given in Eq. (8).

For the update of U, we can denote U as the updated U
in the augmented Lagrangian iteration process and I'(U) =
BTr(FT Ly F). Thus the following inequality can be derived
from problem (23) and (8) with the decrease of function error

S¥I17
SYl|F

\|U - 8"

12
Z2||U S¥||F +I )_ZZIIU

v=1

+T(U). (35

According to a lemma from [45], the convergence of problem

(22) can be obtained.

Lemma 2. For any non-zero matrix A’ € R"™ and B’ € R™,
the following inequality holds:

I1A]17 18’117
A"l = <|IB'llF - (36)
2[|B'| 2||B'|I3
Let A’ = chzl(ﬁ -S")and B’ = 3" (U - §"), and we can
have
RPN | 20, (U = VI
13T =)l - el 28 <
a 2|1 205U = SY)IE 37)
L v |20, (U - SY)II2
1D (U= $")llF - 22 —
= 2|1 205U = SY)IE
Therefore,
& & 1T - 8117
U-S"lp-> ——F <
Zlu I ZZHU_SVH%
vi;l vr:l ||U_Sv||2 (38)
DU=8p =)
v=1 v=1 2||U—S ||F
We sum Eq. (35) and (38) over both sides and get
DT =8"Mlp +T(0) < Y U= S$"llp +TW) (39
v=1 v=1

As a result, the convergence of (22) is proved.

For the update of F, the objective function of problem (33)
F is updated by Lemma 1 through SVD of B.

For the update of {A}", the problem converges when
the connections between data points and anchor points no
longer change.

6 EXPERIMENTS

The experiments are conducted on Matlab development
environment to compare with the baseline methods. In this
section, we investigate the performance of our proposed
BIGMC method on both synthetic and real-world data sets.
Thus, we present two groups of experiments. The first group
is to show the effectiveness of BIGMC by observing the
visual illustration of its capability on the synthetic data
sets. The learned connections within each view will be
shown to prove the capability of similarity learning, where
a large line weight indicates a strong connection between
the data point and its neighbor anchor point. The second
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(d) (© ®

Fig. 2. Clustering results on Two-Moon data set. The upper row includes the original first view data, the learned graph with the learned S, and the
learned graph with the learned U. The lower row contains the original second view data, the learned graph with the learned S2, and the learned
graph with the learned U. The red dots are cluster 1, and the blue dots are cluster 2. The pink squares are the learned anchor points, and the green
lines are the learned connections between data points and anchor points.
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Fig. 3. Clustering results on Three-Circle data set. The upper row includes the original first view data, the learned graph with the learned S!, and
the learned graph with the learned U. The lower row contains the original second view data, the learned graph with the learned S2, and the learned
graph with the learned U. The red, blue, and black dots are cluster 1, cluster 2, and cluster 3. The pink squares are the learned anchor points, and
the green lines are the learned connections between data points and anchor points.
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group can be divided into five sub-groups. The first sub-
group is to determine an efficient initialization method for
BIGMC to initialize the anchor points such that the sensi-
tivity to the initialization can be alleviated. The second sub-
group contains the clustering results on real-world datasets
to demonstrate the superiority of BIGMC compared with
the baselines. Moreover, the learning results of anchors by
BIGMC on 3 real-world datasets are presented to show the
adaptive ability of learning anchors. The third sub-group
is to further evaluate BIGMC by generating 4 variants of
BIGMC. The fourth sub-group is to show the convergence
results of BIGMC. The fifth sub-group contains the results
of running time by BIGMC and baselines. In this paper, we
assume all views are complete.

6.1 Experiments on Synthetic Datasets

Data sets. We follow [16, 37] to conduct experiments on
two synthetic datasets to evaluate the performance of our
proposed BIGMC. The first one contains two views, which
are shown in Fig. 2 (a) and (d), called “Two-Moon data set".
Each view has two clusters, i.e., one moon pattern with red
dots and the other moon pattern with blue dots. Each cluster
has 100 data points and adds 0.12 percentage of random
Gaussian noises. The second also involves two views, which
are shown in Fig. 3 (a) and (d), called “Three-Circle data set".
Each view has three clusters respectively represented by 30
red dots, 90 blue dots, and 180 black dots in a circle pattern.
The same percentage of random Gaussian noises are added.
Results. For Two-Moon data set, we set the number of
anchor neighbors k = 3 and the number of anchor points
t = 20. Fig. 2 (b) and (e) show the learned graphs for the
two views, in which the pink squares are the learned anchor
points, and lines are generated from the learned S! and S2,
respectively. The line weight indicates how much similar
each data point and its neighbor anchor point. It can be
seen that the two clusters are weakly connected together
in both views since there is no low-rank constraint on the
view graph matrix. Fig. 2 (c¢) and (f) show the learned
graphs for the two views, where the lines are produced
from the learned unified matrix U. The final clusters are
separated well. The weak connections are cut and the strong
connections are strengthened by fusing the complementary
information contained in two views. For Three-Circle data
set, we set the number of anchor points £ = 3 and the
number of anchor neighbors ¢ = 40. Similar to Fig. 2, the
learned graphs for the two views are shown in Fig. 3 (b)
and (e) with the lines from the learned S' and S$2. The
three clusters are connected together, where the connections
are closer than that in Two-Moon data set. It is harder to
separate the clusters correctly for Three-Circle data set. From
the results in Fig. 3 (c) and (f), they are separated well based
on the unified matrix U by considering the information
in two views. Additionally, it is noticed that the number
of anchor points in each cluster can be learned adaptively
without being specified, and the learned locations of them
are well distributed.

6.2 Experiments on Real-world Datasets

To further assess the effectiveness of our proposed BIGMC,
we compare BIGMC with several baselines on real-world
datasets.

9
TABLE 1
Statistics of Experimental Data sets
Datasets n m c d! d? d°® d* &L d°
3sources 169 3 6 3560 3631 3068 - - -
100leaves 1600 3 100 64 64 64 - - -
Caltech-7 1474 6 7 48 40 254 1984 512 928
Caltech-20 2386 6 20 48 40 254 1984 512 928
Mfeat 2000 6 10 216 76 64 6 240 47
WebKB 203 3 4 1703 230 230 - - -
YaleB 650 3 10 2500 3304 6750 - - -

Data sets. The following data sets are widely used in the
literature.

1) 3sources': There are 3 views from BBC, Reuters, and
Guardian. Each view has 169 news, which can be grouped
into 6 clusters.

2) 100leaves®: There are 3 views, where each view has 1600
data points from each of 100 plant species leaves. Each object
can be described by shape descriptor, fine scale margin, and
texture histogram in the 3 views, respectively.

3) Caltech-73: 1t is a subset of Caltech-101 data set, consisting
of 6 views. Each view has 1474 images, which can be
grouped into 7 clusters, i.e., faces, motorbikes, dollar bill,
Garfield, stop sign, and windsor chair.

4) Caltech-20*: Tt is also a subset of Caltech-101 data set,
consisting of the same 6 views with Caltech-7. Each view
has 2386 images, which can be partitioned into 20 classes.
5) Mfeat®: 1t is the Mfeat handwritten digit data set including
handwritten digits (0-9) from the UCI repository. There are
6 views. Each view has 2000 samples and each sample can
be represented by 6 types of features.

6) WebKB®: There are 3 views, in which each view has 203
web-pages and 4 classes. Each web-page can be described
by the anchor text of the hyper-like, the content of the page,
and the title.

7) YaleB’: Tt is a subset of the extended Yale-B data set, i.e.,
the first 10 classes data. There are 3 views, where each view
has 650 face images.

The statistical information of all these data sets are shown
in Table 1. n is the number of data objects. m is the number
of views. c is the required number of clusters. 4" indicates
the dimension of features in v-th view.

6.2.1 Experiments on Initialization of Anchors

Initialization methods. The initialization of uniform anchor
points is essential for our proposed BIGMC method.
K-means is sensitive to the initial placement of the anchor
points. To address this problem, many initialization
methods have been proposed. Considering the clustering
effectiveness and computational efficiency [46], we compare

1. http://mlg.ucd.ie/ datasets/3sources.html

2. https:/ /archive.ics.uci.edu/ml/datasets/One-hundred+plant+
species+leaves+data+set

3. http:/ /www.vision.caltech.edu/Image_Datasets/Caltech101

4. http:/ /www.vision.caltech.edu/Image_Datasets/Caltech101

5. http:/ /archive.ics.uci.edu/ml/datasets /Multiple+Features

6. https:/ /lings.soe.ucsc.edu/data

7. http:/ /vision.ucsd.edu/ leekc/ExtYaleDatabase /ExtYaleB.html
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TABLE 2
Clustering results (mean+standard-deviation) with metrics (ACC and NMI) by BIGMC with different initialization methods on 7 real-world datasets

Metrics Init-Methods 3sources 100leaves Caltech-7  Caltech-20 Mfeat WebKB YaleB Ave

ACC K-Means 0.775+0.00 0.915+0.01 0.781+0.02 0.596+0.01  0.920+0.00 0.773+0.00  0.520+0.02  0.759+0.01
greedy K-Means++  0.789+0.01  0.923+0.01  0.735+0.00  0.607+0.00  0.925+0.02  0.782+0.00  0.566+0.00  0.761+0.01

PCA-Part 0.794+0.00  0.929+0.01 0.783+0.00 0.608+0.00 0.933+0.01 0.787+0.00  0.584+0.00 0.774+0.00

Var-Part 0.797+0.00 0.921+0.00 0.785+0.00 0.611+0.00 0.932+0.01 0.795+0.00 0.575+0.01 0.774+0.00

NMI K-Means 0.669+0.00 0.955+0.00 0.670+0.02  0.600+0.01  0.914+0.00 0.495+0.00 0.500+0.01  0.685+0.01
greedy K-Means++  0.672+0.00  0.961+0.01  0.702+0.00  0.598+0.01  0.908+0.02  0.523+0.00  0.519+0.00  0.698+0.01

PCA-Part 0.689+0.00 0.969+0.00 0.710+0.00 0.610+0.00 0.917+0.01 0.524+0.00 0.551+0.00 0.710+0.00

Var-Part 0.705+0.00 0.960+0.01 0.697+0.00  0.624+0.00 0.910+0.00  0.540+0.00 0.525+0.01  0.709+0.00

four commonly used initialization methods as follow. All
the initialization methods work on the concatenation of
features from all views.

1) k-means [27]: Randomly selecting  centers in each round
and then choosing the center that most reduces the sum-
squared-error (SSE). It has the computational complexity
O(ndtl).

2) greedy k-means++ [47]: Probabilistically selecting log(r)
centers in each round and then greedily choosing the
center that most reduces the SSE. It has the computational
complexity O(ndts).

3) PCA-Part [48]: Starting from an initial cluster that
contains the entire data set and then obtaining ¢ clusters by
repeating the procedure, where it chooses the cluster with
the largest SSE and divides it into two sub-clusters by a
hyper-plane that contains the center and is orthogonal to the
direction of the eigenvector with the largest eigenvalue of
the covariance matrix. It has the computational complexity
O(nd?t)

4) Var-Part [48]: Approximating PCA-Part by assuming
the covariance matrix of the cluster is diagonal. It has
computational complexity O(ndt), which is equal to only
one iteration of k-means.

For the above initialization methods, d = d! + --- + d"; [ is
the number of iterations; 7 is the number of centers, i.e., that
of anchor points; s is the amount of extra sampling. In terms
of the computational complexity, Var-Part method has more
efficiency on high-dimensional datasets. In the experiments,
one of these initialization methods is chosen to initialize
the anchor points of our proposed BIGMC method shown
at the Step 1 of Algorithm 1. For each real-world data set,
we we empirically set # = n/5 and k = 5. The initial value
of parameter § is set to 1. Its value is adaptively tuned in
the optimization procedure of the objective function for
each data set. Two common metrics are utilized to evaluate
the clustering performance: the accuracy (ACC) and the
normalized mutual information (NMI). To randomize the
experiments, each method is run for 5 times and the means
as well as standard deviations of the metrics are reported.
Results. Table 2 shows the clustering results with two
metrics by BIGMC with different initialization methods
on seven real-world datasets. From the table, PCA-Part
and Var-Part initialization methods have comparable
performance. Both of them can produce good initial
anchors and perform better than k-means as well as greedy
k-means++. In terms of the computational complexity,

Var-Part method has superiority. This is because PCA-Part
method determines the splitting direction by exploring
the principal eigenvector of the covariance matrix in
0(d?) time. However, Var-Part method achieves this via
obtaining the coordinate axis with the largest variance in
O(d) time. Although PCA-Part method is more efficient
than Var-Part method in some cases, the latter can scale
to high-dimensional datsets with a lower computational
complexity. Therefore, we choose Var-Part method as the
initialization method of our proposed BIGMC method.

6.2.2 Experiments on Comparisons

Baselines. The following baseline methods are compared
with our proposed BIGMC methods.

1) Multi-View Clustering via Concept factorization (MVCC)
[31]: Incorporating the local manifold regularization into
concept factorization to drive a common representation for
multiple views.

2) Pairwise Multi-view Low-Rank Sparse Subspace
Clustering (P-MVLRSSC) [32]: Performing multi-view
clustering based on low-rank representation and sparse
subspace learning between affinity matrices of the pairs of
views.

3) Centroid Multi-view Low-Rank Sparse Subspace
Clustering (C-MVLRSSC) [32]: Performing multi-view
clustering based on low-rank representation and sparse
subspace learning between affinity matrices towards a
common centroid.

4) Graph-based Multi-view Clustering (GMC) [16]:
Constructing the graph of each view based on the pairwise
similarity between any two data samples and fusing them
to produce a unified matrix. The final clusters can be
obtained from the unified matrix.

5) Multi-View Graph Learning (MVGL) [37]: Learning
the initial graph of each view, optimizing it with a rank
constraint on the Laplacian matrix, and integrating the
optimized graphs into a global graph.

6) Multi-view Spectral Clustering (MVSC) [17]: Learning a
bipartite graph for each view, combining them using a local
manifold fusion method, and running spectral clustering
on the fused graph.

7) Multi-view Learning with Adaptive Neighbours (MLAN)
[36]: Performing clustering and local structure learning
simultaneously and obtaining an optimal graph without

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Rhode Island. Downloaded on June 14,2021 at 01:10:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021649, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 3
Clustering results (mean+standard-deviation) with metrics (ACC, NMI, ARI, F-M, PRE, and REC) by different methods on 7 real-world datasets

Metrics Methods 3sources 100leaves Caltech-7  Caltech-20 Mfeat WebKB YaleB Ave

ACC MVCC 0.761+0.01  0.128+0.00 0.471+0.00  0.533+0.00  0.408+0.00  0.709+0.00  0.196+0.00  0.455+0.00
P-MLRSSC  0.682+0.05  0.030+0.00 0.609+0.08  0.434+0.02  0.592+0.04 0.425+0.03 0.481+0.08 0.465+0.04
C-MLRSSC  0.662+0.07  0.030+0.00 0.563+0.05  0.429+0.02 0.578+0.05 0.442+0.04 0.478+0.11 0.454+0.05

GMC 0.692+0.00  0.824+0.00 0.692+0.00 0.456+0.00  0.882+0.00 0.769+0.00  0.434+0.00  0.678+0.00
MVGL 0.302+0.00  0.766+0.00  0.579+0.00  0.578+0.00  0.856+0.00  0.581+0.00  0.300+0.00  0.566+0.00
MVSC 0.531+0.00  0.717+0.00  0.621+0.00  0.575+0.00  0.703+0.00  0.567+0.00  0.468+0.00  0.597+0.00

MLAN 0.763+0.00  0.873+0.01  0.780+0.00  0.525+0.00  0.973+0.00  0.729+0.00  0.343+0.00  0.712+0.00
BIGMC 0.797+0.00  0.921+0.00  0.785+0.00  0.611+0.00 0.932+0.01  0.795+0.00  0.575+0.01  0.774+0.00

NMI MVCC 0.698+0.01  0.552+0.00  0.464+0.00 0.564+0.00 0.422+0.00 0.418+0.00 0.088+0.00  0.458+0.00
P-MLRSSC ~ 0.594+0.03  0.442+0.01  0.500+0.02  0.487+0.01  0.700+0.02  0.355+0.03  0.378+0.04  0.493+0.02
C-MLRSSC  0.595+0.03  0.440+0.01 0.497+0.03 0.477+0.01  0.703+0.00 0.376+0.03  0.399+0.02  0.498+0.02

GMC 0.622+0.00  0.929+0.00 0.660+0.00 0.481+0.00 0.905+0.00 0.435+0.00 0.449+0.00 0.640+0.00
MVGL 0.109+£0.00  0.893+0.00  0.558+0.00  0.576+0.00 0.904+0.00  0.144+0.00 0.271+0.00  0.493+0.00
MVSC 0.541+0.00  0.886+0.00  0.581+0.00 0.567+0.00 0.831+0.00  0.122+0.00 0.431+0.00  0.565+0.00
MLAN 0.689+0.00  0.948+0.00 0.636+0.00  0.539+0.00  0.939+0.00 0.402+0.00 0.348+0.00 0.643+0.00
BIGMC 0.705+0.00  0.960+0.01  0.697+0.00  0.624+0.00 0.910+0.00  0.540+0.00  0.525+0.01  0.709+0.00

ARI MVCC 0.631+0.00  0.121+0.00  0.298+0.00  0.487+0.00  0.255+0.00  0.468+0.00  0.028+0.00  0.329+0.00
P-MLRSSC  0.565+0.06  0.060+0.00  0.324+0.02  0.349+0.05 0.548+0.03  0.246+0.03  0.200+0.02  0.327+0.00
C-MLRSSC  0.557+0.08  0.059+0.00  0.334+0.03  0.343+0.06  0.559+0.00  0.266+0.03  0.222+0.01  0.334+0.03

GMC 0.443+0.00  0.497+0.00 0.594+0.00 0.128+0.00  0.850+0.00  0.440+0.00  0.157+0.00  0.444+0.00
MVGL -0.036+0.00  0.506+0.00 0.395+0.00 0.263+0.00  0.832+0.00  0.083+0.00  0.093+0.00  0.305+0.00
MVSC 0.426+0.00  0.318+0.00 0.436+0.00 0.260+0.00  0.694+0.00  0.068+0.00  0.147+0.00  0.336+0.00
MLAN 0.571+0.00  0.818+0.01  0.572+0.00  0.197+0.01  0.940+0.00 0.373+0.00  0.090+0.00  0.509+0.00
BIGMC 0.661+0.00  0.883+0.01  0.690+0.00  0.498+0.01 0.940+0.01  0.546+0.00  0.244+0.02  0.615+0.01

F-M MVCC 0.734+0.00  0.136+0.00  0.464+0.00 0.541+0.00 0.332+0.00  0.664+0.00 0.148+0.00  0.436+0.00
P-MLRSSC ~ 0.659+0.05  0.077+0.00 0.518+0.02  0.464+0.04 0.605+0.02  0.445+0.03  0.302+0.02  0.439+0.03
C-MLRSSC  0.654+0.06  0.076+0.00  0.524+0.02  0.460+0.05 0.615+0.00 0.462+0.03 0.322+0.01  0.444+0.02

GMC 0.605+0.00  0.504+0.00 0.722+0.00  0340+0.00  0.866+0.00  0.700+0.00  0.265+0.00  0.572+0.00
MVGL 0.339+£0.00  0.513+0.00  0.570+0.00  0.415+0.00 0.850+0.00  0.566+0.00  0.204+0.00  0.494+0.00
MVSC 0.535+0.00  0.328+0.00  0.647+0.00 0.413+0.00 0.728+0.00 0.564+0.00 0.261+0.00  0.497+0.00
MLAN 0.683+0.00  0.819+£0.01 0.737+0.00  0.371+£0.01  0.946+0.00  0.668+0.00  0.211+0.00  0.633+0.00
BIGMC 0.751+0.00  0.882+0.01  0.797+0.00  0.557+0.00  0.956+0.00  0.753+0.00  0.350+0.02  0.704:+0.00

PRE MVCC 0.613+0.00  0.076+0.00  0.759+0.00 0.561+0.00 0.322+0.00  0.708+0.00 0.118+0.00  0.461+0.00
P-MLRSSC  0.707+0.05  0.040+0.00 0.697+0.04 0.426+0.05 0.473+0.03 0.663+0.04 0.234+0.02  0.463+0.03
C-MLRSSC  0.696+0.05  0.040+0.00 0.711+0.05  0.425+0.05 0.484+0.00 0.682+0.04 0.249+0.01  0.470+0.03

GMC 0.484+0.00  0.352+0.00  0.886+0.00  0.228+0.00  0.826+0.00  0.592+0.00  0.204+0.00  0.510+0.00
MVGL 0.218+0.00  0.380+0.00  0.762+0.00  0.327+0.00  0.789+0.00  0.423+0.00 0.164+0.00  0.437+0.00
MVSC 0.529+0.00  0.205+0.00  0.667+0.00  0.325+0.00 0.651+0.00  0.417+0.00 0.193+0.00  0.427+0.00
MLAN 0.609+0.00  0.775+0.01  0.739+0.00  0.279+0.00 0.945+0.00  0.559+0.00 0.157+0.00  0.580+0.00
BIGMC 0.718+0.00  0.870+0.02  0.904+0.00 0.576+0.01  0.953+0.00  0.742+0.01 0.268+0.01  0.688+0.01

REC MVCC 0.823+0.00  0.653+0.00  0.334+0.00  0.530+0.00 0.342+0.00  0.626+0.00  0.197+0.00  0.515+0.00
P-MLRSSC ~ 0.619+0.06 ~ 0.771+0.01  0.414+0.03  0.512+0.04 0.843+0.02  0.337+0.03  0.430+0.02  0.561+0.03
C-MLRSSC  0.619+0.07  0.770+0.02  0.416+0.02  0.503+0.05 0.843+0.00 0.350+0.03  0.455+0.02  0.565+0.03

GMC 0.805+0.00  0.887+0.00  0.609+0.00  0.673+0.00 0.909+0.00  0.858+0.00  0.378+0.00  0.731+0.00
MVGL 0.768+0.00  0.789+£0.00  0.455+0.00  0.567+0.00  0.920+0.00  0.858+0.00  0.270+0.00  0.647+0.00
MVSC 0.628+0.00  0.826+£0.00  0.629+0.00 0.567+0.00  0.828+0.00  0.873+0.00  0.405+0.00  0.679+0.00
MLAN 0.777+0.00  0.869+£0.00  0.734+0.00  0.557+0.02 0.947+0.00  0.831+0.00 0.321+0.00  0.719+0.00
BIGMC 0.834+0.00  0.893+0.01 0.738+0.00  0.698+0.00 0.966+0.00  0.914+0.01  0.495+0.02  0.773+0.00

fusion. Experiment Settings. For the comparisons, we downloaded
the source codes from the authors” websites and followed

In the baselines, the state-of-the-art comparisons, MVCC, the experimgntal setting as well as the parameter tuning
P-MVLRSSC, and C-MVLRSSC methods are based on sub- steps of their papers. All the baselines and our proposed
space learning. GMC, MVGL, and MLAN methods are method are implemented in the Matlab development en-
graph-based muti-view clustering. MVSC method is a bi- ~Vvironment. For BIGMC, we empirically set 1 = n/5 and
partite graph-based muti-view clustering. k = 5. The initial value of parameter B is set to 1. Its
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value is adaptively tuned in the optimization procedure
of the objective function for each data set. Six common
metrics are utilized to evaluate the clustering performance:
the accuracy (ACC), the normalized mutual information
(NMLI), the adjusted rand index (ARI), the F-measure (F-M),
the precision (PRE), and the recall (REC). To randomize the
experiments, each method is run for 5 times [49, 50] and
the means as well as standard deviations of the metrics are
reported.

Results. Table 3 shows the clustering results with the
six metrics by different methods on the seven real-world
datasets. We highlight the best results in bold. From the
table, it can be noticed that our proposed BIGMC approach
acquires better performance than the baselines.

In terms of ACC, our proposed BIGMC method achieves
the best performance for 6 out of 7 datasets. For the Mfeat
dataset, BIGMC also finishes the second and performs bet-
ter than the other methods by a large margin except of
MLAN method. In terms of NMI, BIGMC gives a better
performance than the comparisons for 6 out of 7 datasets.
Moreover, it also achieves the second best performance on
Mfeat dataset. We can also see that BIGMC performs better
for 6 out of 7 datasets in terms of ARI and has comparable
performance with MLAN method. In terms of F-M, PRE,
and REC metrics, BIGMC is markedly better than all the
baselines on all datasets. To be more specific, BIGMC has
a smaller deviation than P-MLRSSC method although they
achieve the same average PRE values. Note that the average
metric value for each method on all datasets can be seen
in the last column. BIGMC, on average, outperforms all the
other compared methods.

BIGMC can learn better anchor points based on the learned
unified graph. MVCC drives a common consensus rep-
resentation through manifold regularization and concept

factorization. One reason why it is worse than BIGMC is
that the constructed Laplacian matrices are fixed during
learning process. BIGMC performs better than P-MVLRSSC
and C-MVLRSSC, both of which rely on additional K-means
clustering method.

Compared with the graph-based methods, ie., GMC,
MVGL, MVSC, and MLAN, BIGMC has a superiority per-
formance since it can learn a better unified graph by learning
the individual graph, the unified graph, and the consensus
anchor points across all views simultaneously.

To further demonstrate the adaptive ability of learning an-
chor points, we give an example to show the learning results
of anchors by our method on 3 real-world datasets including
3sources, Caltech-7, and WebKB. The ground truth number
of samples, the predicted number of samples, and the pre-
dicted number of anchors for each class are shown in Fig. 4.
From the figure, we can observe that the predicted number
of anchors is much smaller than that of samples for each
dataset. For different classes, the number of anchors can be
learned adaptively, and more anchors can be learned for a
class with a larger number of samples.

6.2.3 Mode Evaluation

To further show the effectiveness of our proposed BIGMC,
we evaluate 4 variants of BIGMC as follow:

1) BIGMC_A: The learned unified graph matrix U are not
used to improve the initialized anchors A for each view by
removing Steps 6 and 14 in Algorithm 1.

2) BIGMC_AS: The learned unified graph matrix U are not
employed to improve both the initialized anchors A and the
initialized similarity matrix S for each view by removing
Steps 6, 8, and 14 in Algorithm 1.

3) BIGMC_W: The weight of each view ¢ is set to 1/m by
removing Step 9 in Algorithm 1.
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Fig. 6. Convergence curves over different datasets. (a) 3sources. (b) 100leaves. (c) Caltech-7. (d) Caltech-20. (e) Mfeat. (f) WebKB. (g) YaleB.
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Methods 3sources 100leaves Caltech-7  Caltech-20 Mfeat WebKB YaleB Ave
MVCC 19.672 107.170 123.957 259.248 167.966 6.354 134.167 116.933
P-MLRSSC 1.016 6.288 155.300 621.127 370.181 0.470 24.193 168.368
C-MLRSSC 0.713 29.177 158.439 679.249 384.128 0.579 25.309 182.513
GMC 0.916 16.143 8.472 21.879 53.744 1.087 1.984 14.889
MVGL 0.634 74.010 169.243 611.509 497.051 0.969 9.092 194.644
MVSC 0.206 4.545 3.044 12.250 9.447 0.121 0.379 4.285
MLAN 0.236 7.222 12.862 39.641 18.223 0.155 2.037 11.482
BIGMC 0.208 5.376 6.086 11.421 15502 0288 2350  5.890

2
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4) BIGMC_K: The learned partition matrix F; for data sam-
ples is as the input of the additional clustering method,
i.e.,, K-means, to generate the final clusters. In this case, the
reason why we use F; not F is that F as a block matrix
includes F; (the partition matrix of data samples) and F,
(the partition matrix of anchors).

Fig. 5 shows the clustering performance of BIGMC and
its 4 variants on 7 real-world datasets. Fig. 5 (a), (b), and
(c) present the performance in terms of ACC, NMI, and
F_M, respectively. It can be noted that BIGMC has a better
performance than the four variants. This indicates that each
component of BIGMC is essential and they can help each
other to improve the performance. Specifically, comparing
the performance of BIGMC_A and BIGMC_AS, BIGMC_A
outperforms BIGMC_AS since the earned unified graph ma-
trix U goes back to improve the initialized similarity matrix
S. This also shows the effectiveness of the joint learning
strategy.

6.2.4 Convergence Study

To show the effectiveness of the used optimization strategy
for the objective function of BIGMC method, we plot the
convergence curves of BIGMC over different datasets in
Fig. 6. For each sub-figure, the x-axis denotes the number
of iterations and the y-axis denotes the objective function
value. It can be noticed that BIGMC converges quickly for all
datasets. To be more specific, it converges within 5 iterations

on 100leaves, Caltech-20, WebKB, and YaleB datasets. It
converges within 10 iterations on the other datasets. This
indicates that we presented an efficient optimized solution.

6.2.5 Running Time Comparison

The effectiveness of our proposed BIGMC method has been
evaluated by all the above experiments. In this section, we
aim to explore the efficiency of BIGMC and compare it to
that of the state-of-the-art methods. To exclude the influence
of initialization, all the algorithms are conducted 5 times and
the mean values are shown in Table 4. It can be observed that
MVSC method performs the best and BIGMC performs the
second on average. Moreover, MVSC, BIGMC, MLAN, and
GMC have comparable performance.

6.3 Experiment Summary

In this paper, we assumed that the consensus information
contained in multiple views can be represented by a small
number of uniform anchor points. Based on this assump-
tion, we proposed BIGMC method. To test the assumption,
we examined the performance of BIGMC on both synthetic
and real-world data sets. From the experimental results on
synthetic datasets in Section 6.1, each learned uniform an-
chor point (pink square) is the centroid of the corresponding
sub-cluster with data points (dots). The learned graphs in
the two views (S! and $2), which are constructed by the
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connections between the uniform anchor points and the data
points, were well integrated into a unified graph (U). The U
separates the clusters very well since it can learn the con-
sensus information from the two views through the uniform
anchor points. From the experimental results on real-world
datasets in Section 6.2, our BIGMC method improved the
multi-view clustering performance compared to the state-
of-art baselines in terms of six metrics (shown in Table 3).
Moreover, we showed the adaptive ability of learning the
uniform anchor points by BIGMC in a given example in Fig.
4. For different classes, the number of anchors can be learned
adaptively, and more anchors can be learned for a class
with a larger number of data points. To sum up, we have
demonstrated the effectiveness of BIGMC, which implies
that the construction of the bipartite graph is efficient. Thus,
our assumption is reasonable to some extent.

7 CONCLUSION

In this paper, we proposed a novel bipartite graph based
multi-view clustering (BIGMC) approach. BIGMC jointly
learns the similarity graph of each view, the unified bi-
partite graph, and the representative uniform anchor set
in a framework. Moreover, BIGMC adaptively determines
the importance of each view and directly obtains the final
clusters with a low rank constraint, which is imposed on
the unified bipartite Laplacian matrix. Finally, the consensus
information are uncovered and the clustering structures
are learned through an alternating optimization strategy.
The experiments on synthetic and real-world datasets are
conducted to demonstrate the effectiveness of BIGMC. In
addition, obtaining a globally optimum solution of the
objective function is considered as an open problem for our
future work.
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