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Abstract—Recently, deep-learning-based feature extraction
(FE) methods have shown great potential in hyperspectral image
(HSI) processing. Unfortunately, it also brings a challenge that
the training of the deep learning networks always requires large
amounts of labeled samples, which is hardly available for HSI
data. To address this issue, in this article, a novel unsupervised
deep-learning-based FE method is proposed, which is trained
in an end-to-end style. The proposed framework consists of
an encoder subnetwork and a decoder subnetwork. The struc-
ture of the two subnetworks is symmetric for obtaining better
downsampling and upsampling representation. Considering both
spectral and spatial information, 3-D all convolution nets and
deconvolution nets are used to structure the encoder subnetwork
and decoder subnetwork, respectively. However, 3-D convolu-
tion and deconvolution kernels bring more parameters, which
can deteriorate the quality of the obtained features. To allevi-
ate this problem, a novel cost function with a sparse regular
term is designed to obtain more robust feature representation.
Experimental results on publicly available datasets indicate that
the proposed method can obtain robust and effective features for
subsequent classification tasks.

Index Terms—3-D convolution neural networks, feature extrac-
tion (FE), hyperspectral images (HSIs), unsupervised training.

I. INTRODUCTION

W ITH the rapid development of the satellite sensing
technology, hyperspectral images (HSIs) data can be

easily obtained. Compared with conventional optical image
data, HSI data have a very high resolution on the spectral
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domain, which can provide unique spectral features besides
spatial information. The characteristic of jointly spectral–
spatial imaging makes the content of HSI data distinguished
in many areas [1], [2], such as geological surveys [3], vege-
tation research [4], atmospheric science research [5], marine
research [6], agriculture [7], etc. However, detailed spectral
information causes a significant increase in the spectral dimen-
sion of HSI, which will result in the Hughes phenomenon [8].
Moreover, adjacent spectral bands are always highly corre-
lated, which contain redundancy information [9]. Thus, it is
difficult to obtain useful information of interest directly from
raw HSI data. To deal with raw HSI data, feature extraction
(FE) has been considered to be a very effective way [10],
which is one of the most potential researching areas and still
an open challenge in HSI processing.
FE methods map the raw HSI data from original feature

space to a low-dimension feature space, in which features
are more distinguished and less correlated. Consequently, data
redundancy and the Hughes phenomenon can be well alle-
viated [11]. Traditional FE methods are often divided into
two types according to the usage of labeled samples. One
is the supervised/semisupervised FE method [12]–[14], such
as linear discriminant analysis (LDA) [15], local Fisher dis-
criminant analysis (LFDA) [16], local discriminant embedding
(LDE) [17], etc. LDA maximizes the interclass distance and
minimizes the intraclass distance at the same time to obtain
the optimal projection. Based on LDA, LFDA assigns weights
according to the density between samples, and the closely
connected samples will obtain a greater weight. LDE seeks
the best projection by integrating the information of neigh-
bor and class relations between samples. Labels play a very
important role in these methods because it can guide the pro-
cess of FE so that the features extracted from the data with
the same label are similar while the differences between fea-
tures extracted from data with different classes of labels are
great [18]. The other one is the unsupervised FE method [19],
such as principal component analysis (PCA) [20], indepen-
dent component analysis (ICA) [21], locally linear embedding
(LLE) [22], factor analysis (FA) [23], etc. PCA maps the
input data to the feature domain by means of orthogonal
transformations to extract better features. ICA is devoted to
seek independent hidden factors or components in statistical
data. LLE, one of the manifold learning methods, attempts to
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extract features by revealing the inherent structure of nonlinear
distributed data [24]. FA achieves the purpose of FE by extract-
ing the intrinsic common factors between the samples. The
difference between unsupervised and supervised methods is
that labels are not available in the process of unsupervised
FE [25]. Unsupervised FE methods use unlabeled data to infer
the intrinsic features of raw data. When it comes to HSI
data, it usually has a large number of pixels, and its label
is pixel level. In practice, labels of HSI data are very insuffi-
cient, and manual annotation is time consuming and laborious.
Therefore, unsupervised FE methods possess more practical
values.
In early research, most FE methods, such as PCA and

ICA, are designed to be a monolayer structure [26], which
is also considered as a shallow model. In recent years, how-
ever, deep-learning-based deep models, which often consist of
three or more layers, have become more popular. Compared
with the traditional features extracted from shallow models,
deep abstract features extracted from deep models have bet-
ter representation performance and make subsequent tasks,
such as classification more accurate [27]. Moreover, the deep
model is considered to be more robust [28]. Therefore, for the
past few years, a large number of deep learning FE methods
have been introduced to HSI processing [29]. Stacked autoen-
coder with logistic regression (SAE-LR) [30] was presented
to HSI FE and classification, where a stacked autoencoder is
used to extract the initial features, and then a logical regres-
sion layer is added to obtain effective classification results.
On the basis of SAE-LR, spatial updated deep autoencoders
(SDAEs) [31] were put forward to make better use of deep fea-
tures and suppress noise. Besides SAE, another deep network
structure, deep belief network (DBN), was also applied in the
process of FE [32], [33]. DBN with logistic regression (DBN-
LR) [34] combines DBN and logistic regression to classify
HSI. As one of the most representative deep learning mod-
els, the convolutional neural network (CNN) [35] achieves
better performance in FE and classification [36]. A spectral-
spatial-feature-based classification framework was presented
to extract spectral and spatial features simultaneously through
the balanced LDE algorithm and CNN [37]. In [38] and [39],
3-D convolution kernels were introduced into deep-learning-
based FE methods. Zhang et al. [40] proposed a patch-to-patch
CNN for classification of hyperspectral and LiDAR data.
Although better performance is achieved, supervised deep

learning FE methods require large amounts of labeled samples
to support the training of deep structural networks. Recently,
researchers have focused more on the data augmentation and
unsupervised training framework for deep-learning-based FE
frameworks, which contain a more practical value for HSI pro-
cessing. Li et al. [41] proposed the pixel-pair method based
on CNN which can improve the quality of training samples
for the CNN-based FE framework. In [42] and [43], two unsu-
pervised training frameworks were proposed, which are based
on generative adversarial nets and the autoencoder structure,
respectively. However, how to design network structures to
extract spatial–spectral features from 3-D raw HSI data more
effectively and how to effectively train the proposed networks
without supervision are still an open challenge.

To address this challenge, a symmetric all CNN (SACNN)
is proposed in this article. SACNN is an end-to-end network
and consists of two parts: 1) encoder subnetwork and 2)
decoder subnetwork. The encoder network encodes inputs to
a low-dimensional space to obtain feature representation. The
decoder network is designed to restore the input by decod-
ing the output of the encoder network. This form of network
structure makes the entire FE process get rid of labeled
samples, which adopts the reconstruction errors to train the
proposed networks. As mentioned above, CNN has power-
ful FE capabilities to extract high-level abstract features and
make classification more accurate. Moreover, in order to bet-
ter jointly make full use of spatial information and spectral
information of raw HSI data, 3-D convolution is introduced
into the proposed model. We design a novel all 3-D convo-
lutional network and a novel all 3-D deconvolutional network
to constitute the proposed encoder subnetwork and decoder
subnetwork, respectively. Since 3-D convolution kernel and 3-
D deconvolution kernel contain large numbers of parameters,
sparse representation is introduced into the design of the cost
function. The main contributions of the proposed method are
listed as follows.
1) We propose a novel FE method for HSIs which is

a deep model consisting of 3-D convolution kernels.
The proposed method can effectively obtain high-quality
spatial–spectral features from raw HSIs which can sig-
nificantly benefit subsequent classification tasks.

2) We propose a novel end-to-end training framework for
the proposed feature extractor. Different from conven-
tional deep-learning-based FE methods that rely on large
amounts of labeled samples for their training heav-
ily, the proposed framework is fully unsupervised by
using the encoder–decoder architecture. Our proposed
method mitigates the dependence of deep-learning-based
FE methods on a large number of labeled samples.

3) We design a novel all convolutional and deconvolu-
tional net architecture to build the encoder subnet-
work and decoder network, respectively. The downsam-
pling and upsampling processes are integrated into the
network optimization process. Moreover, multiscale and
multilevel features are also considered in the FE process,
which can better improve classification performance.

The remainder of this article is as follows. Section II
presents the background and motivation of this work.
Section III gives a detailed description of our proposed
approach. The experimental part is carried out in Section IV.
Section V summarizes the entire article.

II. BACKGROUND AND MOTIVATION

A. Convolution and Deconvolution

CNN, a kind of artificial neural network, has become a
hot research field in deep learning due to its outstanding
performance in image recognition tasks. In CNN, the role of
convolution is designed to extract latent features of inputs, and
deconvolution is used to restore inputs. In fact, the deconvo-
lution here is not the inverse process of convolution but a
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(a)

(b)

Fig. 1. Illustration of (a) convolution and (b) deconvolution. The imple-
mentation of deconvolution is divided into two steps: upsampling process and
convolution process.

special convolution called the transposed convolution. Fig. 1
shows the differences between convolution and deconvolution.
There is a simple example of convolution in Fig. 1(a), a 3×3

convolution kernel slides on a 5×5 input, and with each slid-
ing, the convolution kernel is multiplied by the area it covers.
Eventually, a 3 × 3 feature map is obtained. In the convolu-
tion process, a certain connection exists between the sizes of
inputs, outputs, and convolution kernels, which is given by

W2 = (W1 − F + 2P)/S + 1 (1)

H2 = (H1 − F + 2P)/S + 1 (2)

where W2 is the width of the feature map after convolution
and W1 is the width of input. H2 and H1 denote the heights of
the feature map and input, respectively, which are generally
equal to W2 and W1. F is the size of a convolution kernel.
P denotes the number of zero padding. For example, if P is
equal to 1, it means that a circle of 0 is padded to the edge
of the original input. S represents the stride of a convolution
kernel movement. According to (1) and (2), we can calculate
the size of the feature map in Fig. 1(a), that is, ((5− 3+ 2×
0)/1 + 1) × ((5 − 3 + 2 × 0)/1 + 1) = 3 × 3. Due to the
parameter sharing mechanism, each feature map is obtained
by a unique convolution kernel. That is to say, a convolution
kernel can extract only one pattern of feature. By adding the
number of convolution kernels, various patterns of features can
be obtained.
As we see in Fig. 1(b), different from the process of con-

volution, the deconvolution output size is larger than the input
size. However, deconvolution is not the inverse process of
convolution. In Fig. 1(b), the entire deconvolution process is
divided into two steps: 1) an upsampling process and 2) a con-
volution process, respectively. As shown in Fig. 1(b), given a
3×3 input, the first step to achieve deconvolution is to upsam-
ple the input. If a 5×5 output is required, the input should be
upsampled to a larger size (e.g., 7×7). It can be seen that after
upsampling, many pixels with a value of 0 appear in the input.
The second step is to perform convolution on the upsampled
input, where the convolution kernel size is 3× 3, the stride is

set to 1, and P is 0. According to (1) and (2), the output size
is ((7−3+2×0)/1+1)×((7−3+2×0)/1+1) = 5×5. From
the entire process of deconvolution, it is essentially a special
kind of convolution. For the input, the stride becomes a frac-
tion actually. Thus, deconvolutions are also called fractionally
strided convolutions.
Deconvolution brings great benefits to the study of deep

learning. First, deconvolution can be used to visualize
CNN [44], which can help us better understand the obtained
features. Deconvolution transforms the features from the fea-
ture space to the pixel space to find out the relationship
between an input and a specific feature map and achieve the
purpose of analyzing and understanding CNN. Second, since
deconvolution has the characteristic that the output size can be
larger than the input size, it is very suitable for upsampling.
In [45], deep convolutional generative adversarial networks
(DCGANs) are proposed to generate a picture that is similar
to the real picture. Deconvolution is introduced to constitute
the generator in DCGAN, which can effectively generate an
image from noise with a specific distribution.

B. Motivation

As mentioned in Section I, the absence of labeled sam-
ples cannot support the training of traditional supervised
deep learning networks, which limits the application of deep
learning-based methods in HSI data. For the purpose of unsu-
pervised FE, an encoder–decoder architecture is applied to
structure our proposed unsupervised network. Specifically,
the input is encoded by an encoder subnetwork to obtain a
code that can represent the input, and then a decoder subnet-
work is used to reconstruct the input, which is similar to an
autoencoder. However, a traditional autoencoder is based on
fully connected networks. The fully connected structure causes
expansion of the number of parameters, easy overfitting, and
local optimum. Compared with the fully connected network,
CNN’s local perception mechanism enables it to better dis-
cover the spatial features of the image, and multiple levels of
spatial features can be extracted by using multilayer convolu-
tion. In addition, the parameter sharing mechanism of CNN
can greatly reduce the number of network parameters so that
the overfitting problem can be alleviated. Therefore, the con-
volution is applied in the design of the encoder, and in order
to reconstruct input effectively, the deconvolution which is a
special type of convolution, is applied to the design of the
decoder.
In convolutional networks, the presence of pooling layers

can result in the loss of a large amount of image information,
due to its fixed downsampling strategy. However, when decon-
volution is used to generate images, rich details are required
to produce the final representation of the input. The final rep-
resentation is, of course, an image with all of its details (e.g.,
position, posture, and texture) [46]. Consequently, fixed down-
sampling and upsampling strategies are not suitable for image
reconstruction. For object recognition tasks, the all convolu-
tional network can replace the pooling operation by stride
convolution kernels [47]. Inspired by this, a novel all con-
volutional network is proposed in the SACNN, in which there
are no pooling layers. In this case, SACNN can automatically
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Fig. 2. Framework of 2D-SACNN for HSI FE. It is an SACNN and consists of two parts: the encoder and the decoder. Here, the first three convolutional
layers constitute the encoder, which can transform the input into a representation. The latter three deconvolutional layers constitute the decoder, which can
reconstruct input. Both the convolutional and deconvolutional layers are equipped with a batch normalization layer and an activation function. After training,
the encoder can be used as a feature extractor. The output of the first and second convolutional layers are extracted and then pooled and combined to obtain
the final feature.

learn downsampling and upsampling strategies in the encoder
and the decoder, respectively.

III. METHODOLOGY

A. 2D-SACNN

In this section, a 2D-SACNN is proposed to extract fea-
tures of HSI in an unsupervised approach. As we can see in
Fig. 2, the proposed 2D-SACNN consists of an encoder and a
decoder, and the encoder contains three convolutional layers
while the decoder contains three deconvolutional layers.
1) Encoder: To extract multilevel features of input, the

encoder is designed as a deep convolution structure. In the
encoder, the key part is the convolution operation. The output
of each convolutional layer in the encoder can be calculated
as follows:

vxyij = f

⎛
⎝

Mi−1∑
m=1

Pi−1∑
p=0

Qi−1∑
q=0

wpq
ijmv

(x+p)(y+q)
(i−1)m + bij

⎞
⎠ (3)

where vxyij represents the value at position (x, y) which exists
in the jth feature map of the ith layer, and wpq

ijm denotes the
weight of position (p, q) which connects to the mth feature
map. bij indicates the bias which exists in the jth feature map
of the ith layer. Mi−1 is the number of feature maps in the
(i − 1)th layer. Pi and Qi denote the height and width of the
convolution kernel, respectively.
During the training process of the deep neural network, if

the parameters of the previous layer change, the input distribu-
tion of the following layers will also change, which is called
the internal covariate shift [48]. It is hard to obtain the optimal
parameters if the distribution of one layer in the network is
always changing. Nevertheless, this problem can be solved
by adding batch normalization layers [48], that is to say, the
input of all layers in the network is normalized to a nearly
same distribution, which is a standard Gaussian distribution.
Consequently, it is critical to put batch normalization layers
into the designed encoder.

After the convolution operation and batch normalization,
the activation function needs to be applied to increase the
nonlinearity of the neural network. The rectified linear unit
(ReLU) [28] is selected as the activation function of the
encoder, which is defined as

f (x) = max(0, x). (4)

According to (4), the output of some neurons in the network
will be set to 0, which allows sparsity to be introduced into
the network. Thus, the network can be trained more robust
and faster.
Fig. 2 presents the 2D-SACNN framework for FE of HSI,

and the first half of this network is the encoder subnetwork.
As an input, an N × N × B HSI cube is fed into the encoder,
in which N × N represents the neighborhood size of a cur-
rent pixel, and B denotes the number of spectral bands. In
the encoder, convolutional layers are applied to the input so
that multilevel features can be obtained. In order to enable the
network to retain more detail, the pooling layer does not exist
in the encoder and decoder. The size of the convolution kernel
is set to 3×3. Compared with 5×5, 7×7, and even larger con-
volution kernels, the 3×3 kernel has a smaller receptive field,
but the area of the receptive field can be enlarged by increas-
ing the number of convolution kernel layers. More important,
the 3×3 kernel can avoid expression bottlenecks and enhance
nonlinear expression ability [49].
2) Decoder: In order to verify whether the features

extracted by the encoder can correctly represent the original
input, these features need to be restored to the input for-
mat, so that the unsupervised FE process can be achieved.
Thus, the role of the decoder in 2D-SACNN is to reconstruct
input, and the key operation is deconvolution. As mentioned
in Section II-A, the biggest difference between deconvolution
and convolution is that upsampling needs to be performed first
during the process of deconvolution. The second step of decon-
volution is exactly the same as the process of convolution.
Therefore, 3 × 3 kernels and batch normalization layers are
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also applied to the decoder. The ReLU is introduced to the
decoder as the activation function except for the last layer.
Since the tanh function can map the input to [ − 1, 1], this
ensures that the output of the network to be in the same range
as the input. The tanh function is applied to the activation
function of the last layer and is given by

f (x) = tanh(x) = ex − e−x

ex + e−x
. (5)

In Fig. 2, the second half of 2D-SACNN is the decoder
whose input is the output of the encoder. A symmetrical
structure is formed by the connection between the decoder
and the encoder. Convolutional layers and deconvolutional
layers in the network are one-to-one correspondence, and
there is also no pooling layer in the decoder so that the
information obtained by the convolution can be accurately
used for reconstruction.

B. 3D-SACNN

In Section III-A, a 2D-SACNN is proposed to perform unsu-
pervised FE of HSI. However, there is still a problem that the
2-D convolution only performs convolutions on each individ-
ual spectral band of the HSI, which means that only the spatial
features can be extracted and the spectral features are ignored.
Therefore, the 3D-SACNN is proposed to capture features in
both spectral and spatial dimensions simultaneously.
Compared to 2-D convolution, 3-D Convolution implements

a convolution operation not only in the spatial dimension but
also in the spectral dimension. An example of a 3-D convolu-
tion is shown in Fig. 3. A 3-D convolution kernel is applied
to a 5× 5× 4 input, and then a 3× 3× 2 output is produced.
The size of the 3-D convolution kernel is 3×3×3, and P and
stride are set to 0 and 1, respectively.
Similar to 2D-SACNN, 3-D convolution requires 3-D

deconvolution to correspond to it in 3D-SACNN. Accordingly,
3-D deconvolution is introduced to the decoder. As shown in
Fig. 4, it attempts to turn a 3×3×1 input into a 5×5×2 output
through 3-D deconvolution operation. To this end, upsampling
is first used to enlarge the input to a size of 7× 7× 3. Then,
3-D convolution with a kernel size of 3 × 3 × 2 is used on
this 7× 7× 3 cube, and finally a 5× 5× 2 output is obtained.
According to the dimension of HSI data, in the proposed
method, the sizes of 3-D convolution and deconvolution ker-
nels are set as 3 × 3 × 32. Specifically, 3 × 3 corresponds to
the spatial dimensions of inputs, and 32 denotes the number
of kernel channels. The stride is set as 1.
In 3D-SACNN, 2-D convolution is replaced by 3-D con-

volution, and the output of each convolutional layer in the
encoder can be calculated by

vxyzij = f

⎛
⎝

Mi−1∑
m=1

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijm v

(x+p)(y+q)(z+r)
(i−1)m + bij

⎞
⎠ (6)

where vxyzij represents the value at position (x, y, z) which exists
in the jth feature map of the ith layer, and wpqr

ijm denotes the
weight of position (p, q, r) which connects to the mth feature
map. bij indicates the bias which exists in the jth feature map
of the ith layer. Mi−1 is the number of continuous feature maps

Fig. 3. Illustration of 3-D convolution. Unlike 2-D convolution, 3-D
convolution also performs convolution on the spectral dimension.

Fig. 4. Illustration of 3-D deconvolution. It is divided into two steps: 3-D
upsampling process and 3-D convolution process.

in the (i − 1)th layer which connects to the jth feature map.
Ri is the size of the 3-D convolution kernel along the spectral
dimension, and Pi and Qi denote height and width of the 3-D
convolution kernel, respectively.
Due to the parametric sharing mechanism of 3-D convo-

lution, a 3-D convolution kernel can only capture one type
of feature. It is well known that multilevel features require
multiple convolution kernels to convolute low-level features;
hence, the number of convolution kernels should be increased
layer by layer. As shown in Fig. 5, in the encoder with
multiple 3-D convolutional layers, the number of convolu-
tion kernels on the next layer is twice that of the previous
layer. Correspondingly, in the decoder, the number of convo-
lution kernels on the next layer is half that of the previous
layer.

C. Training and Feature Extraction

In order to train SACNN (both 2D-SACNN and
3D-SACNN), an appropriate cost function needs to be defined.
In the proposed method, the reconstruction error is used in
the cost function. Accordingly, we choose the mean square
error (MSE) as the cost function, and L2 regularization
is also added to it to pursue sparsity. The cost function
L(X,R) is defined as (7), which is optimized by the Adam
algorithm [50]

L(X,R) = 1

P1Q1R1

P1∑
i=1

Q1∑
j=1

R1∑
k=1

(
xijk − rijk

)2

+ λ

2

N∑
l=1

P2∑
i=1

Q2∑
j=1

R2∑
k=1

(
wl
ijk

)2
(7)
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Fig. 5. Illustration of 3D-SACNN for HSI FE. It is an SACNN and consists of two parts: the encoder (the first three 3-D convolutional layers) and the
decoder (the latter three 3-D deconvolutional layers). Both the 3-D convolutional and 3-D deconvolutional layers are equipped with a batch normalization
layer and an activation function. After training, the encoder can be used as a feature extractor. The output of the first and second convolutional layers are
extracted and then pooled and combined to obtain the final feature.

Fig. 6. Flowchart of the proposed algorithm.

where X and R represent the input and output of SACNN. P1,
Q1, and R1 denote the length, width, and height of both input
cube and output cube, respectively. P2, Q2, and R2 represent
the length, width, and height of weight cube, respectively. N
is the number of weights in the SACNN, and λ is the weight
decay parameter. xijk and rijk denote the values of the input
and output at position (i, j, k), respectively. wl

ijk represents the
value of the lth weight at the position (i, j, k). The second term
in (7) represents the L2 regularization term.
Due to the strong fitting ability of the neural network

and the limited HSI training samples, the overfitting problem
often occurs. Therefore, in the proposed network, the ReLU
active function and L2 regularization are used to alleviate this
problem. L2 regularization can limit the value of weights so
that the model can avoid to arbitrarily fit the random noise in
training data. In addition, as mentioned in Section III-A, the
usage of ReLU can make the network sparse and reduce the
interdependencies of parameters. The above two methods can
weaken the fitting ability of the network to a certain extent in
order to alleviate the overfitting problem.
Once the SACNN algorithm training process is completed,

the trained encoder network can be used as a feature extrac-
tor. In order to achieve complete unsupervised FE, any form
of label information will not be used in the subsequent FE
process. Since the encoder is a deep network, multilevel
spectral–spatial features can be extracted by multilayer con-
volution in the encoder, and for the entire process of SACNN,
each layer of the encoder can reach the output through differ-
ent layers. Thus, the features in each layer of the encoder can,
to some extent, represent the original input. However, although
the dimensionality of the input has been reduced through the

encoder, the obtained multilevel features are still too large
in amounts, which may deteriorate subsequent classification
tasks. In order to further reduce the dimension of the fea-
tures, we use the maxpooling to make all of the encoder’s
feature maps into a 1-D vector, where the size of the pool-
ing window is the same as the spatial dimension of feature
maps. It is worth noting that the multilevel features concate-
nated together have better performance in the classification
tasks than individual-level features. The above part of Fig. 2
shows the process of FE. Experiments on datasets show that
the first two layers of the encoder have the best performance.
Thus, we first feed the data into 2D-SACNN and then extract
the raw features in the first two layers of the encoder and
maxpooling them to produce two vectors. Eventually, these
two vectors are concatenated to obtain the final feature. For
example, given two features 7 × 7 × 169 and 5 × 5 × 138
from different layers, we use maxpooling operations to obtain
1×1×169 and 1×1×138, respectively, and then concatenate
them to become 1×1×307. The same FE strategy is applied to
3-D-SACNN. The flowchart of the entire algorithm is shown
in Fig. 6.

IV. EXPERIMENTAL STUDY

A. Hyperspectral Dataset Description and Evaluation
Criteria Introduction

In the experiment, three public available datasets, including
Indian Pines, Salinas, and Kennedy Space Center (KSC), are
employed to verify the effectiveness of the proposed algorithm.
The Indian Pines dataset was obtained over the Indian Pines

test site in northwestern Indiana. It contains 145× 145 pixels
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TABLE I
NUMBER OF TRAINING AND TEST SAMPLES USED

IN THE INDIAN PINES DATASET

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES

USED IN THE SALINAS DATASET

and 220 spectral bands in the 0.4–2.5 μm wavelength range.
Since there are 20 bands covering the region of water absorp-
tion, the remaining 200 bands are used for classification. In
this dataset, 16 species are selected as categorized samples.
The number of each class and their corresponding training
and test samples are given in Table I.
The Salinas dataset was collected over the Salinas Valley,

CA. This scene consists of 512× 217 pixels and 224 spectral
bands. Due to the same reason as the Indian Pines dataset, 20
bands are discarded and 204 bands are used for the experiment.
Salinas ground truth is labeled into 16 classes, and the details
of each class are provided in Table II.
The KSC dataset was acquired over the KSC, FL, on

March 23, 1996. After removing the water absorption and low
signal-to-noise ratio bands, the number of bands drops to 176.
To perform the classification task, 13 classes are defined to
represent different land cover types. Table III provides the
numbers of each class and their corresponding training and
test samples.

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES USED IN THE KSC DATASET

To quantificationally evaluate the quality of features
extracted by various methods, classification performance is
tested. We introduce three criteria to evaluate the classification
performance as follows.
1) Overall Accuracy: Overall accuracy (OA) represents the

proportion of the correctly sampled sample in all test samples.
2) Average Accuracy: Average accuracy (AA) indicates the

average of the classification accuracies for all classes.
3) Kappa Coefficient (Kappa): The Kappa coefficient is

mainly used to compare and analyze whether the difference
between two images is caused by “accidental” or “inevitable”
factors, and is an index that can indicate overall consistency
and classification consistency.
Moreover, a statistical test is also introduced to compare the

performance among comparison methods. McNemar’s test can
be applied to determine whether there is a difference in the
matching ratio, which is denoted as follows:

z01 = e01 − e10√
e01 + e10

(8)

where e01 represents the number of samples correctly clas-
sified in classification 0 but misclassified in classification 1,
whereas e10 is exactly the opposite. Since McNemar’s test is
a statistic test based on the standard normal distribution, the
null hypothesis is rejected at p = 0.05 (|z| > 1.96).

B. Feature Extraction Strategy Experiments

In this part of the experiment, we investigate the FE strategy
of 3D-SACNN. After the training process, the trained encoder
can be applied as a feature extractor, then the extracted fea-
tures are fed into the classifier. However, rather than sending
all layers of the encoder directly into the classifier, the features
of each layer need to be pooled and combined. Tables IV–
VI show the effect of different FE strategies on the three
datasets. As shown in Tables IV–VI, the “un-pooling” rep-
resents that there is no pooling operation before the features
of each layer are used to classify, and the “pooling” means
that the features of corresponding layers go through the max-
pooling operation before being sent to the classifier, and the
features of each layer are turned into a 1-D vector. For the
Indian Pines dataset, these features that have performed the
maxpooling operations have better classification performance
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TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT FE STRATEGIES

FOR THE INDIAN PINES DATASET

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT FE STRATEGIES

FOR THE SALINAS DATASET

TABLE VI
EXPERIMENTAL RESULTS OF DIFFERENT FE STRATEGIES

FOR THE KSC DATASET

than those that have not been pooled. For example, the OA
of h1 is increased by 36.2% after the maxpooling operation.
There are three layers in the encoder, and h1 represents the
feature of the first layer. After the pooling operation, h1 and
h2 achieve relatively high values of OA, and Table IV shows
that after concatenating h1 and h2, OA can reach 97.07%,
which is the highest value of OA. Similarly, for the Salinas
and KSC datasets, the features of each layer can be better
for classification after the pooling operation, and through the
pooling operation and concatenation operation, features of the
first and second layers can achieve the highest OA of 99.17%
and 98.21%, respectively.
Without pooling, the dimensionality of final extracted fea-

tures is still high. Therefore, the Hughes phenomenon may
occur, resulting in poor classification performance. The usage
of pooling operations can reduce the dimensionality of features
in order to avoid the appearance of the Hughes phenomenon.
Experimental results show that the classification accuracy can
be improved by concatenating features of different layers. This
is because the features of different layers have different scales
and abstract degree. The combination of them can increase
the diversity of features. Moreover, it can be seen that the fea-
tures of the first two layers are better for classification because
they contain more shape and outline features on spatial and

spectral domains. Since there are no labeled samples for guid-
ing the training process, the features of the third layer are more
abstract for reconstruction, which has less contribution to clas-
sification. It is also worth noting that the performance of the
FE strategy proposed in this article has the best performance
on the three datasets, which indicates that this strategy is robust
to different datasets.

C. Comparison With Classification Performance

To evaluate the performance of an unsupervised FE algo-
rithm, one common approach is to apply them as feature
extractors on supervised datasets and then evaluate the clas-
sification performance on those obtained features. In order to
verify the validity of extracted features, the proposed algo-
rithm is compared with some state of the arts. For classic
ones, a mathematical method and deep-learning-based FE
methods are introduced to compare them with the proposed
SACNN, including extended attribute profile (EAP) [51],
stacked autoencoders (SAE-LR) [30], and CNN. In [51], an
advanced EAP-based PCA is proposed for the classification
task of HSI. After FE, in order to obtain higher classifica-
tion accuracy, all spectrum data for each pixel are added to
the features extracted by EAP. SAE-LR trains a stacked fully
connected autoencoder as the feature extractor. The SAE-LR
network has a total of five layers, including one input layer,
three hidden layers, and one output layer. LR is applied as
a classifier for the output layer. Parameters of the SAE-LR
network are fine tuned, referring to [30]. CNN is an artifi-
cial neural network with convolutional calculation as its core.
Corresponding to the number of layers in an SACNN encoder,
the CNN network has five layers in total, including one input
layer, three convolutional layers, and one softmax layer.
Besides, some recent state of the arts of unsupervised

deep-learning-based FE methods are also introduced as com-
petitors, including an unsupervised deep learning FE method
(UDFE) [19], which proposed using greedy layerwise unsu-
pervised pretraining to train a CNN model; a recursive
autoencoders-based unsupervised feature learning method
(RAE) [52], which proposed an unsupervised recursive autoen-
coders network model; an unsupervised deep residual convde-
conv network-based method (RCDN) [43], which designed
a deep residual convolution network for unsupervised fea-
ture learning; and a 3-D unsupervised spatial–spectral feature
learning method (3D-USSFL) [53], which introduced 3-D con-
volutional kernels to improve unsupervised feature learning
performance.
In the following experiments, during the SACNN training,

the minibatch size is set to 64. The number of training itera-
tions is 20 000, and the parameter λ of the L2 regularization
is set to 0.0001. The learning rate of the Adam algorithm is
chosen in the range of 0.00001 to 0.001 for different datasets.
For the Indian Pines, Salinas, and KSC datasets, the sizes of
input data are 11 × 11 × 200, 9 × 9 × 204, and 9 × 9 × 176,
respectively. Each experiment runs ten times independently.
The values of evaluation criteria for experimental results are
presented in the form of mean values ± standard deviation.
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TABLE VII
CLASSIFICATION RESULTS ON THE INDIAN PINES DATASET

In SACNN, the trained encoder can be used as a fea-
ture extractor, and then the extracted features are fed into a
widely used classifier, which is the support vector machine
(SVM) classifier with RBF kernel. There are two parame-
ters in SVM, namely, C (C = 2−2, 2−1, . . . , 210) and γ

(γ = 2−8, 2−7, . . . , 23). The grid search method is applied
to obtain the optimal parameters of SVM.
The experimental results of the above algorithm are listed

in Tables VII–IX. It is shown that SACNN outperforms the
mathematical method on all datasets. For example, for the
Indian Pines dataset, 3D-SACNN can obtain OA, AA, and
Kappa of 97.47%, 96.90%, and 97.12%, respectively, with an
average of 3% improvement over EAP’s experimental results.
In Tables VII–IX, CNN-0.15 represents the training of CNN
using a training sample ratio of 0.15. Taking the Salinas dataset
as an example, as shown in Table VIII, when the training
sample ratio is 0.15, CNN and SAE-LR cannot obtain sat-
isfactory classification results. But when the training sample
ratio is raised, CNN obtains OA, AA, and Kappa of 96.63%,
98.3%, and 96.25%, respectively, and the SAE-LR obtains
OA of 95.17%, AA of 97.94%, and Kappa of 94.63%. This
indicates that the absence of labeled samples has a bad influ-
ence on the training of conventional CNN and SAE-based
feature learning methods. Compared with the CNN and SAE-
LR, with a training sample ratio of 0.15, 2D-SACNN can

obtain OA of 98.5%, AA of 99.24%, and Kappa of 98.33%,
while 3D-SACNN can achieve the best classification results
and obtains OA, AA, and Kappa of 99.19%, 99.38%, and
99.1%, respectively. This proves that the proposed SACNN can
achieve satisfactory classification results with fewer training
samples, which possesses great practical values for HSI clas-
sification. Moreover, the proposed method also outperforms
the other unsupervised spatial–spectral deep-learning-based
methods UDFE, RAE, RCDN, and 3D-USSFL, especially on
some categories that are difficult to classify, such as the cate-
gory Soybean-notill in the Indian Pines dataset, the category
Vinyard_untrained in the Salinas dataset, and the category
Hardwood in the KSC dataset. This is because the proposed
3-D all convolutional net structure can capture more sub-
tle spatial–spectral features, which benefit the classification
performance. It is worth noting that SACNN performs well on
both small datasets (Indian Pines) and large datasets (Salinas
and KSC).
To evaluate the significance of the difference between the

classification accuracies of 3D-SACNN and the other competi-
tors, McNemar’s test is conducted on the three datasets, and
the results are listed in Table X. It can be seen that all of the
values in Table X are greater than 1.96, which means that com-
pared with other methods, the improvement of the 3D-SACNN
for classification accuracy is statistically significant.
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TABLE VIII
CLASSIFICATION RESULTS ON THE SALINAS DATASET

(a) (b)

Fig. 7. Influence of the number of convolution kernels experimental results.
(a) Classification results and (b) execution times on different number of
convolution kernels.

D. Parameter Analysis

To further investigate the 3D-SACNN, the parameter anal-
ysis of the proposed method is performed on the Indian Pines
dataset, and all the experiments are carried out on an NVIDIA
Tesla K40C GPU. The quality of extracted features will be
affected by the number of convolution kernels. The effect
of the number of convolution kernels on OA is presented in
Fig. 7. The number of convolution kernels of all layers in
the 3D-SACNN is defined as D-2D-4D-2D-D-1, where D rep-
resents the number of convolution kernels of the first layer,
as shown in the horizontal axis of Fig. 7. Fig. 7(a) indicates
that when the number of convolution kernels in the first layer

(a) (b)

Fig. 8. Influence of different spatial sizes. (a) Classification results and (b)
experiment times on different spatial sizes.

is greater than 4, the OA is improved slowly as the num-
ber of convolution kernels increases, but the running time is
fast increasing, as shown in Fig. 7(b). It is worth noting that a
small number of convolution kernels makes the model too sim-
ple to learn all the effective features of inputs. However, when
the number of convolution kernels reaches a certain threshold
value, the increase of the convolution kernel will not signifi-
cantly improve the OA, but greatly increases the computation
burden and execution time. To balance the quality of extracted
features and execution time, the number of convolution kernels
in the 3D-SACNN is set to 8-16-32-16-8-1.
Another important hyperparameter is the spatial size of

input data, that is, the size of the spatial neighborhood. The
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TABLE IX
CLASSIFICATION RESULTS ON THE KSC DATASET

TABLE X
MCNEMAR’S TEST RESULTS ON THE INDIAN PINES, SALINAS, AND KSC DATASETS

number of input spectrum bands is fixed, but the input spa-
tial neighborhood size is changeable. In the experiments, the
size of each batch is set as 64. Experiments are carried out by
extracting features on different spatial sizes: 3 × 3, 5 × 5,
7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and 17 × 17.
The influence of different spatial sizes on the classification
results is shown in Fig. 8(a). When the spatial size is too
small, such as 3 × 3 and 5 × 5, the input data cannot pro-
vide sufficient spatial information. Thus, an increase in spatial
sizes can enrich spatial information and benefit classifica-
tion performance. However, because the classification of HSI
is pixel-level classification, an oversized neighborhood may
cause a problem, that is, there will be too many other class
pixels in the neighborhood of the target pixel, especially when
it comes to edges of a certain class. From Fig. 8(b), it can be
seen that the running time is increasing exponentially with the
increase of spatial size. For the Indian Pines dataset, the OA
can achieve a maximum of 97.38% when spatial size is set to
11 × 11, which is an optimal tradeoff between classification
performance and execution time.

V. CONCLUSION

In this article, we proposed a novel FE method that is based
on the 3-D all CNN architecture. Experimental results have
shown that 3-D convolutional operation was more suitable for
learning effective spatial–spectral features in HSIs. To alleviate
the heavy dependence of the proposed 3-D all convolutional
nets, a novel end-to-end training framework was designed
based on the encoder–decoder architecture. Specifically, the
encoder subnetwork consisted of 3-D multilayer all convolu-
tional kernels and the decoder subnetwork consisted of 3-D
all deconvolutional kernels, which were symmetric in archi-
tecture. By using the reconstruction error, the proposed feature
extractor, which is the encoder subnetwork, can be effectively
trained in an unsupervised style. Moreover, instead of fixed
pooling operations, the proposed method can adaptively learn
the downsampling and upsampling strategy, which benefits the
training process. In addition, multilayer and multiscale features
are considered in the FE process, and experimental results
have shown that they can significantly improve classification
performance.
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In the future, further study will be implemented on the
optimization of hyperparameters in the proposed networks,
such as the number of layers, learning rates, decay coefficients,
and so on, which can reduce the manual intervention dur-
ing the design of networks and enable the networks to learn
the optimal hyperparameters adaptively from the view of
data driven. Moreover, we will explore the application of
the proposed method in more subtle analysis tasks, such as
objective detection, anomaly detection, and saliency analysis.
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