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Abstract—By using the terminal sliding-mode control (TSMC)
and the pinning control methods, the fully distributed finite-time
consensus problems are investigated for second-order multiagent
systems (MASs) and multiquadcopter systems (MQSs) with
directed topology. For the second-order MASs, a pinning con-
trol scheme is designed by analyzing the outdegree and indegree
of nodes, and a TSMC protocol with the local information is
proposed to achieve the finite-time consensus. Then, as an appli-
cation of the MASs, the model of MQSs is constructed and
its finite-time attitude consensus is discussed. Finally, the effec-
tiveness of the proposed method is validated by two numerical
examples.

Index Terms—Distributed control, finite-time consensus, mul-
tiquadcopter systems (MQSs), pinning control, terminal sliding-
mode control (TSMC).

I. INTRODUCTION

IN THE past two decades, the consensus problem for the
multiagent systems (MASs) has attracted tremendous atten-

tion due to its wide applications in various fields [1]–[3]. The
key point of the consensus problem is to design a distributed
consensus protocol, where all agents come to the same value
only with the local information [4]–[6]. Research results for
the distributed consensus problem are focused on convergence
rate, pinning strategy, topology, etc. [7]–[12].
The most common results for the MASs are the asymptotic

consensus, where the consensus can be achieved asymptoti-
cally in infinite time [13]–[17]. Due to the fast convergence
rate and the strong robust ability, finite-time consensus results
are more applicable. For the first-order MASs, many kinds
of finite-time protocols are proposed [18]–[22]. By employing
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the theory of finite-time stability, if the interaction topology is
connected and sufficiently large, the proposed protocols will
solve the finite-time consensus problems for both the bidi-
rectional interaction case and the unidirectional interaction
case [19]. For the MASs with the continuous-time and
discrete-time subsystems, the finite-time consensus can be
achieved with the switching control method [20]. The binary
consensus protocol is studied to obtain the finite-time consen-
sus result [21]. The distributed robust fixed-time consensus
result is presented, where the convergence time does not rely
on the initial conditions [22]. For the second-order MASs,
there are three typical methods to achieve the finite-time con-
sensus [23]–[30]. The first method to solve the consensus
problem is the homogeneous method, where the systems need
to satisfy the homogeneous conditions [23]. Combined the
homogeneous method with the sliding-mode control method,
several protocols to achieve robust finite-time consensus are
developed [24], [25]. The second method is the terminal
sliding-mode control (TSMC) method, where each controller
needs the neighbors’ control information [26]. The third
method is the Lyapunov method, where both the leaderless and
leader–follower MASs with external disturbances are consid-
ered [27]–[30]. For the high-order MASs, by employing the
Lyapunov method, the finite-time consensus is achieved for the
leaderless and leader–follower structure [31]–[35]. The finite-
time output consensus is achieved for higher-order MASs,
and the active anti-disturbance control method is given to
solve mismatched disturbances [32]. Actually, it is hard to
design a fully distributed finite-time consensus controller for
the undirected MASs.
The undirected network can be seen as a special directed

network, research on the directed network is meaningful. With
the nonlinear dynamics and directed network, the local and
global asymptotic consensus protocols are studied for second-
order MASs [36]. The finite-time containment control with
multiple directed network dynamic leaders is investigated,
where the bounded disturbances and unknown inputs are con-
sidered in [37]. The finite-time consensus protocol for directed
second-order MASs is considered, and a new sliding-mode
method is constructed. However, the controllers need to know
the whole network’s information [38]. Therefore, a simple
distributed finite-time consensus protocol is needed for the
directed second-order MASs.
Besides, it is hard to reach consensus under some fixed

network topological structures [39]. An effective way to solve
this problem is to impose additional controllers on some
nodes. It is unrealistic to add additional controllers on all

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Rhode Island. Downloaded on May 16,2020 at 01:58:31 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4481-3746
https://orcid.org/0000-0002-5247-9370
https://orcid.org/0000-0001-9269-334X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

nodes [14], [39]–[49]. The pinning control is presented, where
only a small fraction of nodes should be pinned [39], [40].
For the pinning control of MASs, it is better to pin the most
highly connected nodes [40]. The pinned candidates are dis-
cussed in [39]–[41], where a small fraction of nodes is chosen
to be pinned for different kinds of networks [41]–[44]. For
the directed networks, the nodes whose outdegree are bigger
than their indegree should be chosen as pinned candidates [41].
When the coupling strength is small, the nodes with low degree
should be pinned first [43]. The auxiliary-system approach
via pinning control is investigated for the two-layer complex
networks, where different pinning strategies are listed [44]. By
only pinning one node, the consensus can be achieved [45].
Aperiodically intermittent pinning controllers with logarith-
mic quantization are designed [46]. This article will point out
which nodes should be pinned, and how large the pinning
strength should be chosen.
Due to the ability to finish many complex tasks, low cost,

and ease of operation, many studies have focused on quad-
copter [50]–[52]. The quadcopter has six degrees of freedom,
three degrees about the positions and three degrees about the
attitudes. The quadcopter is a complex nonlinear dynamics
system, which is hard to apply the advance control method.
The most common method is the proportional–integral–
derivative (PID) control method [53]. We have designed a new
kind of quadcopter, which only has three degrees of attitudes.
The details of the new quadcopter can be seen in Section IV.
The main contributions of this article can be summarized

as follows.
1) A new fully distributed finite-time consensus method

is proposed for the directed second-order MASs with
disturbances.

2) The pinning strategy is introduced to make the whole
system come to a consensus, where the nodes whose
outdegree are no less than the indegree should be pinned,
and the least pinning strength is selected.

3) The mathematical model of multiquadcopter systems
(MQSs) with three degrees attitude is proposed, and the
finite-time consensus of attitude MQSs can be achieved
with the method devised in this article.

We have organized the remainder of this article as fol-
lows. Section II gives the preliminaries and problem statement.
Section III proposes a distributed finite-time consensus track-
ing algorithm for directed MASs. The proposed algorithm has
been used in the attitude consensus of MQSs in Section IV.
Two examples are given to validate our results in Section V.
Section VI gives the conclusion.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, first, for directed networks, algebraic graph
theory is introduced. Then, we have introduced some important
lemmas, which will be used in the following section. Finally,
we have pointed out the problem statement.

A. Preliminaries

Suppose the graph of the directed MASs with n agents is
G = {V ,E ,A }, where the set of agents is V = {v1, . . . , vn},

vi is the ith agent, the set of edges is E ⊆ V ×V , (vi, vj) ∈ E
is the directed edge from agent j to i, the agent i can get
information from agent j, and the adjacency matrix is A =
[aij] ∈ Rn×n. Define aii = 0, where i ∈ {1, . . . , n}. If and
only if there exists a directed edge (vi, vj) in G , then aij > 0;
otherwise, aij = 0 (i �= j). For the directed graph G , define
the Laplacian matrix as L = [lij] ∈ Rn×n, where lii =∑n

j=1 aij
and lij = −aij.
Define bi as the connection strength between the leader and

the ith agent. If there is connection, bi > 0; otherwise, bi = 0.
Let B = diag[b1, . . . , bn] ∈ Rn×n, C = [C1

T · · · Cn
T ]T ,

and C = cL + B.
Lemma 1 [54]: If z1 ∈ R and z2 ∈ R, a and b are positive,

then |z1|a|z2|b ≤ (a/[a + b])|z1|a+b + (b/[a + b])|z2|a+b.
Lemma 2: Define �i � (cm2/[m1 + m2])

∑n
j=1 aij −

(cm2/[m1 + m2])
∑n

j=1 aji +bi, � � diag{�1, . . . ,�n}. Then,
ETCE(m2/m1) ≥ (E([m1+m2]/2m1))T�E([m1+m2]/2m1), where m1
and m2 are positive odd number. Furthermore, ETCsign(E) ≥
(|E|(1/2))T�|E|(1/2) > 0.

Proof: The proof here is simple, with the help of Lemma 1,
we will show the main derivation process in the following:

ETCE
m2
m1

= c
n∑

i=1

n∑

j=1

aij

(

e
m1+m2

m1
i − e

m2
m1
j ei

)

+
n∑

i=1

bie
m1+m2

m1
i

≥ c
n∑

i=1

n∑

j=1

aij

(

e
m1+m2

m1
i − m2

m1 + m2
e
m1+m2

m1
j

− m1

m1 + m2
e
m1+m2

m1
i

)

+
n∑

i=1

bie
m1+m2

m1
i

= c
m2

m1 + m2

n∑

i=1

n∑

j=1

aije
m1+m2

m1
i +

n∑

i=1

bie
m1+m2

m1
i

− c
m2

m1 + m2

n∑

i=1

n∑

j=1

aije
m1+m2

m1
j

= c
m2

m1 + m2

n∑

i=1

n∑

j=1

aije
m1+m2

m1
i +

n∑

i=1

bie
m1+m2

m1
i

=
n∑

i=1

⎛

⎝c
m2

m1 + m2

⎛

⎝
n∑

j=1

aij −
n∑

j=1

aji

⎞

⎠+ bi

⎞

⎠e
m1+m2

m1
i

=
n∑

i=1

�ie
m1+m2

m1
i

=
(

E
m1+m2
2m1

)T

�E
m1+m2
2m1 .

From this lemma, we know if � is positive, ETCE(q/p) ≥
(E([p+q]/2p))T�E([p+q]/2p) > 0. We can get the following
result, ETCsign(E) ≥ (E(1/2))T�E(1/2) > 0, due to the proof
is similar, we omitted it here.

Lemma 3 [55]: Suppose x ∈ Rn, ẋ = g(x), g(0) = 0,
δ ∈ (0, 1), and α > 0, V(x) is a continuous positive-definite
function. If ∀x, there exists an open neighborhood of the ori-
gin, such that V̇(x) + α(V(x))δ ≤ 0. Then, V(x) reach to
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the origin in finite time. The setting time is no more than
(V(x(0))1−δ/[α(1 − δ)]).

In this article, we have omitted the independent variables.
Suppose there is a vector E � [e1, . . . , en]

T
, where ei, i =

1, . . . , n are scalars, 1 � [1, . . . , 1]
T
, 0 � [0, . . . , 0]

T
, the sign

function of ei is sgn(ei), sig(ei)α = sgn(ei)|ei|α , sigα(E)
�=

[sgn(e1)α, . . . , sgn(en)α]T , Eα = [ eα
1 · · · eα

n ]
T , Ėα =

[ ėα
1 · · · ėα

n ]
T , and diag(Eα−1) = diag( eα−1

1 · · · eα−1
n ).

B. Problem Statement

Suppose there are n second-order agents. Each agent can be
described as follows:

{
ẋi = vi
v̇i = ui + fi

(1)

where fi is the known dynamic of the system, and ui is the
control input, i = 1, . . . , n.

Suppose there is only one virtual leader, and the virtual
leader is an isolated agent. The model of virtual leader is

{
ẋ0 = v0
v̇0 = g0

(2)

where x0 and v0 are the virtual leader’s states, and g0 is the
unknown dynamic of the virtual leader’s system.
The purpose of this article is to make all agents converge

to x0 and v0 in finite time with distributed consensus protocol.
Suppose the coupling strength is c. Choose the following

error functions:

exi = c
n∑

j=1

aij
(
xi − xj

)+ bi(xi − x0) = Ci(x − 1x0)

evi = c
n∑

j=1

aij
(
vi − vj

)+ bi(vi − v0) = Ci(v − 1v0). (3)

Let Ex � [ex1, . . . , exn]
T
, Ev � [ev1, . . . , evn]

T
, x �

[x1, . . . , xn]
T
, v � [v1, . . . , vn]

T
, B � diag(b1, . . . , bn), f �

[f1, . . . , fn]
T
, and u � [u1, . . . , un]

T
.

If Ex = Ev = 0, which means all exi = evi = 0, then
xi = xj = x0 and vi = vj = v0, i = 1, . . . , n. So, appropriate
distributed controller is found such that Ex and Ev come to
zero in finite time.
Then, we have

Ex = (cL + B)x − B1x0 = (cL + B)(x − 1x0)

Ev = (cL + B)v − B1v0 = (cL + B)(v − 1v0). (4)

So

Ėx = Ev

Ėv = (cL + B)(u + f − 1g0). (5)

Here is the assumption and the definition.
Assumption 1: Suppose there is a positive constant lg, the

unknown dynamic of the virtual leader’s system g0 satisfied
the following condition, |g0| ≤ lg. Assume lg is known to all
nodes.

Definition 1: For any initial conditions, limt→∞ xi = xj =
x0 and limt→∞ vi = vj = v0, i, j ∈ {1, . . . , n}. The MASs (1)
and (2) are said to achieve asymptotic consensus.
Definition 2: For any initial conditions xi0 and vi0, if there

is a constant T0 = T0(x0, v0) > 0, limt→T0 xi = xj = x0,
and limt→T0 vi = vj = v0, and for all t ≥ T0, xi = xj = x0,
and vi = vj = v0. The MASs (1) and (2) are said to achieve
finite-time consensus.

III. FULLY DISTRIBUTED FINITE-TIME CONSENSUS OF

DIRECTED MASS

In this section, the pinning control method is investigated
to ensure the finite-time consensus for the directed MASs.
Define the following functions as � = [φ1 · · · φn ]T ,

M = [μ1 · · · μn ]T , μi = −β1(q1/p1)e
q1/.p1−1
xi evi, φi =

sat(μi, us) =
{
ussgn(μi) if|μi| > us
μi otherwise

, i = 1, . . . , n, us > 0

is the threshold value of the saturation function.
Theorem 1: Under the condition of Assumption 1. The

directed MASs (1) and (2) can achieve finite-time consensus
under the following protocol:

u = −f + � − β2S
q2/p2 − αlgsgn(S) (6)

where i = 1, . . . , n, �i � (cq1/[q1 + p1])
∑n

j=1 aij −
(cq1/[q1 + p1])

∑n
j=1 aji + bi > 0, α > 1, α�i ≥ bi,

�0 � min(�i) > 0, � � diag{�1, . . . , �n} is positive matrix,
lg is the upper bound of g0, I is identity matrix, β1 > 0 and
β2 > 0 are constants, p1 > 0, p2 > 0, q1 > 0, and q2 > 0 are
odd integers, q1 < p1 < 2q1, and p2 > q2.

Proof: The terminal sliding surface can be selected as S =
Ev + β1CE

q1/p1
x and Si = evi + β1CiE

q1/p1
x .

From above, only when all exi = evi = 0, S = Ev +
β1CE

q1/p1
x = 0, i = 1, . . . , n. If S = 0, Ėx = Ev =

−β1CE
q1/p1
x .

Choose the positive Lyapunov-candidate-function as V0 =
(1/2)ET

x Ex, and then we have, V̇0 = ET
x Ėx = −β1ET

x CE
q1/p1
x .

By using Lemma 2, we can get

V̇0 ≤ −β1

(

E
p1+q1
2p1

x

)T

�E
p1+q1
2p1

x ≤ −β1�0(2V0)
p1+q1
2p1 .

From above, Ex = 0 in finite time and Ev = Ėx = 0 in finite
time. So, if all the states of exi and evi on the slide surface,
the states will reach to zero in finite time.
Select the protocol as (6)

Ṡ = Ėv + β1
q1
p1

Cdiag
(
Eq1/p1−1
x

)
Ev

= C(u + f − 1g0) + β1
q1
p1

Cdiag
(
Eq1/p1−1
x

)
Ev

= C

[

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + �

− β2S
q2/p2 − αlgsgn(S)

]

. (7)
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Consider the positive Lyapunov-candidate-function as V =
0.5STS. Combining Assumption 1 and (7), we have

V̇ = ST Ṡ

= STC

(

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + �

− β2S
q2/p2 − αlgsgn(S)

)

= STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

− g0S
TC1 − αlgS

TCsgn(S)

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

− g0S
Tb − αlg

(
S

1
2

)T
�S

1
2

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

− g0

n∑

i=1

biSi − lg

n∑

i=1

α�i|Si|

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

. (8)

Due to 0 < q1/p1 < 1, there is singularity problem for
β1(q1/p1)diag(E

q1/p1−1
x )Ev.

We can divided the ith space into the following two areas:

Si1 =
{

(exi, evi)

∣
∣
∣
∣β1

q1
p1

eq1/p1−1
xi |evi| ≤ us

}

Si2 =
{

(exi, evi)

∣
∣
∣
∣β1

q1
p1

eq1/p1−1
xi |evi| > us

}

. (9)

The state S cross the area Si2 and lies in the area Si1. In a
finite time, the state S will reach to the point [0 0]T .
1) When the states [exi evi]T lie in Si1, φi = μi. We get

V̇ = ST Ṡ

= STC

(

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + �

− β2S
q2/p2 − αlgsgn(S)

)

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

≤ −β2S
TCSq2/p2 . (10)

Comply with Lemma 2, we know

V̇ ≤ −β2S
TCSq2/p2

≤ −β2

(

S
p2+q2
2p2

)T

�S
p2+q2
2p2

≤ −β2�0(2V)
p2+q2
2p2 . (11)

So, the states will enter Si2 or reach to the sliding surface
S = 0 in finite time.
2) When the states [exi evi]T lie in Si2, φi = ussgn(μi).

We get

V̇ = ST Ṡ

= STC

(

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2

− αlgsgn(S)

)

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + � − β2S

q2/p2
)

= STC

(

β1
q1
p1

diag
(
Eq1/p1−1
x

)
Ev + ussgn(μi) − β2S

q2/p2
)

.

(12)

It is hard to guarantee the above equation is negative,
another method is given to prove the result.
Two different cases are listed when the states lie in Si2.

Case 1, evi > 0, exi increases monotonously until it reaches
the junction of the areas Si1 and Si2. Case 2, evi < 0, exi
decreases monotonously until it reaches the junction of the
areas Si1 and Si2. The analysis here is similar to the analysis
in [56], we can get the result that the system can achieve S = 0
in finite time.
From above, only when �i � (cq1/[q1 + p1])

∑n
j=1 aij −

(cq1/[q1 + p1])
∑n

j=1 aji − bi > 0, the finite-time consensus
can be reached.
From the above condition, we get the following results.
Theorem 2: In order to get the finite-time result, the nodes

whose outdegree are no less than their indegree should
be pinned, and the pinning strength should be larger than
−(cq1/[q1 + p1])(

∑n
j=1 aij −

∑n
j=1 aji).

Proof: From the structure of the directed network, it
is easy to know that

∑n
j=1 aij is the indegree of the

node i,
∑n

j=1 aji is the outdegree of the node i. When∑n
j=1 aji <

∑n
j=1 aij, (cq1/[q1 + p1])(

∑n
j=1 aij −

∑n
j=1 aji) >

0, this node does not need to be pinned. When
∑n

j=1 aji ≥∑n
j=1 aij, (cq1/[q1 + p1])(

∑n
j=1 aij −

∑n
j=1 aji) ≤ 0, if

we want �i > 0, the pinning control is needed,
and the pinning strength bi should satisfied that bi >

−(cq1/[q1 + p1])(
∑n

j=1 aij −
∑n

j=1 aji) ≥ 0.
So, we can get the conclusion that the nodes whose

outdegree are no less than their indegree should be
pinned, and the pinning strength should be larger than
−(cq1/[q1 + p1])(

∑n
j=1 aij −

∑n
j=1 aji).

Remark 1: If we want to achieve consensus as soon as pos-
sible, it is better to let �0 as big as possible. Pinning a small
part of nodes with huge strength does not always increase the
convergence speed too much. The best way is to increase the
minimum of �i. What is more, in order to get the fast con-
vergence rate, the nodes whose outdegree are less than their
indegree should be pinned with appropriate pinning strength.

IV. FULLY DISTRIBUTED FINITE-TIME ATTITUDE

CONSENSUS OF DIRECTED MQSS

In this section, we will introduce the attitude consensus of
MQSs by using the method proposed above. Suppose the quad-
copter system studied in this article can only move at the
attitude angle of three degrees of freedom. This quadcopter
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Fig. 1. Quadcopter platform.

Fig. 2. Force analysis of the quadcopter.

platform is designed to verify the validity of the proposed
protocol, seen from Fig. 1. The center of mass motion model
is not analyzed here.

A. Mathematical Model

The following assumptions are listed.
Assumption 2: The quadcopters are central symmetrical

rigid body.
Assumption 3: The resistance and gravity of the quad-

copters are not affected by the flight environment and other
factors, and will remain unchanged.
Assumption 4: The rotational inertia of the quadcopters

remains unchanged.
As shown in Fig. 2, force analysis of the quadcopter is

carried out. c−→T i = [
0 0 −cT� 2

i

]T
is the force vector pro-

duced by the propeller. c−→L 1 = [
(
√
2/2)d (

√
2/2)d −dε

]T
,

c−→L 2 = [−(
√
2/2)d (

√
2/2)d −dε

]T
, c−→L 3 =

[−(
√
2/2)d −(

√
2/2)d −dε

]T
, and c−→L 4 =

[
(
√
2/2)d −(

√
2/2)d −dε

]T
are the position of ten-

sion operating points in the coordinate system of
rotating platform, respectively. c−→G = b

eRe−→G =

[−mg sin θ mg cos θ sinφ mg cos θ cosφ
]T is the grav-

ity vector, m is the quality of the quadcopter, and g is
the local acceleration of gravity. c−→d ε = [

0 0 −dε

]T is
the position of the center of mass in the frame of rotating
platform.
From above, we know the total reverse torque produced by

the propeller cτM can be seen as follows:

cτM = �M1 + �M2 + �M3 + �M4 =
⎡

⎣
0
0

cM
(
� 2

1 − � 2
2 + � 2

3 − � 2
4

)

⎤

⎦.

From Fig. 2, when the quadcopter is doing attitude tilt,
the resultant moment is torque generated by propeller tension,
reverse torque, and gravity. We have the following result:

cτG = c �G × c�LG =
⎡

⎣
−mg sin θ

mg cos θ sinφ

mg cos θ cosφ

⎤

⎦×
⎡

⎣
0
0
dε

⎤

⎦ (13)

where c�LG is the arm of gravity. So, the resultant external
moment of the quadcopter is

cτ = cτM + c �G × c�LG +
4∑

i=1

c−→T i×c−→L Ti

=
⎡

⎣
0
0

cM
(
� 2

1 − � 2
2 + � 2

3 − � 2
4

)

⎤

⎦ +

⎡

⎣
mg cos θ sinφdε

mg sin θdε

0

⎤

⎦

+
⎡

⎢
⎣

√
2
2 cT

(
� 2

1 + � 2
2 − � 2

3 − � 2
4

)
√
2
2 cT

(−� 2
1 + � 2

2 − � 2
3 + � 2

4

)

0

⎤

⎥
⎦ (14)

where c−→L Ti is the arm of lift.
The attitude dynamics equation in the rotating platform

coordinate system is as follows:

J · cω̇ = −cω × (J · cω)+ cτ (15)

where J ∈ 3×3 is the moment of inertia of the experimental
platform.
Combining (14) and (15), we can get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω̇xc = ωycωzc

(
J2−J3
J1

)
+

√
2
2 cT

(
� 2

1 +� 2
2 −� 2

3 −� 2
4

)+mg cos θ sinφdε

J1

ω̇yc = ωxcωzc

(
J3−J1
J2

)
+

√
2
2 cT

(−� 2
1 +� 2

2 −� 2
3 +� 2

4

)+mg sin θdε

J2

ω̇zc = ωxcωyc

(
J1−J2
J3

)
+ cM

(
� 2

1 −� 2
2 +� 2

3 −� 2
4

)

J3
.

(16)

Due to the limitation of the platform, the angular velocity
is smaller when flying. So, the following equation is correct:
ωxc = φ̇, ωyc = θ̇ , and ωzc = ψ̇ . We have the following result:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̈ = θ̇ ψ̇(
J2−J3
J1

) +
√
2
2 cT (� 2

1 +� 2
2 −� 2

3 −� 2
4 )+mg cos θ sinφdε

J1

θ̈ = φ̇ψ̇(
J3−J1
J2

) +
√
2
2 cT (−� 2

1 +� 2
2 −� 2

3 +� 2
4 )+mg sin θdε

J2

ψ̈ = φ̇θ̇ ( J1−J2
J3

) + cM(� 2
1 −� 2

2 +� 2
3 −� 2

4 )

J3
.

Let
⎧
⎪⎨

⎪⎩

U1 =
√
2
2 cT(� 2

1 + � 2
2 − � 2

3 − � 2
4 )

U2 =
√
2
2 cT(−� 2

1 + � 2
2 − � 2

3 + � 2
4 )

U3 = cM(� 2
1 − � 2

2 + � 2
3 − � 2

4 )

, we have
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̈ = θ̇ ψ̇
(
J2−J3
J1

)
+ U1+mg cos θ sinφdε

J1

θ̈ = φ̇ψ̇
(
J3−J1
J2

)
+ U2+mg sin θdε

J2

ψ̈ = φ̇θ̇
(
J1−J2
J3

)
+ U3

J3
.

(17)

Define aθ1 = ([J3 − J1]/J2), aθ2 = (1/J2), aθ3 =
(mgdε/J2), aφ1 = ([J2 − J3]/J1), aφ2 = (1/J1), aφ3 =
(mgdε/J1), aψ1 = ([J1 − J2]/J3), and aϕ2 = (1/J3), we have
the final attitude dynamics equation

⎧
⎨

⎩

φ̈ = aφ1θ̇ ψ̇ + aφ2U1 + aφ3 cos θ sinφ

θ̈ = aθ1φ̇ψ̇ + aθ2U2 + aθ3 sin θ

ψ̈ = aψ1φ̇θ̇ + aψ2U3.

(18)

There are eight quadcopters in our laboratory, the final atti-
tude dynamics systems for the i-quadcopters system can be
described, i = 1, . . . , 8

⎧
⎨

⎩

φ̈i = aφ1iθ̇iψ̇i + aφ3i cos θi sinφi + aφ2iU1i

θ̈i = aθ1iφ̇iψ̇i + aθ3i sin θi + aθ2iU2i

ψ̈i = aψ1iφ̇iθ̇i + aψ2iU3i.

(19)

B. Fully Distributed Finite-Time Attitude Consensus of
Directed MQSs

The analysis of the three degrees attitude angles is similar,
so we only prove the pitch angle, and the analysis of other
angles is similar to the pitch angle.
Define fi = aθ1iφ̇iψ̇i + aθ3i sin θi, a � diag(aθ21, . . . , aθ2n),

f � [f1, . . . , fn]
T
, Eθ � [eθ1, . . . , eθn]

T
, Eθ̇ � [eθ̇1, . . . , eθ̇n]

T
,

θ � [θ1, . . . , θn]
T
, θ̇

�= [θ̇1, . . . , θ̇n]
T
, and U2 �

[U21, . . . ,U2n]
T
.

We have the following attitude equation:

θ̈ = f + aU2. (20)

Suppose there is a virtual leader of the pitch angle. The
model of virtual leader is

θ̈0 = g0 (21)

where θ0 is the virtual leader’s states, and g0 is the virtual
leader’s dynamic.
The purpose of this article is to make all agents come to

the virtual state with the distributed consensus protocol.
Choose the following error functions:

eθ i = c
n∑

j=1

aij
(
θi − θj

)+ bi(θi − θ0) = Ci(θ − 1θ0)

eθ̇ i = c
n∑

j=1

aij
(
θ̇i − θ̇j

)+ bi
(
θ̇i − θ̇0

) = Ci
(
θ̇ − 1θ̇0

)
(22)

where c is the coupling strength.
We will prove Eθ = Eθ̇ = 0 in finite time.
We have

Eθ = (cL + B)θ − B1θ0 = (cL + B)(θ − 1θ0)

Eθ̇ = (cL + B)θ̇ − B1θ̇0 = (cL + B)
(
θ̇ − 1θ̇0

)
. (23)

So

Ėθ = Eθ̇

Ėθ̇ = C(f + aU2 − 1g0). (24)

Define the following function:

μi = −β1
q1
p1

eq1/p1−1
θ i eθ̇ i

φi = sat(μi, us) =
{
ussgn(μi) if|μi| > us
μi otherwise

us > 0 is the threshold value of the saturation function, i =
1, . . . , n.

Define M = [μ1 · · · μn ]T and � = [φ1 · · · φn ]T .
Theorem 3: Under the condition of Assumptions 1–4. The

directed MQSs (20) and (21) can achieve finite-time consensus
under the following protocol:

U2 = a−1
(
−f + � − β2S

q2/p2 − αlgsgn(S)
)

(25)

where i = 1, . . . , n, �i
�= (cq1/[q1 + p1])

∑n
j=1 aij −

(cq1/[q1 + p1])
∑n

j=1 aji + bi > 0, α > 1, α�i ≥ bi,

�0
�= min(�i) > 0, �

�= diag{�1, . . . ,�n} is positive matrix,
I is identity matrix, β1 > 0 and β2 > 0 are constants, p1 > 0,
p2 > 0, q1 > 0, and q2 > 0 are odd integers, q1 < p1 < 2q1,
and p2 > q2.
Proof: Select the terminal sliding surface as S = Eθ̇ +

β1CE
q1/.p1
θ .

We know when S = 0, Eθ and Eθ̇ will get to zero in finite
time.
From above

Ṡ = Ėθ̇ + β1
q1
p1

Cdiag
(
Eq1/p1−1

θ

)
Eθ̇

= C(f + aU2 − 1g0) + β1
q1
p1

Cdiag
(
Eq1/p1−1

θ

)
Eθ̇

= C

[

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1

θ

)
Eθ̇ + �

− β2S
q2/p2 − αlgsgn(S)

]
. (26)

Choose the positive Lyapunov-candidate-function as V =
0.5STS. Combining (25) with (26), one has

V̇ = ST Ṡ

= STC

[

−1g0 + β1
q1
p1

diag
(
Eq1/p1−1

θ

)
Eθ̇ + �

− β2S
q2/p2 − αlgsgn(S)

]

≤ STC

(

β1
q1
p1

diag
(
Eq1/p1−1

θ

)
Eθ̇ + � − β2S

q2/p2
)

.

The following proof is similar to the proof in Theorem 1,
so we omit here. The fully distributed finite-time atti-
tude consensus of directed multiquadcoppters systems is
achieved.

V. NUMERICAL SIMULATIONS

To illustrate the effectiveness of the proposed algorithms,
two simulation results are presented.
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(a) (b)

Fig. 3. Topology of the MASs. (a) Without pinning. (b) With pinning.

A. Finite-Time Consensus of Directed MASs

As can be seen from Fig. 3(a), the topology of the directed
MASs with five agents is presented.
The leader dynamic is described as

{
ẋ0 = v0
v̇0 = 0.02 sin(x0)

(27)

the dynamics of the ith follower are
{
ẋi = vi
v̇i = ui + xi

, i = 1, . . . , 5. (28)

Suppose the leader’s initial condition is [ x0(0) v0(0) ]T =
[ 2 3 ]T , and the five agents’ initial condition are x(0) =
[ 4 −1 1 3 −2 ]T and v(0) = [ 1 0 −2 −1 2 ]T .

From Theorem 2, we need to pin the agents 1, 2, and 5, as
shown in Fig. 3(b). The adjacent matrix is

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

the Laplacian of the follower system can be written as

L =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1 −1 0
−1 2 −1 0 0
0 0 1 −1 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

and the interconnection relationship between the leader and
the followers is B = diag(2 3 0 0 1 ).
Select the terminal sliding surface, S = Ev + β1CE

q1/.p1
x .

The control is selected as, u = � − β2Sq2/.p2 − αlf sgn(S),
where lf = 1, α = 2, p1 = p2 = 5, q1 = q2 = 3, β1 =
β2 = 1, � = [φ1 · · · φn ]T , μi = −β1(q1/p1)e

q1/.p1−1
i1 ei2,

φi = sat(μi, us) =
{
ussgn(μi) if|μi| > us
μi otherwise.

Figs. 4 and 5 show the results of the proposed protocol
in (6). Within finite time, all the states reach the virtual leader’s
states.

B. Finite-Time Consensus of Directed MQSs

In this simulation, we have five quadcopters. Use the same
topology as above, as shown in Fig. 3.

Fig. 4. States of x for the MASs.

Fig. 5. States of v for the MASs.

TABLE I
MODEL PARAMETER OF MQSS

The leader dynamic is described as
⎧
⎨

⎩

φ̈0 = aφ20U10

θ̈0 = aθ20U20

ψ̈0 = aψ20U30

(29)

and the dynamics of the ith follower are described as
⎧
⎨

⎩

φ̈i = aφ1iθ̇iψ̇i + aφ3i cos θi sinφi + aφ2iU1i

θ̈i = aθ1iφ̇iψ̇i + aθ3i sin θi + aθ2iU2i

ψ̈i = aψ1iφ̇iθ̇i + aψ2iU3i.

(30)

The model parameter can be selected as in Table I.
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Fig. 6. States of angle for the MQSs.

Fig. 7. States of angular velocity for the MQSs.

So, we get the following parameters, aθ1i = aφ1i = aψ1i =
0, aθ20 = aφ20 = aψ20 = aθ2i = aφ2i = aψ2i = 37, and
aθ3i = aφ3i = 71.7, i = 1, . . . , 5.

Suppose the leader’s initial condition is [ θ0(0) θ̇0(0) ]T =
[ 0 −10 ]T , [ψ0(0) ψ̇0(0) ]T = [ 0 −10 ]T , and
[φ0(0) φ̇0(0) ]T = [ 0 −10 ]T . When we turn on the
quadcopters’ electric power, all the quadcopters will come to
a horizontal arrangement, and all the five quadcopters’ initial
conditions are zero.
Choose the control protocol as

U2 = a−1
(
−f + � − β2S

q2/p2 − αlgsgn(S)
)

(31)

and the TSM surface as

S = E2 + β1CE
q1/p1
1 (32)

where lf = 20, α = 2, p1 = p2 = 5, q1 = q2 = 3, and
β1 = β2 = 1.

When S = 0, that is, S = E2 + β1CE
q1/p1
1 . So, within finite

time, E1 and E2 will get to zero.
The states of angle for the MQSs are shown in Fig. 6. No

matter the leader’s states are constant function, linear function,
or trigonometric function, all the followers’ states will reach to
the leader’s states in finite time. From Fig. 7, we found all the
followers’ angular velocity will converge to the leader’s states
in finite time. The control signals for the MQSs are shown in
Fig. 8.

Fig. 8. Control signals for the MQSs.

VI. CONCLUSION

In this article, the fully distributed finite-time consensus of
directed second-order MASs has been designed, where each
control only needs its neighbors’ state information. The pin-
ning consensus strategy is studied for the second-order MASs
with unknown dynamic virtual leader. It is pointed out the
nodes whose outdegree are no less than the indegree should
be pinned, and the least pinning strength has been calculated
in Theorem 2. Furthermore, the proposed method has been
used into finite-time consensus of MQSs.
It is worth mentioning here that some related liter-

ature about group consensus, duplex networks, switched
coupled neural networks, and optimal control must be
known [11]–[13], [33], [34], [44], [46]. Therefore, in our con-
secutive study, we will work on developing the distributed
protocol about group consensus of duplex networks and
switched coupled neural networks.
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