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Abstract—This paper develops an intelligent control method
based on reinforcement learning techniques for unknown nonlin-
ear continuous-time systems in an adversarial environment. The
developed method can automatically learn the optimal control
input for the system and also predict the worst case adversarial
input that one adversary can bring into. Besides, we assume that
the agent can only observe partial information of the environment
during the learning process. Therefore, a neural network-based
observer is developed to adaptively reconstruct the hidden states
and dynamics. Then, theoretical analysis is provided to show the
stability of the developed intelligent control and the accuracy
of the established observer. This method has been applied on
a torsional pendulum system and the results demonstrate the
effectiveness of the designed approach.

Index Terms—Reinforcement learning, zero-sum games, neural
networks, observer, online learning and control.

I. INTRODUCTION

In recent decades, reinforcement learning (RL) and adaptive
dynamic programming (ADP) have been studied and adopted
in a variety of challenging domains and achieved promising
results [1]–[9]. By mirroring the human learning process to
explore and interact with the environment, RL and ADP
have been widely used in the field of intelligent control
and smart systems [10]–[15]. Usually, RL and ADP tackle
optimal control problems by estimating the solutions of the
Riccati equation for linear systems and the Hamilton-Jacobi-
Bellman (HJB) equation for nonlinear systems, respectively
[16]–[18]. In [19], an adaptive critic method was developed
based on the neural network techniques to achieve the optimal
control and also approximate the corresponding performance
index. An integral RL (IRL) method was designed in [20]
to solve the optimal tracking problems and then the explicit
theoretical analysis was also provided to show the stability of
the designed method. Besides, robust control problems were
considered in [21]–[24]. Various adaptive control schemes
were developed based on the RL and ADP methods to deal
with the uncertainties in system dynamics. Recently, RL and
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ADP techniques have been studied in the game theory and
multiplayer systems to obtain the optimal decisions for each
individual agent [25]–[30]. One of the popular problems is
the two-player zero-sum game [31]–[36], where the agents
are classified as either the defensive agents to complete the
specific missions or the adversarial agents to act in a manner
so as to prevent the defensive agents from achieving the
goals [37]. Therefore, the adversarial inputs introduce noise
which will impact the learning performance. To solve this
problem, an iterative ADP-based method was developed in
[38] to approximate the solution of the Hamilton-Jacobi-
Isaacs (HJI) equation and make the system achieves Nash
equilibrium. In [39], a neurodynamic programming method
with two-player policy iterations was developed for the zero-
sum game which is subject to the constrained control inputs.
This problem was also investigated in [40] with two value
iterative algorithms for feedback strategies. Both the on-policy
and the off-policy RL methods for the stochastic differential
games were established in [41], and the promising results
were achieved. In addition, the authors in [42] designed a
deterministic mixed optimal control scheme for the cases that
the saddle point solution does not exist in the zero-sum game.
Furthermore, a cooperative RL-based control approach was
developed in [43] for the consensus problems of the large
networks and complex systems with multiple players in the
uncertain, dynamic and adversarial environment.

So far, many of the studies consider zero-sum problems
in an environment that the system state is fully observable.
However, in many cases, the feedback information can only
represent parts of the system state, which makes the learning
data imperfect and sometimes unreliable with the existence of
the adversarial input. Such problems can be referred as the
partially observable processes. Increasing attention has been
attracted recently to solve this problem. One popular way
is to design a belief state [44]–[46] based on the sufficient
statistic of system complete information. However, this design
may cause intensive computation burden when trying to obtain
such state. The situation becomes worse with the increasing of



the state dimensions. Recently, RL and ADP techniques have
been introduced into this field and provide the opportunities to
adaptively approximate the solutions with the help of iterative
algorithms under the partially observable conditions [47]–
[51]. Theoretical discussions have been provided to show the
relationship between the partially feedback and the hidden
state information [52]. The results have demonstrated the
feasibility of using the output state to design the control input
[53], [54].

Motivated by the above observations and literature studies,
this paper designs a RL-based control approach for unknown
partially observable systems with persistent adversarial inputs.
The major contributions of this paper are as following: First,
the problem has been formulated into a two-player zero-sum
problem with one defensive agent to minimize the performance
index and one adversarial agent to maximize it. Second, a RL-
based control method is designed in an input-output setting to
obtain the optimal control input and the worst case adversarial
input that one adversary can bring into. Moreover, an observer
is built to adaptively reconstruct the system dynamics and state
variables in an online fashion. Third, the designed method has
been implemented based on the neural network techniques.
Instead of applying the action and adversarial networks to
estimate the control and adversarial inputs in literature, our
designed method only require a critic network with the help
of established observer to obtain both inputs in an online
fashion. The learning process does not require any information
of system dynamics. Therefore, this design will significantly
reduce the communication cost and computation complexity.
Rigorous proofs are also provided to guarantee the stability of
the closed-loop control design.

The rest of this paper is organized as follows. In Section
II, we formulate the zero-sum problem analyzed in this paper.
Section III provides the design of proposed RL-based optimal
control method in the input-output setting. Specifically, the
Nash equilibrium is studied for the system with theoretical
discussions. An observer is then established in this section
based on the neural network techniques to reconstruct the
system variables and dynamics. The online learning process is
developed and a critic network is established to help estimate
the optimal control action and worst case adversarial input.
The designed closed-loop system is guaranteed stable based
on the Lyapunov analysis. In Section IV, numerical exper-
iment results and analysis are presented to demonstrate the
effectiveness of the proposed control scheme. Finally, Section
V concludes this work.

II. PROBLEM FORMULATION

A nonlinear continuous-time system with persistent adver-
sarial inputs is considered as following

ẋ = f(x) + g(x)u + k(x)v
y = Cx

(1)

where x ∈ Rn is the internal state vector with the initial
condition x0, u ∈ Rm is the control input, v ∈ Rl is the
adversarial input, f(x), g(x), and k(x) are the unknown

functions with f(0) = 0, C ∈ Rp∗n is the output matrix, and
y ∈ Rp is the system output. Assume that the system f+gu+kv
is Lipschtz continuous on set Ω ⊆ Rn containing the origin.

Assumption 1 [50]: The nonlinear continuous-time system
described in (1) is controllable and observable. Here, the
system output y is considered as the measurable data.

The cost function associated to the system depends on the
state x, control input u and adversarial input v, which can be
described as,

J(x0, u, v) = ∫
∞

0
(xTΛx + uTRu − ρ2vT v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U(x,u,v)

dτ
(2)

where U(x,u, v) = xTΛx + uTRu − ρ2vT v is the utility
function, Λ and R are the positive definite matrices, and ρ
is the amount of attenuation from the adversarial input to the
defined performance.

In this way, this problem is formulated into a two-player
zero-sum game. It is desired to find the saddle point solution
(u∗, v∗), so that

J(x0, u
∗, v) ≤ J(x0, u

∗, v∗) ≤ J(x0, u, v
∗). (3)

The optimal performance index can be defined as

V ∗(x) =min
u

max
v
∫
∞

t
(xTΛx + uTRu − ρ2vT v)dτ. (4)

Comparing with the cost function (2), we obtain

V ∗(x0) =min
u

max
v
J(x0, u, v). (5)

Therefore, in this zero-sum game, two players are considered
as u and v. Particularly, player u seeks to minimize the
performance index, while the other player v seeks to maximize
it. Note that, the performance index described in (4) cannot
be obtained due to the infeasible access of internal state x.
Hence, this paper designs a RL-based control method to solve
the problem in an input-output setting. The learning process
does not require any information of the system dynamics.

III. RL-BASED CONTROL FOR NASH EQUILIBRIUM WITH
ONLY INPUT-OUTPUT DATA

This section includes three parts. First, the Nash equilibrium
are investigated for the proposed game. Second, we establish
an observer to identify the system dynamics and reconstruct
the hidden state. Third, the reinforcement learning scheme is
applied along with neural network implementation to estimate
the performance index and obtain the control and adversarial
inputs. The stability of the proposed closed-loop control design
is also discussed by the end of this section.

A. Nash Equilibrium

Assume equation (4) is continuously differentiable. By
transforming, we obtain the Hamiltonian function as

H (x,u, v, ∂V
∗

∂x
)

= ∂V
∗T (x)
∂x

(f(x) + g(x)u + k(x)v) +U(x,u, v).
(6)



Therefore, the solution (u∗, v∗) satisfies the first order nec-
essary condition, which is given by the gradient of (6) with
respect to u and v, respectively, i.e., ∂H

∂u
= 0 and ∂H

∂v
= 0.

Hence, we obtain the optimal control input as,

u∗ = arg min
u

H (x,u, v, ∂V
∗

∂x
) = −1

2
R−1gT (x)∂V

∗(x)
∂x

,

(7)

and the worst case adversarial input as

v∗ = arg max
v

H (x,u, v, ∂V
∗

∂x
) = 1

2ρ2
kT (x)∂V

∗(x)
∂x

. (8)

By substituting the saddle point solution (7) and (8) into (6),
we have the HJI equation

H (x,u∗, v∗, ∂V
∗

∂x
) = ∂V

∗T (x)
∂x

(f(x) + g(x)u + k(x)v)

+ xTΛx + uTRu − ρ2dT d

= ∂V
∗T (x)
∂x

f(x) − 1

4

∂V ∗
T

(x)
∂x

g(x)R−1gT (x)∂V
∗(x)
∂x

+ 1

4ρ2

∂V ∗
T

(x)
∂x

k(x)kT (x)∂V
∗(x)
∂x

+ xTΛx = 0

(9)

The following theorem investigates the Nash equilibrium of
system (1).

Theorem 1: Consider the nonlinear continuous-time system
(1). Let V (x) be a solution of the HJI equation (9) with
the optimal control input u∗ given as (7) and the worst
case adversarial input v∗ given as (8), then we have that
(i) the system can asymptotically stabilize to the equilibrium
point; (ii) the system is in Nash equilibrium with the solution
(u∗, v∗).

Proof: Choose the Lyapunov function as

Lv = V (x) = ∫
∞

t
(xTΛx + uTRu − ρ2vT v)dτ. (10)

The performance index can be represented as quadratic in
terms of the system state,

V (x) = xTPx (11)

where P is the unique symmetric positive definite matrix that
solves the following equation,

H (x,u∗, v∗, xTP ) = 0. (12)

Hence, V (x) = 0 if and only if x = 0. Considering (9), (11),
and (12), the time derivative of performance index V (x) for
t ≥ 0 along the closed-loop solution satisfies,

V̇ (x) = ∂V
T (x)
∂x

(f(x) + g(x)u + k(x)v)

= −(xTΛx + uTRu − ρ2dT d)
(13)

Assuming the condition g(x)R−1gT (x) ≻ kT (x)k(x) is sat-
isfied, we can upper bound

V̇ (x) ≤ −xTΛx (14)

with V̇ (x) = 0 if and only if x = 0. Therefore, the system
(1) is asymptotically stable in the equilibrium point (x = 0),
which completes the first part of the proof.

Since the system is asymptotically stable at the origin, we
can further conclude that V (x) = 0 when t →∞. Hence, the
cost function (2) can be rewritten as

J(x0, u, v)

=∫
∞

0
(xTΛx + uTRu − ρ2vT v)dτ + V (x0) + ∫

∞

0
V̇ ∗dτ

=∫
∞

0

⎛
⎝
xTΛx + uTRu − ρ2vT v + ∂V

∗T (x)
∂x

(f(x) + g(x)u

+ k(x)v)
⎞
⎠
dτ + xT0 Px0

(15)

where V ∗(x) is the optimal performance index.
Furthermore, considering the control action u∗ and the

adversarial input v∗ given in (7) and (8), respectively, we can
further rewrite equation (15) as

J(x0, u, v)

=∫
∞

0

⎛
⎝
xTΛx + ∂V

∗T (x)
∂x

f(x) + (uTRu + ∂V
∗T (x)
∂x

⋅ g(x)u) − ρ2(vT v − 1

ρ2

∂V ∗
T

(x)
∂x

k(x)v)
⎞
⎠
dτ + xT0 Px0

=∫
∞

0

⎛
⎝
(u − u∗)TR(u − u∗) − ρ2(v − v∗)T (v − v∗)

⎞
⎠
dτ

+ ∫
∞

0
H (x,u∗, v∗, ∂V

∗

∂x
)dτ + xT0 Px0.

(16)

Since H (x,u∗, v∗, ∂V
∗

∂x
) = 0, it becomes

J(x0, u, v)

=∫
∞

0
((u − u∗)TR(u − u∗) − ρ2(v − v∗)T (v − v∗))dτ

+ xT0 Px0.
(17)

Now, setting u = u∗, we obtain

J(x0, u
∗, v) = −ρ2 ∫

∞

0
(v − v∗)T (v − v∗)dτ + xT0 Px0. (18)

Setting v = v∗, we have

J(x0, u, v
∗) = ∫

∞

0
(u − u∗)TR(u − u∗)dτ + xT0 Px0. (19)

Finally, setting u = u∗ and v = v∗, we obtain

J(x0, u
∗, v∗) = xT0 Px0. (20)

Hence, it follows J(x0, u
∗, v) ≤ J(x0, u

∗, v∗) ≤ J(x0, u, v
∗),

and the Nash equilibrium is achieved, which completes the
proof. ∎



B. Observer Design

This subsection designs an observer based on the neural
network techniques to adaptively reconstruct the system inter-
nal state and dynamics in an online fashion. Specifically, we
rewrite the nonlinear system (1) as

ẋ = Fx + f ′(x) + g(x)u + k(x)v
y = Cx

(21)

where F is a Hurwitz matrix, which is chosen such that (C,F)
is observable, and f ′(x) = f(x) − Fx. Since x is restricted
to a compact set of x ∈ Rn, the unknown nonlinear function
f ′(x) + g(x)u + k(x)v can be reconstructed by a multilayer
neural network with sufficiently large number of hidden layer
neurons [55]. Therefore, we design a state network for such
nonlinear function

f ′(x) + g(x)u + k(x)v = ω∗To φ(x,u, v) + ϑ(x) (22)

where ω∗o = [ω∗f , ω∗g , ω∗k] is the ideal output weights of the state
network, which is bounded by ∣∣ω∗o ∣∣ ≤ ωoM , and ∣∣ϑ(x)∣∣ ≤
ϑM is the bounded neural network approximation error. The
activation function φ(x,u, v) is defined as

φ(x,u, v) =
⎡⎢⎢⎢⎢⎢⎣

φf(x)
φg(x)

φk(x)

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

1
u
v

⎤⎥⎥⎥⎥⎥⎦
(23)

in which φf(x), φg(x), and φk(x) are the bounded polyno-
mial basis functions, and therefore ∣∣φ(⋅)∣∣ ≤ φM .

Since the ideal weights ω∗o are unknown, we consider the
estimates ω̂o instead, so that

f ′(x̂) + g(x̂)u + k(x̂)v = ω̂To φ(x̂, u, v) (24)

where x̂ is the estimated system state. Define the output of the
observer as ŷ. Then, we have the dynamics of the developed
observer as

˙̂x = F x̂ + ω̂To φ(x̂, u, v) +L(y − ŷ)
ŷ = Cx̂

(25)

where L ∈ Rn×m is the observer gain which is designed
such that Fc = F − LC is a Hurwitz matrix. Since (C,F)
is observable, the gain L is guaranteed to exist.

Hence, define the objective function for the state network
as Eo = 1/2ỹ2, where ỹ = y − ŷ is the difference between the
real and estimated outputs. Then, the updating law becomes

˙̂ωo = −βo
∂Eo
∂ω̂o

= −βo(ỹTCF−1
c )

T

φ(x̂, u, v) (26)

where βo > 0 is the learning rate of the state network.
The following theorem is provided for the stability of the

established observer and the accuracy of the observation.
Theorem 2: For partially observable nonlinear system given

in (1) subject to the adversarial inputs, if the observer is
developed in (25) with the updating law in (26), then the
observation error x̃ = x − x̂ and the weights estimation error
ω̃o = ω∗o − ω̂o are uniformly ultimately bounded (UUB).

Proof: Define the Lyapunov function:

Lo =
1

2
x̃TT x̃ + tr(ω̃To ω̃o) (27)

where T is a positive definite matrix that satisfies

(F −LC)TT + T (F −LC) = −M (28)

in which M is a symmetric positive definite matrix, and tr(⋅)
denotes the matrix trace.

Considering the equations (21), (22) and (25), we have the
observation error as

˙̃x = (F −LC)x̃ + ω∗To φ(x,u, v) − ω̂To φ(x̂, u, v) + ϑ(x).
(29)

Define Θ = ω∗To [φ(x,u, v) − φ(x̂, u, v)] + ϑ(x) as the entire
approximation error. Then, the observation error (29) can be
rewritten as

˙̃x = (F −LC)x̃ + ω̃To φ(x̂, u, v) +Θ. (30)

Note that the entire approximation error Θ is a bounded term,
since ω∗o , φ(⋅) and ϑ are all bounded. This means ∣∣Θ∣∣ ≤ ξ for
the positive constant.

Therefore, the first derivative of (27) with respect to the
system trajectory becomes

L̇o =
1

2
˙̃xTT x̃ + 1

2
x̃TT ˙̃x + tr(ω̃To ˙̃ωo)

=1

2
((F −LC)x̃ + ω̃To φ(x̂, u, v) +Θ)

T

T x̃ + 1

2
x̃TT

⋅ ((F −LC)x̃ + ω̃To φ(x̂, u, v) +Θ) + tr(ω̃To ˙̃ωo)

=1

2
x̃T ((F −LC)TT + T (F −LC))x̃

+ x̃TT(ω̃To φ(x̂, u, v) +Θ)

+ tr(ω̃To βo(F −LC)−TCT ỹφ(x̂, u, v)).

(31)

Considering (28), we have

L̇o ≤ −
1

2
x̃TMx̃ + x̃TT(ω̃To φ(x̂, u, v) +Θ)

+ tr(ω̃To βo(F −LC)−TCTCx̃φ(x̂, u, v))

≤ − 1

2
λmin(M)∣∣x̃∣∣2 + ∣∣γ∣∣∣∣x̃∣∣ω̃MφM

+ ∣∣x̃∣∣∣∣T ∣∣ξ

(32)

where γ = βo((F − LC)−TCTC) + T and λmin(M) is the
minimal eigenvalue of M . Hence, L̇o < 0 as long as the
following condition is satisfied

∣∣x̃∣∣ > 2Γ

λmin(M)
(33)

where Γ = ∣∣γ∣∣ω̃MφM + ∣∣T ∣∣ξ. Therefore, based on the Lya-
punov method, x̃ and ω̃o are guaranteed to be UUB. This
completes the proof. ∎



C. Online Learning and Stability Analysis

This subsection develops an online learning control method
to estimate the optimal control input u and the worst case
adversarial input v without any information of the system
dynamics. To achieve this goal, we consider that the objectives
of the agent and the adversary are to minimize and maximize
the following performance index, respectively,

V (x) = ∫
∞

t
(xTΛx + uTRu − ρ2vT v)dτ. (34)

Therefore, we design a critic network to approximate the
performance index (34) as

V (x) = ω∗Tc φc(x) + σc(x) (35)

where ω∗c is the idea critic network weights, φc(x) is the
activation function and ∣∣σc(x)∣∣ ≤ σcM is the bounded critic
network error. Hence, we obtain

∂V (x)
∂x

= ∇φTc (x)ω∗c +∇σc(x) (36)

where ∇φc(x) = ∂φc(x)/∂x and ∇σc(x) = ∂σc(x)/∂x.
Since ω∗c is unknown, we consider the estimated critic

network weights ω̂c and achieve the corresponding estimated
performance index as

V̂ (x̂) = ω̂Tc φc(x̂) (37)

where x̂ is the estimated state from the designed observer (25).
Then, we have

∂V̂ (x̂)
∂x̂

= ∇φTc (x̂)ω̂c (38)

and the approximate form of Hamiltonian becomes

H (x̂, u, v, ∂V̂ (x̂)
∂x̂

) =(∇φTc (x̂)ω̂c)
T

˙̂x + x̂TΛx̂

+ uTRu − ρ2vT v

(39)

where ∇φc(x̂) = ∂φc(x̂)/∂x̂. Since the optimal Hamiltonian
H (x,u∗, v∗, ∂V

∗

∂x
) = 0, we define ec =H (x̂, u, v, ∂V̂ (x̂)

∂x̂
) as

the error function for the critic network.
Define the objective function for the critic network as Ec =

1
2
eTc ec. Hence, we have the updating law as

˙̂ωc = − βc
ε

(εT ε + 1)2
(ω̂Tc ε + x̂TΛx̂ + uTRu − ρ2vT v)

T

(40)

where ε = ∇φc(x̂) ˙̂x and βc > 0 is the learning rate of the critic
network.

Since ∂V̂ (x̂)
∂x

is the estimation of ∂V ∗(x)
∂x

, then substituting
(38) into (7) and (8), we obtain the online learning optimal
control input and the worst case adversarial input as

u = −1

2
R−1gT (x̂)∇φTc (x̂)ω̂c, (41)

v = 1

2ρ2
kT (x̂)∇φTc (x̂)ω̂c. (42)

The coefficient functions g(x̂) and k(x̂) can be determined
based on the developed observer (25) as

g(x̂) = ω̂To ∇φu(x̂, u, v) (43)

k(x̂) = ω̂To ∇φv(x̂, u, v) (44)

where ∇φu(x̂, u, v) = ∂φ(x̂, u, v)/∂u and ∇φv(x̂, u, v) =
∂φ(x̂, u, v)/∂v.

Therefore, instead of applying the action and adversarial
networks to estimate the control and adversarial inputs in
literature, our designed RL-based optimal control method
only requires the critic network with the help of established
observer to obtain both inputs in an online fashion. This will
significantly reduce the communication cost and computation
complexity. In addition, considering (41)-(44), this method
does not require any information of the system dynamics in
the learning process.

The following theorem will provide the stability of the
designed closed-loop control system.

Theorem 3: For the nonlinear continuous-time system
(1), the observer is designed in (25) with the state network
updating law (26), the critic network is established with the
updating law (40), the optimal control input is given by (41)
and the worst case adversarial input is provided by (42). Then,
all the signals of the closed-loop design are UUB.

Proof: Define the Lyapunov function as

Lsys = Lv +Lo +Lw

= V (x) + 1

2
x̃TT x̃ + tr(ω̃To ω̃o) + β−1

c tr(ω̃Tc ω̃c)
(45)

where

Lv = V (x), Lo =
1

2
x̃TT x̃ + tr(ω̃To ω̃o),

Lw = β−1
c tr(ω̃Tc ω̃c), ω̃c = ω∗c − ω̂c.

(46)

Consider the first derivative of (45). Based on Theorem 1 and
2, we know L̇v ≤ −xTΛx and L̇o < 0 as long as (33) is
satisfied. Therefore, only L̇w needs to be considered,

L̇w = β−1
c tr(ω̃Tc ˙̃ωc) (47)

where ˙̃ωc can be described as

˙̃ωc = βc
ε

(εT ε + 1)2
(εT ω̂c + x̂TΛx̂ + uTRu − ρ2vT v). (48)

Therefore,

L̇w = β−1
c tr
⎛
⎝
βcω̃

T
c

ε

(εT ε + 1)2
(εT ω̂c

+ x̂TΛx̂ + uTRu − ρ2vT v)
⎞
⎠

= β−1
c tr
⎛
⎝
− βcω̃Tc

εεT

(εT ε + 1)2
ω̃c + βcω̃Tc

⋅ ε

(εT ε + 1)2
(εTω∗c + x̂TΛx̂ + uTRu − ρ2vT v)

⎞
⎠
.

(49)



Define Ωε = ε
εT ε+1

and Φ = εTω∗c + x̂TΛx̂ + uTRu − ρ2vT v ≤
ΦM , we can further rewrite (49) as

L̇w ≤ −∣∣Ωε∣∣2∣∣ω̃c∣∣2 +
1

2
(βc∣∣Ωε∣∣2∣∣ω̃c∣∣2 +

∣∣Φ∣∣2

βc(εT ε + 1)2
)

≤ −(1 − βc/2)∣∣Ωε∣∣2∣∣ω̃c∣∣2 +
∣∣ΦM ∣∣2

2βc
.

(50)

Therefore L̇w < 0, if βc < 2 and ∣∣ω̃c∣∣ > ∣∣ΦM ∣∣√
(2−βc)βc∣∣Ωε∣∣

. In this
way, the first derivative of (45) becomes

L̇sys = L̇v + L̇o + L̇w < 0. (51)

This means all signals of the closed-loop system is ensured as
UUB, which concludes the proof. ∎

IV. SIMULATION RESULTS

To verify the developed control method, this section pro-
vides a torsional pendulum system [56] with the adversarial
input whose dynamics can be described as

{ θ̇ = α
Jα̇ = u + v −Mgl sin θ − fdθ̇

(52)

where θ and α are the angle position and the angular velocity
of the pendulum, respectively, u and v are the control input
and the adversarial input applied on the system, respectively,
and other parameters are provided as follows:
M = 1/3 kg, is the mass of the pendulum;
l = 2/3 m, is the length of the pendulum;
J = 4/3 kg ⋅ m2, is the rotary inertia;
g = 9.8 m/s2, is the acceleration of gravity;
fd = 0.2 N ⋅ m ⋅ s/rad, is the frictional factor.
Here, we define the state vector of the torsional pendu-

lum system as x = [θ,α] = [x1, x2], with the initial state
x0 = [0.5,−0.5]. Assume that only the angle position θ can
be measured at the output, which is

y = x1 = θ. (53)

Therefore, only x1 is the measurable feedback which means
C = [1,0] in this example.

The developed RL-based control method is applied to solve
the problem. To recover the hidden state from the output,
an observer is established based on (25) with the parameters
F = [0,1;−1,−2] and L = [1,−1]T . The state network of
the observer is chosen as a three-layer structure as 4 − 8 − 1
(i.e., four input neurons, eight hidden neurons, and one output
neuron). A critic network is also built with the structure as
4 − 6 − 1 to estimate the performance index . The inputs for
both observer and critic network are [x1, x2, u, v]. The initial
learning rates of both neural networks are set to be 0.1 and are
decreased by 0.05 every five time steps until they reach 0.005
and stay thereafter. The initial weights are chosen randomly
within [−0.5,0.5]. Let Λ = I2, R = I , and ρ = 5, where In
is the identity matrix with n dimensions. The control action
and adversarial input are designed based on (41) and (42),
respectively.

Fig. 1. The trajectories of the system states.

Fig. 2. The observation errors of the designed observer with e1 = x̃1, e2 = x̃2.

Fig. 3. The trajectories of the control input u and the adversarial input v.



Fig. 4. The critic neural network weights updates.

The results are provided as follows. The trajectories of the
system states under the developed control is provided in Fig.
1. We observe that the states can converge to the equilibrium
point even in the adversarial environment. Fig. 2 provides the
observation errors during the learning process. It is shown that
the state errors can quickly decrease to zero and stay thereafter,
which means the developed observer can identify the unknown
system dynamics from the output feedback. Furthermore, both
the control action u and the adversarial input v in the learning
process are shown in Fig. 3. In addition, Fig. 4 shows the
trajectories of the critic network weights. We can observe
that the weights converge after 10s, which means the learning
process is optimal.

V. CONCLUSION

This paper designed a RL-based optimal control method
for unknown nonlinear system in an adversarial environment.
Since the internal state is unavailable during the learning
process, an observer was established to reconstruct the system
dynamics from the output feedback. This design could also
adaptively derive the control and adversarial coefficient func-
tions and therefore reduce the computation complexity. A critic
network was built to estimate the corresponding performance
index. The explicit stability analysis of the designed closed-
loop system was provided based on the Lyapunov construct.
Finally, the numerical experiment showed the efficiency and
performance of the developed control method.
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