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Abstract—This article considers an event-driven H∞ control
problem of continuous-time nonlinear systems with asymmetric
input constraints. Initially, the H∞-constrained control problem
is converted into a two-person zero-sum game with the discounted
nonquadratic cost function. Then, we present the event-driven
Hamilton–Jacobi–Isaacs equation (HJIE) associated with the
two-person zero-sum game. Meanwhile, we develop a novel event-
triggering condition making Zeno behavior excluded. The present
event-triggering condition differs from the existing literature in
that it can make the triggering threshold non-negative with-
out the requirement of properly selecting the prescribed level
of disturbance attenuation. After that, under the framework of
adaptive critic learning, we use a single critic network to solve the
event-driven HJIE and tune its weight parameters by using his-
torical and instantaneous state data simultaneously. Based on the
Lyapunov approach, we demonstrate that the uniform ultimate
boundedness of all the signals in the closed-loop system is guar-
anteed. Finally, simulations of a nonlinear plant are presented to
validate the developed event-driven H∞ control strategy.

Index Terms—Adaptive critic learning (ACL), adaptive
dynamic programming (ADP), asymmetric constraints, event-
driven H∞ control, reinforcement learning (RL).

I. INTRODUCTION

IN THE control community, many studies on H∞ control
problems of nonlinear systems have been done over the

past decades [1]–[3]. This is because the H∞ control method
provides a promising way to design robust controllers for non-
linear systems, in particular, the robust optimal controllers.
According to Basar and Bernhard’s theory [4], the H∞ optimal
control problem can be transformed into the zero-sum game,
which is in essence the minimax optimization problem. Thus,
instead of directly solving the H∞ optimal control problems,
researchers often tend to solve the zero-sum games [5], [6],
which are able to be solved via adaptive critic learning (ACL).
ACL is an effective and powerful technique introduced to cope

Manuscript received September 25, 2019; revised December 22, 2019;
accepted February 4, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 61973228, and in part
by the National Science Foundation under Grant ECCS 1917275. This arti-
cle was recommended by Associate Editor D. Zhao. (Corresponding author:
Haibo He.)

Xiong Yang is with the School of Electrical and Information Engineering,
Tianjin University, Tianjin 300072, China (e-mail: xiong.yang@tju.edu.cn).

Haibo He is with the Department of Electrical, Computer and Biomedical
Engineering, University of Rhode Island, Kingston, RI 02881 USA (e-mail:
haibohe@uri.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2020.2972748

with optimization problems, which is built on the theories
of dynamic programming and neural networks. As pointed
out by [7], ACL, adaptive dynamic programming (ADP) [8],
and reinforcement learning (RL) [9] are often considered syn-
onyms because they have nearly the same characteristics in
solving optimization problems. In this article, we view ADP
and RL as the members of ACL’s family. The past few years
have witnessed various ACL (including ADP and RL) methods
applied to handle H∞ control problems or zero-sum games,
such as policy iteration ADP [10], robust ADP [11], integral
RL [12], and off-policy RL [13], [14].

Though the above-mentioned ACL (or rather, ADP and RL)
could solve the H∞ control problems or the zero-sum games,
they were all implemented in a time-driven mechanism (note:
the control policies developed in the time-driven mechanism
were implemented periodically). As mentioned by [15], the
periodic control policies often lead to inefficient use of limited
resources, such as computation bandwidths and communica-
tion resources. To address this deficiency, the event-driven
control methods were proposed (note: the event-driven con-
trol policies were often implemented aperiodically [16], [17]).
According to [18], the core of designing event-driven con-
trollers is to set an appropriate event-triggering condition.
Specifically, the proposed event-triggering condition should
not only have the non-negative triggering threshold but also
prevent the Zeno behavior from happening. However, when
designing the event-driven H∞ controllers, one often sets
the event-triggering condition corresponding to the prescribed
level of disturbance attenuation [i.e., the parameter γ in
later (4)]. Thus, one needs to properly choose γ to make the
event-triggering threshold non-negative (note: the prescribed
level of disturbance attenuation [i.e., γ ] is often involved
in the negative term constituting the triggering threshold
(see [19, Theor. 1]). It is often challenging to provide such
a parameter γ . How to avoid such a challenge is an issue to
be addressed in this article. On the other hand, when solving
the event-driven H∞ control problems (or rather, the zero-sum
games), one usually updates the control policy in the event-
driven mechanism and tunes the disturbance policy in the
time-driven mechanism. What if the disturbance policy is also
updated in the event-driven mechanism? Is there any influence
on designing the H∞ controller when considering the event-
driven disturbance? This article will also address this problem.

In industry applications, there are often restrictions imposed
on the controllers/actuators because of the safety consid-
eration (such as voltages and temperature) as well as the
controllers’/actuators’ physical characteristics. Though studies
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exist on designing event-driven H∞ controllers for input-
constrained nonlinear systems, they almost focused on non-
linear plants with symmetric input constraints (see the related
work below). Few of them studied the event-driven H∞ con-
trol problem of nonlinear systems with asymmetric input
constraints. Actually, when considering asymmetric input con-
straints, we can see that the optimal control will not stay at
zero when the steady state is obtained [see Remark 1 2) and
Fig. 3 in Section IV]. This feature is totally different from
the case with systems that have symmetric input constraints.
Thus, we need novel approaches to handle this characteristic.
This is another issue and will be addressed in this article.

A. Related Work

For continuous-time (CT) nonlinear systems without con-
trol constraints, Wang et al. [19] suggested an improving critic
learning criterion to design the event-based H∞ controller for
affine-input nonlinear systems. After that, Wang et al. [20]
extended the work of Wang et al. [19] to develop an event-
driven H∞ control strategy for unknown nonlinear systems.
Apart from the time-driven identifier employed in [20], they
used a unique critic network in both [19] and [20] to solve the
event-driven Hamilton–Jacobi–Isaacs equation (HJIE). Later,
by using neuro-dynamic programming, Zhao et al. [21]
proposed a novel event-triggered H∞ optimal control scheme
for CT nonlinear systems. In [19]–[21], an exploration signal
was added to make the persistency of excitation (PE) condition
satisfied. To relax the PE condition, Zhang et al. [22] utilized
the concurrent learning technique combined with the same
structure as [19] to solve the nonlinear H∞ optimal control
problem. The disturbance policies in [19]–[22] were updated
in the time-driven mechanism. Recently, Xue et al. [23]
presented an event-triggered ADP to solve the zero-sum game
of partially unknown nonlinear systems. To implement the
event-triggered ADP, the control policy and the disturbance
policy were tuned in the event-driven mechanism. However,
just as mentioned before, the event-triggering thresholds given
in [19]–[23] all depended on properly choosing the prescribed
level of disturbance attenuation [i.e., the parameter γ in
later (4)]. More recently, Yang et al. [24] proposed an H∞
containment intermittent control scheme for a directed graph
via solving the game algebraic Riccati equation. The event-
triggering threshold also relied on selecting the appropriate
parameter γ . Generally, it is very technical to select a suitable
γ in the aforementioned literature to make the event-triggering
threshold non-negative.

For CT nonlinear systems having control constraints,
Wang et al. [25] suggested an ACL method to design the
input-constrained nonlinear H∞ feedback controller in the
event-driven mechanism. After that, Yang et al. [26] obtained
the robust event-driven control of input-constrained nonlinear
systems by applying an RL to solve the H∞-constrained con-
trol problem. Both Wang et al. [25] and Yang et al. [26] imple-
mented their disturbance policies in the time-driven mecha-
nism. In addition, similar to [19]–[24], they also needed to
appropriately choose the prescribed level of disturbance atten-
uation to keep the event-triggering threshold non-negative.

Recently, Wang et al. [27] developed an ADP approach to
derive the robust optimal event-driven control of constrained
nonlinear systems subject to the external disturbance. The
crucial features distinguishing [27] and [25], [26] lie in that
the work of [27] not only tunes the control policy and the
disturbance policy in an event-driven mechanism but also
has a non-negative event-triggering threshold. However, the
condition that g(x)gT(x) ≥ γ 2k(x)kT(x) must be satisfied
(see [27, Theor. 1]). In general, it is challenging to make
this condition hold. Furthermore, the control constraints given
in [25]–[27] are all symmetric, that is, the symmetric input
constraints.

B. Contribution

The contributions of this article have three aspects. First,
we present a novel event-triggering condition for designing
the nonlinear H∞-constrained controller. The selection of the
prescribed level of disturbance attenuation [i.e., the parameter
γ in (4)] will not affect whether the event-triggering thresh-
old is positive or not [see (15)]. Thus, we can overcome
the difficulty in choosing a proper γ to make the event-
triggering threshold non-negative, which is an advantage.
Second, with the introduction of a discounted cost function,
the present ACL approach can handle the event-driven H∞
control problem of nonlinear systems with asymmetric input
constraints. Therefore, the present ACL method has an advan-
tage in applying for a wider scope of nonlinear systems, in
particular, nonlinear plants suffering from asymmetric input
constraints. Third, when implementing the event-driven ACL
developed in this article, we tune both the control policy and
the disturbance policy in the event-driven mechanism. Thus,
the computational load can be remarkably reduced in compar-
ison with those literature that only updates the control policy
in the event-driven mechanism (see Table II). This is another
advantage.

C. Notation

R is the set of real numbers. Rm and R
n×m are the spaces of

real m-vectors and n×m matrices, respectively. T is the trans-
position symbol. “�” and “C1” mean “equal by definition” and
“the function with continuous derivative,” respectively. For the
vector x ∈ R

m, ‖x‖ denotes its norm. For the constant matrix
Q ∈ R

n×n, ‖Q‖ and λmin(Q) denote its Frobenius-norm and
minimum eigenvalue, respectively.

II. PROBLEM FORMULATION

We consider the CT nonlinear systems of the form

ẋ(t) = f (x(t)) + g(x(t))u(t) + k(x(t))ω(t) (1)

where x(t) ∈ R
n is the state variable with its initial value

x0 = x(t0), u(t) ∈ U ⊂ R
m is the control input, and U is

the set consisting of control policies with asymmetric bounds,
that is

U = {
(u1, u2, . . . , um) ∈ R

m : umin ≤ ui ≤ umax

|umin| 	= |umax|, i = 1, 2, . . . ,m
}
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with umin ∈ R and umax ∈ R denoting the minimum and
maximum bound of every ui ∈ R, respectively; ω(t) ∈ R

q is
an exogenous disturbance with ω(t) ∈ L2[0,∞); and f (x) ∈
R
n, g(x) ∈ R

n×m, and k(x) ∈ R
n×q are known continuously

differentiable functions.
Assumption 1: f (0) = 0, that is, x = 0 is the equilibrium

point of system (1) when u = 0 and ω = 0 [or g(0) = 0
and ω = 0]. Moreover, f (x)+ g(x)u+ k(x)ω has the Lipschitz
property making that x = 0 is the unique equilibrium point
over the compact set � (note: 0 ∈ � ⊂ Rn).
Assumption 2: For every x ∈ R

n, ‖g(x)‖ ≤ gM and
‖k(x)‖ ≤ kM with gM > 0 and kM > 0 being the known
constants. In addition, g(0) = 0.

Next, we introduce a necessary definition derived from [28].
Definition 1 [Uniform Ultimate Boundedness (UUB)]: The

solution x(t) of system (1) is said to be stable in the sense of
UUB, if there exists a compact set � ⊂ R

n such that, for each
x(t0) = x0 ∈ �, there exist a constant ε > 0 (independent of
t0 ≥ 0) and a number T = T(ε, x0) such that ‖x(t)‖ < ε for
all t ≥ t0 + T .

Noticing that system (1) is subject to asymmetric input
constraints, inspired by [2], we define the fictitious output as

‖z(t)‖2 = Q(x(t)) + R(u(t)) (2)

where Q(x) = xTQx, Q ∈ R
n×n is a positive-definite matrix

R(u) = 2β

m∑

i=1

∫ ui

b
ψ−1

(
β−1(si − b)

)
dsi

with

β = (umax − umin)/2, b = (umax + umin)/2 (3)

and ψ−1(·) ∈ C1(�) is an odd monotonic function (note:
ψ−1(0) = 0). In this article, we let ψ−1(·) be the hyperbolic
tangent function, that is, ψ−1(·) = tanh−1(·).

Similar to the classic H∞ control problem stated in [1], the
goal of this article is to find a suitable state-feedback control
u(x) such that system (1) not only is stable in the sense of
UUB but also has L2-gain no larger than γ , that is
∫ ∞

t
e−ρ(τ−t)‖z(τ )‖2dτ =

∫ ∞

t
e−ρ(τ−t)(Q(x) + R(u))dτ

≤ γ 2
∫ ∞

t
e−ρ(τ−t)‖ω(τ)‖2dτ (4)

where ρ > 0 is called the discount factor and γ > 0 is the
prescribed level of disturbance attenuation. Here, we introduce
the decay term e−ρ(τ−t) in order to guarantee the convergence
of

∫∞
t e−ρ(τ−t)‖z(τ )‖2dτ .

To achieve the above-mentioned goal, according to [2], we
convert the H∞ control problem into a two-person zero-sum
game as follows:

V∗(x(t)) = min
u

max
ω

J(x(t), u, ω) (5)

where

J(x(t), u, ω) =
∫ ∞

t
e−ρ(τ−t)S(x(τ ), u(τ ), ω(τ))dτ

with S(x, u, ω) = Q(x) + R(u) − γ 2‖ω‖2. Here, J(x(t), u, ω)

is the discounted cost function for system (1), and V∗(x(t))
denotes the optimal value of J(x(t), u, ω).

Applying Bellman’s optimality principle to V∗(x(t)) in (5)
and taking its time derivative, we obtain

min
u

max
ω

H
(
x,V∗

x , u, ω
) = 0 (6)

where

H
(
x,V∗

x , u, ω
) = (

V∗
x

)T
(f (x) + g(x)u + k(x)ω)

− ρV∗(x) + Q(x) + R(u) − γ 2‖ω‖2 (7)

with V∗
x = ∂V∗(x)/∂x. According to [2], (6) is called the HJIE

and H(x,V∗
x , u, ω) in (7) is called the Hamiltonian for u, ω,

and V∗
x .

Using the stationarity condition [29, Theor. 5.8] [i.e.,
∂H(x,V∗

x , u, ω)/∂u = 0 and ∂H(x,V∗
x , u, ω)/∂ω = 0], we

have the optimal control and the worst disturbance, respec-
tively, formulated as

u∗(x) = −β tanh

(
1

2β
gT(x)V∗

x

)
+ �b (8)

ω∗(x) = 1

2γ 2
kT(x)V∗

x (9)

where �b = [b, b, . . . , b]T ∈ R
m with b ∈ R being defined as

in (3).
Remark 1: Two explanations related to u∗(x) in (8) and

ω∗(x) in (9) are given as follows.
1) (u∗(x), ω∗(x)) is called the saddle point of two-person

zero-sum game (5) if minu maxω H(x,V∗
x , u, ω) =

maxω minu H(x,V∗
x , u, ω) (i.e., Isaacs’s condition holds).

According to [2], such an Isaacs’s condition holds when
the optimal control u∗(x) in (8) and the worst disturbance
ω∗(x) in (9) are derived.

2) u∗(x) in (8) implies that u∗(0) 	= 0 (note: �b 	= 0). In
order to make the equilibrium point of system (1) to
zero, that is, x = 0, we have to impose a condition that
g(0) = 0 (see Assumption 2).

Inserting (8) and (9) into (6), we find that the HJIE is able
to be rewritten as

(
V∗
x

)T
f (x) − ρV∗(x) + Q(x) + (

V∗
x

)T
g(x)�b

− β
(
V∗
x

)T
g(x) tanh

(
1

2β
gT(x)V∗

x

)

+ R
(

−β tanh

(
1

2β
gT(x)V∗

x

)
+ �b

)

+ 1

4γ 2

(
V∗
x

)T
k(x)kT(x)V∗

x = 0. (10)

Due to the nature of nonlinearity in the HJIE (10), we
often cannot obtain its analytical solution. Thus, many efforts
were made to derive the numerical/approximate solutions of
HJIEs like (10) (see [30]–[32]). Nonetheless, as illustrated
in [30]–[32], the HJIE like (10) was generally solved in
a time-driven mechanism. Due to the deficiencies of time-
driven control methods stated in Section I, we will solve (10)
approximately in an event-driven mechanism.
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III. EVENT-DRIVEN H∞-CONSTRAINED CONTROL

To make this section self-contained, we first present the
event-driven mechanism introduced in [20]. Meanwhile, based
on such a mechanism, we develop the event-driven HJIE.
Then, we set an event-triggering condition and prove that it
excludes the Zeno behavior. After that, we use an ACL to
solve the event-driven HJIE. Finally, we conduct a stability
analysis of the closed-loop system.

A. Event-Driven Mechanism and Related Event-Driven HJIE

We denote the jth triggering instant as tj and write tj < tj+1,
j ∈ {0, 1, 2, . . .}. Letting all the triggering instants together, we
obtain the sequence {tj}+∞

j=0 . At each triggering instant tj, the
system state is sampled and written as

x̂j = x(tj), j ∈ {0, 1, 2, . . .}.

Generally, prior to releasing the next triggering instant tj+1,
there occurs a gap between the sampled state x̂j and the cur-
rent state x(t). We describe the gap via an error function
formulated as

ej(t) = x̂j − x(t), t ∈ [tj, tj+1). (11)

Based on (11), we can briefly introduce the event-driven mech-
anism as follows. If the event is triggered, that is, t = tj, then
ej(tj) = 0 holds. In this situation, we update the control poli-
cies. If the event is not triggered (or rather, the event-triggering
threshold is not overrode), that is, t 	= tj, then ej(t) 	= 0. In this
circumstance, we keep the control policies unchanged over the
interval [tj, tj+1), j ∈ {0, 1, 2, . . .}. This technique is known as
the zero-order hold [18] and described as

μ(x̂j, t) = u(x̂j) = u(x(tj)), t ∈ [tj, tj+1).

Using the above-stated event-driven mechanism, we obtain the
optimal event-driven control from (8) as (note: t ∈ [tj, tj+1))

μ∗(x̂j, t) = u∗(x̂j) = −β tanh

(
1

2β
gT(x̂j)V

∗
x̂j

)
+ �b (12)

where V∗
x̂j

= (∂V∗(x)/∂x)|x=x̂j .
Likewise, according to the aforementioned event-driven

mechanism and using (9), we have the worst event-driven
disturbance formulated as

ν∗(x̂j, t) = ω∗(x̂j) = 1

2γ 2
kT(x̂j)V

∗
x̂j
, t ∈ [tj, tj+1). (13)

Remark 2: From (12) and (13), we can find that μ∗(x̂j, t)
and ν∗(x̂j, t) [or rather, u∗(x̂j) and ω∗(x̂j)] are in the essence
of the discretized values of u∗(x) in (8) and ω∗(x) in (9)
at the triggering instant tj, respectively. For convenience, we
write μ∗(x̂j, t) and ν∗(x̂j, t) as μ∗(x̂j) and ν∗(x̂j) without
emphasizing t ∈ [tj, tj+1) in subsequent discussion.

Let u and ω in (6) be replaced with u∗(x̂j) in (12) and ω∗(x̂j)
in (13), respectively. Then, at the triggering instants t = tj,

j ∈ {0, 1, 2, . . .}, we have the event-driven HJIE formulated as

(
V∗
x

)T
f (x) − ρV∗(x) + Q(x) + (

V∗
x

)T
g(x)�b

− β
(
V∗
x

)T
g(x) tanh

(
1

2β
gT(x̂j)V

∗
x̂j

)

+ 1

2γ 2

(
V∗
x

)T
k(x)kT(x̂j)V

∗
x̂j

+ R
(

−β tanh

(
1

2β
gT(x̂j)V

∗
x̂j

)
+ �b

)

− 1

4γ 2

(
V∗
x̂j

)T
k(x̂j)k

T(x̂j)V
∗
x̂j

= 0. (14)

B. Event-Triggering Condition and Zeno Behavior Analysis

Before solving the event-driven HJIE (14), we provide the
event-triggering condition. First, we impose an assumption
having the same feature as it used in [33]–[35].
Assumption 3: There exist two Lipschitz constants Ku∗ > 0

and Kω∗ > 0 such that for every x, x̂j ∈ �

∥∥u∗(x) − u∗(x̂j)
∥∥ ≤ Ku∗‖x − x̂j‖ = Ku∗‖ej(t)‖∥∥ω∗(x) − ω∗(x̂j)
∥∥ ≤ Kω∗‖x − x̂j‖ = Kω∗‖ej(t)‖.

Since μ∗(x̂j, t) = u∗(x̂j) and ν∗(x̂j, t) = ω∗(x̂j) (see (12)
and (13), respectively), we further have

∥∥u∗(x) − μ∗(x̂j)
∥∥ ≤ Ku∗‖ej(t)‖∥∥ω∗(x) − ν∗(x̂j)
∥∥ ≤ Kω∗‖ej(t)‖.

Theorem 1: Given that V∗(x) is the solution of HJIE (10).
Let Assumptions 1–3 hold. Then, μ∗(x̂j) in (12) can force
system (1) with the worst disturbance ν∗(x̂j) in (13) to be
stable in the sense of UUB if the triggering condition is set as

‖ej(t)‖2 ≤
(
1 − η2

)
λmin(Q)

2
(
K2
u∗ + γ 2K2

ω∗
) ‖x(t)‖2 � ēT(t) (15)

where γ > 0 is given in (4), 0 < η < 1, and Ku∗ and Kω∗ are
Lipschitz constants given in Assumption 3, and ēT(t) is the
event-triggering threshold.
Proof: Since V∗(x) is the solution of HJIE (10), we can

find V∗(x) ≥ 0 (see [1]). Thus, we take V∗(x) as the
Lyapunov function candidate. Differentiating V∗(x) along with
the solution of ẋ = f (x) + g(x)μ∗(x̂j) + k(x)ν∗(x̂j), it follows:

V̇∗(x) = (
V∗
x

)T(
f (x) + g(x)μ∗(x̂j) + k(x)ν∗(x̂j)

)

= (
V∗
x

)T(
f (x) + g(x)u∗(x) + k(x)ω∗(x)

)

+ (
V∗
x

)T
g(x)

(
μ∗(x̂j) − u∗(x)

)

+ (
V∗
x

)T
k(x)

(
ν∗(x̂j) − ω∗(x)

)
. (16)

According to (6)–(9), there holds
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
V∗
x

)T
(f (x) + g(x)u∗(x) + k(x)ω∗(x))

= γ 2‖ω∗(x)‖2 + ρV∗(x) − Q(x) − R(u∗(x))
(
V∗
x

)T
g(x) = −2β

(
tanh−1((u∗(x) − �b)/β)

)T
(
V∗
x

)T
k(x) = 2γ 2(ω∗(x))T.

(17)
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Then, using (17), we have (16) further developed as

V̇∗(x) = 2β
(

tanh−1((u∗(x) − �b)/β
))T(

u∗(x) − μ∗(x̂j)
)

︸ ︷︷ ︸
�1

+ 2γ 2(ω∗(x)
)T(

ν∗(x̂j) − ω∗(x)
)

︸ ︷︷ ︸
�2

+γ 2
∥∥ω∗(x)

∥∥2

+ ρV∗(x) − Q(x) − R(
u∗(x)

)
. (18)

Applying Young’s inequality 2cTd ≤ ‖c‖2 +‖d‖2 (note: c and
d are vectors having proper dimensions and the same below)
to �1 in (18) and using Assumption 3 as well as the second
equation of (17), we find

�1 ≤
∥∥∥β tanh−1((u∗(x) − �b)/β

)∥∥∥
2 + ∥∥u∗(x) − μ∗(x̂j)

∥∥2

≤ 1

4

∥∥∥
(
V∗
x

)T
g(x)

∥∥∥
2 + K2

u∗‖ej(t)‖2.

Likewise, using the above-mentioned Young’s inequality and
Assumption 3, we have

�2 ≤ γ 2
∥∥ω∗(x)

∥∥2 + γ 2
∥∥ν∗(x̂j) − ω∗(x)

∥∥2

≤ γ 2
∥∥ω∗(x)

∥∥2 + γ 2K2
ω∗‖ej(t)‖2.

Thus, (18) yields

V̇∗(x) ≤ −Q(x) − R(
u∗(x)

)

+
(
K2
u∗ + γ 2K2

ω∗
)
‖ej(t)‖2 + 1

4

∥∥∥
(
V∗
x

)T
g(x)

∥∥∥
2

+ 2γ 2
∥∥ω∗(x)

∥∥2 + ρV∗(x). (19)

As stated in [2], V∗(x) is continuously differentiable on �.
Thus, both V∗(x) and V∗

x are bounded on �. To facilitate later
discussion, we denote max{‖V∗(x)‖, ‖V∗

x ‖} ≤ δV∗ with δV∗ >

0 being the constant. Then, using Assumption 2 and noticing
the facts that Q(x) = xTQx ≥ λmin(Q)‖x‖2 and −R(u∗(x)) ≤
0, we have (19) developed as

V̇∗(x) ≤ −
(
1 + η2

)

2
λmin(Q)‖x‖2

−
(
1 − η2

)

2
λmin(Q)‖x‖2

+
(
K2
u∗ + γ 2K2

ω∗
)
‖ej(t)‖2 + a0 (20)

where

a0 = (1/2)k2
Mδ2

V∗/γ 2 + (1/4)g2
Mδ2

V∗ + ρδV∗ .

Letting (15) hold, we derive from (20) that

V̇∗(x) ≤ −
(
1 + η2

)

2
λmin(Q)‖x‖2 + a0.

Thus, V̇∗(x) < 0 holds if x /∈ �x with �x being defined as

�x =
{

x : ‖x‖ ≤
√

2a0(
1 + η2

)
λmin(Q)

}

.

Using the Lyapunov theorem extension [28], we obtain UUB
of x with its ultimate bound being

√
2a0/((1 + η2)λmin(Q)).

That is, system (1) with the worst disturbance ν∗(x̂j) in (13) is

guaranteed to be stable in the sense of UUB under the optimal
control μ∗(x̂j) in (12).
Remark 3: Theorem 1 presents a triggering condition [that

is, (15)] for designing the event-driven H∞-constrained con-
troller. As stated in Section I, the proposed triggering con-
dition must have a non-negative event-triggering threshold.
Apparently, the triggering threshold ēT(t) in (15) is non-
negative under the condition η ∈ (0, 1). In other words, the
selection of the prescribed level of disturbance attenuation
[i.e., γ in (4)] does not affect whether ēT(t) is positive or not.
This characteristic is different from [19]–[26], which need to
properly choose the prescribed level of disturbance attenuation
[i.e., γ in (4)] to make the triggering threshold non-negative.

Next, we show that the Zeno behavior is excluded.
According to [36, Theor. III.1], the Zeno behavior can be
obviated if the minimal intersample time minj{Tj} (note:
Tj = tj+1 − tj) is positive. Now, we prove minj{Tj} > 0 with
the triggering condition (15). To facilitate later discussion, we
introduce another assumption derived from Assumptions 1–3.

Assumption 4: There exist positive constants l1, l2, and c0
such that, for all x, x̂j ∈ �

∥∥f (x) + g(x)μ∗(x̂j) + k(x)ν∗(x̂j)
∥∥ ≤ l1‖x‖ + l2‖ej(t)‖ + c0.

Theorem 2: Consider system (1) with the optimal event-
driven control μ∗(x̂j) in (12) and the worst disturbance ν∗(x̂j)
in (13). Suppose that Assumption 4 holds and the triggering
condition is set as (15). Then, there holds minj{Tj} > 0, where
Tj = tj+1 − tj, j ∈ {0, 1, 2, . . .}.

Proof: See Appendix A.

C. ACL for Solving the Event-Driven HJIE

Within the framework of ACL, the event-driven HJIE (14)
will be solved in this section through a single critic network.
According to [37], V∗(x) can be restated via a neural network
over � as

V∗(x) = WT
c σc(x) + εc(x) (21)

where Wc ∈ R
ñc is the ideal weight vector to be deter-

mined, ñc ∈ R is the number of neurons, σc(x) =
[σc1(x), σc2(x), . . . , σcñc(x)]

T ∈ R
ñc is the activation function

vector with σc1(x), σc2(x), . . . , σcñc(x) being linearly indepen-
dent (note: σci(x) ∈ C1(�) and σci(0) = 0, i = 1, 2, . . . , ñc),
and ε(x) ∈ R is the approximation error.

The derivative of V∗(x) in (21) at the sampled state x̂j is

V∗
x̂j

= ∂V∗(x)
∂x

∣∣∣∣
x=x̂j

= ∇σT
c (x̂j)Wc + ∇εc(x̂j) (22)

where ∇C(x̂j) = (∂C(x)/∂x)|x=x̂j with C(·) = σc(·) or εc(·).
Using (22), we can rewrite the optimal event-driven control

μ∗(x̂j) in (12) as (note: t ∈ [tj, tj+1))

μ∗(x̂j) = −β tanh
(A1(x̂j)

) + εμ∗(x̂j) + �b (23)

where

A1(x̂j) = 1

2β
gT(x̂j)∇σT

c (x̂j)Wc
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εμ∗(x̂j) = −1

2

(
Im − C (h(x̂j))

)
gT(x̂j)∇εc(x̂j)

with Im being the m × m identity matrix and C (h(x̂j)) =
diag{tanh2(h1(x̂j)), tanh2(h2(x̂j)), . . . , tanh2(hm(x̂j))}. Here,
h(x̂j) = [h1(x̂j), h2(x̂j), . . . , hm(x̂j)]T ∈ R

m with h(x̂j) ∈ R
m

being chosen between (1/(2β))gT(x̂j)∇V∗(x̂j) and A1(x̂j).
Likewise, utilizing (22), we can restate the worst event-

driven disturbance ν∗(x̂j) in (13) as (note: t ∈ [tj, tj+1))

ν∗(x̂j) = 1

2γ 2
kT(x̂j)∇σT

c (x̂j)Wc + εν∗(x̂j) (24)

where εν∗(x̂j) = kT(x̂j)∇εc(x̂j)/(2γ 2).
Because Wc is to be determined (or rather, unavailable),

we cannot implement μ∗(x̂j) in (23) and ν∗(x̂j) in (24). To
cope with this problem, we consider the approximate value of
V∗(x), denoted by V̂∗(x), which is regarded as the output of
the critic network, that is

V̂(x) = ŴT
c σc(x) (25)

with Ŵc being the weight vector applied to estimate the
ideal/unavailable weight vector Wc.

Using (25) and taking the same procedure of deriving μ∗(x̂j)
in (23), we obtain the estimated value of μ∗(x̂j) as

μ̂(x̂j) = −β tanh
(A2(x̂j)

) + �b, t ∈ [tj, tj+1) (26)

where

A2(x̂j) = 1

2β
gT(x̂j)∇σT

c (x̂j)Ŵc.

Similarly, we have the estimated value of ν∗(x̂j) in (24)
formulated as

ν̂(x̂j) = 1

2γ 2
kT(x̂j)∇σT

c (x̂j)Ŵc, t ∈ [tj, tj+1). (27)

On the other hand, using (8) and (9), we derive from (6) that

H
(
x,V∗

x , u∗(x), ω∗(x)
) = 0. (28)

Replacing V∗
x , u∗(x), and ω∗(x) in (28) with V̂x, μ̂(x̂j), and

ν̂(x̂j), respectively, we are able to present the approximate
Hamiltonian as (note: t ∈ [tj, tj+1))

Ĥ
(
x, V̂x, μ̂(x̂j), ν̂(x̂j)

)

= ŴT
c ∇σc(x)

(
f (x) + g(x)μ̂(x̂j) + k(x)ν̂(x̂j)

)

− ρŴT
c σc(x) + Q(x) + R(

μ̂(x̂j)
) − γ 2

∥∥ν̂(x̂j)
∥∥2

.

Then, like [19], we describe the gap between
Ĥ(x, V̂x, μ̂(x̂j), ν̂(x̂j)) and H(x,V∗

x , u∗(x), ω∗(x)) through
an error function

ec = Ĥ
(
x, V̂x, μ̂(x̂j), ν̂(x̂j)

)
− H

(
x,V∗

x , u∗(x), ω∗(x)
)

= ŴT
c φ + Q(x) + R(

μ̂(x̂j)
) − γ 2

∥∥ν̂(x̂j)
∥∥2 (29)

where

φ = ∇σc(x)
(
f (x) + g(x)μ̂(x̂j) + k(x)ν̂(x̂j)

) − ρσc(x).

To make ec → 0, a feasible way is to tune Ŵc in (29).
Generally, the tuning rule for Ŵc is obtained by applying
the gradient descent method to the goal function (1/2)eT

c ec.

For purposes of improving the efficiency in using the histori-
cal state data and obviating the difficulty in checking the PE
condition, we introduce a novel objective function as follows:

E = (1/2)eT
c ec

(
1 + φTφ

)2
+

N0∑

p=1

(1/2)eT
c(p)ec(p)

(
1 + φT

(p)φ(p)

)2
(30)

where p ∈ {1, 2, . . . ,N0} (note: N0 ≥ ñc with ñc denoting
the number of neurons used in the critic network) is the index
applied to mark the historical state data x(tp) (tp ∈ [tj, tj+1)),
ec(p) = ec(x(tp)), and φ(p) = φ(x(tp)), that is

ec(p) = ŴT
c φ(p) + Q(x(tp)) + R(

μ̂(x̂j)
) − γ 2

∥
∥ν̂(x̂j)

∥
∥2

φ(p) = ∇σc(x(tp))
(
f (x(tp)) + g(x(tp))μ̂(x̂j)

+ k(x(tp))ν̂(x̂j)
) − ρσc(x(tp)).

Here, (1 +φTφ)−2 and (1 +φT
(p)φ(p))

−2 are the normalization
terms. We apply the gradient descent method to E in (30) and
then obtain that Ŵc is updated via (note: t ∈ [tj, tj+1))

˙̂Wc = −lc
∂E

∂Ŵc

= −lc
φec

(
1 + φTφ

)2
−

N0∑

p=1

lc
φ(p)ec(p)

(
1 + φT

(p)φ(p)

)2
(31)

with lc > 0 being the design parameter.
We denote

ϕ = φ
/(

1 + φTφ
)

and ϕ(p) = φ(p)
/(

1 + φT
(p)φ(p)

)

and define the weight estimation error as W̃c = Wc−Ŵc. Then,
from (31), we have

˙̃Wc = −lc

⎛

⎝ϕϕT +
N0∑

p=1

ϕ(p)ϕ
T
(p)

⎞

⎠W̃c

+ lcϕεH

1 + φTφ
+

N0∑

p=1

lcϕ(p)εH(p)

1 + φT
(p)φ(p)

, t ∈ [tj, tj+1) (32)

where εH = −∇εT
c (x)(f (x) + g(x)μ̂(x̂j) + k(x)ν̂(x̂j)) +

ρεc(x) and εH(p) = −∇εT
c (x(tp))(f (x(tp)) + g(x(tp))μ̂(x̂j) +

k(x(tp))ν̂(x̂j))+ρεc(x(tp)) are residual errors (note: due to the
process of deriving εH and εH(p) similar to [38], here we omit
it in order to avoid redundancy).
Remark 4: The expression (31) indicates that the histori-

cal states x(t1), x(t2), . . . , x(tN0) and the concurrent state x(t)
are utilized to tune the weight vector Ŵc. Chowdhary [39]
coined this characteristic concurrent learning. Recently, due to
experience replay sharing nearly the same feature as concur-
rent learning, they are regarded as synonyms (see [40]–[42]).
Similar to [40], the tuning rule (31) can force W̃c to con-
verge to a small neighborhood of zero without requiring the
PE condition only if

rank E = ñc (33)

where E is the set consisting of N0 historical states, that is

E = {
σc(x(t1)), σc(x(t2)), . . . , σc(x(tñc)), . . . , σc(x(tN0))

}
.
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Fig. 1. Block diagram of the present event-driven H∞-constrained control
strategy (note: “ZOH” means “zero-order hold”).

Apparently, (33) holds only when a sufficiently large number
of historical state data (i.e., N0) is collected.

To elaborate the present event-driven H∞-constrained con-
trol strategy, we provide a block diagram as displayed in
Fig. 1.

D. Stability Analysis of the Closed-Loop System

Before proceeding further, we present an assumption shar-
ing the same feature as it utilized in [43]–[46].
Assumption 5: For every x ∈ �, ‖∇σc(x)‖ ≤ bσc

with bσc > 0 the known constant. Meanwhile, there have
‖εμ∗(x)‖ ≤ bεμ∗ , ‖εν∗(x)‖ ≤ bεν∗ , and ‖εH‖ ≤ bεH , where
bεμ∗ > 0, bεν∗ > 0, and bεH > 0 are known constants.
Theorem 3: Consider system (1) with the event-driven con-

trol (26) and the event-driven disturbance (27). Suppose that
Assumptions 1–5 and the condition (33) hold. Meanwhile, let
the initial control policy for system (1) be admissible and let
the tuning rule for Ŵc be constructed as (31). Then, the closed-
loop system (1) and the weight estimation error W̃c are stable
in the sense of UUB as long as the triggering condition is set
as (15) and the following inequality holds:

lcλmin
(
�
(
ϕ, ϕ(p)

)) − 2k2
Mb

2
σc

/γ 2 > 0 (34)

where

�
(
ϕ, ϕ(p)

) = ϕϕT +
N0∑

p=1

ϕ(p)ϕ
T
(p). (35)

Proof: See Appendix B.

IV. SIMULATION STUDY

We consider the CT nonlinear system with a disturbance
described by the equations as follows:

[
ẋ1
ẋ2

]
=
[ −x1 + x2

−0.5(x1 + x2) + 0.5x2 sin2(x1)

]

+
[

0
sin(x1)

]
u +

[
1
0

]
ω (36)

where x = [x1, x2]T ∈ R
2 with x0 = x(0) = [0.5,−0.5]T,

u ∈ U = {u ∈ R : − 2 ≤ u ≤ 3} (i.e., umin = −2 and
umax = 3), and ω ∈ R. From (36), we can see that g(x) =

Fig. 2. Convergence of Ŵc = [Ŵc1, Ŵc2, . . . , Ŵc8]T.

[0, sin(x1)]T, which implies g(0) = 0. Meanwhile, for every
x ∈ R

2, g(x) = [0, sin(x1)]T (note: ‖ sin(x1)‖ ≤ 1 for x1 ∈
R) and k(x) = [1, 0]T are bounded. Thus, Assumption 2 is
satisfied.

Based on (2), if letting Q be the 2 × 2 identity matrix, then
we can write the fictitious output for system (36) as

‖z‖2 = x2
1 + x2

2 + R(u)

where [note: according to (3), β = 2.5 and b = 0.5]

R(u) = 2
∫ u

b
βtanh−1((τ − b)/β)dτ

= 2β(u − b) tanh−1((u − b)/β)

+ β2 ln
(

1 − (u − b)2/β2
)
.

The discount factor is presented as ρ = 0.85. It is desir-
able to solve the event-driven H∞-constrained control problem
corresponding to system (36) with γ = 1 [or rather, to
solve the event-driven HJIE (14)]. To this end, we first set
parameters utilized in the triggering condition (15) as follows:
η = √

2/2, Ku∗ = 2.5, and Kω∗ = 2.5. Then, we use the
critic network (25) to acquire the approximate solution of (14).
Specifically, we choose σc(x) in (25) to be (note: ñc = 8)

σc(x) =
[
x2

1, x
2
2, x1x2, x

4
1, x

4
2, x

3
1x2, x

2
1x

2
2, x1x

3
2

]T

and write Ŵc in (25) as Ŵc = [Ŵc1, Ŵc2, . . . , Ŵc8]T. To
make the initial control policy for system (36) admis-
sible, we present the initial weight vector as Ŵ initial

c =
[0.701, 0.121, 0.859, 0.393, 0.166, 0.631, 0.758, 0.978]T

(note: because there is no general way to obtain the initial
admissible control policy, here we derive Ŵ initial

c via trial
and error). Meanwhile, we set the parameters in (31) as
lc = 0.9 and N0 = 10 in order to update the weight
vector Ŵc.

We carry out the simulation via the MATLAB (2017a)
software package and obtain simulation results shown in
Figs. 2–8. Fig. 2 presents the convergence of the weight
vector Ŵc. As displayed in Fig. 2, Ŵc is convergent
after the first 45 s with its converged value Ŵconverged =
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Fig. 3. Approximate optimal event-driven control μ(x̂j).

Fig. 4. Approximate worst event-driven disturbance ν(x̂j).

[0.4335, 0.4136, 0.0784,−0.2886, 0.2710,−0.0348, 0.7627,

0.6999]T. Figs. 3 and 4 illustrate the approximate optimal
event-driven control μ(x̂j) and the approximate worst event-
driven disturbance ν(x̂j), respectively. From Fig. 3, we can
see that μ(x̂j) does not override the asymmetric input bounds.
Thus, the difficulty of asymmetric control constraints is over-
come. It also can be observed from Fig. 3 that μ(x̂j) does
not converge to zero (actually, μ(x̂j) converges to 0.5). This
feature is in accordance with Remark 1 2). Fig. 5(a) depicts
the trajectories of system (36), that is, x1(t) and x2(t), and
Fig. 5(b) shows that the norm of the error function (i.e.,
‖ej(t)‖) and the square root of the event-triggering thresh-
old (i.e.,

√
ēT(t)). According to Fig. 5(a) and (b), we can

find both ‖ej(t)‖ and
√
ēT(t) approximate zero when the

states x1(t) and x2(t) go to zero. Fig. 6 describes the inter-
sample time Tj (note: Tj = tj+1 − tj). Clearly, minj{Tj} =
0.1 > 0, which validates Theorem 2. Thus, the Zeno behavior
is excluded.

Inserting the weight vector Ŵconverged into (26), we can
derive the approximate optimal event-driven control. Let the

(b)

(a)

Fig. 5. (a) Trajectories of system (36) under μ(x̂j) and ν(x̂j), that is, x1(t)
and x2(t). (b) Norm of the error function (i.e., ‖ej(t)‖) and the square root of
the event-triggering threshold (i.e.,

√
ēT (t)).

Fig. 6. Intersample time Tj (note: Tj = tj+1 − tj).

disturbance signal be given in the form

ω(t) =
{

12r1e−0.25(t−t0) cos(t − t0), t ≥ t0
0, t < t0.

(37)

with r1 being randomly selected within the interval [0, 1] and
t0 = 5 s. Then, when considering that system (36) is at rest and
suffering from the disturbance ω(t) given in (37), we obtain the
closed-loop system’s states x1(t) and x2(t) shown in Fig. 7(a).
Meanwhile, the event-driven control μ(x̂j) for the closed-loop
system is described as Fig. 7(b). Let the ratio of the disturbance
attenuation be defined as

γd =
(∫∞

t e−ρ(τ−t)
(
xT(τ )Qx(τ ) + R(u(τ ))

)
dτ

∫∞
t e−ρ(τ−t)‖ω(τ)‖2dτ

)1/2

.

Then, the evolution of disturbance attenuation γd is dis-
played as Fig. 8. That is, after the first 20 s, γd con-
verges to 0.4438, that is, γ

converged
d = 0.4438 (<γ = 1).
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(b)

(a)

Fig. 7. (a) States x1(t) and x2(t) under the disturbance ω(t) given in (37).
(b) Event-driven control μ(x̂j) for the closed-loop system.

Fig. 8. Evolution of the disturbance attenuation γd .

Therefore, the prescribed L2-gain performance level γ

can be achieved under the obtained event-driven control
policy μ(x̂j).

To elaborate that the computational load is reduced, we
make comparisons between the present event-driven ACL and
the ADP approach developed in [30] (see Table I). From
Table I, we can see that the implementation of the event-driven
ACL uses only 257 sampling states, while the implementation
of the ADP method proposed in [30] needs 1200 sampling
states. Thus, the present event-driven ACL has a higher effi-
ciency in using sampling state data. Actually, using Table I
and making some calculations, we find that the computa-
tional load is reduced up to 75.01%. This verifies that the
computational load is remarkably decreased when using the
present event-driven ACL. Furthermore, in order to illustrate
that tuning both the control policy and the disturbance policy
in the event-driven mechanism has better performance than
only updating the control policy in the event-driven mech-
anism, we provide comparisons in Table II. According to

TABLE I
COMPARISON OF THE COMPUTATIONAL LOAD BETWEEN THE PRESENT

EVENT-DRIVEN ACL AND THE ADP APPROACH DEVELOPED IN [30]

TABLE II
COMPUTATIONAL LOADS OF ACL WITH TIME-DRIVEN DISTURBANCE

AND ACL WITH EVENT-DRIVEN DISTURBANCE (Note: THE TWO CASES

USE THE EVENT-DRIVEN CONTROL POLICY)

Table II, after performing some calculations, we find that
the computational load is reduced up to 60.23% when using
ACL with both the event-driven control and the event-driven
disturbance.

V. CONCLUSION

An event-driven H∞ control strategy has been developed
for CT nonlinear systems with asymmetric input constraints.
The proposed H∞ control scheme uses historical and instan-
taneous state data simultaneously to update both the control
policy and the disturbance in an event-driven mechanism.
Advantages of such an H∞ control strategy lie in that it not
only relaxes the PE condition but also brings down the com-
putational load. A precondition of implementing the present
event-driven H∞ control strategy is that the control matrix
of system (1) should satisfy g(0) = 0 (see Assumption 2).
This condition excludes those systems with the control matrix
g(0) 	= 0, which is a limitation. As stated in Remark 1 2),
the purpose of presenting the condition g(0) = 0 is to make
the equilibrium point to zero. Thus, in order to remove the
condition g(0) = 0, we can consider the case that the equilib-
rium point is nonzero. On the other hand, it is often unable
to acquire the information of controlled systems in real-world
applications, let alone the knowledge of its control matrix.
Therefore, our consecutive study tends to design event-driven
H∞ controllers for unknown nonlinear systems having nonzero
equilibrium points as well as suffering from asymmetric input
constraints.

Authorized licensed use limited to: University of Rhode Island. Downloaded on May 16,2020 at 01:59:26 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

APPENDIX A
PROOF OF THEOREM 2

Based on Assumption 4, we have that system (1) with μ∗(x̂j)
in (12) and ν∗(x̂j) in (13) yields

‖ẋ‖ = ∥∥f (x) + g(x)μ∗(x̂j) + k(x)ν∗(x̂j)
∥∥

≤ l1‖x‖ + l2‖ej(t)‖ + c0. (38)

Since (11) yields ẋ(t) = −ėj(t) and x(t) = x̂j − ej(t) for t ∈
[tj, tj+1), we can obtain from (38) that (note: t ∈ [tj, tj+1))

‖ėj(t)‖ ≤ (l1 + l2)‖ej(t)‖ + l1
∥
∥x̂j

∥
∥ + c0. (39)

Using the fact that ej(tj) = 0 (j ∈ {0, 1, 2, . . .}) and the com-
parison lemma [47, Lemma 3.4], we have the solution of (39)
satisfied (note: t ∈ [tj, tj+1))

‖ej(t)‖ ≤ l1
∥∥x̂j

∥∥ + c0

l1 + l2

(
e(l1+l2)(t−tj) − 1

)
. (40)

Clearly, the next triggering instant tj+1 is released only when
the square of the right-hand side of (40) violates (or is
larger than) the event-triggering threshold ēT(t) given in (15).
Therefore, there holds

l1
∥∥x̂j

∥∥ + c0

l1 + l2

(
e(l1+l2)(tj+1−tj) − 1

)

>

√
ēT(tj+1) =

√(
1 − η2

)
λmin(Q)

2
(
K2
u∗ + γ 2K2

ω∗
) ‖x(tj+1)‖2. (41)

According to Theorem 1, the state x is stable in the sense of
UUB. Thus, we can conclude that ‖x(tj+1)‖ 	= 0 at the trig-
gering instant tj+1. In other words,

√
ēT(tj+1) > 0. Then, (41)

yields

Tj = tj+1 − tj >
1

l1 + l2
ln
(
1 + πj

)
(42)

where

πj = l1 + l2
l1
∥∥x̂j

∥∥ + c0

√
ēT(tj+1) > 0.

Taking the minimum values over both sides of (42), we thus
obtain

min
j

{Tj} >
1

l1 + l2
ln

(
1 + min

j

{
πj
})

> 0.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 3

Noticing that the closed-loop system (1) contains the states
x(t) and x̂j as well as W̃c (note: Ŵc = Wc − W̃c), we let the
Lyapunov function candidate be

L(t) = V∗(x̂j) + V∗(x(t))︸ ︷︷ ︸
L1(t)

+ (1/2)W̃T
c W̃c︸ ︷︷ ︸

L2(t)

. (43)

According to the characteristic of (43), we partition the
discussion of stability into two aspects.
Situation I: Let events not be triggered, that is, t ∈

[tj, tj+1), j ∈ {0, 1, 2, . . .}. Then, it follows that V̇∗(x̂j) = 0.

Differentiating L1(t) in (43) along with the trajectory gen-
erated from the dynamical system ẋ = f (x) + g(x)μ̂(x̂j) +
k(x)ν̂(x̂j), we find

L̇1(t) = (∇V∗(x)
)T(

f (x) + g(x)μ̂(x̂j) + k(x)ν̂(x̂j)
)

= (∇V∗(x)
)T(

f (x) + g(x)u∗(x) + k(x)ω∗(x)
)

+ (∇V∗(x)
)T
g(x)

(
μ̂(x̂j) − u∗(x)

)

+ (∇V∗(x)
)T
k(x)

(
ν̂(x̂j) − ω∗(x)

)
. (44)

Inserting (17) into (44), we have

L̇1(t) = 2β
(

tanh−1((u∗(x) − �b)/β
))T(

u∗(x) − μ̂(x̂j)
)

︸ ︷︷ ︸
�1

+ 2γ 2(ω∗(x)
)T(

ν̂(x̂j) − ω∗(x)
)

︸ ︷︷ ︸
�2

+ρV∗(x)

+ γ 2
∥∥ω∗(x)

∥∥2 − Q(x) − R(
u∗(x)

)
. (45)

By using Young’s inequality (i.e., 2cTd ≤ ‖c‖2 + ‖d‖2), we
have �1 and �2 in (45) satisfied

�1 ≤
∥∥∥β tanh−1((u∗(x) − �b)/β

)∥∥∥
2 + ∥∥u∗(x) − μ̂(x̂j)

∥∥2

= 1

4

∥∥∥
(
V∗
x

)T
g(x)

∥∥∥
2 + ∥∥u∗(x) − μ̂(x̂j)

∥∥2

�2 ≤ γ 2
∥∥ω∗(x)

∥∥2 + γ 2
∥∥ν̂(x̂j) − ω∗(x)

∥∥2
.

Thus, (45) yields

L̇1(t) ≤ −Q(x) − R(
u∗(x)

) + ρV∗(x)

+ 2γ 2
∥∥ω∗(x)

∥∥2 + 1

4

∥∥∥
(
V∗
x

)T
g(x)

∥∥∥
2

+ ∥∥u∗(x) − μ̂(x̂j)
∥∥2

︸ ︷︷ ︸
�1

+γ 2
∥∥ω∗(x) − ν̂(x̂j)

∥∥2

︸ ︷︷ ︸
�2

. (46)

Letting Young’s inequality ‖c + d‖2 ≤ 2‖c‖2 + 2‖d‖2 be
applied to �1 in (46) and using (23) and (26), as well as
Assumption 3, we obtain

�1 = ∥∥(u∗(x) − μ∗(x̂j)
) + (

μ∗(x̂j) − μ̂(x̂j)
)∥∥2

≤ 2
∥∥μ∗(x̂j) − μ̂(x̂j)

∥∥2 + 2
∥∥u∗(x) − μ∗(x̂j)

∥∥2

≤ 4β2‖ tanh
(A2(x̂j)

) − tanh
(A1(x̂j)

)‖2

+ 4
∥∥εμ∗(x̂j)

∥∥2 + 2K2
u∗‖ej(t)‖2

≤ 8β2
(
‖ tanh

(A1(x̂j)
)‖2 + ‖ tanh

(A2(x̂j)
)‖2

)

+ 4
∥∥εμ∗(x̂j)

∥∥2 + 2K2
u∗‖ej(t)‖2. (47)

Denoting Aι(x̂j) = [Aι1(x̂j),Aι2(x), . . . ,Aιm(x̂j)]T ∈ R
m

(note: ι = 1, 2) and noting that | tanh(y)| ≤ 1 for all y ∈ R,
we find

‖ tanh
(Aι(x̂j)

)‖2 =
m∑

i=1

tanh2(Aιi(x) ≤ m, ι = 1, 2.

Therefore, according to (47) and Assumption 5, there holds

�1 ≤ 2K2
u∗‖ej(t)‖2 + 16β2m + 4b2

εμ∗ . (48)
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Likewise, calculating �2 in (46), we have

�2 = ∥∥(ω∗(x) − ν∗(x̂j)
) + (

ν∗(x̂j) − ν̂(x̂j)
)∥∥2

≤ 2
∥∥ω∗(x̂j) − ν∗(x̂j)

∥∥2 + 2
∥∥ν∗(x̂j) − ν̂(x̂j)

∥∥2

≤ 2

∥∥∥∥∥
kT(x̂j)

2γ 2
∇σT

c (x̂j)W̃c + εν∗(x̂j)

∥∥∥∥∥

2

+ 2K2
ω∗‖ej(t)‖2

≤ 2K2
ω∗‖ej(t)‖2 +

(
k2
Mb

2
σc

/γ 4
)∥∥W̃c

∥∥2 + 4b2
εν∗ . (49)

Based on the facts that max{‖V∗(x)‖, ‖V∗
x ‖} ≤ δV∗ (note: see

the proof of Theorem 1) and −R(u∗(x)) ≤ 0, as well as (48)
and (49), we obtain from (46) that

L̇1(t) ≤ −Q(x) + 2
(
K2
u∗ + γ 2K2

ω∗
)
‖ej(t)‖2

+
(
k2
Mb

2
σc

/γ 2
)∥∥W̃c

∥∥2 + d0 (50)

where

d0 = 16β2m + 4γ 2b2
εν∗ + 4b2

εμ∗ + a0

with a0 being given as in (20).
Differentiating L2(t) along the solution of (32), we obtain

L̇2(t) ≤ −lcW̃
T
c �

(
ϕ, ϕ(p)

)
W̃c + lcW̃

T
c

ϕεH

1 + φTφ

+
N0∑

p=1

lcW̃
T
c

ϕ(p)εH(p)

1 + φT
(p)φ(p)

(51)

with �(ϕ, ϕ(p)) being presented as (35).
Using Young’s inequality cTd ≤ (1/2)cTc + (1/2)dTd and

noticing that (1 + φTφ)−1 ≤ 1, we have the second term on
the right-hand side of (51) satisfied

lcW̃T
c ϕεH

1 + φTφ
≤ lc

1 + φTφ

(
1

2
W̃T

c ϕϕTW̃c + 1

2
εT
HεH

)

≤ lc
2
W̃T

c ϕϕTW̃c + lc
2

εT
HεH .

Likewise, observing that (1 + φT
(p)φ(p))

−1 ≤ 1, we have

N0∑

p=1

lcW̃T
c ϕ(p)εH(p)

1 + φT
(p)φ(p)

≤ lc
2
W̃T

c

⎛

⎝
N0∑

p=1

ϕ(p)ϕ
T
(p)

⎞

⎠W̃c

+ lc
2

N0∑

p=1

εT
H(p)

εH(p) .

Thus, (51) yields

L̇2(t) ≤ − lc
2
W̃T

c �
(
ϕ, ϕ(p)

)
W̃c + lc

2
εT
HεH

+ lc
2

N0∑

p=1

εT
H(p)

εH(p)

≤ − lc
2

λmin
(
�
(
ϕ, ϕ(p)

))∥∥W̃c
∥∥2

+ lc
2

(1 + N0)b
2
εH

. (52)

Combining (50) and (52) together with V̇∗(x̂j) = 0 and notic-
ing that Q(x) = xTQx ≥ λmin(Q)‖x‖2, we have that the
derivative of L(t) in (43) yields

L̇(t) ≤ −η2λmin(Q)‖x‖2 −
(

1 − η2
)
λmin(Q)‖x‖2

+ 2
(
K2
u∗ + γ 2K2

ω∗
)
‖ej(t)‖2 − 1

2
F0
∥∥W̃c

∥∥2

+ lc
2

(1 + N0)b
2
εH

+ d0

where

F0 = lcλmin
(
�
(
ϕ, ϕ(p)

)) − 2k2
Mb

2
σc

/γ 2.

Therefore, letting (15) and (34) hold, we find that L̇(t) < 0 if
either x /∈ �̄x or W̃c /∈ �W̃c

with �̄x and �W̃c
being given as

follows:

�̄x =
⎧
⎨

⎩
x : ‖x‖ ≤ 1

η

√
lc(1 + N0)b2

εH
/2 + d0

λmin(Q)

⎫
⎬

⎭
(53)

�W̃c
=
⎧
⎨

⎩
W̃c :

∥∥W̃c
∥∥ ≤

√
lc(1 + N0)b2

εH
+ 2d0

F0

⎫
⎬

⎭
. (54)

Using the Lyapunov theorem extension [28], we obtain UUB
of x and W̃c with their ultimate bounds being the same as the
bounds of �̄x in (53) and �W̃c

in (54), respectively.
Situation II: Let events be triggered, that is, t = tj+1, j ∈

{0, 1, 2, . . .}. Then, the difference of the Lyapunov function
candidate L(t) in (43) should be taken into account. That is

�L(tj) = V∗(x̂j+1) − V∗(x̂j) + �

where

� = V∗(x
(
tj+1

)) − V∗(x(t−j+1)
)

+ 1

2
W̃T

c

(
tj+1

)
W̃c

(
tj+1

) − 1

2
W̃T

c

(
t−j+1

)
W̃c

(
t−j+1

)

and x(t−j+1) = limε→0+ x(tj+1 − ε) with ε ∈ (0, tj+1 − tj).

As proved in Situation I, if either x /∈ �̃x or W̃c /∈ �̃W̃c
,

then, for every t ∈ [tj, tj+1), there holds dL(t)/dt < 0. This
implies d(L1(t) + L2(t))/dt < 0 for every t ∈ [tj, tj+1). [Note:
L1(t) and L2(t) are defined as in (43)]. Thus, L1(t) + L2(t)
is strictly monotonically decreasing on [tj, tj+1). Note that for
every ε ∈ (0, tj+1 − tj), there holds tj+1 > tj+1 − ε. Thus, we
have

L1(tj+1) + L2(tj+1) < L1(tj+1 − ε) + L2(tj+1 − ε). (55)

The right limit over both sides of (55) (i.e., ε → 0+) yields

L1(tj+1) + L2(tj+1) ≤ lim
ε→0+

(L1(tj+1 − ε) + L2(tj+1 − ε)
)

= L1(t
−
j+1) + L2(t

−
j+1). (56)

Using the definitions of L1(t) and L2(t) in (43), we
rewrite (56) as

V∗(x(tj+1)
) + 1

2
W̃T

c

(
tj+1

)
W̃c

(
tj+1

)

≤ V∗(x(t−j+1)
)

+ 1

2
W̃T

c

(
t−j+1

)
W̃c

(
t−j+1

)
.
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This proves � ≤ 0. On the other hand, due to UUB stability
of x(t) proved in Situation I, we can conclude that V∗

i (x̂j+1) ≤
V∗
i (x̂j). Accordingly, we have �L(tj) < 0 when letting either

x /∈ �̄x or W̃c /∈ �̃W̃c
. According to the Lyapunov theorem

extension [28], we obtain UUB of x and W̃c with their ultimate
bounds being the same as the bounds of �̄x in (53) and �W̃c
in (54), respectively. This completes the proof.
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