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Abstract—Microgrids provide power systems with an effective
manner to integrate distributed energy resources, increase power
supply reliability, and reduce operational cost. However, intermit-
tent renewable energy resources (RESs) makes it challenging to
operate a microgrid safely and economically based on forecasting.
To overcome this issue, we develop an online energy management
approach for efficient microgrid operation using safe deep rein-
forcement learning (SDRL). By considering uncertainties and AC
power flow, the proposed method formulates online microgrid
energy management as a constrained Markov decision process
(CMDP). The objective is to find a safety-guaranteed scheduling
policy to minimize the total operational cost. To achieve this,
we use a SDRL method to learn a neural network-based policy
based on constrained policy optimization (CPO). Different from
tradition DRL methods that allow an agent to freely explore
any behavior during training, the proposed method limits the
exploration to safe policies that satisfy AC power flow constraints
during training. The proposed method is model-free and does not
require predictive information or explicit model of the microgrid.
The proposed method is trained and tested on a medium voltage
distribution network with real-world power grid data from
California Independent Operator (CAISO). Simulation results
verify the effectiveness and superiority of proposed method over
traditional DRL approaches.

Index Terms—microgrid energy management, safe deep rein-
forcement learning, constrained Markov decision process.

I. INTRODUCTION

As the proliferation of renewable energy resources (RESs),
electric power systems are undergoing a rapid transition
towards being more sustainable and environmental-friendly.
Microgrid plays a crucial role in the process for it contributes
significantly to the integration of large-scale distributed RESs
into power grids [1]. Due to the intermittent nature of RESs,
high penetration of distributed RES can cause unpredictable
power variations in the load flow and pose major challenge
to safely operating distribution systems [2]. To overcome
this challenge, microgrids use intelligent online energy man-
agement techniques to tackle uncertain power variations by
coordinating local controllable devices, such as energy storage
units and distributed generators (DGs).

Traditional online energy management uses model-based
methods to optimize the power scheduling of a microgrid.
For example, in [3], a mixed integer nonlinear programming
(MINLP) based energy management model was designed for
an island microgrid and model predictive control (MPC) was

used to dynamically optimize the scheduling against uncer-
tainty. In [4], a nonlinear MPC algorithm was designed to
perform automated load shedding and voltage regulation by
optimizing the charging schedules of battery storage systems.
In [5], an optimal EMS was developed based on MPC to
optimize the energy management system of interconnected
microgrids. In [6], a two-stage stochastic MPC strategy was
proposed to optimize the scheduling of a multi-microgrid
system. In [7], an online optimization approach for micro-
grid energy management was proposed based on Lyapunov
optimization considering nonlinear power flow constraints. In
[8], to coordinate the batteries and DGs in real-time operation,
an online optimization algorithm was designed for real-time
scheduling of the battery by defining a discharging opportunity
cost and a marginal charging cost to balance the charging and
discharging profits.

However, model-based methods require accurate forecasting
information of uncertainties. Thus, the performance may dete-
riorate because of model imperfection or parameter accuracy.
To overcome this issue, many learning-based approaches
have been proposed adopting reinforcement learning (RL)
techniques. For example, in [9] an intelligent dynamic en-
ergy management system for a grid-connected microgrid was
proposed by combining approximate dynamic programming
(ADP) and evolutionary computing algorithms. In [10], an
ADP-based economic dispatch algorithm for microgrid was
proposed based on Monte Carlo simulation. A piecewise linear
function (PLF) with improved slope updating strategy was
employed to learn the optimal value function. In [11], a real-
time microgrid scheduling algorithm considering alternating-
current (AC) power flow was proposed based on ADP and deep
recurrent neural network. In [12], a dual-iterative Q-learning
algorithm was proposed to optimize the operation of battery
banks in a residential microgrid considering the energy cost
as well as the resident’s thermal comfort.

Recently, deep RL (DRL) methods have been developed
to solve the online microgrid energy management by tak-
ing advantage of deep learning techniques. For instance, in
[13], a deep Q-network (DQN) based approach was adopted
to optimize the real-time energy scheduling of a microgrid
considering the uncertainty of electricity price, RES power
production, and electricity demand. In [14], a double dueling
DQN based energy management algorithm was proposed to



learn the optimal battery charging/discharging policy for a
smart energy network. In [15], a model-based DRL algorithm
was proposed for online scheduling of a residential microgrid
based on Monte-Carlo tree search. A deep neural network
using long-short term memory units was designed to extract
features about the system internal state and learn the optimal
policy. In [14], a model-free DRL algorithm based on DDPG
for dynamic energy management of an island microgrid was
developed.

However, traditional DRL approaches allow agents to freely
explore any behavior during training, which may bring serious
safety problem to the operation of microgrids. Improper be-
havior can lead to violations of power flow constraints and
create over/under-voltage in distribution feeders. Therefore,
it is inappropriate to train an agent in a real system using
traditional DRL methods. Furthermore, traditional RL/DRL
methods require to design a penalty term to deal with various
equality and inequality constraints in the reward function.
Thus, the performance of these algorithms is susceptible to
the design of the penalty coefficients. In addition, penalty
function method may not guarantee that constraints are sat-
isfied because it is difficult to determine the optimal penalty
coefficient in practice. A small penalty coefficient may not be
able to inadequately penalize the constraint violations whereas
a large value penalty coefficient may cause “over-punishment”,
resulting in lack of initiative for the agent to explore better
solutions.

In this paper, we investigate the online energy management
of a microgrid in the framework of safe DRL. To avoid care-
fully choosing penalty functions or tuning penalty coefficients,
we formulate the problem as a constrained Markov decision
process (CMDP), wherein all technical constraints and AC
power flows are considered. We aim to learning a safety-
guaranteed scheduling policy so that the microgrid operates
safely and economically. In our study, we employ constrained
policy optimization (CPO) to train a neural network (NN)-
based policy to achieve this. Compared to existed studies in the
literature, the major contributions of this paper are as follows:

• We propose a CMDP-based energy management model
for online operation of a microgrid. Considering uncertainties
in the microgrid and their influence on AC power flow, the
CMDP model formulates rewards and constraints separately
so that we do not need to manually design penalty coefficients.

• We use a safe DRL approach to learn a safety-guaranteed
NN policy based on CPO. Unlike traditional RL/DRL ap-
proaches, CPO can effectively train a NN to generate opti-
mal scheduling decisions that satisfies various equality and
inequality constraints for safe operation of microgrid.

The rest of the paper is organized as follows. Section
II presents the CMDP formulation. Section IV presents the
SDRL-based learning algorithm. In Section IV, the effective-
ness of the proposed methods is verified using simulation
studies. Section VI draws the conclusions.

II. CONSTRAINED MDP FORMULATION OF MICROGRID
ENERGY MANAGEMENT

We consider a microgrid system with a large proportion of
distributed energy resources (DERs), including a set of solar
PV units, some wind turbines, several diesel generators (DGs),
and a couple of energy storage systems (ESSs). These DERs
are controlled using an intelligent energy management system
(EMS) to provide cost-efficient and reliable power supply to
local loads. The microgrid is connected to the utility grid so
that it can purchase electricity from the utility when the DER
generation cannot satisfy the load demand. The microgrid can
also sell surplus power to the utility grid to earn revenue. The
EMS makes online scheduling decisions based on available
generation capacity, load demand, and real-time electricity
prices. The scheduling decisions should minimize the total
expected operational cost and satisfy power flow constraints
as well. In the following subsections, we present the CMDP
formulation of the problem.

A. Traditional MDP formulation

The online energy management problem in microgrids is
traditionally formulated as an MDP, representing by a 4-tuple
(S,A, P r, r), where S is a set of the state space, A is the
action space, Pr : S × A × S → [0, 1] is the state transition
probability, R : S ×A → R is the reward function.

1) State Variable: The state variable st characterizes the
operational conditions of the microgrid system and provides
the system operator with feedback information to make on-
line scheduling decisions. For the online energy management
problem, the state variable st ∈ S is

st = (P1
past,Q

1
past, ..., PN

past,QN
past,Ratepast, SoCpres),

Pi
past = (P i

t−T , . . . , P
i
t−1), ∀i ∈ N ,

Qi
past = (Qi

t−T , . . . , Q
i
t−1), ∀i ∈ N ,

SoCpres = (SoC1,t, . . . , SoCB,t),

Ratepast = (Ratet−T , . . . , Ratet−1),

(1a)

(1b)

(1c)

(1d)
(1e)

where P i
t−k and Qi

t−k represents the active and reactive power
injected into the bus i ∈ N in time slot t − k, respectively;
SoCb

t denotes the present state-of-charge of the bth ESS in
time slot t; Ratet−k is the electricity rate of the utility grid
in time slot t− k.

2) Action Variable: The action variable at ∈ A is,

at = [P dg
1,t , Q

dg
1,t, . . . , P

dg
D,t, Q

dg
D,t, P

ess
1,t , . . . , P

ess
B,t]

T (2)

where P dg
d,t and Qdg

d,t denote the active and reactive power
output of the DG d ∈ D = {1, ..., D}; P ess

b,t denote the
charging/discharging power of the ESS b ∈ B = {1, ..., B}.
When P ess

b,t ≥ 0, the ESS b is charging; when P ess
b,t < 0, the

ESS b is discharging.
The action space A is defined by

P dg
d ≤ P dg

d,t ≤ P
dg

d , ∀d ∈ D, (3)

Qdg

d
≤ Qdg

d,t ≤ Q
dg

d , ∀d ∈ D, (4)



−P
ess

b ≤ P ess
b,t ≤ P

ess

b , ∀b ∈ B, (5)

where P dg
d and P

dg

d are the minimum and maximum active
power, respectively; Qdg

d
and Q

dg

d are the minimum and
maximum reactive power, respectively; P

ess

b is the maximum
charging/discharging power;.

3) Transition Probabilities: The state transition probability
Pa : S ×A× S → [0, 1] can be expressed as

Pa
ss′ = Pr{st+1 = s′|st = s, st = a}. (6)

Generally, it is difficult to accurately formulate the transition
probability using an explicitly probability distribution when we
do not have a prior knowledge about the uncertainty w. In our
study, we approach this problem by learning from historical
data using DRL.

4) Reward Function: The reward rt is defined as the
negative operational cost in each time slot,

rt = −

(∑
d∈D

Cd(P
dg
d,t) + Cg(P

g
t , Ratet)

)
, (7)

Cd(P
dg
d,t) = (adgd (P dg

d,t)
2 + bdgd P dg

d,t + cdgd )∆t, ∀d ∈ D, (8)

Cg(P
g
t , Ratet) =

{
RatetP

g
t ∆t, if P g

t ≥ 0(buying)
β ·RatetP

g
t ∆t, otherwise

(9)

where adgd , bdgd , bdgd are cost coefficients of DG d, P g
t is the

power purchased from/sold to the utility, 0 < β < 1 is a
discount factor when selling electricity to the utility.

5) Objective: From the perspective of microgrid operator,
the aim is to find a scheduling policy π : st → at that
maximizes the expected discounted return over the scheduling
horizon T :

max
π∈Π

J(π) = Eτ∼π

[
T−1∑
t=0

γt · rt

]
(10)

where Eτ∼π[·] is the expectation with respect to the trajectory
τ = (s0, a0, s1, . . . , aT−1, sT ), where at follows the policy π.

B. Difficulties in Handling Constraints

The scheduling decisions should satisfy the following con-
straints:

1) Bus voltage and line loading constraints: :

V i ≤ V i
t ≤ V

i
, ∀i ∈ N (11)

0 ≤ Iijt ≤ I
ij
, ∀ij ∈ M (12)

where V i
t is the nodal voltage at bus i, V i and V

i
are the

lower and upper limits; Iijt is the current flow through line ij,
and I

ij
is the maximum current on line ij.

2) DG power constraints: :

(P dg
d,t)

2 + (Qdg
d,t)

2 = (Sdg
d,t)

2 ≤ (S
dg

d )2, ∀d ∈ D, (13)

where S
dg

d is the rated apparent power.

3) ESS power and SOC constraints: :

SoCb ≤ SoCb,t ≤ SoCb, ∀b ∈ B, (14)

SoCb,t+1 = f(SoCb,t, P
ess
b,t ), ∀b ∈ B, (15)

where SoCb and SoCb are the lower and upper SOC limits,
respectively. Eq. (15) denotes the SOC model, which is
assumed unknown. In simulation, the model in [11] is used.

4) Utility grid power: :

(P g
t )

2 + (Qg
t )

2 = (Sg
t )

2 ≤ (S
g
)2, (16)

where S
g

is the maximum apparent power that the microgrid
can import from/export to the utility grid.

5) AC power flow: :

Hpf (V
i
t , δ

i
t, P

i
t , Q

i
t) = 0, ∀i ∈ N . (17)

Here we use Hpf (·) to denote the power flow equations. In our
study, we do not need an explicit power flow mode. In order to
simulate the microgrid, we use the environment provided by
pandapower [16], and the corresponding models can be found
there.

To consider the constraints (11)-(17) in the traditional MDP
framework, penalty methods have to be used by introducing
an artificial penalty term for constraint violations. In this case,
the objective will become:

max
π∈Π

J(π) + ϱ · Penalty(π) (18)

where Penalty(π) is a penalty function with respective to the
policy π and ϱ is the penalty coefficient.

However, tuning the penalty coefficient ϱ can be intractable
in practice. If a small penalty coefficient is chosen, constraint
violations may not be inadequately penalized during the opti-
mization, leading to infeasible scheduling decisions that may
endanger the operation of the microgrid. On the contrary,
if a large penalty coefficient is chosen, constraint violations
may be over-punished, resulting in cost-ineffective scheduling
decisions.

C. Constrained MDP Formulation

To avoid tuning the penalty coefficient, we propose a
CMDP model for online energy management of microgrids.
The CMDP augments the MDP model with an auxiliary cost
function:

ct =
∑
i∈N

max(max(0, V i
t − V

i
), V i − V i

t )+∑
ij∈M

max(0, Iijt /I
ij − 1) + max(0, Sg

t /S
g − 1)+∑

b∈B

max(max(0, SoCb,t − SoCb), SoCb − SoCb,t)+∑
d∈D

max(0, Sdg
d,t/S

dg

d − 1).

(19)



Defining JC(π) as the expected discounted return (denoted
as C-return) of the auxiliary cost function with respect to the
policy π, where

JC(π) = Eτ∼π

[
T−1∑
t=0

γt · ct

]
. (20)

the MDP formulation is augmented to the following CMDP:

max
π∈Π

J(π) = Eτ∼π

[
T−1∑
t=0

γt · rt

]
s.t. JC(π) ≤ d,

(21)

where d is a tolerance parameter restricting the constraint
value to a very small number. It is notable that in the CMDP
formulation (21) the operational constraints of microgrid are
strictly confined by JC(π) ≤ d as opposed to the penalty term
in the MDP formulation (18). Hence, we do not need to tune
the penalty parameter any more. In the following section, we
will introduce a safe DRL-based approach to solve the CMDP
problem in a completely data-driven fashion.

III. SAFE DEEP REINFORCEMENT LEARNING BASED
MICROGRID ENERGY MANAGEMENT METHOD

In this section, we apply a SDRL algorithm to find a
solution of the CMDP problem. Specifically, we approximate
the optimal policy for the CMDP by using a neural network.
To ensure that the neural network-based policy can generate
cost-efficient and safety-guaranteed scheduling decisions, CPO
is adopted to optimize the neural network parameters.

A. Safe DRL based on Constrained Policy Optimization

Since the action space is continuous, we consider a Gaussian
policy, of which the mean and standard variance are approxi-
mated by a neural network:

πθ(a|s) =
exp{− 1

2 (a− µθ(s))
TΣ−1

θ (s)(a− µθ(s))}√
(2π)k|Σθ(s)|

(22)

where k = 2 × D + B is the size of the actions, µθ(s) and
Σθ(s) are approximate mean and covariance matrix based on
a feedforward neural network parameterized by θ.

Traditional policy gradient-based DRL approaches learn the
parameters θ by [17]:

θi+1 = θi + α▽θ J(πθ)|θ=θi (23)

where ▽θJ(πθ) is policy gradient and α is step size. How-
ever, the policy gradient update (23) cannot guarantee that
a proposed policy πθj+1

is feasible because the constraint
JC(πθ) ≤ d is not considered. To optimize the policy param-
eter θ for a CMDP problem, the policy update must proceed
along the direction of policy gradient within the constraint
JC(πθ) ≤ d. Therefore, the policy optimization should satisfy

θi+1 =argmax
θ

J(πθ)

s.t. JC(πθ) ≤ d.
(24)

To address this problem, the CPO update method [18] is
used. CPO uses surrogates to estimate the return J(πθ) and
C-return JC(πθ) with respect to a proposed policy πθ. To
construct the surrogates, the following inequality functions are
used [17]:

J(πθ) ≥ J(πθi) +D−
πθi

(πθ)

JC(πθ) ≤ JC(πθi) +D+
πθi

(πθ)

(25a)

(25b)

where

D−
πθi

(πθ) = E
s∼dθi

a∼πθ

[
Aθi(s, a)− 2γϵθ

(1− γ)
DTV (θ||θi)[s]

]
,

D+
πθi

(πθ) = E
s∼dθi

a∼πθ

[
Aθi

C (s, a) +
2γϵθC

(1− γ)
DTV (θ||θi)[s]

]
,

and dθi(s) =
∑∞

t=0 γ
tP (st = s|θi) is the distribution of

state s given the policy πθi , Aθi(s, a) and Aθi
C (s, a) are

the advantage functions with respect to the expected re-
turn J(πθi) and the C-return J(πθi), respectively; ϵθC =
maxs |Ea∼πθ

[Aθi
C (s, a)]| and ϵθ = maxs |Ea∼πθ

[Aθi(s, a)]|
are coefficients; DTV (θ||θi)[s] = (1/2)

∑
a |πθ(a|s) −

πθi(a|s)| is the variational divergence between the distribu-
tions πθ and πθi .

To improve the policy πθi , we maximize the lower bound
of J(πθ) in (25a) and constrain the upper bounds of Jπθ

C in
(25b) to obtain a conservative update:

θi+1 = argmax
θ

J(πθi) +D−
πθi

(πθ)

s.t. JC(πθi) +D+
πθi

(πθ) ≤ d.
(26)

As J(πθi) is a constant, we can eliminate it from the objective.
Also, it is notable that in terms D−

πθi
(πθ) and D+

πθi
(πθ), a

scaled variational divergence DTV (θ||θi)[s] is used to restrict
the step size of parameter update to stabilize the optimization.
It suggests in [19] that it is better to replace the variational
divergence with KL-divergence and restrict the KL-divergence
explicitly in a constraint function instead of a penalty. Along
this line of argumentation, the conservative policy update (26)
can be replace by:

θi+1 =argmax
θ

E
s∼dθi

a∼πθ

[Aθi(s, a)]

s.t. JC(πθi) + E
s∼dθi

a∼πθ

[
Aθi

C (s, a)
]
≤ d

Es∼πθi
[DKL(θ||θi)[s]] ≤ δ.

(27)

B. Training Method of the Neural Network

In (27), the policy πθ(a|s) is approximated by a neural
network. This makes it difficult to solve the optimization
(27) to get the new parameter θi+1. Nevertheless, because the
searching area of θ is restricted in the neighborhood of θi by
the KL-Divergence in the policy update (27), we can approx-
imate the policy optimization (27) by using a convex model
based on Taylor’s expansion [19] as long as δ is small. By
using the first-order approximation of Es∼dθi ,a∼πθ

[Aθi(s, a)]



and Es∼dθi ,a∼πθ

[
Aθi

C (s, a)
]
, and second-order approximation

of Es∼πθi
[DKL(θ||θi)[s]], we get

max
θ

gT (θ − θi)

s.t. c+ bT (θ − θi) ≤ 0

1

2
(θ − θi)

TH(θ − θi) ≤ δ

(28)

where g = ∇θEs∼dθi ,a∼πθ
[Aθi(s, a)], c = JC(πθi) − d, b =

∇θEs∼dθi ,a∼πθ
[Aθi(s, a)] and H = ∇2

θθD
max
KL (θi||θ).

To calculate the gradients g and b, we need to estimate the
advantage functions Aθi(s, a) and Aθi

C (s, a). Since advantage
function is expressed as Aπ(s, a) = r(s, a)+γV π(s′)−V π(s),
we can estimate Aθi(s, a) and Aθi

C (s, a) by learning the value
functions V θi(s) and V θi

C (s). We use another feedforward net-
work (denoted as value network) to learn the value functions
V θi(s) and V θi

C (s). We use the same architecture for the policy
and the value networks.

To solve (28) in practice, we run the policy network πθi

for Γ timesteps at each iteration. Then, we use the collected
samples of the state-action pair {(st, at)|t = 0, 1, . . . ,Γ− 1}
to estimate the gradients g and b using importance sampling:

ĝ =
1

Γ

Γ−1∑
t=0

▽θπθ(at|st)
πθi(at|st)

Aπθi (st, at), (29)

b̂ =
1

Γ

Γ−1∑
t=0

▽θπθ(at|st)
πθi(at|st)

A
πθi

C (st, at), (30)

and c and H using

ĉ =
1

Γ/T

Γ−1∑
t=0

γ(t mod T )ct − d, τ ∼ πθk , (31)

Ĥ =
1

Γ

Γ−1∑
t=0

1

πθi(at|st)
▽θ πθ(at|st)▽T

θ πθ(at|st). (32)

Then, we solve the policy optimization problem (28) via a line
search algorithm to guarantee the KL-Divergence constraint.
Then, we use the optimal solution θi+1 to update the policy
network parameters. The pseudocode of the CPO-based energy
scheduling algorithm is summarized in Algorithm 1.

IV. CASE STUDIES

We test the proposed algorithm in a modified medium-
voltage MG in [20]. The network architecture is demonstrated
in Fig. 1 and the line parameters can be found in [20].
The microgrid consists of one 33kVA residential fuel cell at
bus 5, one 14kW/14kVA residential fuel cell at bus 10, one
212kVA fuel cell at bus 9, one 310kVA diesel generator at
bus 9, one 600kW/3MWh battery ESS (BAT 1) at bus 5, one
200kW/1MWh battery ESS (BAT 2) at bus 10, six solar panel
generators with a maximum 20kW power output of each at
bus 3, 4, 5, 6, 8, 9, one 40kW solar panel generator at bus 10,
one 10kW solar panel generator at bus 11, and one 1.5MW
wind turbine at bus 7. The cost coefficients of residential
fuel cell 1 are adg1 = 0.0001$/kW 2h, bdg1 = 0.0516$/kWh

Algorithm 1 SDRL-based microgrid online energy management
Initialize neural network parameter θ0.
for i = 1, 2, . . . do

Initialize a set Ψ to store state-action pairs.
for t = 1, 2, . . . ,Γ do

if t mod T == 0 then
Reset the microgrid state st

end if
Sample an action at ∼ πθi(·|st)
Execute at in the microgrid to get rt and st+1

Store (st, at, rt) in Ψ
end for
Calculate ĝ, b̂, ĉ, and Ĥ
Solve the constrained optimization problem (28)
Update the parameter θi+1 using the solution of (28)

end for

Fig. 1. Modified CIGRE medium voltage distribution network [16], [20].

and cdg1 = 0.5011$/h. The cost coefficients of residential
fuel cell 1 are adg2 = 0.0001$/kW 2h, bdg2 = 0.0724$/kWh
and cdg2 = 0.4615$/h. The cost coefficients of fuel cell
1 are adg3 = 0.0001$/kW 2h, bdg3 = 0.0407$/kWh and
cdg3 = 1.1532$/h. The cost coefficients of the diesel gener-
ator are adg4 = 0.0001$/kW 2h, bdg4 = 0.0358$/kWh and
cdg4 = 1.3156$/h. To simulate the uncertainty in MG, hourly
power profiles of load, solar and wind generations as well as
real-time electricity price from California Independent System
Operator (CAISO) are adopted. We used two-year data in
2018-2019 for training and one-year data in 2020 for testing.
We assume the discount factor for selling electricity to the
grid is β = 0.8.
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Fig. 2. Learning curves of the proposed approach, DDPG and PPO: a) return,
and b) constraint violation.

We use a feedforward neural network with two hidden
layers of 256 ReLu neurons to learn the policy and train the
network for 0.5 million episodes. The tolerance parameter for
the constraint is set to d = 1e−3. The discount factor is set to
γ = 0.995. The trust region parameter for KL-Divergence is
set to δ = 0.02. The episode length is T = 24. The algorithm
is implemented in Python 3.8.8 using TensorFlow 2.2.0 [21]
and Gym [22].

To validate the proposed method, we compare it with two
well-known DRL methods, deep deterministic policy gradient
(DDPG) [23] and proximal policy gradient (PPO) [24]. For
DDPG and PPO to deal with the constraints, we penalize any
violation of the operational constraints (11)-(17) by adding
a penalization term, 1000 ∗ ct, to the reward function. The
learning curves of the proposed SDRL-based method and the
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Fig. 3. Performance of different algorithms on the test dataset (366 test days):
a) constraint violation, and b) cumulative cost.

DRL-based approaches are presented in Fig. 2. It can be seen
from this figure that the proposed SDRL-based method (CPO)
outperforms the PPO and DDPG -based methods in terms of
both the return and the constraint. For instance, the constraint
violation curve of CPO decreases quickly below the predefined
tolerance, which is 1e−3, but those of DDPG and PPO fail to
do so. This means that DDPG and PPO are unable to learn a
policy to safely operate the microgrid considering AC power
flow constraints. In addition, the return curve of CPO increases
faster and eventually reach a higher value than those of DDPG
and PPO do.

After the training, we test the well-trained models on the
testing set. The testing performance of the proposed method
and the benchmark methods are presented in Fig. 3. From Fig.
3(a) we can see that CPO generalizes well to the testing set
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Fig. 4. Scheduling results of CPO on two testing days.
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in terms of constraint satisfaction. In addition, from Fig. 3(b)
we can see that CPO obtains a lower total cost than traditional
DRL-based methods do. Compared to DDPG and PPO, CPO
reduces the total cost by 28.1% and 16.5%, respectively.
Besides, the total cost of CPO is only 17.6% higher than
that of the mixed integer second-order cone programming
(MISCOP), which is calculated based on DistFlow model [25]
using perfect information.

Fig. 4 presents the scheduling results of CPO on two testing
days. It can be seen from this figure that using the learned
policy, the battery ESSs are efficiently dispatched to charge
during off-peak load/price hours and discharge during peak
hours. Besides, distributed generators, especially those with
high generation capacity such as FC and CHP, are dispatched
to generate electricity during peak hours to supply local
load with low electricity cost. Furthermore, fig. 5 shows the
maximum and minimum nodal voltages on the two testing

days. We can see from this figure, the nodal voltages are
effectively regulated within 0.95 p.u. - 1.05 p.u. to satisfy
the ANSI C84.1 2006 standard. It is concluded based on
these results that the proposed SDRL-based approach can
effectively learn an online energy management policy to safely
and economically operate the microgrid.

V. CONCLUSION

In this paper, we have developed a SDRL-based online
energy management method for micorgrids. We discussed the
difficulty of traditional MDP formulation in microgrid energy
management problem with AC power flow constraints. To
overcome the difficulty, we proposed a CMDP model and em-
ployed a SDRL approach to learn a safety-guaranteed policy.
Simulation results have shown that the proposed SDRL-based
method can effectively train a NN-based policy to safely and
economically operate a microgrid. Compared to the traditional
DRL-based approach, DDPG and PPO, the proposed method
can reduce the total operational cost by 28.1% and 16.5%,
respectively.
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