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1 Introduction

1.1 Background

Compressive sensing (CS) (cf. the pioneering work [1, 2]) is a new technique in
data acquisition realm that reconstructs the signal from fewer measurements than
that required by the classical Nyquist-Shannon sampling theorem. This fact makes
it very useful in reducing the sensing cost in a variety of applications such as
geophysics, astronomy and medical imaging.

The incomplete measurement b ∈ Cm of CS is usually linear projections of
the underlying image of interest ū ∈ Cn in the form of b = Aū + r where r is
noise. It relies on sparsity/compressibility of ū itself or under certain transform �

to recover it from b. When there is no noise (r = 0), a straightforward approach to
reconstructing ū is to solve the L0 problem

min
u

‖�u‖0 s.t. Au = b. (1)

However, since the L0 problem is NP-hard, it is common in practice to consider a
convex relaxed L1 optimization problem
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min
u

‖�u‖1 s.t. Au = b, (2)

which is more computationally efficient. When the sparsifying transform � is
orthonormal, the solution of (2) turns out to be the same as that of (1), and
approximate the underlying signal with an overwhelming probability if A satisfies
the restricted isometry property (RIP). A commonly used example of orthonormal
� is the Haar wavelet transform. More recently, RIP is generalized to D-RIP [3],
a property that guarantees accurate recovery of images that are nearly sparse in
overcomplete/redundant dictionaries. The theoretical results make it more flexible
to choose � and reconstruct the signal using L1 optimization (2). In the presence of
noise, a relaxed model of interest is

min
u

‖�u‖1 s.t. ‖Au − b‖2 ≤ σ,

or equivalently

min
u

λ ‖�u‖1 + 1

2
‖Au − b‖2

2 ,

where λ > 0 is related to the noise level σ in the data. To preserve the discontinuities
of u which correspond to the image features, e.g., edges, total variation (TV) is taken
into consideration as an additional regularization term [4–6]. Then the model with
two regularization terms reads as

min
u

β ‖u‖TV + λ ‖�u‖1 + 1

2
‖Au − b‖2

2 (3)

where � is the wavelet transform and β depends on the characteristics of the
underlying image itself.

Wavelet transform and total variation have been used widely in various computer
vision and/or imaging science problems. The advantage of wavelet transform is
its optimality in approximating signals containing point-wise singularities, but it is
widely known that traditional wavelets are not so effective in dealing with singular-
ities in higher dimensions, such as edges in 2D images. TV is optimal in describing
piecewise constant images and preserving image edges. As one of the TV based
compressive sensing methods, reconstruction from partial Fourier data (RecPF) [7]
considers both the TV and the wavelet regularizations. However, it is well known
that the TV regularization will cause staircase effects in image restoration [8] and
compressive sensing [9]. It has been shown that the TV regularization is closely
connected to the wavelet one [10]. Therefore, the combination of wavelet and TV
is not ideal for reconstructing natural images with abundant directional geometric
information from few noisy CS measurements.

In this paper, we present a geometric information guided CS (abbreviated
as GeoCS) reconstruction method to improve the performance for the situations
when the sampling rate is low and/or the noise level is high. The goal is to
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preserve geometries and fine features with less data required than the state-of-the-art
methods. There are three major contributions in our paper.

• Shearlet transform instead of the widely used wavelet transform is adopted
as � to promote the sparsity of signals and thereby reduce the number of
measurements required for accurate recovery of them by the fundamental
CS theory. Shearlets [11–13] provide an optimally sparse approximation of
piecewise smooth function with C2 singularity curves, e.g., edges, cusps and
corners. It combines the power of multiscale methods with the capability of
extracting geometry of images.

• A two-stage method rather than the conventional one-stage method is applied to
obtain better recovered images from fewer measurements than the state of the
arts. This reconstruction approach adaptively learns the gradient of increasing
accuracy to some extent controlling the image geometry. The first stage is to
get an initial image reconstruction from CS measurements based on shearlet
transform and TV. The second stage starts with geometric information extracted
from the result of stage I, and alternates image reconstruction and geometric
information update until it converges. Adaptive TV and shearlet transform are
used in the second stage. The proposed two stages are significantly different due
to the presence of the edge stopping function in the second stage and the cor-
responding algorithmic differences between the two stages. Massive numerical
experiments show that the two-stage approach outperforms the classical one-
stage methods.

• Apply the alternating direction method of multipliers (ADMM) [14, 15] or
its equivalent split Bregman method [16] to efficiently solve the optimization
problems in both stages. The algorithm achieves fast convergence and produces
high-quality images. Convergence of the algorithm at each stage is guaranteed as
well.

In [17], the binary reweighted L1 regularization is exploited for recovering 1D
sparse signals. While it can be applied to recover the sparse wavelet coefficients of
an image and hence the image itself, it can hardly take advantages of image edges to
improve the recovery. In Edge Guided Compressive Sensing (EdgeCS) [18, 19],
binary edge detection and image reconstruction are performed alternatively in a
mutually beneficial way and thus the recovery quality has been improved. In this
paper, we consider a more general edge detection whose range is continuous rather
than binary. The spatially variant weights associated to the TV ranges between
zero and one based on the extracted salient geometric information. In that case,
the sharp edges are still able to be preserved while gradual intensity changes in
smooth regions can be preserved as well to reduce the staircase effects resulted
in TV regularization. In addition, different from EdgeCS as a one-stage method
involving TV and wavelets, GeoCS has two stages with TV and shearlets where
reliable geometric information from the first stage can be exploited at the second
stage to boost performance. More recently, other edge/geometric information guided
image reconstruction methods have been proposed, including edge guided CT image
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reconstruction [20, 21] and edge-guided TVp regularization for diffuse optical
tomography [22].

The paper is organized as follows. We provide a brief review of the shearlet
transform in Sect. 2, and present the two-stage geometric information guided
algorithm in Sect. 3. The convergence analysis of the algorithm and practical
parameter selection are presented in Sect. 4. To show the consistent excellence and
robustness of the proposed algorithm, plenty of numerical results and comparisons
to related work RecPF and EdgeCS are provided in Sect. 5. Finally, conclusion and
remarks are made in Sect. 6.

2 Review of Shearlet Transform

The traditional wavelet transform is based on isotropic dilations and thus has
limited ability to describe the geometry of multidimensional functions. Directional
representation systems such as ridgelets [23], curvelets [24], contourlets [25], and
shearlets [12] have been designed to provide much more geometric information of
multidimensional functions such as images. Curvelets, a tight frame of elongated
oscillatory functions at various scales, was first proposed by Candès and Donoho to
generalize wavelet. For any L2(R2) function f , the N largest term approximation
using the curvelet transform has error norm of order (log N)3N−2. Since the
curvelets are not generated by taking a family of actions on one function as
wavelet, it is numerically difficult to implement. In an attempt to provide a better
discrete implementation of the curvelets, the contourlet representation is then
proposed. It is a discrete time-domain construction, which is designed to achieve
essentially the same frequency tiling as the curvelet representation. With the same
rate of approximation error decay as curvelets, shearlets have several advantages:
efficient implementation, more directional sensitivity and theoretical relation to the
multiresolution analysis.

Shearlet transform is an efficient multiscale directional representation of signals,
theoretically proven to be optimal up to a log-factor in encoding images with
anisotropic features such as edges, corners and other singularities [11, 13]. Given
any function ψ ∈ L2(R2), the shearlet system is generated by applying the
operations of dilation, shear transformation and translation of ψ :

ψast = | det Mas |− 1
2 ψ(M−1

as (x − t))

where

Mas =
[
a −√

as

0
√

a

]
=

[
1 −s

0 1

] [
a 0
0

√
a

]
:= BsAa
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with a ∈ R+, s ∈ R, t ∈ R2, Bs a shear operator and Aa an anisotropic dilation
operator. Note in the generation of wavelets, there are only isotropic scaling and
translation involved without shearing or anisotropic scaling. The shearlet transform
of function f ∈ L2(R2) is defined as

SHψ(f )(a, s, t) = 〈f,ψast 〉.

The shearlet transform is invertible if the function ψ satisfies the admissibility
property ∫

R
2

|ψ̂(ω1, ω2)|2
|ω1|2 dω1dω2 < ∞

where ψ̂ is Fourier transform of ψ . Given complete shearlet transform coefficients,
the original function f can be recovered by

f (x) =
∫
R

2

∫
R

∫
R

+〈f,ψast 〉ψast (x)
da

a3
dsdt.

Discrete shearlet transform can be implemented efficiently using the fast Fourier
transform. There are three shearlet toolboxes using MATLAB available online:
Local Shearlet Toolbox http://www.math.uh.edu/~dlabate/software.html, Fast Finite
Shearlet Transform (FFST)[26], and ShearLab http://www.shearlet.org. More
recently, the shearlet transform has been successfully applied in image processing,
e.g., the shearlet-based total variation denoising algorithm [27]. Because of its
higher sparsity of signal representation and ability to capture directional features,
the performance of the shearlet transform has also been explored in CS field [28].

3 Proposed Model and Algorithm

In this section, we present our reconstruction model and analyze how to apply split
Bregman to solve the model at each stage. The idea is to use both the shearlet
transform and the weighted TV. To enhance the accuracy of weights associated to
the TV regularization, we propose a two-stage method. The first stage is to solve a
standard TV-L1-L2 model with the shearlet transform to get an initial guess for the
underlying image of interest. Note that the extraction of geometry does not work
at Stage I since the accuracy is relatively low. In the second stage, we generate the
initial spatially variant weights based on the result from stage I, and then alternate
image reconstruction and weights update until it converges at this stage. The entire
algorithm alternates the two stages until the relative error between two consecutive
results is within a tolerance value.

For the shearlet part �u, we adopt the FFST algorithm which involves the Fourier
transform and the inverse Fourier transform. Let
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�u := SH(u) =
N∑

i=1

SHi(u)

where SHi(u) is the ith subband of shearlet transform of u and N depends on the
number of scales in shearlet transform. The ith subband of the shearlet transform
can be efficiently implemented as componentwise multiplication with a mask matrix
denoted by Hi in the frequency space. We have

SHi(u) = vec(F−1(Hi. ∗ Û )) = vec(F−1(Hi) ∗ U) := MHi
u

where MHi
∈ Rn2×n2

, U is the matrix representation of the vectorized image u and
Û is the Fourier transform of U .

We demonstrate the idea of the proposed model using partial Fourier sampling,
but it can be extended to other linear projection measurements. Let A = Fp :=
PF where P is a selection matrix and F is the Fourier transform operator. For 2D
Fourier transform, F ∈ Rn2×n2

is the Kronecker product of two identical n × n

unitary Fourier transform matrices G with

Gjk = 1√
n
e−2π

√−1(k−1)(j−1)/n, j, k = 1, . . . , n.

It can be shown that F satisfies F ∗F = FF ∗ = In2 . By this notation, we get the
explicit representation of MHi

as

MHi
= F ∗diag(vec(Hi))F.

The selection matrix P ∈ Rk×n2
is generated simply by deleting the (n(j −1)+ i)th

row of the n2 × n2 identity matrix if the (i, j)th entry of data matrix is not sampled.

3.1 Stage I: TV-L1-L2 Model

To simplify our discussion, we assume the image to be studied has a square domain.
Let u ∈ Rn2

be the vectorized ground truth image, and b ∈ Rk (k 
 n2) the given
data. At the first stage, we consider the unconstrained minimization problem with
anisotropic discretization of TV as follows:

min
u∈Rn2

β

2∑
i=1

‖Diu‖1 + λ

N∑
i=1

‖SHi(u)‖1 + 1

2

∥∥Fp(u) − b
∥∥2

2 (4)
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where D1 ∈ Rn2×n2
(D2) is a horizontal (vertical) first order finite difference

operator with periodic boundary conditions.
Due to the non-differentiability of both TV and L1 terms, we introduce auxiliary

variables ri ∈ Rn2
(i = 1, 2) and si ∈ Rn2

(i = 1, . . . , N ) such that ri = Diu

(i = 1, 2) and si = SHi(u) (i = 1, . . . , N ) to split the variables. We wish to solve
the problem

min
u,ri ,si

β

2∑
i=1

‖ri‖1 + λ

N∑
i=1

‖si‖1 + 1

2

∥∥Fp(u) − b
∥∥2

2 s.t. ri = Diu, si = SHi(u).

(5)
After adding the quadratic penalty terms, we get the following unconstrained
problem:

min
u,ri ,si

β

2∑
i=1

(‖ri‖1 + μ

2
‖ri − Diu‖2

2) + λ

N∑
i=1

(‖si‖1 + τ

2
‖si − SHi(u)‖2

2) + 1

2

∥∥Fp(u) − b
∥∥2

2 .

(6)

The above optimization problem is equivalent to (4) when μ, τ > 0 go to infinity.
Solving (6) using the continuation scheme [29] is a straightforward method, but it
is slow and leads to the ill conditioning of the problem when μ, τ are sufficiently
large. We hereby apply the split Bregman, which provides fast convergence while
the values of μ, τ can be fixed. The split Bregman formulation is

min
u,ri ,si

β

2∑
i=1

(‖ri‖1 + μ

2
‖ri − Diu − vi‖2

2) + 1

2

∥∥Fp(u) − b
∥∥2

2

+ λ

N∑
i=1

(‖si‖1 + τ

2
‖si − SHi(u) − ti‖2

2)

where vi’s, ti’s are updated by Bregman iterations{
vi ← vi + γ (Diu − ri), i = 1, 2

ti ← ti + γ (SHi(u) − si), i = 1, . . . , N,

with γ > 0 a parameter to be discussed later.
We finally decompose it into three sets of subproblems and apply alternating

minimization scheme to get a minimizer iteratively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ri

‖ri‖1 + μ

2
‖ri − Diu − vi‖2

2 , i = 1, 2

min
si

‖si‖1 + τ

2
‖si − SHi(u) − ti‖2

2 , i = 1, . . . , N

min
u

βμ

2

2∑
i=1

‖ri − Diu − vi‖2
2 + 1

2

∥∥Fp(u) − b
∥∥2

2 + λτ

2

N∑
i=1

‖si − SHi(u) − ti‖2
2 .
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The first two subproblems are both in the form of L1-L2 optimization

min
x∈Rm

δ ‖x‖1 + 1

2
‖x − v‖2

2 , (δ > 0)

whose solution is given by using the shrinkage operator

x = shrink(v, δ) := sgn(v). ∗ max{|v| − δ, 0}

where sgn(x) : Rm → R
m is componentwise sign function and .∗ is componentwise

multiplication. Then by the similar derivations, the first two subproblems have
closed-form solutions using shrinkage.

To solve the last least square subproblem, we consider the corresponding normal
equation

βμ

2∑
i=1

DT
i (Diu − ri + vi) + λτ

N∑
i=1

M∗
Hi

(MHi
u − si + ti ) + (PF)∗(PFu − b) = 0.

To circumvent the expensive computation of the inverse matrix, we multiply both
sides by F and simply the solution due to the fact that F is unitary. By simplification,
the solution is explicitly represented as

(
βμ

2∑
i=1

F(DT
i Di)F

∗ + λτ

N∑
i=1

F(M∗
Hi

MHi
)F ∗ + P ∗P

)
Fu

= βμ

2∑
i=1

F(ri − vi) + λτ

N∑
i=1

F(si − ti ) + P ∗b.

Here P ∗P := diag(P̃ ) is a n2 × n2 diagonal matrix with diagonal value 0, 1
corresponding to nonsampled and sampled entries, respectively. Denoting P ∗b = b̃,
the solution can be further written in terms of Fourier transform

u = F−1
(
(βμ

2∑
i=1

F(ri − vi) + λτ

N∑
i=1

F(si − ti ) + b̃)

./(βμ

2∑
i=1

diag(FDT
i DiF

∗) + λτ

N∑
i=1

diag(FM∗
Hi

MHi
F ∗) + P̃ )

)
.

(7)

Here ./ means the componentwise division. One more remark about this approach
is that since Di’s and MHi

’s are circulant matrices which can be diagonalized under
the Fourier transform, both FDT

i DiF and FM∗
Hi

MHi
F ∗ are diagonal matrices.



Two-stage Geometric Information Guided Image Reconstruction 11

We follow the convention that 0/0 = 0. The above analysis yields the following
algorithm.

Algorithm 1 GeoCS Stage I (solving (5))

1. Initialization: set u0, r0
i , v0

i , s
0
i , t0

i as zero matrices, and choose proper parameters
β,μ, λ, τ, γ > 0.

2. For k = 0, 1, 2, . . ., run the following steps:

rk+1
i = shrink(Diu

k + vk
i , 1/μ), i = 1, 2

sk+1
i = shrink(SHi(u

k) + tki , 1/τ), i = 1, . . . , N

uk+1 is given by (7)

vk+1
i = vk

i + γ (Diu
k+1 − rk+1

i ), i = 1, 2

tk+1
i = tki + γ (SHi(u

k+1) − sk+1
i ), i = 1, 2, . . . , N.

If ‖uk+1 − uk‖/‖uk+1‖ ≤ tol, stop the iteration.

3.2 Stage II: wTV-L1-L2 Model

The stage I model works well in mild CS scenario but not so efficient in challenging
scenarios when sampling rate is extremely low and noise is excessive. To handle
challenging situations, we start with the result of stage I and then alternatively
perform geometric information update and image reconstruction in a beneficial
way. Specifically, setting the result from stage I as initial guess, we define adaptive
weights based on it, and use weighted TV along with shearlet to reconstruct an
image. We then continue alternating weight update and image reconstruction until
it converges. For a fixed weight, the model reads as below

min
u∈Rn2

β

2∑
i=1

‖wi. ∗ Diu‖1 + λ

N∑
i=1

‖SHi(u)‖1 + 1

2

∥∥Fp(u) − b
∥∥2

2 (8)

where wi’s are the weights based on the extracted geometric information, such as
reliable gradients and high frequency subbands of shearlet transform coefficients.
And .∗ is componentwise multiplication. Algorithm 2 is designed to address the
above problem and the complete stage II algorithm is shown in Algorithm 3.

Given the latest iterate ũ for the reconstructed image, we define TV weight at
each pixel as a function of the gradient of ũ at the same pixel. Suppose g : [0,∞) →
[0, 1] is a non-increasing function satisfying
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Algorithm 2 Weighted TV shearlet based image reconstruction algorithm (solv-
ing (8))

1. Initialization: set u0, r0
i , v0

i , s
0
i , t0

i as those generated from stage I.
2. For k = 0, 1, 2, . . ., run the steps:

rk+1
i = shrink(Diu

k + vk
i , wi/μ), i = 1, 2

sk+1
i = shrink(SHi(u

k) + tki , 1/τ), i = 1, . . . , N

uk+1 is given by (7)

vk+1
i = vk

i + γ (Diu
k+1 − rk+1

i ), i = 1, 2

tk+1
i = tki + γ (SHi(u

k+1) − sk+1
i ), i = 1, 2, . . . , N.

If ‖uk+1 − uk‖/‖uk+1‖ ≤ tol, stop the iteration.

g(0) = 1, lim
s→∞ g(s) = 0.

g is called edge stopping function in image segmentation or diffusivity function in
PDE. The reason is that g(|∇ũ|) approaches to zero near edges where the gradient
gets large while close to one in smooth areas where the gradient becomes small.
In fact, besides separating edges from smooth areas, g also identifies the small
differences in intensity variations within the smooth areas. The pixel in regions of
small intensity variations will get larger g value than that in regions of large intensity
variations. Weighted TV with this type of weight will preserve the various intensity
variation scales in the reconstruction process, and thus increase the robustness of
TV and reduce the staircase effects of TV.

There are many choices for g. Some commonly used ones are listed below, where
h is a parameter controlling the differentiation of smoothness levels.

(a) Lorentzian function

g
Lor

(x) = 1

1 + x2

h2

(b) Le Clerc function

g
Lec

(x) = exp
(

− x2

h2

)
(c) Tukey bi-weight function
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Fig. 1 Edge stopping function g’s when h = 1

g
T uk

(x) =

⎧⎪⎨⎪⎩
(

1 − x2

5h2

)2 |x| <
√

5h

0 otherwise

(d) Weickert function

g
Wei

(x) =

⎧⎪⎨⎪⎩ 1 − exp
(

− 3.31488h8

x8

)
x �= 0

1 otherwise

In Fig. 1, we plot the above four g functions when h = 1. From observation, it’s
clear that they have different decay behaviors. Especially, Weikert edge function
decays slowly at the two ends but fast near the middle and Tukey bi-weight function
decays slowly all the way long. So for piecewise constant images whose intensity
changes sharply from one region to another, Weikert is optimal while Tukey bi-
weight function is more appropriate for generic complicated piecewise smooth
images with ubiquitous unprecedented intensity variations. We use Tukey bi-weight
for all our numerical experiments as we focus on testing piecewise smooth images.
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Since we adopt anisotropic TV discretization, our weights are different along
x, y directions and are defined respectively as

w1 = g(|D1ũ|), w2 = g(|D2ũ|). (9)

Notice that high frequency components of the shearlet transform of ũ also provide
some edge information. So another option to define weights is to gather all the high
frequency subbands. But our massive numerical experiments show that g function
of gradients is more efficient.

In hope of retrieving more trustworthy geometric prior information, we update
the weights from each convergent intermediate result and reapply the Algorithm 2.
Then we get the Algorithm 3.

Algorithm 3 GeoCS Stage II

1. Initialization: set u0, r0
i , v0

i , s
0
i , t0

i as those produced from stage I.
2. For j = 0, 1, 2, . . ., run the steps:

(1) Build the weights w
j+1
1 , w

j+1
2 based on uj by (9).

(2) Set uj , r
j
i , v

j
i , s

j
i , t

j
i as initial values, apply Algorithm 2 to solve (8) and get

uj+1, r
j+1
i , v

j+1
i , s

j+1
i , t

j+1
i .

(3) If ‖uj+1 − uj‖/‖uj+1‖ ≤ tol, stop the iteration.

4 Convergence Analysis

There are close relationships between Bregman iterative methods and its vari-
ants such as linearized Bregman, Bregman operator splitting, and the classical
Lagrangian based methods, such as method of multipliers, the alternating direction
method of multipliers (ADMM) and alternating minimization algorithm (AMA).
The connection between split Bregman algorithm and ADMM, and its illustrative
applications in TV-L1 and TV-L2 problems can be found in [30]. In this section,
we aim to bridge the gap between our proposed algorithms using split Bregman
method and ADMM by constructing one augmented Lagrangian adapted to our
problem. Then the existing convergence theory for ADMM can be used to justify
our proposed algorithm utilizing the split Bregman and quadratic penalties.

We first analyze the algorithm in stage I, and the discussions can be analogously
extended to the Algorithm 2 in stage II. Based on the problem (4), we build the
augmented Lagrangian as below:
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L(u, r1, r2, s1, . . . , sN , v1, v2, t1, . . . , tN )

= β

2∑
i=1

(‖ri‖1 − vT
i (ri − Diu) + μ

2
‖ri − Diu‖2

2)

+ λ

N∑
i=1

(‖si‖1 − tTi (si − SHi(u)) + τ

2
‖si − SHi(u)‖2

2) + 1

2

∥∥Fp(u) − b
∥∥2

2 .

Since the variables ri’s and si’s are separable in the Lagrangian L, minimizing L

over (r1, r2, s1, . . . , sN ) simultaneously can be replaced by minimizing L over ri’s
and si’s individually. Thus ADMM yields the following iterations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rk+1
i = argmin

ri

‖ri‖1 − (vk
i )T (rk

i − Diu
k) + μ

2
‖ri − Diu

k‖2
2, i = 1, 2

sk+1
i = argmin

si

‖si‖1 − (tki )T (si − SHi(u
k)) + τ

2
‖si − SHi(u

k)‖2
2, i = 1, . . . , N

uk+1 = argmin
u

L(u, rk+1
1 , rk+1

2 , sk+1
1 , . . . , sk+1

N , vk
1 , vk

2 , tk1 , . . . , tkN )

vk+1
i = vk

i + μγ (Diu
k+1 − rk+1

i ), i = 1, 2

tk+1
i = tki + τγ (SHi(u

k) − sk+1
i ), i = 1, . . . , N

By absorbing the linear terms involving vi’s and ti’s into the quadratic terms, it can
be simplified as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rk+1
i = argmin

ri

‖ri‖1 + μ

2

∥∥∥ri − Diu
k − vk

i

μ

∥∥∥2

2
, i = 1, 2

sk+1
i = argmin

si

‖si‖1 + τ

2

∥∥∥si − SHi(u
k) − tki

τ

∥∥∥2

2
, i = 1, . . . , N

uk+1 = argmin
u

βμ

2

2∑
i=1

‖rk+1
i − Diu‖2

2 + 1

2

∥∥Fp(u) − b
∥∥2

2 + λτ

2

N∑
i=1

‖sk+1
i − SHi(u)‖2

2

vk+1
i = vk

i + μγ (Diu
k+1 − rk+1

i ), i = 1, 2

tk+1
i = tki + τγ (SHi(u

k) − sk+1
i ), i = 1, . . . , N

(10)

One can see the algorithm derived by ADMM here is equivalent to Algorithm 1
by split Bregman method with quadratic penalization. The detailed convergence
analysis of the algorithm (10) can be found in [30]. To be complete, we present the
convergence theorem without the proof.

Theorem 1 For any μ, τ > 0 and γ ∈ (0, (
√

5+1)/2), the sequences {(uk, rk
i , sk

i )}
generated by (10) from any starting point (u0, λ0, η0) converges to a solution of
problem (5).
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Therefore, by choosing an appropriate parameter γ , the proposed Algorithm 1
provides a convergent solution to the problem (4). Likewise for the fixed weights
wi’s, by replacing Diu

k with wi. ∗ Diu
k the ADMM yields a similar algorithm

equivalent to Algorithm 2 and thereby the convergence is guaranteed as well.

Parameter Selection The above theorem only requires γ ∈ (0, (
√

5 + 1)/2), and
positive μ, τ to guarantee convergence. In the perspective of convergence speed,
our experience with a variety of tests shows that γ restricted in (1, (

√
5 + 1)/2)

consistently yields good results. Refer to [31, 32] for using variational techniques to
derive the condition on γ for the convergence of ADMM. Regarding μ and τ , as they
show up in the shrinkage representation of updates for ri and si , an inappropriate
selection of them leads to slow convergence. Especially, if μ and τ are set too small,
the updates for ri and si will dwell in 0 at the first several iterations. We scale image
intensity to [0, 1] to make the effect of μ and τ on convergence speed moderate. β

and λ depend on the gradient/shearlet transform sparsity of the underlying image
and the noise/error level in the measurements. Implementation details and specific
parameter selections will be explained in Sect. 5.

5 Numerical Examples

In this section, we illustrate the performance of GeoCS on various images with
different sampling rates and noise levels. We also compare GeoCS with two related
CS reconstruction approaches: RecPF [7] and EdgeCS [18]. All experiments were
performed under Windows 7 Professional operating system and MATLAB R2012a
running on a Dell desktop with Intel Core i5 CPU at 3.10 GHz and 8 GB of memory.

RecPF iteratively recovers an image from its incomplete Fourier samples by
solving

min
u

βTV(u) + λ‖�u‖1 + 1

2
‖Fp(u) − b‖2

2 (11)

where TV(u) can be either isotropic or anisotropic and � is wavelet transform.
EdgeCS alternatively performs image reconstruction and edge detection in a

mutually beneficial manner. It detects edges from the intermediate reconstruction
and use edge information to guide the next stage of image reconstruction and so on.
GeoCS is different from EdgeCS as analyzed in Sect. 1.1.

Our test images are all piecewise smooth images with a lot of fine details: a
human brain MR image, Barbara image with textures and a human knee MR image.
The intensity value of each test image is scaled to the range [0, 1] before simulating
b. Partial Fourier CS data are simulated through fast Fourier transform (FFT) on the
test images followed by sampling on smooth radial trajectories that are empirically
shown to be effective.
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All the quantitative comparisons are based on relative error and signal-to-noise
ratio (SNR). Relative error is to measure the recovery accuracy and defined as

RelErr = ‖u − utrue‖2
2

‖utrue‖2
2

where u and utrue are the recovered image and the ground truth, respectively.
Considering the independence with the above measure, we adopt the SNR defined
in [33]

SNR = 10 log10

∥∥u.2 + utrue.
2
∥∥2

2

‖u − utrue‖2
2

,

where (.2) represents the componentwise squaring. For all the experiments, we fix
γ = 1, μ = τ = 102 and vary β, λ slightly based on the noise level. When there
is no noise we set β = λ = 10−5 for all of the three images while they are set a
little larger in the presence of noise. The results are not sensitive to the selection
of β and λ. For discrete shearlet transform, we adopt FFST [26] with 3 scales and
13 subbands (12 high frequency and one low frequency). The parameter h used in
Tukey bi-weight g function in stage II is set among (0, 1]. The tolerance value in all
algorithms is set as tol = 10−5. And in each of the following experiment, the total
number of iterations used in stage I is less than 1000 and stage II takes less than 100
iterations to achieve a convergent solution.

5.1 Example 1

In the first example, we look at the simulated noise-free spectral measurements
of a 512 × 512 brain MR image downloaded from BrainWeb https://brainweb.
bic.mni.mcgill.ca/brainweb/. The ground truth image has inhomogenous contrasts
in different areas, especially in the gray matter and cerebrospinal fluid. We tested
the proposed GeoCS algorithm, RecPF and EdgeCS with 40 radial sampling lines,
namely 8.79% sampling rate. We show the results in Fig. 2 and zoom in one
small patch for better visual comparison. It’s apparent that the image produced by
GeoCS has better quality than the others. RecPF sort of oversmooths the whole
image, and EdgeCS is able to detect the edges while losing some gradual transition
between smooth areas and boundaries. To further compare three results, we take
the difference between the ground truth and the reconstructed image for each
method and display the inverted residue images in Fig. 3. It’s clear that our proposed
algorithm suppresses the error more evenly inside the skull. The three approaches
are also compared as the sampling rate changes. The quantitative comparison listed
in Table 1 shows that the proposed GeoCS consistently outperforms the other
methods.



18 J. Qin and W. Guo

Fig. 2 Reconstructed brain MR image. First row from left to right: ground truth, close-up of
ground truth, our result, close-up of the result. Second row from left to right: result obtained by
RecPF, close-up of RecPF result, result by EdgeCS, close-up of EdgeCS result

Fig. 3 Residual maps of the three method results with the ground truth. For better visualization,
we inverted the grayscale. From left to right: proposed, RecPF, EdgeCS, the relative errors are
listed respectively as: 12.00%, 14.68%, 15.81%

Table 1 Relative error and SNR comparisons for brain MRI reconstruction

8.79% 10.64% 12.92% 14.74%

Sampling rate RelErr SNR RelErr SNR RelErr SNR RelErr SNR

Proposed 0.1200 15.90 0.1016 17.34 0.0874 18.65 0.0797 19.46

RecPF 0.1468 14.16 0.1273 15.40 0.1097 16.68 0.1011 17.39

EdgeCS 0.1581 14.06 0.1378 15.34 0.1208 16.56 0.1111 17.35

5.2 Example 2

In this example, we show the benefits of GeoCS on reconstructing texture images.
The test image is 512 × 512 Barbara image which has various texture patterns and
a lot of details. This image requires relatively higher sampling rate to get an ideal
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Fig. 4 Reconstructed barbara image. First row from left to right: accurate barbara image, cropped
barbara image, our result, close-up of our result. Second row from left to right: result by RecPF,
close-up of RecPF result, result by EdgeCS, close-up of EdgeCS result

Fig. 5 From left to right: proposed, RecPF, EdgeCS. Relative error: 9.64%, 14.01%, 12.53%

recovery and standard edge detection algorithm may even fail to get accurate edges.
The results obtained by GeoCS, RecPF and EdgeCS with 100 radial sampling lines
(sampling rate 20.87%) are listed in Fig. 4, where we zoomed in one patch of table
cloth. Our proposed method is able to recover largely the directional textures while
the other two methods get blurry textures. The inverted residue images are listed in
Fig. 5. The consistent performance is illustrated in Table 2 using different sampling
rates. In this example, shearlet transform plays an important role in preserving the
structures in different directions and thereby the textures. Weighted total variation
further corrects the smooth areas which were over-texturized.
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Table 2 Relative error and SNR comparisons for barbara image reconstruction

8.79% 12.92% 16.94% 20.87%

Sampling rate RelErr SNR RelErr SNR RelErr SNR RelErr SNR

Proposed 0.1429 10.16 0.1248 11.33 0.1104 12.39 0.0964 13.58

RecPF 0.1700 8.66 0.1552 9.45 0.1471 9.92 0.1401 10.36

EdgeCS 0.1574 9.69 0.1412 10.72 0.1323 11.35 0.1253 11.92

Fig. 6 Recovered knee image from noisy data. Top row from left to right: ground truth, our result.
Bottom row from left to right: result by RecPF and EdgeCS

5.3 Example 3

Our last test image is a T1 weighted MR image of the knee showing femur, patella,
tibia and menisci from http://www.mr-tip.com/. We first added zero-mean complex
Gaussian noise σ = 10 to the spectral data sampled by 40 radial lines (sampling
rate 12.71%). The recovered images and their associated enlarged patches given by
GeoCS, RecPF and EdgeCS are shown respectively in Fig. 6. Visually our result
is more natural in the bones and junctions and is closer to the ground truth than
those given by the other two methods. It is worth noting that staircase artifacts are
significantly reduced in our result while they are quite obvious in the RecPF and
EdgeCS results especially in the smooth bone regions. For better visual comparison,
we show the residue images in Fig. 7.

By fixing the sampling rate as 12.71%, we also perform the comparisons on
spectral data with different noise levels σ = 5, 10, 15, 20. In the case of large noise
level, it is better to adjust the regularization parameters accordingly. It is also true
in RecPF and EdgeCS algorithms. From Table 3, we observe that our proposed
algorithm is robust to the noise and produces more accurate reconstructed images
than the other methods. All the results are obtained under the optimal parameter
settings for each method.
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Fig. 7 From left to right: proposed, RecPF, EdgeCS. Relative error: 9.52%, 11.71%, 10.35%

Table 3 Relative error and SNR comparisons for the noisy knee MRI reconstruction

5 10 15 20

σ RelErr SNR RelErr SNR RelErr SNR RelErr SNR

Proposed 0.0842 18.50 0.0952 17.44 0.1006 16.95 0.1095 16.22

RecPF 0.1064 16.47 0.1171 15.64 0.1283 14.85 0.1389 14.16

EdgeCS 0.0992 17.08 0.1035 16.71 0.1118 16.04 0.1194 15.47

6 Conclusion and Remarks

We proposed a two-stage compressive sensing image reconstruction algorithm
based on shearlet transform and weighted TV. The first stage is to use standard TV-
L1-L2 model with shearlet transform to get an initial guess for the underlying image
of interest. Geometric information extracted from this guess serves as an initial a
priori in weighted TV-L1-L2 model to further enhance the reconstruction accuracy.
This kind of geometric information extraction and image reconstruction are alter-
nated in a mutually beneficial fashion until it converges. Replacing the conventional
wavelet transform with shearlet transform, the model is able to promote the signal
sparsity, and preserve multiple directional features better during the recovery. The
spatially variant weights associated to TV plays an important part in preserving
sharp edges while reducing staircase effects of TV. The minimization problem is
solved by split Bregman which divides one complicated optimization problem with
nondifferentiable terms into three sets of subproblem, each of which has closed-
form solutions. Convergence of the algorithm is guaranteed under mild conditions.
The proposed approach is compared with two recent related work. Numerical
experiments show the consistent overwhelming advantages of our algorithm.

The proposed approach GeoCS is better than RecPF and EdgeCS in reconstruct-
ing complicated piecewise smooth images. However, as for piecewise constant
images, it is sufficient to apply one-stage methods. Moreover, by adapting the
weights to the spatially variant gradients along with two-stage reweighting scheme,
GeoCS integrates more reliable geometric prior to the reconstruction than EdgeCS.
Our extensive experience shows that the more accurate geometric information is
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obtained during the algorithm, the better the overall scheme will perform. A high-
quality result of Stage I will speed up the convergence of Stage II and potentially
ease the parameter tuning. Nevertheless, it is possible that the extracted geometric
information is not reliable at all in case of extremely insufficient samples or
excessive noise and thereby GeoCS might fail. There is still room to study how to
extract much more reliable geometric information from noisy incomplete measure-
ments and how to efficiently utilize them. Furthermore, some recent acceleration
techniques, e.g., Nesterov’s accelerated gradient descent[34], can be applied to
speed up the convergence.
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