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ABSTRACT

We present a spatio-temporal super-resolution method for

reconstructing a sequence of observations collected by imag-

ing satellites. A sequence of observations is assumed to be

defined on a low resolution spatio-temporal grid. It is fur-

ther assumed that the sequence is generated by blurring of a

captured scene with a spatio-temporal convolution kernel and

is degraded by noise. Our method simultaneously exhibits

deconvolution of the sequence of images from the effects of

spatio-temporal blur, denoising of the data, and upsampling

of the low-resolution sequence to a high resolution spatio-

temporal grid. We perform the super-resolution in the space-

time domain, as opposed to super-resolving the sequence

separately and sequentially to a higher spatial and then tem-

poral resolution grid. Simultaneous space-time optimization

achieves a more efficient and more accurate reconstruction

than reconstructing a sequence frame by frame. The proposed

super-resolution methodology is based on total variation reg-

ularization and computes the solution using the alternating

direction method of multipliers. Numerical results show our

approach to be robust and computationally efficient.

Index Terms— Alternating direction method of multipli-

ers, upsampling, satellite images, super-resolution

1. INTRODUCTION

The need for spatio-temporal super-resolution arises when an-

alyzing sequences of observations captured by satellite im-

agery as well as when processing video sequences. In par-

ticular, many sensors have limited spatial and temporal res-

olution. This is especially the case for microwave sensors,

which are characterized by spatial blurring and distortion. In

addition, frame-rate and exposure time constrain instrument’s

temporal resolution.
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nautics and Space Administration. The research of I. Yanovsky was also

supported by the NSF grant DMS 2012868. The research of J. Qin was sup-

ported by the NSF grant DMS 1941197.

Fig. 1. Spatio-Temporal Super-Resolution: Spatio-

temporally undersampled, blurry, and noisy sequence of p
frames, each frame is m×n pixels, is deconvolved, denoised,

and upsampled to contain 2p frames of size 2m× 2n.

There are a variety of applications of super-resolution.

Spatial [1, 2, 3, 4, 5] and temporal [6, 7, 8] super-resolution

methods have been proposed that perform reconstruction sep-

arately, either in space or in time. Other super-resolution ap-

proaches consider the problem of generating a high-resolution

image given multiple low-resolution images [9, 10, 11, 12].

Rather than reconstructing a single high resolution image

from a sequence of low-resolution images, our approach in

this paper reconstructs an entire sequence of high-resolution

images, by increasing spatial resolution (adding pixels) and

temporal resolution (adding frames) (see Fig. 1). More-

over, in order to achieve a more accurate reconstruction than

frame-by-frame processing, methods had been proposed to

enhance resolution in the spatio-temporal domain [13, 14].

Our methodology improves such approaches by not only per-

forming spatio-temporal deconvolution, but at the same time,

performing upsampling.

The method in this paper builds upon our past efforts on

spatial super-resolution and spatio-temporal deconvolution.

In [15], we implemented the super-resolution technique for a

single image using simultaneous upsampling and deconvolu-
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tion spatially, but not temporally, using the alternating direc-

tion method of multipliers (ADMM) [16]. In [17], we imple-

mented spatio-temporal deconvolution for a sequence of im-

ages, without performing upsampling, using the Split Breg-

man method [18]. In this paper, we implement the spatio-

temporal super-resolution method, via spatio-temporal decon-

volution and upsampling, using a total variation (TV) based

ADMM technique to increase resolution of spatio-temporally

distorted, noisy and downsampled image sequence.

2. SIMULTANEOUS DECONVOLUTION AND

UPSAMPLING VIA ADMM

We assume that u0 ∈ R
m×n×p is a ground truth image se-

quence, consisting of p frames, each frame is m × n, cor-

responding to a physical scene. While being captured, the

scene is convolved (or blurred) by a point spread function K
and downsampled by an operator D. It is also degraded by

additive noise κ. The forward imaging model can be written

as

f = DKu0 + κ, (1)

where f is a blurry, noisy and subsampled sequence of obser-

vations.

Since the deconvolution and upsampling problem is very

ill-posed, we apply regularization to guarantee the existence

and uniqueness of solution in order to preserve the geomet-

ric qualities of the solution. We use the TV norm ||u||TV =
||∇u||1 =

∫

|∇u| as a regularization term, which allows for

the retrieval of images with sharp edges. Given a sequence

of blurry, noisy, and subsampled observations f , we solve the

following TV-based minimization problem to reconstruct im-

age sequence u0:

min
u

||∇u||1 +
µ

2
||DKu− f ||2

2
, (2)

where µ > 0 is a weighting parameter, and u is a video to be

recovered. Since D is not circulant, we can not solve the least

squares subproblem for u by directly applying ADMM. In

order to minimize (2), we introduce additional variables. We

let v = ∇u in order to transfer ∇u out of nondifferentiable

terms and let w = Ku to split D and K . (Here, and in what

follows, we denote vector quantities in bold font.) We write

the minimization formulation as

min
u,v,w

||v||1 +
µ

2
||Dw − f ||2

2
, such that v = ∇u, w = Ku.

The corresponding augmented Lagrangian is

L(u, v, w, x, y) = ||v||1 +
µ

2
||Dw − f ||2

2

+
ρ1
2
||∇u− v + x||2

2
+

ρ2
2
||w −Ku+ y||2

2
,

where x and y are dual variables, scaled by parameters ρ1 and

ρ2, respectively. The dual variables are updated as follows:

x ← x + γ(∇u− v) and y ← y + γ(w −Ku).
For fixed u and w, the minimization problem for v is

v
∗ = argmin

v

{

||v||1 +
ρ1
2
||∇u− v + x||2

2

}

,

which can be solved in the closed form using the shrinkage

operator.

For fixed u and v, the minimization problem for w is

w∗ = argmin
w

µ

2
||Dw − f ||2

2
+

ρ2
2
||w −Ku+ y||2

2
,

leading to normal equations which can be solved in the closed

form.

For fixed v and w, the minimization problem for u is

u∗ = argmin
u

ρ1
2
||∇u− v + x||2

2
+

ρ2
2
||w −Ku+ y||2

2
,

which can be solved by the 3-D discrete Fourier transform.

3. RESULTS

In our investigations, we used simulated microwave 157

GHz, 166 GHz, and 176 GHz channel image sequences (see

Fig. 2(a)) to test the spatio-temporal super-resolution method

with deconvolution and upsampling. The sequences capture

hurricane Rita in the Gulf of Mexico in 2005. The Weather

Research and Forecast model [19] was used to generate sim-

ulations. The spatio-temporal image sequence consists of

36 frames at 10-minute intervals. Each frame is of size 402

× 402 pixels, with the resolution of a pixel at 1.3 km. The

image intensities in figures represent brightness temperatures

in units of Kelvin (K). Note that colors in Figs. 1 and 2 corre-

spond to the three microwave frequencies, i.e. 157 GHz (R),

166 GHz (G), and 176 GHz (B), the “false color” rendering.

In order to blur, add noise to, and downsample the original

sequence in Fig. 2(a), we performed the following operations:

(1) We used the spatio-temporal convolution kernel, which

amounted to blurring the sequence spatially with the Gaussian

point spread function of standard deviation 1, and temporally

with the temporal rectangular kernel of 5 frames wide. (2)

The spatio-temporal image sequence was also degraded with

additive Gaussian noise of standard deviation σ = 1K. (3)

The image sequence was downsampled to 18 frames of 201

× 201 pixels.

The operations described above produce degraded image

sequences in Fig. 2(b) that significantly differ from the ground

truth image sequences in Fig. 2(a). We note that our algo-

rithm can reconstruct a spatio-temporal image sequence with

an arbitrary integer upsampling factor, but these results only

explore an upsampling factor of 2.

We use the efficient ADMM for spatio-temporal super-

resolution to obtain the result in Fig. 2(c). The results were

processed channel-by-channel for the three frequencies. Our

method has recovered an image sequence which visually
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Frame 9 Frame 15 Frame 21 Frame 27 Frame 33

(a) Ground truth

(b) Blurry, noisy, and undersampled

(c) Reconstruction

Fig. 2. Spatio-temporal super-resolution of a three-channel microwave image sequence of the simulated hurricane Rita. (a)

Five of 36 original simulated ground truth 402 × 402 pixel frames are shown. (b) Ground truth sequence from (a) is spatially

convolved with the Gaussian kernel of standard deviation 1 and temporally averaged with a rectangular function of five frames

wide. The sequence is further subsampled to 18 frames of 201 × 201 pixels and degraded with additive Gaussian noise of

standard deviation σ = 1K. (c) Reconstruction result.

seems to be similar to the ground truth image sequence. To

quantify the performance, we use root-mean-square error

(RMSE), signal-to-noise ratio (SNR), and peak signal-to-

noise ratio (PSNR) defined as

RMSE =
√

||u0 − u||2/N ,

SNR = 10 log
10

(

σ2

u0
·N/||u0 − u||2

)

,

PSNR = 10 log
10

(

max(u)2 ·N/||u0 − u||2
)

,

where N = m · n · p is the number of pixels in the image

sequence, u0 is the ground truth image sequence, σ2

u0
is the

variance of u0, and u is the image sequence we quantify the

signal of.

Table 1 gives RMSE, SNR, and PSNR values for (i) the

subsampled, blurry, and noisy image sequence in Fig. 2(b)

and (ii) reconstructed sequence in Fig. 2(c) both relative to

the ground truth image sequence in Fig. 2(a). The comparison

between the subsampled, blurry, and noisy sequence and the

ground truth sequence is performed by upsampling the former

sequence to a higher resolution 402 × 402 grid using cubic

interpolation spatio-temporally. The values demonstrate that

the result in Fig. 2(c) reduces errors and increases the signal

in image sequences compared to Fig. 2(b) quantitatively.

4. CONCLUSIONS

We proposed a spatio-temporal super-resolution method for

reconstructing a sequence of observations that is assumed to

be defined on a low resolution spatio-temporal grid, gener-

ated by blurring of a captured scene with a spatio-temporal

convolution kernel, and degraded by noise. The approach is

based on ADMM and is shown to be robust to noise. Our ex-

periments show that we can reconstruct more accurate images

both visually and based on common quality metrics.
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