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ABSTRACT

We present a spatio-temporal super-resolution method for
reconstructing a sequence of observations collected by imag-
ing satellites. A sequence of observations is assumed to be
defined on a low resolution spatio-temporal grid. It is fur-
ther assumed that the sequence is generated by blurring of a
captured scene with a spatio-temporal convolution kernel and
is degraded by noise. Our method simultaneously exhibits
deconvolution of the sequence of images from the effects of
spatio-temporal blur, denoising of the data, and upsampling
of the low-resolution sequence to a high resolution spatio-
temporal grid. We perform the super-resolution in the space-
time domain, as opposed to super-resolving the sequence
separately and sequentially to a higher spatial and then tem-
poral resolution grid. Simultaneous space-time optimization
achieves a more efficient and more accurate reconstruction
than reconstructing a sequence frame by frame. The proposed
super-resolution methodology is based on total variation reg-
ularization and computes the solution using the alternating
direction method of multipliers. Numerical results show our
approach to be robust and computationally efficient.

Index Terms— Alternating direction method of multipli-
ers, upsampling, satellite images, super-resolution

1. INTRODUCTION

The need for spatio-temporal super-resolution arises when an-
alyzing sequences of observations captured by satellite im-
agery as well as when processing video sequences. In par-
ticular, many sensors have limited spatial and temporal res-
olution. This is especially the case for microwave sensors,
which are characterized by spatial blurring and distortion. In
addition, frame-rate and exposure time constrain instrument’s
temporal resolution.
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Fig. 1. Spatio-Temporal Super-Resolution: ~ Spatio-
temporally undersampled, blurry, and noisy sequence of p
frames, each frame is m x n pixels, is deconvolved, denoised,
and upsampled to contain 2p frames of size 2m X 2n.

There are a variety of applications of super-resolution.
Spatial [1, 2, 3, 4, 5] and temporal [6, 7, 8] super-resolution
methods have been proposed that perform reconstruction sep-
arately, either in space or in time. Other super-resolution ap-
proaches consider the problem of generating a high-resolution
image given multiple low-resolution images [9, 10, 11, 12].
Rather than reconstructing a single high resolution image
from a sequence of low-resolution images, our approach in
this paper reconstructs an entire sequence of high-resolution
images, by increasing spatial resolution (adding pixels) and
temporal resolution (adding frames) (see Fig. 1). More-
over, in order to achieve a more accurate reconstruction than
frame-by-frame processing, methods had been proposed to
enhance resolution in the spatio-temporal domain [13, 14].
Our methodology improves such approaches by not only per-
forming spatio-temporal deconvolution, but at the same time,
performing upsampling.

The method in this paper builds upon our past efforts on
spatial super-resolution and spatio-temporal deconvolution.
In [15], we implemented the super-resolution technique for a
single image using simultaneous upsampling and deconvolu-
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tion spatially, but not temporally, using the alternating direc-
tion method of multipliers (ADMM) [16]. In [17], we imple-
mented spatio-temporal deconvolution for a sequence of im-
ages, without performing upsampling, using the Split Breg-
man method [18]. In this paper, we implement the spatio-
temporal super-resolution method, via spatio-temporal decon-
volution and upsampling, using a total variation (TV) based
ADMM technique to increase resolution of spatio-temporally
distorted, noisy and downsampled image sequence.

2. SIMULTANEOUS DECONVOLUTION AND
UPSAMPLING VIA ADMM

We assume that ug € R™*™*P is a ground truth image se-
quence, consisting of p frames, each frame is m x n, cor-
responding to a physical scene. While being captured, the
scene is convolved (or blurred) by a point spread function K
and downsampled by an operator D. It is also degraded by
additive noise . The forward imaging model can be written
as

f=DKup + &, (1)

where f is a blurry, noisy and subsampled sequence of obser-
vations.

Since the deconvolution and upsampling problem is very
ill-posed, we apply regularization to guarantee the existence
and uniqueness of solution in order to preserve the geomet-
ric qualities of the solution. We use the TV norm ||u||7y =
|[Vul|1 = [|Vul as a regularization term, which allows for
the retrieval of images with sharp edges. Given a sequence
of blurry, noisy, and subsampled observations f, we solve the
following TV-based minimization problem to reconstruct im-
age sequence up:

min ||Vl + £[|DKw — £I3 @)

where 1 > 0 is a weighting parameter, and  is a video to be
recovered. Since D is not circulant, we can not solve the least
squares subproblem for u by directly applying ADMM. In
order to minimize (2), we introduce additional variables. We
let v = Vu in order to transfer Vu out of nondifferentiable
terms and let w = Ku to split D and K. (Here, and in what
follows, we denote vector quantities in bold font.) We write
the minimization formulation as

min [[v|l; + &(|[Dw — f||2, suchthaty = Vu, w = Ku.
w,v,w 2
The corresponding augmented Lagrangian is
_ H 2
Lu,v,w,x,y) = |l + 5[ Dw = fll2
+ SNIVu =y 213+ Bl - Kutyll,

where x and y are dual variables, scaled by parameters p; and
pa, respectively. The dual variables are updated as follows:

x < x+y(Vu—v)andy + y+v(w — Ku).
For fixed u and w, the minimization problem for v is

v = argmvin{||v||1 + p—21||Vu—v+x||§},

which can be solved in the closed form using the shrinkage
operator.
For fixed v and v, the minimization problem for w is

w* = argmin%HDw —fl3+ %Hw — Ku+yl3,
w

leading to normal equations which can be solved in the closed
form.
For fixed v and w, the minimization problem for w is

w' = argmin B[ Vu — v x5 + Efjw - Ku+yB,
u
which can be solved by the 3-D discrete Fourier transform.

3. RESULTS

In our investigations, we used simulated microwave 157
GHz, 166 GHz, and 176 GHz channel image sequences (see
Fig. 2(a)) to test the spatio-temporal super-resolution method
with deconvolution and upsampling. The sequences capture
hurricane Rita in the Gulf of Mexico in 2005. The Weather
Research and Forecast model [19] was used to generate sim-
ulations. The spatio-temporal image sequence consists of
36 frames at 10-minute intervals. Each frame is of size 402
x 402 pixels, with the resolution of a pixel at 1.3 km. The
image intensities in figures represent brightness temperatures
in units of Kelvin (K). Note that colors in Figs. 1 and 2 corre-
spond to the three microwave frequencies, i.e. 157 GHz (R),
166 GHz (G), and 176 GHz (B), the “false color” rendering.

In order to blur, add noise to, and downsample the original
sequence in Fig. 2(a), we performed the following operations:
(1) We used the spatio-temporal convolution kernel, which
amounted to blurring the sequence spatially with the Gaussian
point spread function of standard deviation 1, and temporally
with the temporal rectangular kernel of 5 frames wide. (2)
The spatio-temporal image sequence was also degraded with
additive Gaussian noise of standard deviation 0 = 1 K. (3)
The image sequence was downsampled to 18 frames of 201
x 201 pixels.

The operations described above produce degraded image
sequences in Fig. 2(b) that significantly differ from the ground
truth image sequences in Fig. 2(a). We note that our algo-
rithm can reconstruct a spatio-temporal image sequence with
an arbitrary integer upsampling factor, but these results only
explore an upsampling factor of 2.

We use the efficient ADMM for spatio-temporal super-
resolution to obtain the result in Fig. 2(c). The results were
processed channel-by-channel for the three frequencies. Our
method has recovered an image sequence which visually
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Frame 15

(c) Reconstruction

Fig. 2. Spatio-temporal super-resolution of a three-channel microwave image sequence of the simulated hurricane Rita. (a)
Five of 36 original simulated ground truth 402 x 402 pixel frames are shown. (b) Ground truth sequence from (a) is spatially
convolved with the Gaussian kernel of standard deviation 1 and temporally averaged with a rectangular function of five frames
wide. The sequence is further subsampled to 18 frames of 201 x 201 pixels and degraded with additive Gaussian noise of

standard deviation 0 = 1 K. (c) Reconstruction result.

seems to be similar to the ground truth image sequence. To
quantify the performance, we use root-mean-square error
(RMSE), signal-to-noise ratio (SNR), and peak signal-to-
noise ratio (PSNR) defined as

RMSE = /||ug — u||?/N,

SNR = 10logy, (02, - N/||uo — ul|?),

PSNR = 101log;, (max(u)? - N/[|ug — ul?),

where N = m - n - p is the number of pixels in the image
sequence, ug is the ground truth image sequence, aﬁo is the
variance of ug, and w is the image sequence we quantify the
signal of.

Table 1 gives RMSE, SNR, and PSNR values for (i) the
subsampled, blurry, and noisy image sequence in Fig. 2(b)
and (ii) reconstructed sequence in Fig. 2(c) both relative to
the ground truth image sequence in Fig. 2(a). The comparison
between the subsampled, blurry, and noisy sequence and the
ground truth sequence is performed by upsampling the former
sequence to a higher resolution 402 x 402 grid using cubic
interpolation spatio-temporally. The values demonstrate that
the result in Fig. 2(c) reduces errors and increases the signal
in image sequences compared to Fig. 2(b) quantitatively.

4. CONCLUSIONS

We proposed a spatio-temporal super-resolution method for
reconstructing a sequence of observations that is assumed to
be defined on a low resolution spatio-temporal grid, gener-
ated by blurring of a captured scene with a spatio-temporal
convolution kernel, and degraded by noise. The approach is
based on ADMM and is shown to be robust to noise. Our ex-
periments show that we can reconstruct more accurate images
both visually and based on common quality metrics.
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