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Abstract. Glioblastoma (GBM ) is arguably the most aggressive, infil-
trative, and heterogeneous type of adult brain tumor. Biophysical mod-
eling of GBM growth has contributed to more informed clinical decision-
making. However, deploying a biophysical model to a clinical environ-
ment is challenging since underlying computations are quite expensive
and can take several hours using existing technologies. Here we present
a scheme to accelerate the computation. In particular, we present a deep
learning (DL)-based logistic regression model to estimate the GBM’s bio-
physical growth in seconds. This growth is defined by three tumor-specific
parameters: 1) a diffusion coefficient in white matter (Dw), which pre-
scribes the rate of infiltration of tumor cells in white matter, 2) a mass-
effect parameter (Mp), which defines the average tumor expansion, and
3) the estimated time (T ) in number of days that the tumor has been
growing. Preoperative structural multi-parametric MRI (mpMRI ) scans
from n = 135 subjects of the TCGA-GBM imaging collection are used
to quantitatively evaluate our approach. We consider the mpMRI inten-
sities within the region defined by the abnormal FLAIR signal envelope
for training one DL model for each of the tumor-specific growth parame-
ters. We train and validate the DL-based predictions against parameters
derived from biophysical inversion models. The average Pearson correla-
tion coefficients between our DL-based estimations and the biophysical
parameters are 0.85 for Dw, 0.90 for Mp, and 0.94 for T , respectively.
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This study unlocks the power of tumor-specific parameters from bio-
physical tumor growth estimation. It paves the way towards their clin-
ical translation and opens the door for leveraging advanced radiomic
descriptors in future studies by means of a significantly faster parameter
reconstruction compared to biophysical growth modeling approaches.

Keywords: Deep learning · Regression · Glioblastoma · Brain tumor ·
Biophysical growth model

1 Introduction

Glioblastoma (GBM ), being the most common, aggressive, and infiltrative adult
brain tumor, has unfavorable prognosis [1,2]. Recent advances in clinical GBM
care has not made a huge difference to patient prospects [3]. The highly infil-
trative nature of GBM render its recurrence essentially a guaranteed process
[4,5] and its management varies drastically on a case-by-case basis. Integration
of computational imaging, biophysical modeling, and machine learning has the
potential to provide valuable tools to aid clinical diagnosis and decision mak-
ing in a consistent and reproducible way [6], and by that possibly dramatically
improve treatment planning for patients diagnosed with GBM [7–17].

In particular, biophysical modelling has the potential to become an indispens-
able tool to provide additional insights into GBM progression and development,
and hence improve clinical decision making resulting in further improving qual-
ity of life for patients [6]. For example, in Fig. 1, the growth characteristics of
the tumor would help stratifying the tumor into “proliferating” (tumor predom-
inantly growing by hyperplasia and hypertrophy that push surrounding normal
tissues), “infiltrating” (tumor predominantly growing by invasion and replacing
surrounding tissues without mass effects) or “necrotic” (tumor is predominantly
stagnant). Previous works [6,18–28] have used rigorous mathematical modelling
to automatically estimate parameters that define the physical characteristics of
tumor progression. In the present work, we consider the following main param-
eters:

1. Diffusion coefficient in white matter (Dw). This parameter, also termed as
diffusivity, controls the rate at which tumor cells infiltrate white matter [29].

2. Mass-effect parameter (Mp). This parameter captures the mechanical defor-
mation of the brain parenchyma caused as a function of the tumor growth [30],
and defines the average tumor expansion. Clinically, this parameter quantifies
how much the surrounding tissues deform because of the force exerted by the
tumor’s expansion.

3. Estimated time (T ). This parameter defines the number of days the tumor
has been expanding [31].

In this study, we propose a deep learning (‘DL’ ) based regression model
(see Sect. 2.3) to glean multi-parametric insight into the data by training on
the parameter values extracted using Boosted GLioma Image SegmenTation
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Fig. 1. Tumor proliferation across two time-points. These figures showcase the different
types of clinical diagnoses that arise from the considered tumor growth parameters.

and Registration (GLISTRboost1) , which can then be used to approximate
the aforementioned parameters during the inference phase. Our results (Sect. 3)
show that this approach compares favorably to the current state-of-the-art, and
is significantly more efficient during inference. This reduction in execution time
is a critical for deploying our methodology in a clinical setting.

2 Methods

2.1 Data

The Cancer Imaging Archive (TCIA) [32] has released The Cancer Genome
Atlas Glioblastoma Multiforme (TCGA-GBM) collection [33], which contains
clinically-acquired multi-parametric MRI (mpMRI) scans for all patients of the
collection. TCIA Analysis Results repository also offers a curated version of this
collection, extended by corresponding segmentation labels and imaging features
for all (n = 135) the pre-operative structural scans of the TCGA-GBM collection
[34]. These mpMRI explicitly refer to native T1-weighted (T1) and post-contrast
T1-weighted (T1Gd) scans, T2-weighted (T2), and T2 Fluid-Attenuated Inver-
sion Recovery (FLAIR) scans. Furthermore, the included imaging features, also
contain estimates for the parameters of interest, namely, Dw, Mp, and T . We
use these parameter estimates along with the image intensities present in the
abnormal FLAIR signal envelope to train the proposed DL model.

2.2 Pre-processing

To guarantee the homogeneity of the dataset, we applied the same pre-processing
pipeline across all mpMRI scans. All the raw DICOM scans obtained from TCIA
are converted to the NIfTI [35] file format. Subsequently, we followed the proto-
col for pre-processing as defined in the International Brain Tumor Segmentation
(BraTS) challenge [36–38]. Specifically, each patient’s T1Gd scan was rigidly reg-
istered to a common anatomical atlas of 240× 240× 155 image size, and resam-
pled to an isotropic resolution of 1 mm3 [39]. The remaining scans of each patient

1 https://www.med.upenn.edu/cbica/sbia/glistrboost.html.

https://www.med.upenn.edu/cbica/sbia/glistrboost.html
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Fig. 2. Images of pipeline described in Sect. 2.2. The region of pathology used to train
the DL model is highlighted using a red circle. (Color figure online)

(T1, T2, FLAIR) were subsequently rigidly co-registered to the same patient’s
resampled T1Gd scan. All the registrations were done using Greedy (2) [40] - a
CPU-based C++ implementation of the greedy diffeomorphic registration algo-
rithm and is integrated into the ITK-SNAP (3) segmentation software [41], as
well as the Cancer Imaging Phenomics Toolkit (CaPTk (4)) [42–44]. Following
registration to a common anatomical atlas, and resampling to an isotropic res-
olution of 1mm3, we perform instance-level normalization, where the intensity
of each modality of each individual subject is normalized to zero mean and unit
variance. This process is also known as Z-scoring, after which we performed skull
stripping using BrainMaGe (5) [45] (see Fig. 2). We use the z-score normalized
images during the downstream analysis.

All intensities of the whole tumor, defined by the whole abnormal FLAIR
signal envelope, for each of the mpMRI modalities are concatenated in a 1D
vector. This results in a stacked 2D matrix, where the number of rows define
the intensities picked from all voxel included in the whole tumor region, and the
number of columns equates to the number of the input mpMRI modalities, i.e.,
4. This 2D matrix forms the data of each patient used in our proposed approach.
This process is done over the entire dataset and, with the exception of 20% of

2 https://github.com/pyushkevich/greedy.
3 http://www.itksnap.org.
4 https://www.cbica.upenn.edu/captk.
5 https://github.com/CBICA/BrainMaGe/.

https://github.com/pyushkevich/greedy
http://www.itksnap.org
https://www.cbica.upenn.edu/captk
https://github.com/CBICA/BrainMaGe/
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Fig. 3. The base model used to train for all 3 parameters.

the data held out for final performance evaluation, forms the complete training
input data.

2.3 Network Topology

Once the training input data is constructed, we train one 2D DL model for each
of the three parameters that are to be predicted. Each DL model consisted of two
sets of convolution layers, each set followed by a single max-pooling layer. After
feature reduction using the convolution/max-pooling layers, a fully connected
flatten layer is used to flatten the output from the last max pooling layer. The
flatten layer is followed by a fully connected dense layer having 160 nodes (which
ensures a fixed number of inputs going into the final dense layer, regardless of
the number of intensities) and followed by a 20% dropout (see Fig. 3). The model
is trained using an adaptive gradient algorithm with an initial learning rate of
1E–2, and the model minimization metric used is normalized root mean squared
error (NRMS), which is defined as follows:

NRMS =
√

1
N

∑N
i=1(xi − yi), (1)

where xi, yi denotes the original and predicted observations indexed with i,
respectively, and N represents the total number of samples.

2.4 Experimental Design

The current state-of-the-art approaches for personalized brain tumor model-
ing and parameter estimation consider optimization formulations with multiple,
tightly coupled partial differential equations as constraints [6]. These types of
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approaches pose formidable computational and mathematical challenges [6]. Our
hypothesis for this study is that a regression-based machine learning technique
would be able to capture these parameters using the outputs of a widely-accepted
computational method for biophysical inversion, GLISTRboost [18,19], whose
results are presented in the dataset provided by TCIA, as described in Sect. 2.1.

In this study, the region of pathology was obtained using the FLAIR
abnormal signal, which defines the whole tumor, i.e., the peritumoral edema-
tous/invaded tissue combined with the enhancing and the necrotic parts of the
tumor. The image intensities of all mpMRI scans from this region, along with the
original parameter estimations from GLISTRboost, are used as the training data.
Three separate models, one for each parameter that needs to be modelled and
each of which has the network topology defined in Sect. 2.3, was trained using a
10-fold cross validation scheme [46]. We utilized a nested cross-validation based
training i) in favor of reproducibility, ii) while attempting to avoid over-fitting
to the training data, and iii) to tune the network hyper-parameters in a more
robust manner.

2.5 Evaluation Metric

Following the literature on similar predictive modelling and classification tasks
[47,48], we have used the Pearson’s correlation coefficient (rp) [49] to evaluate
the efficacy of the network. These measures are defined as follows:

rp =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

, (2)

where xi, yi denotes the original and predicted observations indexed with i,
respectively, N represents the total number of observations, and x̄, ȳ are the
sample means for the original and predicted values, respectively.

3 Results

Following the experimental design described in Sect. 2.4, we used the training
data of the fold with the best accuracy (defined as the lowest NRMS loss) to
validate against a hold-out set of n = 20 subjects. Notably this hold out set was
excluded from the cross-validated training phase. We estimated the Pearson’s
correlation coefficient between the original and predicted values. The experi-
mental results for all the 10 folds (see Fig. 4) show that the DL models were able
to approximate the parameters reasonably well.

From Fig. 4, it is evident that the model’s performance is best for Mp, with
the best correlation score of rp = 0.99. The median correlation scores for Mp and
Dw are rp = 0.89, and rp = 0.889, respectively. In terms of stability, the model
that predicts T performs best, with a median correlation score of rp = 0.92. This
highlights the need for more rigorous validation with increased amount of diverse
datasets and possibly using more sophisticated modelling techniques, such as the
one described in [50].
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Fig. 4. Pearson’s correlation coefficient for original and predicted values for the growth
parameters under consideration across 10 training folds.

4 Discussion

This study compares the outputs from an existing mathematically rigorous for-
mulation of a biophysical modelling technique [19] provided by TCIA [32–34]
with that of the proposed DL model, trained solely on image intensities and
those pre-existing estimates of tumor growth parameters. Using a 2D convolu-
tion based architecture for the DL network, combined with a normalized mean
squared error loss (see Sect. 2.3 for details), and intensity values from the patho-
logical region of the dataset, we were able to get favorable results for data not
seen by the model during training, as show in Sect. 3.

The most notable difference was that for the inference phase for predicting the
growth parameters, where the DL-based method took about 15–30 s on a GPU
(NVIDIA Titan Xp), and 2–5 min when executed on a CPU architecture (Intel
i7-8700K). This is in contrast to the mathematical formulation (GLISTRboost
[18]), which would take about 5 h on the same CPU. This significant reduction in
run-time renders such methods for parameter estimation potentially translatable
to clinical applications.

The results presented in this explorative study show that the proposed frame-
work yields a good accompanying tool along with sophisticated mathematical
modelling techniques, where the latter is used to generate the training data.
We note that our framework is generic; introducing more complicated (realis-
tic) mathematical models of tumor progression alongside with efficient numerical
methods for their solution into the training phase forms the basis of our current
research. Additionally, we note that this method is limited in capability and
confined by the input training data, and more work is needed to ensure further
analysis of the generalizability of the proposed method when compared with
biophysical tumor growth modelling techniques.

We envision an integrated computational framework that augments clinical
imaging data in a consistent and reproducible way by estimating tumor growth
model parameters for individual patients, without the burden of extreme com-
putational footprint, with the potential to be clinically translated and hence aid
clinical decision making, towards ultimately improving clinical outcome. Towards
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this end, future extensions of this work involve including texture characteristics
and spatial information to the network, as well as using a fully-connected 3D
architecture, while studying the effects of these parameters for clinically-relevant
outcomes such as survival prediction.
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