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1. Introduction

The Boltzmann equation is a fundamental nonlinear evolution model from statis-
tical mechanics. It describes the evolution of a system made of a very large number
of particles at an intermediate scale between the microscopic one (which consists of
the trajectory of every single particle and their interactions) and the macroscopic
one (the hydrodynamic models like Euler or Navier-Stokes equations).

We consider the space in-homogeneous Boltzmann equation without cut-off,

(1.1) Btf ` v ¨ ∇xf “ Qpf, fq for pt, x, vq P p0, T q ˆ R
d ˆ R

d.

Boltzmann’s collision operator Qpf, fq is typically written in the following way

(1.2) Qpf, fq “
ˆ

Rd

ˆ

Sd´1

pfpv1
˚qfpv1q ´ fpv˚qfpvqqBp|v ´ v˚|, cos θq dv˚ dσ,

where v1
˚ and v1 are computed in terms of v˚ and σ by the formula

v1 “ v ` v˚
2

` |v ´ v˚|
2

σ and v1
˚ “ v ` v˚

2
´ |v ´ v˚|

2
σ.

The angle θ measures the deviation between v and v1. In this case, it is the angle
so that

cos θ :“ v ´ v˚
|v ´ v˚| ¨ σ

ˆ

and sinpθ{2q :“ v1 ´ v

|v1 ´ v| ¨ σ
˙

.
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626 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

We consider the standard non-cutoff collision kernels B. They have the form

(1.3) Bpr, cos θq “ rγbpcos θq with bpcos θq « | sinpθ{2q|´pd´1q´2s

with γ ą ´d and s P p0, 1q.
In a microscopic model where the particles repel each other by an inverse-power

law potential with exponent q ą 2, the collision kernel has the form (1.3) with
γ “ pq ´ 2d ` 1q{pq ´ 1q and s “ 1{pq ´ 1q (See for example [47, chapter 1, Section
1.4]). In three dimensions, for inverse-power law potentials, the value of γ`2s would
be in the range r´1, 1s. Our results in this paper apply to the range γ ` 2s P r0, 2s.
In Subsection 1.2.3, we briefly discuss the problem with the very soft potential case:
γ ` 2s ă 0.

We define the hydrodynamic quantities

Mpt, xq :“
ˆ

Rd

fpt, x, vq dv (mass density),

Ept, xq :“
ˆ

Rd

fpt, x, vq|v|2 dv (energy density),

Hpt, xq :“
ˆ

Rd

f ln fpt, x, vq dv (entropy density).

These hydrodynamic quantities, together with moment density, are the quantities
associated with the solution of the Boltzmann equation that are macroscopically
observable.

In this article, we are concerned with regularity estimates for the solution of (1.1).
This is intimately related with the well-posedness problem for smooth classical so-
lutions. The question of existence of global smooth solutions for the Boltzmann
equation (1.1) is a well known and remarkable open problem. There is a warm dis-
cussion about it in the first chapter of Cédric Villani’s book [13]. The Boltzmann
equation is a more detailed model for the evolution of a fluid than the hydrody-
namic models like Euler or Navier-Stokes equations. Indeed, in certain asymptotic
regime (see [9]), the hydrodynamic quantities associated to the Boltzmann equa-
tion converge to the solution of the compressible Euler equation that is known to
develop singularities in finite time [43]. A next order expansion shows that the hy-
drodynamic quantities approximately solve a compressible Navier-Stokes equation,
for which the classical well-posedness problem is not well understood. It makes
sense to expect the Boltzmann equation to retain the difficulties of the hydrody-
namic models, and add some more. Should we expect singularity formation in finite
time then? The answer to this question is not straight forward. There are different
types of singularities that emerge from the flow of the compressible Euler equation.
Some of them may be compatible with the Boltzmann equation, and others are
not. In a shock singularity for the Euler equation, a discontinuity emerges from
the flow similarly as in Burgers equation. All the quantities involved stay bounded
up to the time of the discontinuity. One would not see this as a singularity for
the Boltzmann equation, since the kinetic model allows for different velocities to
co-exist at one point in space. The Navier-Stokes equation will not allow for shock
singularities either, since the viscosity would smooth out any discontinuity for as
long as solutions stay bounded and away from vacuum. A fundamentally different,
and much more delicate, kind of singularity is that of an implosion. In that case,
the mass and energy concentrate and become unbounded at one point. It was only
very recently (in fact, after this paper was initially posted) that smooth implosion
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REGULARITY ESTIMATES FOR BOLTZMANN 627

profiles for the compressible Euler equation were found and proved to be stable
in [37] and [38]. These implosion singularities exist for the compressible Navier-
Stokes equation as well. As of now, we cannot think of any reason to rule out the
existence of implosion singularities for the Boltzmann equation. If they did, which
seems like a likely scenario, the question that remains is whether this is the only
type of singularity that may emerge from the flow of the Boltzmann equation. Our
main result in this paper aims at answering that question.

As we explained in the previous paragraph, the unconditional regularity of so-
lutions to the in-homogeneous Boltzmann equation seems to be completely out
of reach. The problem that we study is conditional to pointwise bounds on the
hydrodynamic quantities. More precisely, we make the following assumption.

Assumption 1.1 (Hydrodynamic quantities under control). The following inequal-
ities hold uniformly in t and x,

‚ 0 ă m0 ď Mpt, xq ď M0.
‚ Ept, xq ď E0.
‚ Hpt, xq ď H0.

We do not prove Assumption 1.1. We take it for granted (hence the name
assumption). Conditional to it, we obtain C8 estimates that we state in our main
theorem. Assumption 1.1 is a way to disallow the implosion singularities that we
described above. Our result in this paper essentially says that no other types of
singularity may exist for the Boltzmann equation other than (potentially) the ones
that are hydrodynamically visible.

Theorem 1.2 (Global regularity estimates). Let f be a solution to the Boltzmann
equation in p0, T q ˆ R

d ˆ R
d (as in Definition 2.1) with a collision kernel of the

form (1.3) and γ ` 2s P r0, 2s. If Assumption 1.1 holds, then for any multi-index
k P N

1`2d, τ ą 0 and q ą 0,

}p1 ` |v|qqDkf}L8prτ,T qˆRdˆRdq ď Ck,q,τ .

Here Dk is any arbitrary derivative of f of any order, in t, x and/or v.
When γ ą 0, the constants Ck,q,τ depend only on k, q and τ , and the constants

m0, M0, E0 and H0 from Assumption 1.1, and the parameters s, γ and dimension
d.

When γ ď 0, the constants Ck,q,τ depend in addition on the pointwise decay of
the initial data. That is, on the constants Nr with r ě 0, given by

(1.4) Nr :“ sup
x,v

p1 ` |v|qrf0px, vq for each r ě 0.

Note that the upper bounds on energy density and mass density in (1.1) corre-
spond to upper bounds for mass, moment and temperature density. Moreover, the
upper bound in entropy is slightly stronger than a lower bound for temperature
(and equivalent in the hydrodynamic limit).

We work with a strong notion of solution that we describe in Definition 2.1. See
Section 1.2.1 for a discussion about weaker notions of solutions. Moreover, we work
with functions f that are periodic in x. See Remark 1.5 for some discussion about
the periodicity assumption.

Remark 1.3. The difference between γ ą 0 and γ ď 0 in Theorem 1.2 has its origin
in the decay estimates from [32]. The decay of the solution f is self generated when
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628 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

γ ą 0. However, when γ ď 0, the function f will decay rapidly only if it initially
does.

Remark 1.4. In the case γ ď 0, each constant Ck,q,τ depends on one constant Nr in
(1.4) for a specific value of r depending on k and q. However, its explicit dependence
is hard to track. Obviously, the larger q, the larger the value of r will be required
to be. It turns out that for higher order derivatives Dk, we also need to use larger
values of r.

Remark 1.5. The assumption that f is periodic in x is convenient but non-essential.
Indeed, the estimates in Theorem 1.2 are independent of the size of the period. The
periodicity assumption is only used for applying Theorem 2.2 that refers to the main
result in [32]. At some point in the proof in [32], we claim that the maximum of
the function fpt, x, vq ´ gpt, vq is achieved at certain point pt0, x0, v0q. Here, g

is a suitable barrier-like function defined in that paper. The only use of the x-
periodicity assumption, in this whole regularity program, is to ensure the existence
of that point pt0, x0, v0q in [32].

There are other assumptions that would suffice for the attainability of the max-
imum for that step in the proof in [32] that could be used instead of periodicity.
One example is to assume that f : r0, T s ˆ R

d ˆ R
d Ñ r0,8q is a function so that,

for some fixed Maxwellian µpvq,
lim

|x|Ñ8
fpt, x, vq “ µpvq uniformly with respect to t and v.

It is conceivable that the result of Theorem 1.2 would apply to any solution f :
r0, T s ˆ R

d ˆ R
d Ñ r0,8q of (1.1) that satisfies Assumption 1.1 in the full space,

without any periodicity or asymptotic assumption as |x| Ñ 8. However, that would
require further work specifically in generalizing the upper bounds in [32].

This discussion should not be confused with the much more delicate problem of
extending Theorem 1.2 to bounded domains with physical boundary conditions.

Remark 1.6. The main result in this paper can be seen as the culmination of
a series of papers by the authors on conditional regularity estimates for kinetic
integro-differential equations. Some of them are in collaboration with Clément
Mouhot. They are [32–35, 44]. The Boltzmann equation is a nonlinear nonlocal
equation. There is some advantage in studying the Boltzmann collision operator
in the context of elliptic integro-differential operators, since our understanding of
elliptic and parabolic integro-differential equations has grown significantly in the
last twenty years. For other recent results about linear kinetic equations with
integro-differential diffusion, see for example [8, 17, 25, 30, 41, 46].

1.1. Consequences of our main theorem.

1.1.1. Convergence to equilibrium. In a celebrated result [18], Desvillettes and Vil-
lani proved that solutions to the non-cutoff in-homogeneous Boltzmann equation,
periodic in x (or with other physical boundary conditions), converge to equilibrium
faster than any algebraic rate, conditional to the following two main assumptions

(1) The solution f stays in C8 for all time with uniform bounds as t Ñ 8.
(2) The solution f is bounded below by some fixed Maxwellian.

A priori, these two assumptions appeared to be very strong. After Theorem 1.2,
they can be reduced to only Assumption 1.1. Indeed, the lower bound by a fixed
Maxwellian is obtained in our earlier work with Clément Mouhot [33].
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REGULARITY ESTIMATES FOR BOLTZMANN 629

Since the estimates in Theorem 1.2 do not depend on T , we can take T Ñ 8
and deduce a uniform regularity estimate in pτ,8s ˆ R

d ˆ R
d. As a consequence,

we state the following improvement for the Theorem in [18].

Corollary 1.7. Let f be a solution of (1.1) in p0,8qˆR
dˆR

d (as in Definition 2.1,
in particular periodic in x). Assume that Assumption 1.1 holds globally. Then f

converges to a Maxwellian as t Ñ 8 as described in Theorem 2 in [18].

1.1.2. Continuation criteria. Theorem 1.2 also suggests the following continuation
criteria. Let f be a solution to the Boltzmann equation (1.1) in p0, T q ˆ R

d ˆ R
d

as in Definition 2.1. Suppose that it cannot be extended further in time, that is, it
cannot be extended as a solution in p0, T ` εq ˆ R

d ˆ R
d for any ε ą 0. Then, one

of the following must happen

(1) limtÑT maxxPRd Mpt, xq “ `8.
(2) limtÑT maxxPRd Ept, xq “ `8.
(3) limtÑT maxxPRd Hpt, xq “ `8.
(4) limtÑT minxPRd Mpt, xq “ 0.

This continuation criteria can be immediately justified by combining Theo-
rem 1.2 with an appropriate short time existence result. When s P p0, 1{2q and
γ P p´3{2, 0s, we can use the short time existence from [40]. For any s P p0, 1q and
γ ď 0, there is a recent appropriate short time existence result in [28].

Note that the short time existence result in [5] requires the initial data to have
Gaussian decay, which is not propagated to positive times by our estimates in
Theorem 1.2.

This continuation criteria says that the only way a singularity can arise in finite
time for the Boltzmann equation without cutoff is by one of the hydrodynamic
quantities M , E or H to blow up, or by creation of vacuum. There is a recent
result in [29] saying that this continuation criteria can be reduced to the first two
items. That is, either the mass or the energy density should blow up if the solution
develops a singularity. It rules out the case in which there is creation of vacuum or
zero temperature while the mass and energy density stay bounded. It is conceivable
that this blow up criteria may be relaxed in some other way in the future. As we
explained above, a completely unconditional continuation criteria seems to be out
of reach with current techniques.

It is natural to expect a similar continuation criteria to hold in the cut-off case
as well. However, the reason for it would be fundamentally different. The cut-off
Boltzmann equation does not have a regularization effect. One would expect a
propagation of regularity provided that Assumption 1.1 holds. From the mathe-
matical point of view, it is a very different problem from the one we address here.
We will not analyze the cut-off case any further.

1.2. Future directions and open problems.

1.2.1. Regularity estimates for weak solutions. In this paper we obtain a priori
estimates for classical solutions. Working with a weaker notion of solution would
entail several technical difficulties. We thought it was not the right time to take
on that burden yet. In fact, we consider a very strong notion of solution (see
Definition 2.1). It would be interesting to extend Theorem 1.2 as a regularity
estimate for renormalized solutions with a defect measure as defined in [6]. Below,
we analyze the difficulties of this problem.
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630 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

The biggest challenge of such an extension would be to recover the pointwise
estimates from [44] and [32]. The proofs in these papers use a maximum principle
type argument that seems to be difficult to adapt to the setting of [6].

Once a weak solution is proved to be bounded, we can apply the result in [35]
(Theorem 4.2) and deduce the Hölder continuity of the solution.

There is a (presumably minor) difficulty in the application of the Schauder es-
timates from [34] in order to derive Corollary 7.8 in this paper. This is because
the result of [34] is not stated for weak solutions. The later applications of the
Schauder estimates in our proof of Theorem 1.2 in Section 9 are not problematic.
In each step of the iteration we apply the Schauder estimates to increments that
are qualitatively as regular as the function itself.

1.2.2. The grazing collision limit. When s Ñ 1, the Boltzmann equation converges
formally to the Landau equation. For that, we need the collision kernel B to satisfy

(1.5) B « p1 ´ sq|v ´ v˚|γ sinpθ{2q´d`1´2s.

The normalizing factor p1 ´ sq is transferred into the ellipticity conditions on the
Boltzmann kernelKf (defined in (4.2)). It is well known in the literature of nonlocal
equations that this is the necessary factor to have uniform bounds as s Ñ 1 (see
for example [10] or [36]).

It is to be expected that the estimates of Theorem 1.2 would remain uniform as
s Ñ 1 if B satisfies (1.5). However, it is still an open problem. Below, we explain
the difficulties with our current approach.

Note that any technique that establishes the estimates from Theorem 1.2 uni-
formly as s Ñ 1 would also imply the corresponding regularity estimates for the
Landau equation as a consequence. A method that provides estimates uniform as
s Ñ 1 must use techniques that apply both to integro-differential equations and
second order parabolic equations.

The most challenging difficulty in proving uniform estimates as s Ñ 1 would be
to establish the pointwise bounds from [44] and [32]. The proofs in these papers
use purely nonlocal techniques. The constants obtained in the estimates there
certainly blow up as s Ñ 1. The corresponding pointwise upper bound for the
Landau equation is established in [12] using different methods.

The Hölder estimates from [35] are robust as s Ñ 1. We would also expect
the Schauder estimates from [34] to be robust as s Ñ 1; however it does not
follow directly from the current proof in [34] because it is non constructive. Some
constants are proved to exist under a compactness argument, and by that we lose
track of their dependence on s. It is conceivable that a refinement of the proof in
[34] may lead to robust estimates since the proof in that paper works for second
order equations as well.

1.2.3. Other open problems. The following is a (non exhaustive) list of other open
questions related to the main result of this article.

(1) Interior estimates: if Assumption 1.1 holds for pt, xq P p´1, 0s ˆB1, can we
establish the regularity estimates as in Theorem 1.2 for pt, xq P p´1{2, 0s ˆ
B1{2?

(2) Bounded domains: when the equation is supported in a smooth bounded
domain x P Ω Ă R

d, with physical boundary conditions, do the estimates
from Theorem 1.2 hold in the full domain Ω?
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REGULARITY ESTIMATES FOR BOLTZMANN 631

(3) Weaker conditions: can we reduce Assumption 1.1 to a weaker condition?
(4) Very soft potentials: can we establish regularity estimates when γ`2s ă 0?

This is a very difficult problem that is open even in the space homogeneous
setting. The most challenging step seems to be obtaining the L8 estimate
as in [44].

1.3. Previous regularity results for the Boltzmann and Landau equations.

The well-posedness and regularity of the space homogeneous Boltzmann equation is
well understood in the case of hard and moderately soft potentials (i.e. γ`2s ě 0).
See [2, 3, 15, 19, 31, 39]. Note that in the space homogeneous case, Assumption 1.1
is trivially satisfied by the conservation of mass and energy and the monotonicity
of entropy.

Results on the regularity for the space in-homogeneous Boltzmann equation are
scarce. Other than the papers that are part of our program, the most relevant
previous result is the C8 regularity of solutions conditional to a uniform bound
in H5

x,v, plus infinite bounded moments, plus a lower bound on the mass density.
These results were established in [4,5,16]. We improve these results by significantly
lowering the condition for regularity to the bounds of Assumption 1.1, which are
physically meaningful. We refer to [35, §1.3.2] for further discussion on other results
in the literature.

Our program of establishing conditional regularity provided that the hydrody-
namic quantities are controlled as in Assumption 1.1 has also been studied for the
Landau equation. It is currently fairly well understood in the cases of hard and
moderately soft potentials. The local Hölder estimates were obtained in [22]. The
upper bounds and Gaussian decay bounds (when appropriate) for moderately soft
potentials were obtained in [12] using the estimates from [22] combined with a
change of variables that inspires our construction in Section 5. The higher regular-
ity of solutions was studied in [26] applying a kinetic version of Schauder estimates.
These regularity estimates were extended to the case of hard potentials in [45]. In
[27], they refine the continuation criteria for the in-homogeneous Landau equation
as mentioned in Subsection 1.1.2.

1.4. Strategy of proof. The result in this paper is obtained as the final step in a
program of conditional regularity that started in 2014. Here, we use the previous
results by the authors, and also by the authors in collaboration with Clément
Mouhot, who were part of this program. Theorem 1.2 is proved by combining the
following ingredients.

‚ An L8 estimate for positive time depending only on the hydrodynamic
quantities. This holds provided γ ` 2s ě 0. It is proved in [44].

‚ A weak Harnack inequality for kinetic integro-differential equations. They
give us local Cα estimates for some α ą 0 small. They were obtained in
[35].

‚ Schauder estimates for kinetic integro-differential equations. They give us
local C2s`α estimates. They were obtained in [34].

‚ Pointwise decay estimates. They say f À p1` |v|q´q for all q ą 0. They are
self generated if γ ą 0 and they propagate from the initial data if γ ď 0. It
was proved in [32].

‚ A change of variables that turns our local Hölder and Schauder estimates
into global ones. We develop it in Section 5.
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632 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

‚ Some new inequalities for kinetic Hölder spaces (defined in Section 3) and
how they interact with the Boltzmann collision operator (see Section 6) and
increments (see Section 8).

‚ A bootstrapping mechanism by iterating the global version of the Schauder
estimates.

In order to obtain regularity estimates like the ones in this article, it is key
to think of the Boltzmann equation as a kinetic equation with integral diffusion
in the v variable plus a lower order term, in the way that was described in [44].
Using Carleman coordinates and the cancellation lemma (as in [1]), the Boltzmann
equation takes the following form

(1.6) Btf ` v ¨ ∇xf “
ˆ

Rd

pf 1 ´ fqKf pt, x, v, v1q dv1 ` cpf ˚v | ¨ |γqf.

The kernel Kf depends on the solution f itself. We give more details in Sec-
tion 4.1 and recall the formula for Kf in (4.2). When Assumption 1.1 holds, the
kernel Kf satisfies certain ellipticity conditions that allow us to derive regularity
estimates.

In [35], we obtained a weak Harnack inequality for kinetic integro-differential
equations. It implies a regularity estimate for the local Hölder regularity, for a
small exponent, of bounded solutions to (1.1) that satisfy Assumption 1.1. In [34],
we obtained a Schauder estimate for kinetic integro-differential equations. It implies
a local estimate of Hölder regularity with exponent 2s ` α for some α ą 0. It is
enough regularity to make sense of the equation classically. These are two results
for generic kinetic integro-differential equations. They apply to the solution of the
Boltzmann equation thanks to the expression (1.6). They also apply to derivatives
of f with respect to t, x and v provided that we can appropriately bound each of the
extra error terms that come up in the equation when differentiating the collision
and transport terms. In order to turn this procedure into a bootstrap iteration
leading to C8 estimates we need to turn the local regularity estimates from [35]
and [34] into global ones.

The weak Harnack inequality in [35] and the Schauder estimate in [34] depend
on ellipticity conditions on the kernel Kf in (1.6). In these papers, we showed
how these ellipticity conditions are implied locally by Assumption 1.1. However,
they degenerate for large velocities. In order to obtain global estimates from the
application of the weak Harnack inequality and Schauder estimates, we construct a
special change of variables. It transforms the function f into a solution to a kinetic
integro-differential equation whose kernel is uniformly elliptic with parameters that
do not degenerate for large velocities. This change of variables is a key ingredient
in the proof of this paper. It is described in Section 5. It allows us to turn any
local (in velocity) estimate for the Boltzmann equation into a global one.

The bootstrap iteration consists in applying the global version of Schauder esti-
mates (via the change of variables) to the equation satisfied by derivatives of the
solution f . The extra error terms are handled by careful (and new) estimates in
Hölder spaces for the Boltzmann collision operator, increments and derivatives (de-
scribed in Sections 6 and 8). In each step of the iteration, we gain a regularity
estimate for a higher derivative in terms of the estimates already obtained for the
lower order ones. There is a loss of decay exponent in each differentiation step.
Thus, we need to start with a function with rapid decay at infinity in order for the
iteration to continue indefinitely. This initial decay is provided by the result in [32].
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1.5. Notation. We use the notation a À b to denote the fact that there exists a
constant C so that a ď Cb. The constant C can depend on a variable collection
of parameters depending on context. This notation is used mostly inside proofs
of lemmas, propositions and theorems. In each statement, we explain what the
constants depend on. The implicit constants in each symbol À inside a proof
depend on the parameters specified in the corresponding statement. Even though
this notation might be arguably confusing at times, it allows us to clean up the
computations substantially.

The symbol a « b means that a À b and a Á b.
We use the standard notation Br to denote a ball of radius r in R

d centered at
the origin. We also write Brpwq to denote a ball centered at some point w P R

d.
The kinetic cylinders Qr Ă R ˆ R

d ˆ R
d are explained in Section 3.3.

2. Preliminary estimates for the Boltzmann equation

In this section, we collect some preliminary results for the Boltzmann equation
that play a role in the proofs in this paper.

As we mentioned before, we work with a very strong notion of classical solutions.
In this way, all the results in the literature are applicable and we avoid technical
difficulties. We give the definition below.

Definition 2.1. A function f : p0, T qˆR
dˆR

d Ñ R is a solution to the Boltzmann
equation (1.1) when

‚ It is non-negative everywhere.
‚ It is C8 in all variables t, x, v.
‚ It solves (1.1) for every value of pt, x, vq in the classical sense.
‚ For each value of pt, xq, the function f decays rapidly as |v| Ñ 8. More
precisely, for any q ą 0, we have

lim
|v|Ñ8

fpt, x, vq
p1 ` |v|qq “ 0,

locally uniformly in pt, xq. For derivatives of f , we only assume that there
is sufficient decay so that

ˆ

Rd

|D2
vfpt, x, vq|p1 ` |v|qγ`2s dv ă `8,

for every value of t and x.

For simplicity, we will also consider f to be periodic in x.

The results in this paper certainly apply to a weaker notion of solution as well.
We discussed it in Section 1.2.1. However, by considering a strong notion of solution
as in Definition 2.1, we avoid superfluous technical difficulties that would make this
paper harder to read.

In the last section of [32], we discuss how to replace the rapid decay assumption
in the last item of Definition 2.1 with a weaker algebraic decay condition.

The last condition on the integrability of D2
vf is convenient for Lemmas 5.15

and 5.17. These are the only parts of this paper where it plays a role.
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634 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

2.1. Decay estimates. We start by reviewing the decay estimates in the velocity
variables obtained in [32] for solutions of the Boltzmann equation. When γ ą 0,
these decay estimates are forced by the equation regardless of the initial data.
When γ ď 0, we need to impose the appropriate decay on the initial data, and it is
propagated in time by the equation.

Theorem 2.2 (Decay estimates in the velocity variables). Let the parameters γ, s

from (1.3) satisfy γ ` 2s P r0, 2s and let f be a solution of the Boltzmann equa-
tion (1.1) in p0, T qˆR

dˆR
d, periodic in x, such that fp0, x, vq “ finpx, vq in R

dˆR
d

and such that Assumption 1.1 holds. If γ ď 0, we also assume that for all q ą 0,
there exists a constant N0,q so that finpx, vq ď N0,qp1` |v|q´q for px, vq P R

d ˆ R
d.

Then the solution f satisfies

fpt, x, vq ď Nqp1 ` |v|q´q in p0, T q ˆ R
d ˆ R

d,

for some constant Nq only depending on dimension d, parameters γ, s from the
collision kernel, see (1.3), and the hydrodynamical bounds m0,M0, E0, H0 from As-
sumption 1.1, and, in the case γ ď 0, also on the constants N0,q.

We include Lemmas 2.3 and 2.4 about the decay or growth of convolutions of f
with different powers of |v|. They will be applied repeatedly in several parts of the
paper. The first one gives us an upper bound depending on the mass and energy
of f only. The second one is in terms of its pointwise upper bounds.

Lemma 2.3. Let f : Rd Ñ r0,8q. Assume that 0 ď κ ď 2. Then
ˆ

Rd

fpv ` wq|w|κ dw ď C pp1 ` |v|qκM0 ` E0q

where C is a universal constant and M0 and E0 are numbers so that
ˆ

Rd

fpvq dv ď M0 and

ˆ

Rd

fpvq|v|2 dv ď E0.

Proof. We compute directly
ˆ

Rd

fpv ` wq|w|κ dw “
ˆ

Rd

fpwq|w ´ v|κ dw,

À
ˆ

Rd

fpwq p|w|κ ` |v|κq dw,

À
ˆ

Rd

fpwq
`

1 ` |w|2 ` |v|κ
˘

dw,

À
ˆ
ˆ

Rd

fpwq|w|2 dw ` p1 ` |v|qκ
ˆ

Rd

fpwq dw
˙

. �

Lemma 2.4. Let f : Rd Ñ r0,8q and κ ą ´d. Assume that fpvq ď Np1 ` |v|q´q

for some q ą d ` κ`. Then
ˆ

Rd

fpv ` wq|w|κ dw ď CNp1 ` |v|qκ,

for some constant C depending on d, κ and q only (neither on N nor v).

Proof. We do a different computation depending on whether κ ě 0 or κ ă 0.
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For κ ě 0, it is very similar to Lemma 2.3. We compute

ˆ

Rd

fpv ` wq|w|κ “
ˆ

Rd

fpwq|w ´ v|κ dw,

À
ˆ

Rd

fpwq p|w|κ ` |v|κq dw,

À N

ˆ
ˆ

Rd

p1 ` |w|q´q|w|κ dw ` |v|κ
ˆ

Rd

p1 ` |w|q´q dw

˙

.

Since ´q ` κ ă ´d and κ ą ´d, the integrals are computable for each value of q
and κ ě 0.

For κ ă 0, we estimate the integrals differently. In this case we will use that
q ą d.

ˆ

Rd

fpv ` wq|w|κ dw

ď N

ˆ

Rd

p1 ` |v ` w|q´q|w|κ dw,

“ N

ˆ

|w|ă|v|{2
p1 ` |v ` w|q´q|w|κ dw ` N

ˆ

|w|ą|v|{2
p1 ` |v ` w|q´q|w|κ dw,

À N

ˆ

|w|ă|v|{2
p1 ` |v|q´q|w|κ dw ` N

ˆ

|w|ą|v|{2
p1 ` |v ` w|q´q|v|κ dw,

À N

ˆ

|w|ă|v|{2
p1 ` |v|q´q|w|κ dw ` N

ˆ

Rd

p1 ` |v ` w|q´q|v|κ dw,

À Np1 ` |v|q´q|v|κ`d ` |v|κ

À Np1 ` |v|qκ. �

2.2. A coercivity condition for integro-differential operators. In [14], there
is a practical condition to verify if the quadratic form associated with an integro-
differential operator is coercive with respect to the Hs semi-norm. The result says
the following.

Theorem 2.5 (Coercivity condition – [14, Theorem 1.3]). Let K : B2ˆB2 Ñ r0,8q
be a kernel satisfying the following assumption. There exists λ ą 0 and µ P p0, 1q
such that for any v P B2 and any ball B Ă B2 that contains v,

|tv1 P B : Kpv, v1q ě λ|v1 ´ v|´d´2su| ě µ|B|.

Then, for any function u : B2 Ñ R,

¨

B2ˆB2

pupv1q ´ upvqq2Kpv, v1q dv1 dv ě cλ

¨

B1ˆB1

pupv1q ´ upvqq2
|v1 ´ v|d`2s

dv1 dv.

The constant c depends on dimension and µ only.

We recall from (1.6) that the Boltzmann equation can be written as an integro-
differential equation with some kernel Kf depending on the solution f itself. The
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explicit formula for Kf is worked out in [44] and we recall it now,

Kf pv, v1q “ 2d´1

|v1 ´ v|

ˆ

wKv1´v

fpv ` wqBpr, cos θqr´d`2 dw(2.1)

with

#

r2 “ |v1 ´ v|2 ` |w|2,
cos θ “ w´pv´v1q

|w´pv´v1q| ¨ w`pv1´vq
|w`pv1´vq| .

This kernel Kf satisfies the assumption of Theorem 2.5 in the stronger form of a
cone of nondegeneracy as described in [44]. We describe it in Proposition 2.6.

Proposition 2.6 (Cone of nondegeneracy – [44, Lemma 7.1]). Let f : Rd Ñ R be
a nonnegative function and Kf be the corresponding Boltzmann kernel as in (2.1).
For any v P R

d, there exists a symmetric subset of the unit sphere Apvq Ă Sd´1

such that

‚ |Apvq| ě µp1 ` |v|q´1.
‚ For every σ P Apvq, |σ ¨v| ď C (i.e. Apvq is concentrated around the equator
perpendicular to v with width ď C{p1 ` |v|q).

‚ For any σ P Apvq and r ą 0,

Kf pv, v ` rσq ě λp1 ` |v|q1`γ`2sr´d´2s.

Here, the constants µ, λ and C depend only on dimension and on the hydrodynamic
bounds of Assumption 1.1.

The cone of nondegeneracy described in Proposition 2.6 immediately implies the
assumption of Theorem 2.5. Thus, the Boltzmann kernel Kf satisfies a coercivity
inequality restricted to velocities in B2. Naturally, we can apply a translated and
dilated version of Theorem 2.5 to derive a coercivity condition for the Boltzmann
collision kernel in any bounded set of velocities. It naturally implies a local coer-
civity inequality. However, as we see in Proposition 2.6, the thickness of the cone of
nondegeneracy degenerates as |v| Ñ 8. This is natural in view of the fact that the
optimal global coercivity inequalities for the Boltzmann collision operator depend
on certain modified distance and weight that degenerate as |v| Ñ 8 (see [24]).

We are able to recover the optimal coercivity estimates for large velocities using
Theorem 2.5 and Proposition 2.6 together with the change of variables described
in Section 5. See Appendix A for a derivation of the global coercivity estimate in
[24] along these lines.

3. Kinetic Hölder spaces

Here, following [34], we describe the appropriate formulation of Hölder spaces
for kinetic equations. These are, in the context of Hölder spaces, what the spaces
described in [7] are in the context of Sobolev spaces. They are adapted to the group
of translations and dilations that leave the equation in an invariant ellipticity class.
In order to motivate and explain all the necessary machinery related to these spaces,
it is best to first consider the simpler fractional Kolmogorov equation

(3.1) Btf ` v ¨ ∇xf ` p´Δqsvf “ 0.

Equation (3.1) is the simplest kinetic equation with integro-differential diffusion of
order 2s and it serves as a model equation to start our analysis. The Boltzmann
collision operator is the sum of a nonlinear integro-differential operator of order 2s
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(which is not the fractional Laplacian) plus a lower order term. This decomposition
is precisely given by the two terms in (1.6).

3.1. Scaling and translation invariances. Assume that a function f solves (3.1)
in some domain. For any r ą 0, if we scale the function by

(3.2) frpt, x, vq “ fpr2st, r1`2sx, rvq,
then the scaled function fr satisfies the same equation in the appropriately scaled
domain.

The space R ˆ R
d ˆ R

d is endowed with the following Lie group structure: for
all ξ “ ph, y, wq and z “ pt, x, vq, the operator ξ ˝ z is given by the formula

(3.3) ξ ˝ z “ ph ` t, x ` y ` tw, v ` wq.
If f is a solution of (3.1) and z0 “ pt0, x0, v0q P R

1`2d is arbitrary, then the function

f̃pzq “ fpz0 ˝ zq
solves the same equation (in a translated domain).

The scaling invariance and left-translation invariance described here are the mo-
tivation for the definitions of kinetic cylinders, distance, degree and Hölder spaces
given below.

In Sections 4.2 and 4.3, we will describe the results from [35] and [34] which are
kinetic integro-differential versions of the classical regularity results of De Giorgi
and Schauder for elliptic equations with variable coefficients. These equations are
not invariant by scaling or translations individually, but rather as a class. Scaling
or left translations of functions solving an equation as in Theorem 4.2 or 4.5 will
solve an equation with the same structure and the same ellipticity parameters.

3.2. Kinetic distance. We recall the notion of kinetic distance defined in [34]. It
is constructed so that it agrees with the scaling given in (3.2) and the left action of
the group (3.3).

Definition 3.1. The kinetic distance between two points z1 “ pt1, x1, v1q and
z2 “ pt2, x2, v2q in R

1`2d is given by the following formula

dℓpz1, z2q :“ min
wPRd

!

max
´

|t1 ´ t2| 1

2s , |x1 ´ x2 ´ pt1 ´ t2qw| 1

1`2s , |v1 ´ w|, |v2 ´ w|
)̄

.

We show in [34] that dℓ is indeed a distance when s ě 1{2. For s ă 1{2, the
triangle inequality fails for dℓ; however dℓpz1, z2q2s is in fact a distance. We still
work with dℓ for any value of s P p0, 1q in order to keep our formulas consistent.

This distance is scale invariant in the following sense: for any z1, z2 P R
1`2d and

r ą 0, if we scale Srz1 :“ pr2st1, r1`2sx1, rv1q and Srz2 :“ pr2st2, r1`2sx2, rv2q, we
have

dℓpSrz1, Srz2q “ rdℓpz1, z2q.
This distance is also left invariant by (3.3). Indeed, for any three points ξ, z1

and z2 in R
1`2d we have

dℓpξ ˝ z1, ξ ˝ z2q “ dℓpz1, z2q.
It is also convenient to define the length of a vector z P R

1`2d by }z} :“ dℓpz, 0q.
Technically, }z} is not a norm. It is not homogeneous of degree one, but rather it is
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638 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

homogeneous with respect to the scaling in (3.2). It satisfies the triangle inequality
with respect to the group action (3.3):

(3.4) }z1 ˝ z2} ď }z1} ` }z2}.

There are several convenient equivalent expressions for }z} that we write below.

}z} “ min
wPRd

!

max
´

|t| 1

2s , |x ´ tw| 1

1`2s , |v ´ w|, |w|
¯)

,

« max
´

|t| 1

2s , |x| 1

1`2s , |v|
¯

,

« |t| 1

2s ` |x| 1

1`2s ` |v|.

The symbol « denotes in this context that the quantities on both sides are
comparable up to a factor depending on s and dimension d only. The last two
expressions would not satisfy (3.4), but they are easier to compute in some cases
in which the constant factors do not matter.

Note that due to the left invariance of this distance, dℓpz1, z2q “ }z´1
2 ˝ z1}.

The distance dℓ is left invariant but not right invariant. This lack of right
invariance is occasionally problematic and it results in smaller Hölder exponents in
some estimates for kinetic equations than the ones that one would naively expect.
It is essentially the reason why the exponents α and α1 are different in the Schauder
estimates of [34]. The following inequality is used repeatedly to estimate an error
term in integral operators due to the failure of right-invariance: for all z1, z2 P R

1`2d

and w P R
d, a direct computation shows that

(3.5)
dℓpz1 ˝ p0, 0, wq, z2 ˝ p0, 0, wqq ď dℓpz1, z2q ` |t1 ´ t2|1{p1`2sq|w|1{p1`2sq,

ď dℓpz1, z2q ` dℓpz1, z2q2s{p1`2sq|w|1{p1`2sq.

Moreover, when dℓpz1, z2q ď 1, then the last inequality is also less than or equal to
dℓpz1, z2q2s{p1`2sqp1 ` |w|q1{p1`2sq. We see that the right translations z1 ˝ p0, 0, wq
and z2 ˝ p0, 0, wq may be an order of magnitude further apart than the original
points z1 and z2.

3.3. Cylinders. When working with parabolic equations, one often considers par-
abolic cylinders of the form pt0 ´ r2, t0s ˆ Brpx0q. Because of the invariant trans-
formations we mentioned above, it is natural and convenient to consider cylinders
respecting them. For all z0 P R

1`2d, we define

Qrpz0q “ tpt, x, vq : t0 ´ r2s ă t ď t0, |x ´ x0 ´ pt ´ t0qv0| ă r1`2s, |v ´ v0| ă ru.

Cylinders centered at the origin p0, 0, 0q and of radius r ą 0 are simply denoted by
Qr.

Note that under this definition pt, x, vq belongs to Q1 if and only if pr2st, r1`2sx,

rvq belongs to Qr. Thus, our cylinders honor the scaling given in (3.2). Moreover,
for any z0 P R

1`2d, we have Qrpz0q “ z0 ˝ Qr, where ˝ denotes the Lie group
operator given in (3.3).

3.4. Kinetic degree of polynomials. We recall the definition of kinetic degree
from [34], for polynomials p in Rrt, x, vs. Given a monomial m of the form

mpt, x, vq “ c tα0xα1

1 . . . xαd

d v
αd`1

1 . . . vα2d

d with c ‰ 0,
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we define its kinetic degree as

degk m “ 2sα0 ` p1 ` 2sq
d

ÿ

j“1

αj `
2d
ÿ

j“d`1

αj .

That is, the degree of m is computed by counting 2s times the exponent for the
variable t, 1 ` 2s for the exponents in the variables xi and 1 for variables vi. This
definition is justified by the fact that we want a notion of kinetic degree consistent
with the scaling (3.2). With this definition in mind,

mpr2st, r1`2sx, rvq “ rdegk
mmpt, x, vq.

Given any non-zero polynomial p in Rrt, x, vs we define the kinetic degree of
p (and we write it degk p) as the maximum of the kinetic degree of each of its
(non-zero) monomials.

The kinetic degree of the zero polynomial is not properly defined above. It is
appropriate to make it equal to ´8 (or perhaps ´1). The fact that the kinetic
degree of the zero polynomial is a negative value is relevant for the definition of the
C0

ℓ norm given in Definition 3.2.

3.5. Kinetic Hölder spaces. We recall here the kinetic Hölder spaces introduced
in [34].

Definition 3.2 (Kinetic Hölder spaces). Given an open set D Ă R
1`2d and a

parameter α P r0,8q, a continuous functions f : D Ñ R is α-Hölder continuous at
a point z0 P R

1`2d if there exists a polynomial p P Rrt, x, vs such that degk p ă α

and for any z P D

|fpzq ´ ppzq| ď Cdℓpz, z0qα.
When this property holds at every point z0 in the domain D, with a uniform
constant C, we say f P Cα

ℓ pDq. The semi-norm rf sCα
ℓ

pDq is the smallest value of
the constant C so that the inequality above holds for all z0, z P D.

Note that with this definition rf sC0

ℓ
pDq “ }f}C0pDq “ }f}L8pDq. We define the

norm }f}Cα
ℓ

pDq to be rf sCα
ℓ

pDq ` }f}C0pDq.

We recall the interpolation inequalities proven in [34, Proposition 2.10].

Proposition 3.3 (Interpolation inequalities – [34]). Given 0 ď α1 ă α2 ă α3 so
that α2 “ θα1 ` p1 ´ θqα3, we have for all functions f P Cα3

ℓ pQrpz0qq,

rf sCα2

ℓ
pQrpz0qq ď C

´

rf sθ
C

α1

ℓ
pQrpz0qqrf s1´θ

C
α3

ℓ
pQrpz0qq ` rα1´α2rf sCα1

ℓ
pQrpz0qq

¯

,

for some constant C depending on α1, α3 and dimension only.

In this article, we will iteratively gain a priori estimates for solutions to the
Boltzmann equation on Hölder spaces with increasingly large exponents α. We
deal with global estimates that work for all v P R

d. We need to keep track of the
asymptotic behavior of these norms for large velocities. The most convenient way
to do it is by considering functions in Hölder spaces with fast decay that we define
below.

Definition 3.4 (Hölder spaces with fast decay). Given α P r0,8q, a function
f : rτ, T s ˆ R

d ˆ R
d lies in Cα

ℓ,fast if, for all q ą 0 and all r P p0, 1s, there exists
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Cq ą 0 such that for all z P rτ, T s ˆ R
d ˆ R

d, with Qrpzq Ă rτ, T s ˆ R
d ˆ R

d,

}f}Cα
ℓ

pQrpzqq ď Cq

p1 ` |v|qq .

This is a locally convex vector space with the following family of semi-norms

rf sCα
ℓ,q

prτ,T sˆRdˆRdq

:“ sup
!

p1 ` |v|qqrf sCα
ℓ

pQrpzqq : r P p0, 1s and Qrpzq Ă rτ, T s ˆ R
d ˆ R

d
)

.

We also write }f}Cα
ℓ,q

:“ }f}C0

ℓ,q
` rf sCα

ℓ,q
. Thus, a function f belongs to Cα

ℓ,fast

when }f}Cα
ℓ,q

ă 8 for all q ą 0.

Note that rf sCα
ℓ,q1

ě rf sCα
ℓ,q2

if q1 ě q2. Also, the norm }f}Cα
ℓ

pQrpzqq is monotone

increasing with respect to r. It is pointless to consider small values of r in Defi-
nition 3.4. In practice, one would only take the largest r that the interval rτ, T s
allows, which will often be r “ 1.

We know that the property of a function being Hölder continuous is local, but
its Hölder norm is not (at least for non-integer exponents). Lemma 3.5 is useful to
obtain a Hölder estimate in a large domain by covering with smaller patches where
the Hölder norm is bounded.

Lemma 3.5. Let α ą 0, r0 ą 0, f : Q1 Ñ R be a bounded continuous function.
Assume that for every z0 P Q1, there is a polynomial pz0 of kinetic degree strictly
less than α such that

|fpz0 ˝ ξq ´ pz0pξq| ď C0}ξ}α,
whenever }ξ} ď r0 and z0 ˝ ξ P Q1. Then f P Cα

ℓ pQ1q and

rf sCα
ℓ

pQ1q ď C0 ` Cr´α
0 osc

Q1

f,

for a constant C depending on α and dimension only. Here oscQ1
f “ supQ1

f ´
infQ1

f .

Proof. The inequality we assume for |fpz0 ˝ ξq ´ pz0pξq| when }ξ} ă r0 is identical
to the one in Definition 3.2. We need to extend this inequality to every value of ξ
so that z0 ˝ ξ P Q1, regardless of whether }ξ} ă r0 or not.

Without loss of generality, let us assume infQ1
f “ 0 (otherwise, repeat the proof

below for f ´ infQ1
f). Thus, in this case oscQ1

f “ }f}C0pQ1q. In the following we
simply write }f}C0 for }f}C0pQ1q.

For any point z0 P Q1, let us analyze the polynomial pz0 . We know that whenever
}ξ} ď r0 and z0 ˝ ξ P Q1, |fpz0 ˝ ξq ´ pz0pξq| ď C0}ξ}α. In particular, |pz0 | ď
C0r

α
0 ` }f}C0 at those points.
We use Lemma 2.8 in [34] (See also the proof of Lemma 2.7 and Proposition 2.10

in [34]), and get that for any point z0 P Q1, the polynomial pz0 has the form

pz0pzq “
ÿ

jPN1`2d

ajmjpzq,

where aj ‰ 0 only for multi-indexes so that degk mj ă α, and moreover

|aj | ď C
´

C0r
α´degk mj

0 ` }f}C0r
´ degk mj

0

¯

.
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Thus, when z0 ˝ ξ P Q1 but }ξ} ą r0, we estimate

|fpz0 ˝ ξq ´ pz0pξq| ď }f}C0 ` |pz0pξq|,
ď }f}C0 `

ÿ

jPN1`2d

|aj |}ξ}degk mj ,

ď }f}C0 ` C pC0r
α
0 ` }f}C0q

ÿ

jPN1`2d

degk mjăα

ˆ }ξ}
r0

˙degk mj

,

À pC0r
α
0 ` }f}C0q

ˆ}ξ}
r0

˙α

,

“
`

C0 ` r´α
0 }f}C0

˘

}ξ}α.
And we conclude the proof. �

Remark 3.6. Comparing with classical Hölder spaces Cα, we observe that the es-
timate in Lemma 3.5 is not optimal for large values of α. Consider for example
the Lipschitz norm that corresponds to α “ 1 and is purely local. So, the opti-
mal inequality for the classical Lipschitz space would not have the second term in
Lemma 3.5. Hölder norms are non-local, so some dependence on r0 ought to be
retained at least when α is not an integer (or α R N`2sN for kinetic Hölder spaces).

Lemma 3.7. Let f, g P Cα
ℓ pQ1q. Then fg P Cα

ℓ pQ1q and

}fg}Cα
ℓ

pQ1q ď C}f}Cα
ℓ

pQ1q}g}Cα
ℓ

pQ1q,

for a constant C depending on dimension and α only.

Proof. It is clear that the C0 norm satisfies the inequality with constant C “ 1.
We are left with verifying the inequality for the semi-norm r¨sCα

ℓ
. To that end, let

z P Q1 and consider the polynomials p and q of kinetic degree less than α so that

|fpz ˝ ξq ´ ppξq| ď rf sCα
ℓ

}ξ}α and |gpz ˝ ξq ´ qpξq| ď rgsCα
ℓ

}ξ}α.
Thanks to Lemma 3.5, it is sufficient to consider the case }ξ} ă 1. We have

|fpz ˝ ξqgpz ˝ ξq ´ ppξqqpξq| ď |fpz ˝ ξq||gpz ˝ ξq ´ qpξq| ` |fpz ˝ ξq ´ ppξq||qpξq|,
ď

`

rgsCα
ℓ

}f}C0 ` rf sCα
ℓ

}q}C0

˘

}ξ}α,
À }g}Cα

ℓ
}f}Cα

ℓ
}ξ}α.

The last inequality holds for }ξ} ă 1 due to the identification of the coefficients of
q with derivatives of g and [34, Lemma 2.7] (see also [34, Remark 2.9]).

The polynomial ppξqqpξq may have a kinetic degree higher than α. In that case,
let rpξq be the sum of the terms in ppξqqpξq of kinetic degree larger than or equal
to α. We also see from the application of [34, Lemma 2.7 & Remark 2.9], reasoning
term by term, that |rpξq| ď }f}Cα

ℓ
}g}Cα

ℓ
}ξ}α whenever }ξ} ă 1. Thus, the lemma

follows. �

4. Kinetic equations with integral diffusion

4.1. The kernel associated with the Boltzmann equation. Like in (1.6), we
use the decomposition of the Boltzmann collision operator described in [44] and
suggested earlier in [47, Chapter 2, Section 6.2]. We split Boltzmann’s collision
operator Qpf, fq appearing in (1.1) as the sum of two terms Q “ Q1 ` Q2. The
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642 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

first term Q1pf, fq is an integro-differential operator and Q2pf, fq a lower order
term,

(4.1)
Q1pf, fq :“ LKf

f,

Q2pf, fq :“ cbpf ˚ | ¨ |γqf,
where cb is a positive constant only depending on the function b appearing in (1.3)
and where the integro-differential diffusion operator LKf

is defined as

LKf
gpt, x, vq “ PV

ˆ

Rd

pgpt, x, v1q ´ gpt, x, vqqKf pt, x, v, v1q dv1.

The kernel Kf characterizing the operator LKf
is given by the following formula

Kf pv, v1q “ 2d´1

|v1 ´ v|

ˆ

wKv1´v

fpv ` wqBpr, cos θqr´d`2 dw(4.2)

with

#

r2 “ |v1 ´ v|2 ` |w|2,
cos θ “ w´pv´v1q

|w´pv´v1q| ¨ w`pv1´vq
|w`pv1´vq| .

The following expressions are easier to handle in computations.

Kf pv, v1q “ |v1 ´ v|´d´2s

ˆ

wKv1´v

fpt, x, v ` wqAp|v1 ´ v|, |w|q|w|γ`2s`1 dw(4.3)

« |v ´ v1|´d´2s

ˆ

wKpv1´vq
fpt, x, v ` wq|w|γ`2s`1 dw,(4.4)

where A » 1 is a bounded function only depending on the collision kernel B.
In Formula (4.2) we omitted the pt, xq dependence in Kf “ Kf pt, x, v, v1q and

f “ fpt, x, vq. This is because for every fixed value of pt, xq, we think of fpt, x, ¨q as a
function of v and compute the kernel Kf accordingly by Formula (4.2). Thus, if f “
fpvq is a function of v only, the kernel Kf “ Kf pv, v1q depends on v and v1. When f

depends on other parameters, so does Kf . In particular, Kf “ Kf pt, x, v, v1q when
f “ fpt, x, vq. In the same spirit, we occasionally refer to Assumption 1.1 for a
function f “ fpvq depending only on v as a way to state that its mass, energy and
entropy are bounded by constants m0 ą 0, M0, E0 and H0. This abuse of notation
is convenient when stating lemmas that relate bounds for f with bounds for Kf .

There are two general regularity results for general kinetic integro-differential
equations that we apply in this paper. The first one, given in [35], is a Hölder
estimate with a small exponent, in the style of the well known theorem of De
Giorgi and Nash. It is, in some sense, the integro-differential version of the result
in [22]. The second one, given in [34], is a higher order Hölder estimate in the style
of the classical result by Schauder for linear elliptic equations. We will iterate these
Schauder-type estimates, and combine them with the large-velocity decay estimates
from [32], in order to obtain C8 estimates. Each of these two regularity results
depends on different conditions on the diffusion kernel Kf . In the next two sections,
we discuss the assumptions for each of these results.

Remark 4.1. The theorems for kinetic integro-differential equations in the style of
De Giorgi/Nash (explained in Section 4.2) and the Schauder-type results (described
in Section 4.3) depend on assumptions on the kernel that look rather different from
each other. These assumptions are best understood by comparing them with the
corresponding conditions for the Landau equation, in terms of classical second order
diffusion, that formally correspond to the limit as s Ñ 1.
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REGULARITY ESTIMATES FOR BOLTZMANN 643

The in-homogeneous Landau equation is also a kinetic equation of the form

(4.5) Btf ` v ¨ ∇xf “ QLpf, fq,
where the collision operator QLpf, fq involves second order derivatives of the func-
tion f . It can be written in divergence form

(4.6) QLpf, fq “ Bvi
´

a
f
ijBvjf ` b

f
i f

¯

.

The Hölder estimates (as in [22]), obtained following De Giorgi method, depend on

this expression and on the uniform ellipticity conditions on the diffusion matrix a
f
ij

(that depend on the solution f itself through its hydrodynamic quantities). The

term Bvipbfi fq is of lower order.
The application of a Schauder type estimate (for example as in [42]) would

depend on the expression of QLpf, fq in non-divergence form. In the case of the
Landau equation, it takes the form

(4.7) QLpf, fq “ a
f
ijBvivjf ` cff.

Here, the lower order term is cff . The Schauder estimate depends on the diffusion

coefficients (in this case a
f
ij) being uniformly elliptic and Hölder continuous.

The difference between the divergence and nondivergence structures in (4.5)
and (4.7) translates in different structure assumptions for the diffusion kernel in
their integro-differential counterpart. The two terms in the decomposition of the
Boltzmann collision kernel (4.1) correspond more naturally to (4.7) than to (4.5).

One can apply divergence-form techniques to integro-differential operators when
these have a variational structure. It corresponds to cancellation conditions be-
tween Kpt, x, v, v1q and Kpt, x, v1, vq. Ideally, the case of symmetry of the form
Kpt, x, v, v1q “ Kpt, x, v1, vq would correspond to an integro-differential operator in
divergence form without lower order terms. However, we see in (4.6) that there
is a first order lower order term in the Landau equation. In Section 4.2 we will
state the precise cancellation conditions for Kpt, x, v, v1q ´ Kpt, x, v1, vq so that the
asymmetry in the kernel is of lower order than the diffusion. The Hölder estimate
in the style of the theorem of De Giorgi, Nash and Moser in Section 4.2 depends
on this cancellation condition.

One can apply nondivergence techniques to integro-differential operators when
their structure allows us to make pointwise estimates. It corresponds to the can-
cellation condition Kpt, x, v, v ` wq “ Kpt, x, v, v ´ wq. The Boltzmann kernel Kf

satisfies this symmetry by construction. Thus, the application of nondivergence
techniques to the Boltzmann equation is more direct. This will be reflected in the
assumptions of the Schauder-type estimate described in Section 4.3.

4.2. The local Hölder estimate. A local Hölder estimate for a general class of
kinetic equations with integral diffusion was obtained in [35] following classical ideas
from De Giorgi. It applies to equations of the form

(4.8) Btg ` v ¨ ∇xg “ LKg ` h,

where h is a given source term and LK is an integral operator of the form

LKgpt, x, vq “ PV

ˆ

Rd

pgpt, x, v1q ´ gpt, x, vqqKpt, x, v, v1q dv1

associated with a (non-negative) kernelKpt, x, v, v1q defined in p´1, 0sˆB1ˆB2ˆR
d.
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644 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

The Hölder estimates for kinetic integro-differential equations developed in [35]
are a result comparable to the theorem of De Giorgi, Nash and Moser for elliptic or
parabolic equations in divergence form. These regularity estimates are independent
of any well-posedness questions. It does not matter where the kernel K comes from,
whether it depends on f or not, or how smooth it is with respect to any of its
parameters. It is a result that only requires some uniform ellipticity conditions on
the kernel K that we describe below.

The following list of assumptions must be met uniformly in t and x. In order to
keep the formulas short, we omit their dependence on t and x.
Non-degeneracy conditions.

For all v P B2 and r ą 0, inf
|e|“1

ˆ

Brpvq
ppv1 ´ vq ¨ eq2`Kpv, v1q dv1 ě λr2´2s.(4.9)

For any f supported in B2,

¨

B2ˆRd

fpvqpfpvq ´ fpv1qqKpv, v1q dv1 dv(4.10)

ě λ}f}29HspRdq ´ Λ}f}2L2pRdq.

The first non-degeneracy condition (4.9) is necessary only for s ă 1{2. It is not
clear if the second condition (4.10) may actually follow from (4.9). In practice,
(4.9) is usually much easier to check than (4.10).
Boundedness conditions.

For all v P B2 and r ą 0,

ˆ

RdzBrpvq
Kpv, v1q dv1 ď Λr´2s.(4.11)

For all v1 P B2 and r ą 0,

ˆ

RdzBrpv1q
Kpv, v1q dv ď Λr´2s.(4.12)

Cancellation conditions.

For all v P B7{4,

ˇ

ˇ

ˇ

ˇ

ˇ

PV

ˆ

B1{4pvq

`

Kpv, v1q ´ Kpv1, vq
˘

dv1

ˇ

ˇ

ˇ

ˇ

ˇ

ď Λ.

(4.13)

For all r P r0, 1{4s and v P B7{4,

ˇ

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Brpvq

`

Kpv, v1q ´ Kpv1, vq
˘

pv1 ´ vq dv1

ˇ

ˇ

ˇ

ˇ

ˇ

(4.14)

ď Λp1 ` r1´2sq.

The second cancellation condition (4.14) is necessary only for s ě 1
2
.

The cancellation conditions (4.13) and (4.14) correspond to the representation of
the integral diffusion as a divergence form operator with a lower order asymmetry
(see Remark 4.1).

The nondegeneracy and boundedness conditions (4.9), (4.10), (4.11) and (4.12)
correspond to the uniform ellipticity of the integral diffusion kernel. In practice,
the most difficult to verify is the coercivity assumption (4.10).

Theorem 4.2 (Local Hölder estimate – [35]). Let K : p´1, 0s ˆ B1 ˆ B2 ˆ R
d Ñ

r0,`8q be a kernel satisfying the ellipticity conditions (4.9) (only if s ă 1
2
), (4.10),

(4.11), (4.12), (4.13), (4.14) (only if s ě 1
2
). Let f : p´1, 0s ˆB1 ˆR

d be a solution
of (4.8) in Q1 for some bounded function h. Assume also that f is bounded in
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REGULARITY ESTIMATES FOR BOLTZMANN 645

p´1, 0s ˆ B1 ˆ R
d. Then f is Hölder continuous in Q 1

2

and the following estimate

holds

rf sCα
ℓ

pQ 1

2

q ď Cp}f}L8pp´1,0sˆB1ˆRdq ` }h}L8pQ1qq,

where α P p0, 1q and C ą 0 only depend on dimension d, and the constants λ and
Λ appearing in the assumptions.

In [35], we verified that the Boltzmann kernel Kf (given in (4.2)) satisfies (lo-
cally in v) the assumptions (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14) with
parameters depending only on the hydrodynamic constants m0, M0, E0 and H0 of
Assumption 1.1.

We point out that there is a similar Hölder estimate for kinetic integro-differential
equations in [46]. Its proof is simpler and it allows for an unbounded right-hand
side. However, it only applies for a more restricted family of kernels that makes it
unsuitable for our application to the Boltzmann equation.

Remark 4.3. In [35], the Hölder estimate is obtained in a classical Hölder space
for some α ą 0 sufficiently small. Such a Hölder estimate implies an estimate
in the kinetic Hölder space used in the present work at the expense of reducing
the exponent α by a factor minp2s, 1q. This is because for any two points z, z0 P
Rˆ B1 ˆ R

d such that dℓpz, z0q ă 1, we have |z ´ z0| ď Cdℓpz, z0qminp1,2sq. Indeed,
when |v0| ď 1, we have

|z ´ z0| “ |t ´ t0| ` |x ´ x0| ` |v ´ v0|
ď p1 ` |v0|q|t ´ t0| ` |x ´ x0 ´ pt ´ t0qv0| ` |v ´ v0|
ď Cpdℓpz, z0q2s ` dℓpz, z0q1`2s ` dℓpz, z0qq

for some constant C only depending on s. In particular, if for all z0, z P Q 1

2

,

we have |fpzq ´ fpz0q| ď Cα|z ´ z0|α, then |fpzq ´ fpz0q| ď C̃Cαdℓpz, z0qα̃ with

α̃ “ minp1, 2sqα. The constant C̃ only depends on s and α.

4.3. A Schauder estimate for kinetic integro-differential equations. The
classical Schauder estimates for elliptic or parabolic equations of second order apply
whenever we have an equation with uniformly elliptic and Hölder continuous coef-
ficients. In [34], we obtained a Schauder-type estimate for kinetic equations with
integro-differential diffusion like (4.8) in non-divergence form. The result depends
on the kernel satisfying different ellipticity conditions than the ones ensuring the
local Hölder estimate (Theorem 4.2). In some sense, the conditions described be-
low reflect that the integro-differential equation is in non-divergence form and the
kernel has a Hölder continuous dependence with respect to pt, x, vq. They should
be understood from the perspective described in Remark 4.1.

There are two types of conditions that are necessary for a Schauder-type esti-
mate: uniform ellipticity and Hölder continuity of coefficients. We should think of
the kernel Kpt, x, v, v1q as a map from the first three variables pt, x, vq to a kernel
depending on a single parameter w P R

d given by Kpt,x,vqpwq :“ Kpt, x, v, v ` wq.
The uniform ellipticity assumption will say that for every value of pt, x, vq, the ker-
nel Kpt,x,vq belongs to a certain ellipticity class. The Hölder continuity will say that
for two different values z1 “ pt1, x1, v1q and z2 “ pt2, x2, v2q, the kernels Kz1 and
Kz2 are in some sense at distance À dℓpz1, z2qα.

Let us recall the ellipticity class of order 2s defined in [34].
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646 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

Definition 4.4 (The ellipticity class). Let s P p0, 1q. A non-negative kernel K :
R

d Ñ R belongs to the ellipticity class K if

(i) Kpwq “ Kp´wq,
(ii) For all r ą 0,

´

Br
|w|2Kpwq dw ď Λr2´2s,

(iii) For all R ą 0 and ϕ P C2pBRq,
¨

BRˆBR

pϕpv1q ´ ϕpvqq2Kpv1 ´ vq dv1 dv(4.15)

ě λ

¨

BR{2ˆBR{2

pϕpv1q ´ ϕpvqq2|v1 ´ v|´d´2s dv1 dv.

(iv) For any r ą 0 and e P Sd´1,

ˆ

Br

pw ¨ eq2`Kpwq dw ě λr2´2s.

Some remarks are in order.

(1) Definition 4.4 is borrowed from [34]. However, the definition in that paper
is more general since Kpwq dw is supposed to be a nonnegative Radon
measure that is not necessarily absolutely continuous. For the purpose
of this paper, because we deal with classical solutions, our kernel K will
always be given by a non-negative density function and we do not need to
deal with singular measures.

(2) The last two items (iii) and (iv) might be redundant. Indeed, we do not
know any example of a kernel satisfying (i) and (ii) and either (iii) or (iv),
without satisfying all of them. This is related to the problem of coercivity
for integro-differential operators. See the discussion in [35], [20], [21] and
[14]. Item iv. is in practice much easier to verify than iii.

(3) Earlier works on integro-differential equations concentrated on a more re-
stricted class of kernels that were pointwise comparable to the fractional
Laplacian: Kpwq « |w|´d´2s. This traditional assumption does not suffice
to study the Boltzmann equation. The diffusion kernel that appears in the
Boltzmann equation belongs to the more general class of Definition 4.4,
with parameters depending on the constants in Assumption 1.1.

The condition on the Hölder dependence of Kz with respect to the point z is
given in the assumption (4.16).

Theorem 4.5 (Local Schauder estimate – [34]). Let sPp0, 1q and αPp0,minp1, 2sqq
and α1 “ 2s

1`2s
α. Let K : p´p2rq2s, 0s ˆBp2rq1`2s ˆR

d ˆR
d Ñ r0,`8q such that for

all z “ pt, x, vq P p´p2rq2s, 0s ˆBp2rq1`2s ˆR
d, the kernel Kzpwq “ Kpt, x, v, v `wq

belongs to the ellipticity class K from Definition 4.4. Assume moreover that for all
z1, z2 P Q2r and all ρ ą 0,

(4.16)

ˆ

Bρ

ˇ

ˇKz1pwq ´ Kz2pwq
ˇ

ˇ |w|2 dw ď A0ρ
2´2sdℓpz1, z2qα1

with zi “ pti, xi, viq for i “ 1, 2.
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REGULARITY ESTIMATES FOR BOLTZMANN 647

If f P Cα
ℓ pp´p2rq2s, 0s ˆ Bp2rq1`2s ˆ R

dq solves (4.8) in Q2r, then

rf s
C

2s`α1
ℓ

pQrq ď C

ˆ

max

ˆ

r´2s´α1`α, A
2s`α1´α

α1
0

˙

rf sCα
ℓ

pp´p2rq2s,0sˆBp2rq1`2sˆRdq

(4.17)

` rhs
Cα1

ℓ
pQ2rq ` maxpr´α1

, A0q}h}C0pQ2rq

˙

,

where the constant C depends on d, s, and the constants λ,Λ from the definition of
K.

Proof. The main result in [34] is for r “ 1 and the constant C depends on A0 in
an unspecified way. In order to justify (4.17) we work out explicitly its dependence
on r and A0. It is a consequence of Theorem 1.6 in [34] combined with a scaling
argument. Indeed, let Srpt, x, vq “ pr2st, r1`2sx, rvq. This is the natural scaling
that maps Q1 into Qr. The function f ˝ Sr satisfies the scaled equation

pBt ` v ¨ ∇xqrf ˝ Srs “ LK̃ ` r2sh ˝ Sr,

where

K̃zpwq “ rd`2sKSrzprwq.

We point out that K̃ satisfies assumption (4.16) with rα
1
A0 instead of A0. Indeed,

ˆ

Bρ

pK̃z1pwq ´ K̃z2pwqq|w|2 dw

“
ˆ

Bρ

rd`2s pKSrz1prwq ´ KSrz2prwqq |w|2 dw,

“ r2s´2

ˆ

Brρ

pKSrz1pw̄q ´ KSrz2pw̄qq |w̄|2 dw̄,

ď A0r
2s´2prρq2´2sdℓpSrz1, Srz2qα1 “ pA0r

α1 qρ2´2sdℓpz1, z2qα1
.

Provided that rα
1
A0 ď 1, we apply Theorem 1.6 in [34] (same as Theorem 4.5

but for r “ 1 and constants depending implicitly on A0). We get
(4.18)

rf ˝ Srs
C

2s`α1
ℓ

pQ1q ď C
´

rf ˝ SrsCα
ℓ

pp´22s,0sˆB
21`2sˆRdq ` r2s}h ˝ Sr}

Cα1
ℓ

pQ2q

¯

.

We can take a universal constant C (depending on d, λ, Λ and s only) provided

that A0r
α1 ď 1. In that case, we scale back to express (4.18) in terms of the original

functions f and h to obtain

rf s
C

2s`α1
ℓ

pQrq

(4.19)

ď C
´

rα´2s´α1 rf sCα
ℓ

pp´p2rq2s,0sˆBp2rq1`2sˆRdq ` rhs
Cα1

ℓ
pQ2rq ` r´α1 }h}C0pQ2rq

¯

,

provided that A0r
α1 ď 1.

If A0r
α1 ą 1, we should further look at a smaller scale r̃ ă r so that A0r̃

α1 “ 1.
In that case, the inequality (4.19) holds with r̃ instead of r, and for any cylinder
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Qr̃pz0q Ă Qr. Taking into account Lemma 3.5, we get

rf s
C

2s`α1
ℓ

pQrq

ď C
´

r̃α´2s´α1 rf sCα
ℓ

pp´p2rq2s,0sˆBp2rq1`2sˆRdq ` rhs
Cα1

ℓ
pQ2rq ` r̃´α1 }h}C0pQ2rq

¯

.

Taking into account that 1{r̃ “ A
1{α1

0 , we get
(4.20)

rf s
C

2s`α1
ℓ

pQrq

ď C

ˆ

A
2s`α1´α

α1
0 rf sCα

ℓ
pp´p2rq2s,0sˆBp2rq1`2sˆRdq ` rhs

Cα1
ℓ

pQ2rq ` A0}h}C0pQ2rq

˙

.

Combining (4.19) with (4.20) we obtain (4.17). �

The Boltzmann kernel Kf,pt,x,vq as in (4.2) belongs (locally) to the class K pro-
vided that Assumption 1.1 holds. This follows from computations that are in the
literature. Indeed, at least when v stays in a bounded domain, we have

(i) The symmetry of the Boltzmann kernel is immediate by construction. We
see in the formula (4.2) that Kf pt, x, v, v ` wq “ Kf pt, x, v, v ´ wq.

(ii) The condition (ii). in Definition 4.4 tells us that the kernels K P K are
bounded in an averaged sense. It is a weaker condition than the more
classical pointwise bound Kpwq ď Λ|w|´d´2s. By a simple computation,
we can verify that it is equivalent to any of the following two alternative
formulations (see [35, Section 2.2])

ˆ

RdzBr

Kpwq dw ď Λr´2s,

ˆ

B2rzBr

Kpwq dw ď Λr´2s.

In each case, the inequality is supposed to hold for all r ą 0 and the value
of Λ may need to be adjusted by a dimensional constant when passing from
one formulation to another.

The assumption for Theorem 4.5 that every kernel Kpt,x,vq satisfies (ii)
in Definition 4.4 is the same as the assumption (4.11) for Theorem 4.2.

This boundedness assumption for a kernel K, together with the symme-
try condition (i) in Definition 4.4, allows us to estimate the value of the
integro-differential operator LKf pointwise. See Lemma 4.6.

(iii) Using that γ ` 2s P r0, 2s, the integral upper bound on item (ii) in Defini-
tion 4.4 holds for the Boltzmann kernel Kf (at least locally) according to
[44, Lemma 4.3]. Indeed, that lemma says that for any f : Rd Ñ R,
ˆ

RdzBr

Kf pv, v ` wq dw À
ˆ
ˆ

Rd

fpv ` wq|w|γ`2s dw

˙

r´2s,(4.21)

applying Lemma 2.3,

À pp1 ` |v|qγ`2sM0 ` E0qr´2s.

(iv) The coercivity condition for Kf,pt,x,vq is easier to verify than the usual
coercivity estimates for the Boltzmann equation. This is because Kf,pt,x,vq
depends on the single variable w P R

d. We should think of the kernel
Kf,pt,x,vq as what we get from the original kernel Kf by freezing coefficients.
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The coercivity estimate (iii) in Definition 4.4 is a direct consequence of the
existence of a cone of nondegeneracy described in [44, Lemma 4.8] combined
with the coercivity conditions from [21] or from [14].

(v) The last nondegeneracy assumption, i.e. item (iv) in Definition 4.4, is a
straight-forward consequence of the existence of a cone of nondegeneracy
described in [44, Lemma 4.8].

An important difficulty is apparent at this point: the constants Λ in (ii) and
λ in (iii) and (iv) deteriorate as |v| Ñ 8. The kernel Kf,pt,x,vq belongs to an
ellipticity class only locally in v. In order to control the asymptotic behavior of all
our regularity estimates, it will be important to establish precise asymptotics on
the ellipticity of the kernel as v Ñ 8. The same difficulty arises in regards to the
assumptions for Theorem 4.5. A change of variables will be described in Section 5
that addresses this difficulty.

Now we state and prove the lemma mentioned above about pointwise bounds for
LKf . For more applicability, we state it for kernels K satisfying only (i) and (ii) in
Definition 4.4, and that might even change sign. It is related to [34, Estimate (3.4)].

Lemma 4.6. Let K : Rd Ñ R be a symmetric kernel (i.e. Kpwq “ Kp´wq) so
that

ˆ

RdzBr

|Kpwq| dw ď Λr´2s.

Consider the integro-differential operator LK ,

LKfpvq “ PV

ˆ

Rd

pfpv ` wq ´ fpvqqKpwq dw.

If f is bounded in R
d and C2s`α at v for some α P p0, 1q, then

|LKfpvq| ď CΛ|f |
α

2s`α

C0pRdqrf s
2s

2s`α

C2s`αpvq.

The constant C depends on dimension, s and α.

We use the standard notation r¨sCαpvq to denote the smallest value of N ě 0 so
that there exists a polynomial q of degree strictly less than α so that |fpv ` wq ´
qpwq| ď N |w|α for all w P R

d. Note that 2s`α may be larger than 2 in Lemma 4.6.

Proof. The fact that f is C2s`α at the point v means that

‚ |fpv ` wq ´ fpvq| ď rf sC2s`αpvq|w|2s`α if 2s ` α P p0, 1s.
‚ |fpv ` wq ´ fpvq ´ w ¨ ∇fpvq| ď rf sC2s`αpvq|w|2s`α if 2s ` α P p1, 2s.
‚ |fpv`wq´fpvq´w ¨∇fpvq´ 1

2
wiwjBijfpvq| ď rf sC2s`αpvq|w|2s`α if 2s`α P

p2, 3s.
For some r ą 0 to be determined later, we use the inequalities above to estimate
the part of the integral where w P Br. Note that the term w ¨ ∇fpvq is odd in w.
Since the kernel K is symmetric, it vanishes in the principal value. We have

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Br

pfpv ` wq ´ fpvqqKpwq dw
ˇ

ˇ

ˇ

ˇ

ď
ˆ

Br

ˆ

rf sC2s`αpvq|w|2s`α `
"

1

2
wiwj |Bijfpvq|

*

if 2s ` α ą 2

˙

|Kpwq| dw

À Λ
´

rf sC2s`αpvqr
α `

�

|D2fpvq|r2´2s
(

if 2s ` α ą 2

¯

.
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If 2s ` α ą 2, we use the (classical) interpolation inequality in the full space

|D2fpvq| ď rf s
2

2s`α

C2s`αpvq|f |
2s`α´2

2s`α

C0pRdq ,

À Λ

ˆ

rf sC2s`αpvqr
α `

"

rf s
2

2s`α

C2s`αpvq|f |
2s`α´2

2s`α

C0pRdq r
2´2s

*

if 2s ` α ą 2

˙

.

For the part of the integral w R Br, we bound |fpv ` wq ´ fpvq| by 2|f |C0pRdq. We
get

ˇ

ˇ

ˇ

ˇ

ˆ

RdzBr

pfpv ` wq ´ fpvqqKpwq dw
ˇ

ˇ

ˇ

ˇ

ď 2|f |C0pRdq

ˆ

RdzBr

|Kpwq| dw,

À Λ|f |C0pRdqr
´2s.

Adding up the two (or three if 2s ` α ą 2) terms,

|LKfpvq|

ď Λ

ˆ

rf sC2s`αpvqr
α `

"

rf s
2

2s`α

C2s`αpvq|f |
2s`α´2

2s`α

C0pRdq r
2´2s

*

if 2s ` α ą 2

` |f |C0pRdqr
´2s

˙

.

We finish the proof by choosing (the optimal) r ą 0 as

r “
ˆ |f |C0pRdq

rf sC2s`αpvq

˙

1

2s`α

. �

5. The change of variables

5.1. The change of variables. The ellipticity of Boltzmann’s collision operator
degenerates for large velocities. This shows up, for example, in the weights of the
well known coercivity estimates from [24]. Correspondingly, the constants λ and Λ
in the assumptions of Theorem 4.2 are bounded for Kf only locally in v. Likewise,
if we want to apply Theorem 4.5 to the Boltzmann kernel Kf given in (4.2), the
constants λ and Λ in Definition 4.4 would only exist for a bounded set of velocities.

This is a major obstruction in order to obtain global regularity estimates using
Theorems 4.2 and 4.5. Moreover, global regularity estimates are crucial in order
to carry out an iterative gain of regularity. The constants in Theorems 4.2 and 4.5
do not have an explicit dependence on the parameters λ and Λ in the assumptions.
There is no hope to obtain a global regularity estimate unless we are able to ap-
ply these theorems with fixed values of the ellipticity parameters λ and Λ for all
velocities in R

d.
In this section, we describe a change of variables that resolves this difficulty. For

any point z0 “ pt0, x0, v0q P R
1`2d, we construct a function T0 that maps the kinetic

cylinder Q1 into a product of ellipsoids centered at z0. Moreover, the function f ˝T0
satisfies a kinetic integro-differential equation whose kernel is elliptic with constants
λ and Λ (either in the sense of Theorem 4.2 or Theorem 4.5) depending only on
the constants m0, M0, E0, H0, s and dimension, but not on v0.

This change of variables allows us to turn our local regularity results (as in
Theorems 4.2 and 4.5) into global estimates with precise asymptotics as |v| Ñ 8.
It is a key tool for the proofs of the main results in this paper. It was motivated
by a similar change of variables for the Landau equation from [12].

In order to illustrate the significance of this change of variables, we show in
Appendix A how it can be used to derive the global coercivity estimate with respect
to the anisotropic distance obtained by Gressman and Strain in [23] and [24].
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REGULARITY ESTIMATES FOR BOLTZMANN 651

Given t0 P R, x0 P R
d and v0 P R

d, we consider the transformed function

(5.1) f̄pt, x, vq :“ fpt̄, x̄, v̄q
with pt̄, x̄, v̄q “ T0pt, x, vq. The transformation T0 depends on the reference point
z0 “ pt0, x0, v0q P R

1`2d. If |v0| ă 2, we will simply take T0z :“ z0 ˝ z. When
|v0| ě 2, which is the important case, we define

(5.2)
pt̄, x̄, v̄q “ T0pt, x, vq :“

ˆ

t0 ` t

|v0|γ`2s
, x0 ` T0x ` tv0

|v0|γ`2s
, v0 ` T0v

˙

,

“ z0 ˝ p|v0|´γ´2st, |v0|´γ´2sT0x, T0vq

and T0 : Rd Ñ R
d is the following transformation:

(5.3) T0pav0 ` wq :“ a

|v0|v0 ` w for all w K v0, a P R.

Note that T0 maps B1 into an ellipsoid E1 with radius 1{|v0| in the direction of v0
and 1 in the directions perpendicular to v0. For consistency, let us also define T0 as
the identity operator whenever |v0| ă 2. The following sets are naturally associated
with the change of variables. For z0 P R

1`2d and r ą 0, we consider

Erpz0q “ T0pQrq, Erpv0q “ v0 ` T0pBrq.
The set of velocities Erpv0q is an ellipsoid in R

d. The linear operator T0 maps Q1

into

E1pz0q :“ E t,x
1 pz0q ˆ E1pv0q where E t,x

1 pz0q
“ tpt0 ` |v0|´γ´2st, x0 ` |v0|´γ´2spT0x ` tv0qq : t P r´1, 0s, x P B1u

is a slanted cylinder.

Lemma 5.1 (The equation after the change of variables). If f satisfies the Boltz-
mann equation in E1pz0q then f̄ solves the equation

Btf̄ ` v ¨ ∇xf̄ “ LK̄f
f̄ ` h̄, pt, x, vq P Q1,

where

(5.4) K̄f pt, x, v, v1q “ |v0|´1´γ´2sKf pt̄, x̄, v̄, v0 ` T0v
1q

and h̄pt, x, vq “ cb|v0|´γ´2sfpt̄, x̄, v̄qpf ˚ | ¨ |γqpt̄, x̄, v̄q.
Proof. Given z “ pt, x, vq P Q1, let z̄ “ pt̄, x̄, v̄q be defined by (5.2). We compute

pBt ` v ¨ ∇xqf̄pzq “ |v0|´γ´2spBt̄ ` v̄ ¨ ∇x̄qfpz̄q

LK̄f
f̄pzq “ PV

ˆ

Rd

pf̄pt, x, v1q ´ f̄pt, x, vqqK̄f pt, x, v, v1q dv1

“ |v0|´1´γ´2s PV

ˆ

Rd

pfpt̄, x̄, v0 ` T0v
1q

´ fpt̄, x̄, v̄qqKf pt̄, x̄, v̄, v0 ` T0v
1q dv1,

make the change of variables v̄1 “ v0 ` T0v
1 and use the fact that detT0 “ |v0|´1

in order to get

“ |v0|´γ´2s PV

ˆ

Rd

pfpt̄, x̄, v̄1q ´ fpt̄, x̄, v̄qqKf pt̄, x̄, v̄, v̄1q dv̄1.

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



652 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

Recall that the Boltzmann kernel satisfies the symmetry propertyKpt, x, v, v`wq “
Kpt, x, v, v´wq and this is what ensures the convergence of the integral around the
origin in the principal value sense if s ě 1{2. This cancellation is unaffected by the
linear change of variables.

If f satisfies the Boltzmann equation then f̄ satisfies Btf̄ ` v ¨ ∇xf̄ “ LK̄f
f̄ ` h̄

with h̄pzq “ |v0|´γ´2sfpz̄qpf ˚ cb| ¨ |γqpz̄q. �

The point of this change of variables is to straighten up the ellipticity of the
Boltzmann kernel Kf . Theorem 5.2 says that we are able to apply the Hölder
estimates of Theorem 4.2 with uniform ellipticity constants to f̄ .

Theorem 5.2 (Change of variables - I). Let z0 “ pt0, x0, v0q and E1pz0q “ E t,x
1 pz0qˆ

E1pv0q be defined as above. Assume that Assumption 1.1 holds for all pt, xq P
E t,x
1 pz0q, and

(5.5) if γ ă 0, sup
vPRd

ˆ

B1

fpv ` uq|u|γ du ď Cγ .

Then the kernel K̄f satisfies (4.9) (only if s ă 1{2), (4.10), (4.11), (4.12), (4.13)
and (4.14) (only if s ě 1{2), with constants depending on d, s, γ and m0, M0, E0

and H0 (and Cγ if γ ă 0) only, uniformly with respect to v0.

Remark 5.3. Condition (5.5) is weaker than imposing an L8 bound for f . Such a
bound is proved in [44] for solutions of the Boltzmann equation for t ą 0 and it
only depends on the hydrodynamic quantities appearing in Assumption 1.1 when
γ ` 2s P r0, 2s.
Remark 5.4. Note that our computation works for γ ` 2s P r0, 2s. For values of s
and γ away of that range, we would need further assumptions on either integrability
of f (for γ ` 2s ă 0) or higher moments (if γ ` 2s ą 2).

We also have a corresponding result for the ellipticity assumptions of the
Schauder-type estimates in Theorem 4.5.

Theorem 5.5 (Change of variables - II). Let z0 “ pt0, x0, v0q with v0 P R
d and

E1pz0q “ E t,x
1 pz0q ˆ E1pv0q be defined as above. Assume that Assumption 1.1 holds

for all pt, xq P E t,x
1 pz0q. Then, for every z “ pt, x, vq P Q1, the kernel K̄f,zpwq “

K̄f pt, x, v, v ` wq belongs to the class K of Definition 4.4. The constants λ and Λ
in Definition 4.4 depend on d, s, γ and m0, M0, E0 and H0 (and Cγ if γ ă 0) but
not on v0.

The proofs in this section largely consist in direct computations to verify the
claims. However, rather involved manipulations of multiple integrals are needed,
especially for the proof of the second cancellation condition in Lemma 5.19.

Remark 5.6. When |v0| ď 2, there is no need for a change of variables. All our
ellipticity conditions hold for any arbitrary (but fixed) bounded set of velocities.
The results of Theorems 5.2 and 5.5 are already established in [35] and [34] for
|v0| ă 2. Here, we need to prove them for |v0| ě 2. The purpose of the change of
variables T0 is to analyze the asymptotic behavior of the estimates for large values
of |v0|. Thus, the case |v0| ě 2 is the important one. Yet, we define T0 for any value
of v0 for consistency. The change of variables T0 does not modify the equation at
all when |v0| ă 2.
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5.2. Non-degeneracy conditions. The nondegeneracy condition (4.9) and the
coercivity condition (4.10) are a consequence of the existence of a cone of nonde-
generacy described in Proposition 2.6.

Proposition 2.6 describes a set of directions Apvq depending on each point v P R
d,

along which the kernel Kf has a lower bound. Using the notation introduced in
[44], we call the cone of nondegeneracy Ξpvq. Here

Ξpvq :“
"

w :
w

|w| P Apvq
*

.

Proposition 2.6 says that for each value of v P R
d, the set of directions Apvq Ă

Sd´1 is contained in a strip of width « 1{p1`|v|q around the equator perpendicular
to v, with measure Á 1{p1 ` |v|q, so that Kpv, v ` wq Á p1 ` |v|q1`γ`2s|w|´d´2s

whenever w belongs to Ξpvq.
Naturally, there is a cone of nondegeneracy for K̄f corresponding to the cone of

nondegenerate directions for Kf . Indeed, we write

Ξ̄pvq “ tw P R
d : T0w P Ξpv0 ` T0vqu,

Āpvq “ tσ P Sd´1 : T0σ{|T0σ| P Apv0 ` T0vqu.
By construction, we have that w P Ξ̄pvq if and only if w{|w| P Āpvq. Moreover,
Ξpv0 ` T0vq “ T0pΞ̄pvqq.

Lemma 5.7 tells us that K̄f has its nondegenerate directions Āpvq, and both its
lower bound K̄f and the volume of Āpvq are independent of the center point v0 of
the change of variables.

Lemma 5.7 (Transformed cone of nondegeneracy). Let f be a function such that
Assumption 1.1 holds. Let v0 P R

d and v P B2, with Āpvq and Ξ̄pvq defined as
above. Then

‚ K̄f pv, v ` wq ě λ|w|´d´2s whenever w P Ξ̄pvq.
‚ |Āpvq| ě µ̄ for some µ̄ ą 0 depending on the parameters of Assumption 1.1
and dimension, but not on v0.

Proof. Proposition 2.6 immediately implies the result of this lemma when |v0| ď 2.
In order to prove it for |v0| ě 2, we need to analyze the interaction of the change
of variables with the bounds in Proposition 2.6.

We first check the first item in the lemma. Pick w such that w P Ξ̄pvq, i.e.
T0w P Ξpv0 ` T0vq. Then

K̄f pv, v`wq“ 1

|v0|1`γ`2s
Kf pv0`T0v, v0`T0v`T0wqěλ|T0w|´d´2s ěλ|w|´d´2s.

For the last inequality, we used the fact that |T0pwq| ď |w|.
We are left with checking the second item. Note that Apv0 ` T0vq and Āpvq are

subsets of Sd´1 related by the nonlinear map σ ÞÑ T0σ{|T0σ|. In order to relate
their volumes, we would have to make a computation involving the Jacobian of
the map, which in this case is the determinant of the derivatives that act on the
tangent space of Sd´1. This kind of computations are confusing to the best of
us. So, instead, we opt to estimate the volume of Āpvq through Ξ̄pvq. Indeed, the
following elementary formula allows us to relate the volume of a set of directions
with the volume of the corresponding cone. For any R ą 0,

|Apv0`T0vq|Hd´1 “ d

Rd
|Ξpv0`T0vqXBR| and |Āpvq|Hd´1 “ d

Rd
|Ξ̄pvqXBR|.
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Combining this formula with the estimate in Proposition 2.6, we have, for any
R ą 0,

(5.6) |Ξpv0 ` T0vq X BR| ě Rd

d
µp1 ` |v0 ` T0v|q´1.

Let us recall the definition of T0. Given any w P R
d, we write it as w “ av0 `wK

with v0 ¨wK “ 0. Then T0w “ av0{|v0| `wK. We want to estimate an upper bound
for a under the condition that T0w P Ξpv0 ` T0vq X BR.

According to the width condition in Proposition 2.6, if T0w P Ξpv0 ` T0vq, we
must have

ˇ

ˇ

ˇ

ˇ

T0w

|T0w| ¨ pv0 ` T0vq
ˇ

ˇ

ˇ

ˇ

ď C0.

Replacing the formula T0w “ av0{|v0| ` wK, and recalling wK ¨ v0 “ 0, we get

|a|
|T0w| |v0|

ď C0 ` |T0v| ď C0 ` 2.

If in addition we know that |T0w| ď R, we conclude that

|a| ď pC0 ` 2qR
|v0| .

Now, for every w such that T0w P Ξpv0 ` T0vq X BR, we have

|w| “
b

a2|v0|2 ` |wK|2,
ď a|v0| ` |wK|,
ď RpC0 ` 3q.

Let us pick R “ pC0 ` 3q´1, which is a constant depending on the parameters of
Assumption 1.1 and dimension only. We deduce that

T´1
0 pΞpv0 ` T0vq X BRq Ă B1.

Therefore,

|Ξ̄pvq X B1| ě |T´1
0 pΞpv0 ` T0vq X BRq|,

“ pdetT´1
0 q |Ξpv0 ` T0vq X BR| ,

ě |v0|p1 ` |v0 ` T0v|q´1µRd{d using (5.6) and Lemma 2.4,

ě µ̄

for some constant µ̄ ą 0 depending only on the constants µ and C0 of Proposition 2.6
and dimension (and not on v0). �

Corollary 5.8 (Non-degeneracy conditions for the Hölder estimates). When f

satisfies Assumption 1.1, the kernel K̄f satisfies (4.9) and also the inequality

(5.7)

¨

B1ˆB1

pgpv1q ´ gpvqq2K̄f pv, v1q dv1 dv ě λ

¨

B1{2ˆB1{2

pgpv1q ´ gpvqq2
|v1 ´ v|d`2s

dv1 dv

for a parameter λ ą 0 depending on the constants in Assumption 1.1 (uniform with
respect to pt0, x0, v0q).
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REGULARITY ESTIMATES FOR BOLTZMANN 655

Proof. The cone of nondegeneracy described in Lemma 5.7 trivially implies (4.9)
for K̄f . It also fulfills the assumption of Theorem 2.5, from which the inequality
(5.7) follows. �

Recall that for z “ pt, x, vq, K̄f,zpwq denotes the kernel K̄f pt, x, v, v ` wq.

Corollary 5.9 (Non-degeneracy conditions for the Schauder estimates). When f

satisfies Assumption 1.1, the kernel K̄f,z satisfies for any z P Q1 the coercivity
conditions (iii) and (iv) in Definition 4.4 for a parameter λ ą 0 uniform with
respect to pt0, x0, v0q.

Note that the statement of Corollary 5.9 is not the same as (5.7). One is for
the kernels K̄f,z : Rd Ñ R

d, depending on a single parameter w P R
d. The other

is for the kernels K̄f as a function of both v and v1. The dependence of t, x is
irrelevant for either statement. The coercivity condition given in Corollary 5.9 is in
some sense simpler than (5.7) given in Corollary 5.8 since it applies to the kernel
with frozen coefficients (referring to standard terminology from elliptic PDEs).
Theorem 2.5 is sufficiently strong that it implies both Corollaries 5.8 and 5.9. One
could alternatively justify Corollary 5.9 using coercivity results that are suitable for
translation invariant integro-differential operators like the ones described in [21].

Proof of Corollary 5.9. Let K̃pwq :“ K̄f,zpwq. The cone of nondegeneracy de-

scribed in Lemma 5.7 applies to K̄f , and therefore also to K̃. In this case, we
have

(5.8) K̃pwq ě λ̃|w|´d´2s whenever w P Ξpzq.

Here, Ξpzq is the cone of nondegeneracy for K̄f at the point z “ pt, x, vq. The

frozen kernel K̃ has this cone of nondegeneracy at every point v P R
d.

The coercivity condition (iv) from Definition 4.4 easily follows from the existence

of the cone of non-degeneracy for K̃.
The properties of condition of the cone of nondegeneracy described in Lemma 5.7

imply the assumptions of Theorem 2.5. Therefore, we have
¨

B2ˆB2

pϕpv1q´ϕpvqq2K̃pv, v1q dv1 dv Á λ̃

¨

B1ˆB1

pϕpv1q´ϕpvqq2|v1´v|´d´2s dv1 dv.

Since the inequality (5.8) is scale invariant, a standard scaling argument allows us
to conclude (4.15) for any R ą 0. �

5.3. First boundedness condition.

Lemma 5.10 (First boundedness condition). Let us assume that γ ` 2s P r0, 2s
and an upper bound in mass and energy

ˆ

Rd

fpvq dv ď M0,

ˆ

Rd

fpvq|v|2 dv ď E0.

The kernel K̄f from (5.4) satisfies (4.11) with the parameter Λ depending on M0,
E0, γ, s and d only.

We start with the following computation.
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Lemma 5.11. Let v0 P R
dzB2 and v P B2. For any r ą 0, we have

ˆ

RdzBrpvq
K̄f pv, v1q dv1 À Λ̄r´2s

with Λ̄ “ |v0|´γ´2s

ˆ

wPRd

fpv̄ ` wq
˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

|w|γ`2s dw.

Proof. In view of the definition of K̄f , we can write
ˆ

RdzBrpvq
K̄f pv, v1q dv1 “

ˆ

RdzEr

|v0|´1´γ´2sKf pv̄, v̄ ` uq du

detT0

,

“ |v0|´γ´2s

ˆ

RdzEr

Kf pv̄, v̄ ` uq du,

where v̄ “ v0 ` T0v and Er “ T0pBrq. The set Er is an ellipsoid centered at the
origin with radius r{|v0| in the direction of v0 and r in the directions perpendicular
to v0.

Using (4.4), we rewrite the expression above as
ˆ

RdzBrpvq
K̄f pv, v1q dv1

« |v0|´γ´2s

ˆ

uPRdzEr

|u|´d´2s

ˆ
ˆ

wKu

fpv̄ ` wq|w|1`γ`2s dw

˙

du,

“ |v0|´γ´2s

ˆ

wPRd

¨

˝

ˆ

uKw,

uPRdzEr

|u|´d`1´2s du

˛

‚fpv̄ ` wq|w|γ`2s dw.

We used the fact that

(5.9)

ˆ

u

"
ˆ

wKu

p. . . q dw
*

du “
ˆ

w

"
ˆ

uKw

p. . . q |u|
|w| du

*

dw.

In order to estimate the integral in the inner factor, we analyze the intersection
of the ellipsoid Er with the hyperplane tu : u K wu. This is of course a pd ´ 1q-
dimensional ellipsoid whose dimensions are computable. Its smallest radius ρ equals

(5.10) ρ :“ r
d

|v0|2
ˆ

1 ´
´

v0¨w
|v0||w|

¯2
˙

`
´

v0¨w
|v0||w|

¯2

.

Indeed, it is an elementary planar computation: for u P BEr with |u| “ ρ and
u K w, we write u “ pu ¨ v̂0qv̂0 ` u1 with u1 K v0 and v̂0 “ v0{|v0|. In particular,
ρ2 “ pu ¨ v̂0q2 ` |u1|2. From the definition of Er and our choice of u, we know that
the vector v “ pu ¨ v̂0q|v0|v̂0 ` u1 is of norm r. We now write

r2 “ pu ¨ v̂0q2|v0|2 ` |u1|2

“ pu ¨ v̂0q2p|v0|2 ´ 1q ` ρ2.(5.11)

Use next the fact that u K w and get ρ´2pu ¨ v̂0q2 ` pŵ ¨ v̂0q2 “ 1 with ŵ “ w{|w|.
In particular,

pu ¨ v̂0q2 “ ρ2p1 ´ pŵ ¨ v̂0q2q.
Combining the formulas for r2 and pu ¨ v̂0q2 yields (5.10).
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Therefore
ˆ

uKw,

uPRdzEr

|u|´d`1´2s du ď
ˆ

uKw,

uPRdzBρ

|u|´d`1´2s du À ρ´2s

“ r´2s

˜

|v0|2
˜

1 ´
ˆ

v0 ¨ w
|v0||w|

˙2
¸

`
ˆ

v0 ¨ w
|v0||w|

˙2
¸s

ď r´2s

˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

.

Substituting in our previous formula, we get the desired result. �

We next aim at estimating the constant Λ̄ appearing in Lemma 5.11.

Lemma 5.12. Let f : Rd Ñ r0,8q, v0 P R
dzB1, |v ´ v0| ď 2 and s ě 0; then for

all w P R
d,

|v0|´γ´2s

ˆ

wPRd

fpv ` wq
˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

|w|γ`2s dw

ď C

ˆ

Rd

fpṽqp1 ` |ṽ|2s ` |ṽ|γ`2sq dṽ

ď CpM0 ` E0q

for a constant C depending on s and dimension only (not on v0).

Proof. It is enough to prove

|v0|´γ´2s

˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

|w|γ`2s À 1 ` |v0 ` w|2s ` |v0 ` w|γ`2s

(5.12)

À 1 ` |v ` w|2s ` |v ` w|γ`2s.

The second of these inequalities follows simply because |v ´ v0| ď 2. We need to
prove the first one. Note that

˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

À
˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2
¸s

` 1.

Moreover,

|v0|´γ´2s|w|γ`2s À |v0|´γ´2sp|v0 ` w|γ`2s ` |v0|γ`2sq ď 1 ` |v0 ` w|γ`2s,

using that |v0| ą 1. We are left with studying an upper bound for

(5.13) |v0|´γ´2s

˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2
¸s

|w|γ`2s.

It is convenient to write w “ αv0{|v0| ` b, where α P R and b P R
d is perpendicular

to v0. With this notation

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

“ |v0|2|b|2
|w|2 .
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658 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

Thus, the expression in (5.13) equals |v0|´γ |b|2s|w|γ . We need to study an upper
bound for it. The key observation here is that |b| satisfies the two inequalities
|b| ď |w| and |b| ď |v0 ` w|, both of which are immediate from its definition.

If |w| ď 2|v0| and γ ě 0, we have |v0|´γ |b|2s|w|γ À |b|2s À |v0 ` w|2s and (5.12)
follows. The same conclusion holds if |v0| ď 2|w| and γ ď 0.

If γ ě 0 and 2|v0| ď |w|, we use that |b| ď |v0 `w| and |w|γ À p|v0 `w|γ ` |v0|γq.
Thus,

|v0|´γ |b|2s|w|γ À |v0|´γ |v0 ` w|2sp|v0 ` w|γ ` |v0|γq
À |v0 ` w|2s ` |v0 ` w|γ`2s.

We are left to analyze the case γ ă 0 and |v0| ą 2|w|. Using that |b| ď |w| and
γ ` 2s ě 0, we have

|v0|´γ |w|γ |b|2s ď |v0|´γ |w|γ`2s À |v0|2s À |v0 ` w|2s.
We conclude that the inequality (5.12) holds in all cases. The proof is now

complete. �

From Lemmas 5.11 and 5.12, we can derive Lemma 5.10.

Proof of Lemma 5.10. We get from Lemma 5.12 that

|v0|´γ´2s

ˆ

wPRd

fpv ` wq
˜

|v0|2 ´
ˆ

v0 ¨ w

|w|

˙2

` 1

¸s

|w|γ`2s dw

ď C

ˆ

Rd

fpṽqp1 ` |ṽ|2s ` |ṽ|γ`2sq dṽ.

Combining this estimate with Lemma 5.11 yields
ˆ

RdzBrpvq
K̄f pv, v1q dv1 À Λ̄r´2s

À
ˆ
ˆ

Rd

fpṽqp1 ` |ṽ|2s ` |ṽ|γ`2sq dṽ
˙

r´2s,

then use the fact that γ ` 2s P r0, 2s,

À
ˆ
ˆ

Rd

fpṽqp1 ` |ṽ|2q dṽ
˙

r´2s

À pM0 ` E0qr´2s. �

Lemma 5.10 is phrased in terms of the condition (4.11) for Theorem 4.2. As
far as Theorem 5.5 is concerned, we remark that it is the same condition as the
second item in Definition 4.4. We rephrase it in Corollary 5.13. Recall that K̄f,zpwq
denotes K̄f pt, x, v, v ` wq for z “ pt, x, vq.

Corollary 5.13 (Item (ii) in Definition 4.4 for K̄f ). Let f P rτ, T s ˆ R
d ˆ R

d Ñ
r0,8q and Kf be given by (4.2). Then, for any z P Q1,

ˆ

Br

K̄f,zpwq|w|2 dw ď C

ˆ
ˆ

Rd

p1 ` |ṽ|2qfpt̄, x̄, ṽq dṽ
˙

r2´2s

with z “ pt, x, vq and pt̄, x̄, v̄q “ T0pzq. The constant C on the right hand side
depends on γ, s and dimension only.
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Proof. In terms of the notation K̄f,z, Lemmas 5.11 and 5.12 say exactly that
ˆ

RdzBr

K̄f,zpwq dw ď C

ˆ
ˆ

Rd

p1 ` |v|2s ` |v|γ`2sqfpt̄, x̄, vq dv
˙

r´2s

ď C

ˆ
ˆ

Rd

p1 ` |v|2qfpt̄, x̄, vq dv
˙

r´2s

with pt̄, x̄, v̄q “ T0pt, x, vq. The bound for the integral of the kernel on the com-
plement of any ball RdzBr is equivalent to the bound of the integral of the same
kernel times |w|2 on any ball. Indeed, the inequality above implies that

ˆ

B2rzBr

K̄f,zpwq|w|2 dw À
ˆ
ˆ

Rd

p1 ` |v|2qfpt̄, x̄, vq dv
˙

r2´2s.

Applying this inequality to dyadic rings for r̃ “ r{2, r{4, r{8, . . . and summing the
resulting estimates, we conclude the proof. �

5.4. Second boundedness condition.

Lemma 5.14 (Second boundedness condition). Let us assume that γ ` 2s P r0, 2s
and let the upper bound in the mass and energy hold

ˆ

Rd

fpvq dv ď M0,

ˆ

Rd

fpvq|v|2 dv ď E0.

If γ ` s ă 0, we also assume (5.5).
Then, the kernel K̄f from (5.4) satisfies (4.12) with the parameter Λ depending

on M0, E0, γ, s, d and Cγ (in case γ ` s ă 0).

Proof. For |v0| ă 4 (or any other fixed constant) the result follows from [35, Lemma
3.5]. Here, we concentrate on the case |v0| ě 4.

Given v1 P B2, recall that v̄
1 “ v0 ` T0v

1 and write
ˆ

RdzBrpv1q
K̄f pv, v1q dv

ď 1

|v0|γ`2s

ˆ

RdzErpv̄1q
Kf pv̄, v̄1q dv̄

» 1

|v0|γ`2s

ˆ

RdzErpv̄1q
|v̄1 ´ v̄|´d´2s

#

ˆ

wKpv̄1´v̄q
fpv̄ ` wq|w|γ`2s`1 dw

+

dv̄

we use polar coordinates for v̄: v̄ ´ v̄1 “ ρσ; we denote rσ to be maxtρ : ρσ P Eru

“ 1

|v0|γ`2s

ˆ

Sd´1

ˆ 8

rσ

ρ´d´2s

"
ˆ

wKσ

fpv̄1 ` ρσ ` wq|w|γ`2s`1 dw

*

ρd´1 dρ dσ,

writing u “ ρσ ` w, we have dw dρ “ du and ρ “ u ¨ σ

À 1

|v0|γ`2s

ˆ

Sd´1

ˆ

tu:u¨σąrσu
fpv̄1 ` uq|u|γ`2s`1pu ¨ σq´1´2s du dσ

“ 1

|v0|γ`2s

ˆ

Sd´1

ˆ

tu:u¨σąrσu
fpv̄1 ` uq|u|γ

ˆ

u

|u| ¨ σ
˙´1´2s

du dσ

“ 1

|v0|γ`2s

ˆ

Rd

fpv̄1 ` uq|u|γ
˜

ˆ

tσ:u¨σąrσu

ˆ

u

|u| ¨ σ
˙´1´2s

dσ

¸

du.
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We computed above rσ “ ρ; see (5.11) with u “ ρσ “ rσσ. In particular, this
implies

rσ “ r
a

pσ ¨ v0q2p1 ´ |v0|´2q ` 1
.

For |v0| “large” (as a matter of fact |v0| ě 2), we have

rσ « r
a

1 ` pσ ¨ v0q2
.

Thus, we are left with the inequality
ˆ

RdzBrpv1q
K̄f pv, v1q dv

À 1

|v0|γ`2s

ˆ

Rd

fpv̄1 ` uq|u|γ
¨

˝

ˆ

"

σ:u¨σą r?
1`pσ¨v0q2

*

ˆ

u

|u| ¨ σ
˙´1´2s

dσ

˛

‚du.

We need to estimate the inner integral now. For that, it is essential to understand

the smallest value of σ ¨ u{|u| in the set

"

σ : u ¨ σ ą r?
1`pσ¨v0q2

*

. Let us write

e “ u{|u| and v0 “ ae ` b. We see that for every σ in the domain of integration we
have

pe ¨ σq
a

1 ` pe ¨ σq2a2 ` |b|2 ą r{|u|.

Therefore, either pe ¨ σq
a

1 ` |b|2 Á r{|u| or pe ¨ σq|e ¨ σ||a| Á r{|u|. In other words,

e ¨ σ Á min

˜

r

|u|p1 ` |b|2q1{2 ,

ˆ

r

|a||u|

˙1{2¸

“: ρ0.

Therefore

ˆ

"

u¨σą r?
1`pσ¨v0q2

*

ˆ

u

|u| ¨ σ
˙´1´2s

dσ

À
ˆ

te¨σÁρ0u
pe ¨ σq´1´2s dσ

À ρ´2s
0

“ min

˜

r

|u|p1 ` |b|2q1{2 ,

ˆ

r

|a||u|

˙1{2¸´2s

ď r´2s|u|2sp1 ` |b|2qs ` r´s|u|s|a|s

“ r´2s|u|2s
ˆ

1 ` |v0|2 ´ pv0 ¨ uq2
|u|2

˙s

` r´s|u|s
ˇ

ˇ

ˇ

ˇ

u

|u| ¨ v0
ˇ

ˇ

ˇ

ˇ

s

.

Thus, we are left with
ˆ

RdzBrpv1q
K̄f pv, v1q dv À I1 ` I2,
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where

I1 “ r´2s|v0|´γ´2s

ˆ

Rd

fpv̄1 ` uq|u|γ`2s

ˆ

1 ` |v0|2 ´ pv0 ¨ uq2
|u|2

˙s

du,

I2 “ r´s|v0|´γ´s

ˆ

Rd

fpv̄1 ` uq|u|γ`s du.

The term I1 is bounded thanks to Lemma 5.12.
The term I2 is lower order in the sense that it has a smaller power of r. Note

that only the values of r P p0, 2q are relevant for (4.12), since for larger values of
r the domain of integration is empty. We still need to make sure that the factor
multiplying r´s in the definition of I2 is bounded independently of v0.

When γ ` s ě 0, we apply Lemma 2.3,
ˆ

Rd

fpv̄1 ` uq|u|γ`s du À p1 ` |v̄1|qγ`s « p1 ` |v0|qγ`s

yielding

I2 À r´s.

The case γ ` s ă 0 is more involved. We split the integral in I2 into three
subdomains

D1 “ R
dzB|v0|{4, D2 “ B|v0|´1 , D3 “ R

dzpD1 Y D2q.
We estimate each subintegral separately. In D1, we have |u| Á |v0|. Thus,

ˆ

D1

fpv̄1 ` uq|u|γ`s du ď M0|v0|γ`s.

In D2, we have |u|γ`s ď |u|γ |v0|´s. Therefore
ˆ

D2

fpv̄1 ` uq|u|γ`s du À |v0|´s

ˆ

D2

fpv̄1 ` uq|u|γ du

ď |v0|´spM0 ` Cγq
ď |v0|γ`spM0 ` Cγq using that γ ` 2s ě 0.

We estimate the integral on D3 using the upper bound on the energy: E0. We use
the fact that in D3, we have on the one hand |v̄1 ` u| Á |v0| and on the other hand
|u| ě |v0|´1. In particular,

ˆ

D3

fpv̄1 ` uq|u|γ`s du ď E0|v0|´2|v0|´γ´s

À E0|v0|γ`s using that γ ` 2s ě 0 and 2s ď 2.

Adding the three terms together, we conclude that I2 ď Cr´s, for a constant C
independent of v0. The proof is now complete. �

5.5. First cancellation condition. The cancellation condition (4.13) involves an
integral in the principal value sense. We have to be careful when we compute a
change of variables of such an integral. There is a delicate cancellation that takes
place and we have to make sure that the change of variables does not cause an
imbalance around the origin that would ruin this cancellation. Lemma 5.15 is
precisely what we need in order to carry out the rest of our computations.
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Lemma 5.15 (Modified principal value). Assuming that

D2f P L1pRd, p1 ` |v|qγ`2s dvq,
we have

(5.14) lim
RÑ0`

ˆ

BRzER

pKf pv̄, v̄ ` wq ´ Kf pv̄ ` w, v̄qq dw “ 0.

The result of Lemma 5.15 is certainly to be expected by common sense. However,
its rigorous verification requires some work. We prove it under the condition that
D2f P L1pRd, p1 ` |v|qγ`2s dvq. It holds under much more general conditions on
the function f . However, due to the kind of solutions that we work with, the scope
of Lemma 5.15 is enough for the purpose of this article. A proof of a version of
Lemma 5.15 under less restrictive assumptions on the function f would require
considerably more work. Note that Lemma 5.15 is merely a qualitative result.
There is no estimate resulting from this lemma in terms of the weighted L1 norm of
D2

vf . We invite the reader to skip its proof that we include below for completeness.

Proof of Lemma 5.15. For all v̄ “ v0 ` T0v with v P B1, we expand the integral in
terms of the formula (4.3) and symmetrize it.

pIq :“
ˆ

BRzER

pKf pv̄, v̄ ` wq ´ Kf pv̄ ` w, v̄qq dw

“ ´ 1

2

ˆ

BRzER

ˆ

u:uKw

pδ2fqpv̄ ` u,wqAp|w|, |u|q|w|´d´2s|u|γ`2s`1 du dw

with pδ2fqpv, wq “ fpv ` wq ` fpv ´ wq ´ 2fpvq and A is a bounded function.
We express this second order differential quotient using D2

vf using the elementary
formula

pδ2fqpv, wq “
ˆ 1

´1

p1 ´ |τ |qD2fpv ` τwqw ¨ w dτ.

Thus, we bound the integral in terms of }D2
vf}L1pRd,|v|γ`2s dvq.

pIq À
ˆ

BRzER

ˆ

uKw

ˆ 1

´1

|D2
vfpv̄ ` u ` τwq||w|´d´2s`2|u|γ`2s`1 dτ du dw.

For each value of w P R
d, we make the change of variables pτ, uq ÞÑ z “ u ` τw;

in particular dz “ |w| du dτ and τ “ pz ¨ wq{|w|2 and |u| ď |z|. Therefore, we
estimate the integral above by

pIq À
ˆ

BRzER

ˆ

´|w|2ăz¨wă|w|2
|D2

vfpv̄ ` zq||w|´d´2s`1|z|γ`2s`1 dz dw,

switching the order of integration,

“
ˆ

zPRd

|z|γ`2s`1|D2
vfpv̄ ` zq|

$

&

%

ˆ

wPBR,

´|w|2ăz¨wă|w|2
|w|1´d´2s dw

,

.

-

dz,

we claim that

À R2´2s

ˆ

zPRd

|D2
vfpv̄ ` zq||z|γ`2s dz.
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In order to justify the last inequality, observe that the set tw : ´|w|2 ă z ¨ w ă
|w|2u is the complement of two balls of radius |z|{2 centered at z{2 and ´z{2
respectively. The intersection of that set with the ball BR is of volume À Rd`1|z|´1.
Thus, the following inequality follows by an elementary computation:

(5.15)

ˆ

wPBR,

´|w|2ăz¨wă|w|2
|w|1´d´2s dw À R2´2s|z|´1.

Since s P p0, 1q, R2´2s converges to zero as R Ñ 0, which concludes the proof. �

Lemma 5.16 (First cancellation condition). Let f : Rd Ñ R be a function so that
Assumption 1.1 holds. If γ ă 0, we assume (5.5) in addition. Then, the kernel K̄f

given in (5.4) satisfies (4.13) with parameters depending on M0, E0, γ, s, d, and
also Cγ if γ ă 0. More precisely, for v P B2,

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Rd

pK̄f pv, v1q ´ K̄f pv1, vqq dv1
ˇ

ˇ

ˇ

ˇ

À |v0|´γ´2s

ˆ

Rd

fpv̄1q|v̄1 ´ v̄|γ dv1

À
#

pM0 ` E0q|v0|´2s if γ P r0, 2s,
pM0 ` Cγq|v0|´γ´2s if γ ă 0.

The inequality in Lemma 5.16 implies (4.13) because the tail of the integral (i.e.
|v1 ´ v| ą 1{4) is bounded by Lemmas 5.10 and 5.14.

Proof of Lemma 5.16. When |v0| ă 2, the result is proved in [35, Lemma 3.6], and
it corresponds to the classical cancellation lemma. Here, we focus on the case
|v0| ě 2.

As before, for v P B2, we write v̄ “ v0 ` T0v P B2pv0q. Using Lemma 5.15, we
compute

PV

ˆ

Rd

pK̄f pv, v1q ´ K̄f pv1, vqq dv1

“ |v0|´γ´2s´1 PV

ˆ

Rd

pKf pv0 ` T0v, v0 ` T0v
1q ´ Kf pv0 ` T0v

1, v0 ` T0vqq dv1

“ |v0|´γ´2s´1 lim
RÑ0`

ˆ

|z|ěR

pKf pv̄, v̄ ` T0wq ´ Kf pv̄ ` T0w, v̄qq dw

“ |v0|´γ´2s lim
RÑ0`

ˆ

RdzER

pKf pv̄, v̄ ` w̄q ´ Kf pv̄ ` w̄, v̄qq dw̄

“ |v0|´γ´2s lim
RÑ0`

ˆ

|w̄|ěR

pKf pv̄, v̄ ` w̄q ´ Kf pv̄ ` w̄, v̄qq dw̄

“ |v0|´γ´2s PV

ˆ

Rd

pKf pv̄, v̄ ` w̄q ´ Kf pv̄ ` w̄, v̄qq dw̄.

We now use [35, Lemma 3.6] and get
ˇ

ˇ

ˇ

ˇ

PV

ˆ

Rd

pK̄f pv, v1q ´ K̄f pv1, vqq dv1
ˇ

ˇ

ˇ

ˇ

ď C|v0|´γ´2s

ˆ

Rd

fpv̄1q|v̄1 ´ v̄|γ dz.

If γ ă 0, we use (5.5) and get
ˇ

ˇ

ˇ

ˇ

PV

ˆ

Rd

pK̄f pv, v1q ´ K̄f pv1, vqq dv1
ˇ

ˇ

ˇ

ˇ

À |v0|´γ´2spM0 ` Cγq,
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while for γ ą 0, we estimate it using Lemma 2.3,
ˇ

ˇ

ˇ

ˇ

PV

ˆ

Rd

pK̄f pv, v1q´K̄f pv1, vqq dv1
ˇ

ˇ

ˇ

ˇ

À|v0|´γ´2spE0 `M0p1`|v̄|qγqÀpM0 `E0q|v0|´2s.

The proof is now complete. �

5.6. Second cancellation condition. Like in the first cancellation condition, the
second cancellation (4.14) also involves the principal value of an integral. In this
case, the following technical lemma is the one that ensures that we can perform the
change of variables.

Lemma 5.17 (Modified principal value). Assuming that

∇vf P L1pRd, p1 ` |v|qγ`2s dvq,
we have

(5.16) lim
RÑ0

ˆ

BRzER

wKf pv̄ ` w, v̄q dw “ 0.

Like in Lemma 5.15, the identity (5.16) is clearly to be expected by common
sense but it takes some work to prove it rigorously. As before, the condition Df P
L1pRd, p1` |v|qγ`2s dvq is a qualitative requirement that does not affect any of our
estimates.

Proof of Lemma 5.17. As in the proof of Lemma 5.15, we expand the integral using
(4.3) and symmetrize it in w.
ˆ

BRzER

wKf pv̄`w, v̄q dw“
ˆ

BRzER

w

"
ˆ

uKw

fpv̄`w`uqAp|u|, |w|q |u|γ`2s`1

|w|d`2s
du

*

dw,

“ 1

2

ˆ

BRzER

w

"
ˆ

uKw

pfpv̄`w`uq´fpv̄´w`uqqAp|u|, |w|q |u|γ`2s`1

|w|d`2s
du

*

dw.

We write the increment fpv̄ ` w ` uq ´ fpv̄ ´ w ` uq in terms of the integral of the
derivative along the segment, and proceed like in the proof of Lemma 5.15.

ˇ

ˇ

ˇ

ˇ

ˆ

BRzER

wKf pv̄ ` w, v̄q dw
ˇ

ˇ

ˇ

ˇ

À
ˆ

BRzER

ˆ

uKw

|u|γ`2s`1|w|2´d´2s

ˆ 1

´1

|∇fpv̄ ` τw ` uq| dτ du dw,

for fixed w, we write z “ τw ` u and observe that dz “ |w| du dτ and |u| ď |z|,

ď
ˆ

BRzER

ˆ

´|w|2ăz¨wă|w|2
|z|γ`2s`1|w|1´d´2s|∇fpv̄ ` zq| dz dw,

switching the order of integration,

ď
ˆ

zPRd

|z|γ`2s`1|∇fpv̄ ` zq|

$

&

%

ˆ

wPBR,

´|w|2ăz¨wă|w|2
|w|1´d´2s dw

,

.

-

dz,

using again (5.15),

À R2´2s

ˆ

zPRd

|z|γ`2s|∇fpv̄ ` zq| dz.
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This converges to zero as R Ñ 0, so the proof is concluded. �

The following auxiliary lemma contains an estimate that will be useful in the
next lemma.

Lemma 5.18. Let s P r1{2, 1q. For any v0 P R
dzB2, v P B1pv0q, and r P p0, 1q, we

have
ˆ

Rd

fpv ` zq|z|γ`1 minp1, r2´2s|z|2s´2q dz ď C|v0|γ`2s´1r1´2s,

for some constant C depending on M0, E0, s, γ, dimension d, and Cγ if γ ă 0, but
not on v0.

Proof. Note that since s ě 1{2 and r ă 1, we have r1´2s ě 1.
If γ ` 2s ě 1 the inequality follows easily applying Lemma 2.3. Indeed,

ˆ

Rd

fpv ` zq|z|γ`1 minp1, r2´2s|z|2s´2q dz ď r2´2s

ˆ

Rd

fpv ` zq|z|γ`2s´1 dz,

À r2´2spE0 ` p1 ` |v|γ`2s´1qM0q,
À r2´2s|v0|γ`2s´1,

À r1´2s|v0|γ`2s´1.

We used that r P p0, 1q and |v| « |v0|.
So, let us concentrate on the more difficult case γ ` 2s ă 1.
We split the domain of integration between z P Br and z R Br. Let us call each

term I1 and I2,

I1 :“
ˆ

|z|ďr

fpv ` zq|z|γ`1 dz,

I2 :“ r2´2s

ˆ

|z|ěr

fpv ` zq|z|γ`2s´1 dz.

We now estimate I1 and I2 separately.
When γ ` 1 ě 0, we easily get I1 À E0|v0|´2 À |v0|γ`2s´1r1´2s, since r ď 1 and

|v0| ě 2. If γ ` 1 ă 0, we use Hölder inequality and get

I1 “
ˆ

|z|ďr

fpv`zq|z|γ`1 dzď
˜

ˆ

|z|ďr

fpv`zq|z|γ dz
¸

γ
1`γ

˜

ˆ

|z|ďr

fpv ` zq dz
¸´ 1

γ

À C
γ

1`γ
γ E

´1{γ
0 |v0| 2

γ .

Since 2{γ ď ´1 and γ ` 2s ě 0, then γ ` 2s ´ 1 ě 2{γ and I1 À |v0|γ`2s´1 ď
|v0|γ`2s´1r1´2s. This concludes the upper bound for I1.

As far as I2 is concerned, we further split the integral between two subdomains.
If v ` z P B|v0|{2 and |z| ě r, we use that |z| « |v0|. If v ` z R B|v0|{2 and |z| ě r,
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we have
ˆ

v`zRB|v0|{2

fpv ` zq|z|γ`2s dz À
ˆ

v`zRB|v0|{2

fpv ` zqp|v ` z|γ`2s ` |v|γ`2sq dz

À
ˆ

v`zRB|v0|{2

fpv`zqp|v`z|2|v0|γ`2s´2`|v0|γ`2sq dz

À
ˆ

v`zRB|v0|{2

fpv`zqp|v`z|2`1q|v0|γ`2s´2 dz

ÀpE0 ` M0q|v0|γ`2s´2.

With such an estimate at hand, we can now write

I2 À r2´2s|v0|γ`2s´1

ˆ

v`zPB|v0|{2

fpv ` zq dz ` r1´2s

ˆ

v`zRB|v0|{2

fpv ` zq|z|γ`2s dz,

À r2´2s|v0|γ`2s´1M0 ` r1´2s|v0|γ`2s´2pE0 ` M0q À r1´2s|v0|γ`2s´1.

Adding up the upper bounds for I1 and I2, we finish the proof of the lemma. �

The main result of this subsection is the following.

Lemma 5.19 (Second cancellation condition). Let s ě 1{2 and fpvq be a function
so that Assumption 1.1 holds. If γ ă 0, we assume (5.5) as well. Then, the kernel
K̄f from (5.4) satisfies (4.14) with a parameter Λ depending on M0, E0, γ, s, d,
and also Cγ if γ ă 0.

Proof. For |v0| ă 2, the result was established in [35, Lemma 3.7]. Here, we focus
on the case |v0| ě 2.

Given r P r0, 1{4s, note that for s “ 1{2, r1´2s “ 1, whereas for s ą 1{2,
r1´2s ą 1.

For any v P R
d and r ą 0, we have

PV

ˆ

Brpvq
pv1 ´ vqK̄f pv, v1q dv1 “ 1

|v0|γ`2s`1
PV

ˆ

Br

wKf pv̄, v̄ ` T0wq dw “ 0.

Here, we write v̄ “ v0 ` T0v and we use the symmetry of the Boltzmann kernel:
Kf pv̄, v̄ ` w̄q “ Kf pv̄, v̄ ´ w̄q.

Therefore, the proof is reduced to estimating the term in (4.14) involving
Kf pv1, vq only. That is, we need to estimate the quantity Ipv1q for v1 P B7{4 given
by

Ipv1q :“
ˇ

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Brpv1q
pv1 ´ vqK̄f pv, v1q dv

ˇ

ˇ

ˇ

ˇ

ˇ

.

Let us change variables. As usual, we write v̄1 “ v0 ` T0v
1 and w̄ “ T0pv1 ´ vq.

We get

Ipv1q “ |v0|´γ´2s

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Er

pT´1
0 w̄qKf pv̄1 ´ w̄, v̄1q dw̄

ˇ

ˇ

ˇ

ˇ

.

We used Formula (5.4), detT´1
0 “ |v0|, and Lemma 5.17 in order to justify the

change of variables under the principal value.
Recall that the domain of integration Er is an ellipsoid. In order to capture

the cancellations correctly, it is better to work with a round ball Br. We use that

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY ESTIMATES FOR BOLTZMANN 667

Ipv1q ď I1 ` I2, where

I1 :“ |v0|´γ´2s

ˇ

ˇ

ˇ

ˇ

PV

ˆ

Br

pT´1
0 w̄qKf pv̄1 ´ w̄, v̄1q dw̄

ˇ

ˇ

ˇ

ˇ

,

I2 :“ |v0|´γ´2s

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

BrzEr

p. . . q dw̄
ˇ

ˇ

ˇ

ˇ

ˇ

.

The rest of the proof is divided into two steps corresponding to establishing the
bound for each one of the terms I1 and I2.

Step 1 (I2 À r1´2s). In order to estimate I2, we do not need to take any cancellation
into consideration. We simply take absolute values everywhere and estimate each
factor separately. Recalling Formula (4.4), we have

|v0|γ`2sI2 “
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

BrzEr

pT´1
0 w̄qKf pv̄1 ´ w̄, v̄1q dw̄

ˇ

ˇ

ˇ

ˇ

ˇ

,

À
ˆ

BrzEr

|T´1
0 w̄||w̄|´d´2s

ˆ

uKw̄

fpv̄1 ´ w̄ ` uq|u|γ`2s`1 du dw̄.

Like in the proof of Lemma 5.14 about the second boundedness condition, we use
polar coordinates ´w̄ “ ρσ, and we write rσ « rp1`pσ ¨v0q2q´1{2 for the maximum
value of ρ so that ρσ P ER

“
ˆ

σPSd´1

ˆ

rσăρăr

ρ´2s|T´1
0 σ|

ˆ

uKσ

fpv̄1 ` ρσ ` uq|u|γ`2s`1 du dρ dσ.

We now write z “ ρσ ` u so that dz “ dρ du, and observe ρ “ z ¨ σ and |u| ď |z|

ď
ˆ

σPSd´1

ˆ

rσăz¨σăr

pz ¨ σq´2s|T´1
0 σ|fpv̄1 ` zq|z|γ`2s`1 dz dσ,

“
ˆ

Rd

fpv̄1 ` zq|z|γ`1

˜

ˆ

tσ:rσăσ¨zăru
pσ ¨ z{|z|q´2s|T´1

0 σ| dσ
¸

dz,

“
ˆ

Rd

fpv̄1 ` zq|z|γ`1

˜

ˆ

tσ:rσăσ¨zăru
pσ ¨ z{|z|q´2s r

rσ
dσ

¸

dz,

«
ˆ

Rd

fpv̄1 ` zq|z|γ`1

˜

ˆ

tσ:rσăσ¨zăru
pσ ¨ z{|z|q´2s

a

1 ` pσ ¨ v0q2 dσ
¸

dz.

We analyze the spherical integral similarly as in the proof of Lemma 5.14.
We write e “ z{|z|, v0 “ ae ` b with b K e and a “ v0 ¨ e. We observe
a

1 ` pσ ¨ v0q2 À
`

1 ` a2pσ ¨ eq2 ` |b|2
˘1{2

. We divide the domain of integration

depending on whether a2pσ ¨ eq2 ą 1 ` |b|2 or not. The purpose of these two sub-
domains is to know which term in rσ to focus on. Let us call S1 and S2 these two
integrals respectively. We have

I2 À |v0|´γ´2s

ˆ

Rd

fpv̄1 ` zq|z|γ`1pS1 ` S2q dz,
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where

S1 À
ˆ

σ¨eďr{|z|
pσ ¨ eq´2s`1|a| dσ

À |a|min
`

1, pr{|z|q2´2s
˘

,

S2 À
ˆ

r?
2|z|p1`|b|2q1{2 ďe¨σ

pe ¨ σq´2sp1 ` |b|2q1{2 dσ,

À r1´2s|z|2s´1p1 ` |b|2qs.
For the first term in I2, we have |a| ď |v0| and consequently,

|v0|´γ´2s

ˆ

Rd

fpv̄1 ` zq|z|γ`1S1 dz

À |v0|´γ´2s`1

ˆ

Rd

fpv̄1 ` zq|z|γ`1 minp1, r2´2s|z|2s´2q dz

À r1´2s thanks to Lemma 5.18.

Note that |b|2 “ |v0|2 ´ pv0 ¨ eq2. So, for the second term in I2, we have

|v0|´γ´2s

ˆ

Rd

fpv̄1 ` zq|z|γ`1S2 dz

À r1´2s|v0|´γ´2s

ˆ

Rd

fpv̄1 ` zq|z|γ`2sp1 ` |v0|2 ´ pv0 ¨ zq2{|z|2qs dz,

À r1´2s thanks to Lemma 5.12.

Adding all the terms, we get the announced estimate on I2.

Step 2 (I1 À r1´2s). The cancellation inside the integral, and in particular in the
principal value, plays a central role in the inequality for I1. We proceed similarly as
in Step 1 but without taking absolute values and keeping equalities. We use polar
coordinates w̄ “ rσ and write z “ ´rσ ` u with dz “ dr du.

|v0|γ`2sI1

“
ˇ

ˇ

ˇ

ˇ

PV

ˆ

zPRd

fpv̄1 ` zqT´1
0

"
ˆ

σPSd´1:0ăz¨σăr

σpσ ¨zq´2s

p|z|2 ´ pz ¨σq2q γ`2s`1

2 Ap. . . q dσ
*

dz

ˇ

ˇ

ˇ

ˇ

.

Here, A is the function from (4.3). In this case, its value depends on σ ¨ z{|z| only:
Ap. . . q “ Ãpσ ¨ z{|z|q « 1.

If we write σ “ ρz{|z| ` σK with σK perpendicular to z, we see that the only
factor in the integrand that depends on σK is σ. Since σK takes values on a pd´2q-
dimensional circle, its values cancel out in the integral. Thus, we reduce the integral
to

|v0|γ`2sI1

“
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

zPRd

fpv̄1 ` zq|z|´2sT´1
0

ˆ

z

|z|

˙
ˆ

σPSd´1:0ăz¨σăr

ˆ

σ ¨ z

|z|

˙1´2s

p|z|2 ´ pz ¨ σq2q γ`2s`1

2 Ãpσ ¨ z{|z|q dσ dz

ˇ

ˇ

ˇ

ˇ

.
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At this point, the cancellations have been taken into account already. All quantities
that remain are positive so we continue with inequalities. We use that }T´1

0 } “ |v0|
and that Ã is bounded

ď
ˆ

zPRd

fpv̄1 ` zq|z|´2s

ˇ

ˇ

ˇ

ˇ

T´1
0

z

|z|

ˇ

ˇ

ˇ

ˇ

ˆ

σPSd´1:0ăz¨σăr

ˆ

σ ¨ z

|z|

˙1´2s

p|z|2 ´ pz ¨ σq2q γ`2s`1

2 Ãpσ ¨ z{|z|q dσ dz,

À |v0|
ˆ

zPRd

fpv̄1 ` zq|z|γ`1

˜

ˆ

σPSd´1:0ăz¨σăr

ˆ

σ ¨ z

|z|

˙1´2s

dσ

¸

dz,

À |v0|
ˆ

zPRd

fpv̄1 ` zq|z|γ`1 minp1, pr{|z|q2´2sq dz.

We conclude that I1 À r1´2s by applying Lemma 5.18.

�

The change of variables theorems derive from the series of lemmas established
in this section.

Proof of Theorem 5.2. Combine Corollary 5.8 and Lemmas 5.10, 5.14, 5.16, 5.19.
The inequality (4.10) is a combination of (5.7) with (4.13). �

Proof of Theorem 5.5. Combine Corollary 5.9 and Corollary 5.13. �

5.7. Hölder spaces through the change of variables. We examine how the
change of variables T0 defined in (5.2) affects the kinetic Hölder spaces introduced
in Section 3.

Lemma 5.20. Given z0 P R
1`2d and F : ERpz0q Ñ R, we define F̄ : QR Ñ R by

F̄ pzq “ F pT0pzqq. Then, for any β ą 0,

(5.17) }F̄ }
C

β

ℓ
pQRq À }F }

C
β

ℓ
pERpz0qq À |v0|c̄β}F̄ }

C
β

ℓ
pQRq,

with c̄ “ max
`

γ`2s
2s

, 1
˘

.

Proof. We point out that we only need to prove this Lemma for |v0| ą 2 (See
Remark 5.6).

We can write T0 as z0 ˝ T with

T pt, x, vq “ p|v0|´γ´2st, |v0|´γ´2spT0xq, T0vq.
We first prove that for v0 P R

dzB2 and for all z, z1 P R
1`2d,

dℓpT ´1z, T ´1z1q À |v0|c̄dℓpz, z1q,(5.18)

dℓpT z, T z1q À dℓpz, z1q(5.19)

with c̄ “ maxpγ`2s
2s

, γ`2s
1`2s

` 1q. As far as (5.18) is concerned, using the definition of
dℓ, we write

dℓpT ´1z, T ´1z1q “ min
wPRd

max

"

p|v0|γ`2s|t ´ t1|q1{p2sq,

`

|v0|γ`2s|T´1
0 px ´ x1 ´ pt ´ t1qwq|

˘1{p1`2sq
,

|T´1
0 pv ´ wq|, |T´1

0 pv1 ´ wq|
*

,
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note that }T´1
0 } “ |v0|,

ď max
´

|v0| γ`2s
2s , |v0|

γ`2s`1

1`2s , |v0|
¯

min
wPRd

max
�

|t´t1| 1

2s ,

|x´x1´pt´t1qw| 1

1`2s ,

|v´w|, |v1´w|
(

,

ď |v0|c̄dℓpz, z1q.

Note that |v0|
γ`2s`1

1`2s ď max
´

|v0| γ`2s
2s , |v0|

¯

. This justifies (5.18). The verification

of (5.19) is very similar using that }T0} “ 1.
Since dℓ is left invariant, (5.18) implies that for v0 P R

dzB2, z, z1 P R
1`2d, and

z̄ “ T0z, z̄1 “ T0z1,

(5.20) dℓpz̄, z̄1q ď dℓpz, z1q À |v0|c̄dℓpz̄, z̄1q.
We deduce (5.17) from (5.20). Given any z̄1, z̄ P QR, and z̄ “ T0z, z̄1 “ T0z1,

let p be the polynomial expansion of F at the point z̄1 so that |F pz̄q ´ ppz̄q| ď
rF s

C
β

ℓ

dℓpz̄, z̄1qβ and degk p ă β. We observe that p˝T0 is a polynomial of the same

degree. Thus,

|F̄ pzq ´ p ˝ T0pzq| “ |F pz̄q ´ ppz̄q| ď rF s
C

β

ℓ

dℓpz̄, z̄1qβ ď rF s
C

β

ℓ

dℓpz, z1qβ.

We deduced the first inequality in (5.17) from the first inequality in (5.20). We
deduce the second one similarly. �

5.8. Hölder continuity of the kernel. In Lemma 5.21 we explore how a Hölder
estimate for f of the form f P Cα

ℓ,fast results in a Hölder estimate for the kernel K̄f

as in the assumption (4.16) in Theorem 4.5.

Lemma 5.21 (Hölder continuity of the kernel). Let f : rτ, T s ˆ R
d ˆ R

d be such
that f P Cα

ℓ,fast. Then (4.16) holds true for K̄f with α1 “ 2s
1`2s

α and

Ā0 ď C
´

}f}C0

ℓ,q
` p1 ` |v0|q α

1`2s
p1´2s´γq` rf sCα

ℓ,q

¯

.

Here, q can be any number larger than d` 2`α{p1` 2sq. The constant C depends
only on dimension, γ, s, minp1, T ´ τ q, and the choice of q.

Proof. Without loss of generality, let us assume T ´ τ ě 1. The effect of this as-
sumption is that we take cylinders of the form Q1pz0q Ă rτ, T sˆR

dˆR
d. Otherwise

we would have to work with cylinders Qrpz0q for a smaller r ą 0 and the choice of
r, depending on T ´ τ , would affect the constants in the lemma.

As usual, we also focus on |v0| ą 2.
Recall that the definition of Cℓ,fast says that for all q ą 0, there exists a constant

Cq “ rf sCα
ℓ,q

so that

}f}Cα
ℓ

pQ1pz0qq ď Cqp1 ` |v0|q´q,

whenever Q1pz0q Ă rτ, T s ˆ R
d ˆ R

d. In particular, for z “ pt, x, vq,
|fpzq| ď C1p1 ` |v|q´q and |fpz1q ´ fpz2q| ď Cqdℓpz1, z2qαp1 ` |v1|q´q

whenever dℓpz1, z2q ă 1.
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As usual, we write z̄ “ T0z. According to the change of variables formula (5.4),
we thus have for all z1, z2 P Q1 (in particular dℓpz1, z2q ă 1),

(5.21) K̄f,z1pwq ´ K̄f,z2pwq “ |v0|´1´γ´2s pKf,z̄1pT0wq ´ Kf,z̄2pT0wqq .

From the formula (4.3), we observe that, for any z̄1 “ T0z1 and z̄2 “ T0z2,

|Kf,z̄1pwq ´ Kf,z̄2pwq|

“ |w|´d´2s

ˇ

ˇ

ˇ

ˇ

ˆ

uKw

|u|γ`2s`1Ap|w|, |u|q pfpz̄1 ˝ p0, 0, uqq ´ fpz̄2 ˝ p0, 0, uqqq du

ˇ

ˇ

ˇ

ˇ

,

ď |w|´d´2s

ˆ

uKw

|u|γ`2s`1Ap|w|, |u|q |fpz̄1 ˝ p0, 0, uqq ´ fpξ ˝ z̄1 ˝ p0, 0, uqq| du,

“ K∆f,z̄1pwq,

where Δfpzq “ |fpzq ´ fpξ ˝ zq| and ξ “ z̄1 ˝ z̄´1
2 . Combining with (5.21), we get

ˆ

Bρ

|K̄f,z1pwq ´ K̄f,z2pwq||w|2 dw ď
ˆ

Bρ

|K̄∆f,z1pwq||w|2 dw,

we now apply Corollary 5.13 to obtain

À
ˆ
ˆ

Rd

p1 ` |v|2qΔfpt̄1, x̄1, vq dv
˙

ρ2´2s,

“
ˆ
ˆ

Rd

p1 ` |v̄1 ` w|2q|fpz̄1 ˝ p0, 0, wqq ´ fpz̄2 ˝ p0, 0, wqq| dw
˙

ρ2´2s.

In order to estimate the difference |fpz̄1 ˝ p0, 0, wqq ´ fpz̄2 ˝ p0, 0, wqq|, we use the
Cα

ℓ,q semi-norms of f . We use (3.5) and we get

|fpz̄1 ˝ p0, 0, wqq ´ fpz̄2 ˝ p0, 0, wqq|

(5.22)

ď
#

`

dℓpz̄1, z̄2q ` |t̄1 ´ t̄2|1{p1`2sq|w|1{p1`2sq˘α p1 ` |v̄1 ` w|q´qrf sCα
ℓ,q
,

tp1 ` |v̄1 ` w|q´q ` p1 ` |v̄2 ` w|q´qu rf sC0

ℓ,q
.

The first line applies whenever dℓpz̄1 ˝ p0, 0, wq, z̄2 ˝ p0, 0, wqq ă 1. Note that from
(3.5), this distance is less than or equal to the factor inside the parenthesis on the
first line.

The second line applies whenever dℓpz̄1 ˝p0, 0, wq, z̄2 ˝p0, 0, wqq ě 1. In that case,
it is better to estimate the left hand side in (5.22) by the C0 norm of each term.

Note that since v̄1, v̄2 P B1pv0q, then p1`|v̄1`w|q « p1`|v̄2`w|q « p1`|v0`w|q.
Recall that we write }f}Cα

ℓ,q
“ rf sCα

ℓ,q
` }f}C0

ℓ,q
. Thus, in any case we have

|fpz̄1 ˝ p0, 0, wqq ´ fpz̄2 ˝ p0, 0, wqq|(5.23)

À
´

dℓpz̄1, z̄2q ` |t̄1 ´ t̄2|1{p1`2sq|w|1{p1`2sq
¯α

p1 ` |v̄1 ` w|q´q}f}Cα
ℓ,q
.

By the definition of the transformation T0, we always have dℓpz̄1, z̄2q ď dℓpz1, z2q.
Moreover, |t̄1 ´ t̄2| “ |v0|´γ´2s|t1 ´ t2|.

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



672 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

We estimate
ˆ

p1 ` |v̄1 ` w|2q|fpz̄1 ˝ p0, 0, wqq ´ fpz̄2 ˝ p0, 0, wqq| dw

À
ˆ

´

dℓpz̄1, z̄2q ` |t̄1 ´ t̄2|1{p1`2sq|w|1{p1`2sq
¯α

p1 ` |v0 ` w|q2´q}f}Cα
ℓ,q

dw,

À }f}Cα
ℓ,q

ˆ

dℓpz1, z2qα`|v0|´
γ`2s
1`2s

α|t1´t2| 1

1`2s
α

ˆ

Rd

|w| α
1`2s p1 ` |v0 ` w|q2´q dw

˙

,

À }f}Cα
ℓ,q

´

dℓpz1, z2qα ` dℓpz1, z2qα1 |v0|
p´γ´2s`1qα

1`2s

¯

,

À }f}Cα
ℓ,q
dℓpz1, z2qα1 |v0| α

1`2s
p1´γ´2sq` .

In the last inequality we used dℓpz1, z2q ă 1 and |v0| ą 2. We also used Lemma 2.4
to estimate the last integral, which holds provided that q ą d` 2`α{p1` 2sq. �

6. Bounds for the bilinear operator Qp¨, ¨q
The right hand side of the Boltzmann equation Qpf, fq is a quadratic function

of f . Its structure as a bilinear operator Qpf, gq is relevant when differentiating the
equation. In this section we collect several lemmas to evaluate the Hölder regularity
of Qpf, gq in terms of Hölder norms of f and g.

Recall that we write Q “ Q1 ` Q2. We obtain bounds for each of these two
terms separately.

6.1. Bounds for Q2. Recall that Q2pf, gq “ cbpf ˚|¨|γqg. We start with estimating
how the convolution with | ¨ |γ affects the local Hölder norm of a function.

Lemma 6.1 (Convolution with | ¨ |γ). Let f P Cα
ℓ,fastprτ, T s ˆR

d ˆR
dq for 0 ă α ď

minp1, 2sq. Let us consider the convolution of f with | ¨ |γ in velocity. That is

gpzq “
ˆ

Rd

fpz ˝ p0, 0, wqq|w|γ dw.

Then for all z0 P rτ, T sˆR
d ˆR

d and r P p0, 1q such that Qrpz0q Ă rτ, T sˆR
d ˆR

d,
and any q ą d ` γ` ` α{p1 ` 2sq,

}g}
Cα1

ℓ
pQrpz0qq ď Cp1 ` |v0|q α

1`2s
`γ}f}Cα

ℓ,q

with C “ Cpd, γ, s, αq and α1 “ 2s
1`2s

α.

Proof. Let z0 “ pt0, x0, v0q, z1 “ pt1, x1, v1q P rτ, T s ˆ R
d ˆ R

d with dℓpz0, z1q ă 1.
We will show the two inequalities below from which the conclusion follows.

|gpz0q| ď Cp1 ` |v0|qγrf sC0

ℓ,q
,

|gpz1q ´ gpz0q| ď Cp1 ` |v0|q α
1`2s

`γ}f}Cα
ℓ,q
dℓpz0, z1qα1

.

Note that the assumption α ď minp1, 2sq implies that any polynomial of degree less
than α must be constant. Thus, the Hölder semi-norm of order α involves merely
increments.
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REGULARITY ESTIMATES FOR BOLTZMANN 673

Let us start with the first inequality. Using Lemma 2.4 (since q ą d ` γ`), we
compute

|gpz0q| ď
ˆ

Rd

|f |pt0, x0, v0 ` wq|w|γ dw,

ď rf sC0

ℓ,q

ˆ

Rd

p1 ` |v0 ` w|q´q|w|γ dw,

ď Crf sC0

ℓ,q
p1 ` |v0|qγ .

The second inequality requires a slightly longer computation,

|gpz1q ´ gpz0q| ď
ˆ

Rd

|fpz1 ˝ p0, 0, wqq ´ fpz0 ˝ p0, 0, wqq||w|γ dw,

ď
ˆ

|w|ădℓpz0,z1q´2s

p. . . q dw `
ˆ

|w|ądℓpz0,z1q´2s

p. . . q dw,

“: I ` II.

For the first integral I, we use the inequality (3.5) together with the semi-norm
rf sCα

ℓ,q
. In this domain, we have

dℓpz0 ˝ p0, 0, wq, z1 ˝ p0, 0, wqq ď dℓpz0, z1q ` dℓpz0, z1q2s{p1`2sq|w|1{p1`2sq,

ď dℓpz0, z1q ` 1 ď 2.

Therefore, using again Lemma 2.4,

IÀrf sCα
ℓ,q

ˆ

Rd

´

dℓpz0, z1q`dℓpz0, z1q2s{p1`2sq|w|1{p1`2sq
¯α

|w|γp1 ` |v0 ` w|q´q dw,

Àrf sCα
ℓ,q

ˆ

dℓpz0, z1qαp1 ` |v0|qγ`dℓpz0, z1qα1
ˆ

Rd

|w|α{p1`2sq`γp1 ` |v0 ` w|q´q dw

˙

(recall α1 “ 2sα{p1 ` 2sqq

À rf sCα
ℓ,q

´

dℓpz0, z1qαp1 ` |v0|qγ ` dℓpz0, z1qα1 p1 ` |v0|qα{p1`2sq`γ
¯

since q ą d ` γ` ` α{p1 ` 2sq.

Naturally, the second term is larger than the first one.
For the second integral II we bound |fpz0 ˝ p0, 0, wqq ´ fpz1 ˝ p0, 0, wqq| using

rf sC0

ℓ,q
. That is

II ď rf sC0

ℓ,q

ˆ

|w|ądℓpz0,z1q´2s

pp1 ` |v0 ` w|q´q ` p1 ` |v1 ` w|q´qq|w|γ dw.

We analyze two cases depending on whether dℓpz0, z1q´2s ą p1 ` 3|v0|q or not. In
the first case, we have |v1 ` w| Á |w| and |v1 ` w| Á |w|; therefore

II À rf sC0

ℓ,q

ˆ

|w|ądℓpz0,z1q´2s

|w|´q`γ dw,

À rf sC0

ℓ,q
dℓpz0, z1q2spq´d´γq,

À rf sC0

ℓ,q
p1 ` |v0|qγdℓpz0, z1qα1

.
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674 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

The last inequality holds because q ą d ` γ` ` α{p1 ` 2sq and dℓpz0, z1q´2s ą
p1 ` 3|v0|q. Indeed, in this case we have

dℓpz0, z1q2spq´d´γq

p1 ` |v0|qγdℓpz0, z1qα1 “ dpz0, z1q2spq´d´γ´α{p1`2sqqp1 ` |v0|q´γ ,

À p1 ` |v0|q´pq´d´γ´α{p1`2sqq´γ ,

“ p1 ` |v0|q´pq´d´α{p1`2sqq,

À 1.

In the second case dℓpz0, z1q´2s ď p1 ` 3|v0|q, which means that dpz0, z1q ě
p1 ` 3|v0|q´1{p2sq. Therefore

II ď rf sC0

ℓ,q

ˆ

Rd

pp1 ` |v0 ` w|q´q ` p1 ` |v1 ` w|q´qq|w|γ dw,

À rf sC0

ℓ,q
p1 ` |v0|qγ ,

À rf sC0

ℓ,q
p1 ` |v0|qγ` α

1`2s dℓpz0, z1qα1
, using dpz0, z1q Á p1 ` |v0|q´1{p2sq.

Adding the upper bounds for I and II we conclude the proof of Lemma 6.1. �

Lemma 6.2 (Bound for Q2). Let f, g P Cα
ℓ,fastprτ, T s ˆ R

d ˆ R
dq for 0 ă α ď

minp1, 2sq. Then Q2pf, gq P Cα
ℓ,fastprτ, T s ˆ R

d ˆ R
dq and the following estimates

hold for any q ą d ` γ` ` α{p1 ` 2sq,
}Q2pf, gq}

Cα1
ℓ,q

ď C}f}Cα
ℓ,q

}g}
Cα1

ℓ,q`α{p1`2sq`γ

with C “ Cpd, γ, s, αq and α1 “ 2s
1`2s

α.

Proof. Recall that Q2pf, gqpvq “ cb
`
´

Rd fpv ` wq|w|γ dw
˘

gpvq. Given Qrpz0q Ă
rτ, T s ˆ R

d ˆ R
d, we combine Lemma 3.7 and Lemma 6.1 to get

p1 ` |v0|qq}Q2pf, gq}
Cα1

ℓ
pQrpz0qq À p1 ` |v0|qq`γ` α

1`2s }f}Cα
ℓ,q

}g}
Cα1

ℓ
pQrpz0qq.

Taking the supremum over Qrpz0q yields the announced estimate. �

6.2. Bounds for Q1. This section is dedicated to the derivation of appropriate
bounds for Q1pf, gq when f P Cα

ℓ,fast and g P C2s`α
ℓ,fast . For this purpose, we need to

localize around a given point z0. In order to measure the effect of this localization
procedure, we need some preparatory lemmas.

The proof of Lemma 6.3 uses ideas introduced in [32]. It is used to bound a part
of the integral involved in the computation of an integro-differential operator.

Lemma 6.3. Let f be such that for q ą d ` pγ ` 2sq and for all v P R
d,

|fpvq| ď Nqp1 ` |v|q´q.

Let Kf be the Boltzmann kernel given in formula (4.2) applied to this function f .
Then for all v P Brpv0q with r P p0, 1q and g P L1pB|v0|{8q,

ˆ

|v1´v|ą1`|v0|{8,
|v1|ă|v0|{8

|gpv1q|Kf pv, v1q dv1 ď CNq}g}L1pB|v0|{8qp1 ` |v0|q´q`γ

for some C depends on q, d, γ, s and the constants in B (the Boltzmann kernel).

Remark 6.4. Later on, Lemma 6.3 will be applied to large values of |v0|. In that case,
the inequality |v1| ă |v0|{8, together with v P B1pv0q, implies |v1 ´ v| ą 1 ` |v0|{8.
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REGULARITY ESTIMATES FOR BOLTZMANN 675

Proof. The proof is very similar to the ones of [32, Propositions 4.7, 4.8]. Using
(4.4), we first write for v P Brpv0q,
ˆ

|w|ą1`|v0|{8,
|v`w|ă|v0|{8

|gpv ` wq|Kf pv, v ` wq dw,

“
ˆ

|w|ą1`|v0|{8,
|v`w|ă|v0|{8

|gpv ` wq||w|´d´2s

"
ˆ

uKw

fpv ` uqAp|w|, |u|q|u|γ`2s`1 du

*

dw,

À Nq}g}L1pB|v0|{8qp1 ` |v0|{8q´d´2s max
|w|ą1`|v0|{8,
|v`w|ă|v0|{8

"
ˆ

uKw

p1`|v`u|q´q |u|γ`2s`1 du

*

.

Since |v ` w| ď |v0|{8, we also have

|w| ě |v0| ´ |v ´ v0| ´ |v ` w| ě 7

8
|v0| ´ 1.

Thus
|w| ` 1

7
ě |v ` w|.

Therefore, we get for u K w,

1 ` |v ` u| ě 1 ` |u ´ w| ´ |v ` w|,

ě 1 ` |u ´ w| ´ |w| ` 1

7
,

“ 6

7
` p|u|2 ` |w|2q1{2 ´ |w|

7
,

ě 6

7
` |u|?

2
` |w|?

2
´ |w|

7
,

Á p1 ` |u| ` |w|q.
We use this inequality to continue our estimate from the beginning of this proof.
ˆ

|w|ą1`|v0|{8,
|v`w|ă|v0|{8

|gpv ` wq|Kf pv, v ` wq dw,

ÀNq}g}L1pB|v0|{8qp1`|v0|q´d´2s max
|w|ą1`|v0|{8

"̂
ˆ

uKw

p1`|u|`|w|q´q |u|γ`2s`1 du

*̇

,

ÀNq}g}L1pB|v0|{8qp1`|v0|q´d´2s max
|w|ě1`|v0|{8

p1 ` |w|q´q`γ`2s`d,

ÀNq}g}L1pB|v0|{8qp1`|v0|q´q`γ .

The implicit constant in À depends only on d, q, s, γ. The proof is now complete.
�

For the next lemmas in this section, we define a cutoff function in the following
way. Let ϕ̄ be a fixed smooth nonnegative bump function supported in B1{8 so that
ϕ̄ “ 1 in B1{9. For any given value of v0 ‰ 0, we define the cutoff function ϕ as

(6.1) ϕpvq :“ ϕ̄p|v0|´1vq.
This function ϕ is supported in B|v0|{8 and is identically 1 in B|v0|{9. Note that
Lemma 6.3 can be reformulated using ϕ in the following way (at least for |v0| large;
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see Remark 6.4),
(6.2)

@vPB1pv0q,Q1pf, ϕgqpvq“
ˆ

Rd

gpv1qϕpv1qKf pv, v1q dv1 ÀNq}ϕg}L1pRdqp1`|v0|q´q`γ .

By the definition of }g}Cα
ℓ,q
, we see that for any α ě 0 and q ą 0,

(6.3) }p1 ´ ϕqg}Cα
ℓ

pQ1pz0qq À p1 ` |v0|q´q}g}Cα
ℓ,q
.

In Lemma 6.5, we establish the upper bound and decay as |v| Ñ 8 for Q1pf, gq
in terms of corresponding norms of f and g.

Lemma 6.5 (Pointwise upper bound for Q1). Let f P C0
ℓ,fastpr0, T s ˆR

d ˆR
dq and

g P C2s`α
ℓ,fast pr0, T sˆR

dˆR
dq for some α ą 0. Then Q1pf, gq P C0

ℓ,fastpr0, T sˆR
dˆR

dq.
Moreover, for any q ą d ` γ ` 2s,

(6.4) }Q1pf, gq}C0

ℓ,q´γ´2s
ď C}f}C0

ℓ,q
}g}C2s`α

ℓ,q
.

Here, the constant C depends only on α, dimension, s, γ, and the constant in B

(the Boltzmann kernel).

Proof. Let us start by recalling the formula for Q1pf, gq.

Q1pf, gq “
ˆ

Rd

pg1 ´ gqKf pt, x, v, v1q dv1,

“
ˆ

Rd

pgpz ˝ p0, 0, wqq ´ gpzqqKf,zpwq dw.

Here, Kf is the Boltzmann kernel depending on the function f as in (4.2). As
usual, we write Kf,zpwq “ Kf pt, x, v, v ` wq for z “ pt, x, vq.

We need to establish an upper bound for Q1pf, gqpz0q for any given z0 “
pt0, x0, v0q P r0, T s ˆ R

d ˆ R
d.

If |v0| ď 2, we use (4.21) together with Lemma 4.6 and conclude the inequality
immediately.

If |v0| ą 2, we decompose Q1pf, gq “ Q1pf, ϕgq `Q1pf, p1´ϕqgq. Here, ϕ is the
cutoff function defined in (6.1).

For Q1pf, ϕgq, we use Lemma 6.3 to get (6.2) and obtain

|Q1pf, ϕgqpz0q| À }f}C0

ℓ,q
}g}C0

ℓ,q
p1 ` |v0|q´q`γ .

For Q1pf, p1 ´ ϕqgq, we apply (4.21) and Lemma 4.6. We get

|Q1pf, p1 ´ ϕqgqpz0q| À
ˆ
ˆ

Rd

fpt0, x0, v0 ` wq|w|γ`2s dw

˙

}p1 ´ ϕqg}C2s`α
ℓ

,

À }g}C2s`α
ℓ,q

}f}C0

ℓ,q
p1 ` |v0|q´q`γ`2s using Lemma 2.4.

Adding the estimates for |Q1pf, ϕgqpz0q| and |Q1pf, p1´ϕqgqpz0q|, we conclude the
proof. �

In order to estimate the Hölder semi-norm of Q1pf, gq, we need Lemma 6.6 that
is the Cα version of Lemma 6.3.

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY ESTIMATES FOR BOLTZMANN 677

Lemma 6.6. Let f, g P Cα
ℓ,fast for some α P p0,minp1, 2sqs. Let z0 “ pt0, x0, v0q

such that |v0| ą 2 and Q1pz0q Ă r0,8q ˆ R
d ˆ R

d. Let ϕ be the smooth bump
function supported in B|v0|{8 with ϕ “ 1 in B|v0|{9. Let h : Q1pz0q Ñ R be given by

hpzq :“
ˆ

Rd

ϕpv ` wqgpz ˝ p0, 0, wqqKf,zpwq dw.

Then h P Cα1

ℓ pQ1pz0qq and for any q ą d ` γ ` 2s,

rhs
Cα1

ℓ
pQ1pz0qq ď C}g}Cα

ℓ,q`α{p1`2sq
}f}Cα

ℓ,q`α{p1`2sq
p1 ` |v0|q´q`γ`α{p1`2sq,

for a constant C depending on q, d, γ and s.

Proof. Let z1, z2 P Q1pz0q. We need to estimate an upper bound for |hpz1q´hpz2q|.
We write ξ “ z2 ˝z´1

1 . As usual, τξ denotes the right translation operator τξfpzq :“
fpξ ˝ zq.

Note that dℓpz1, z2q « }z´1
2 ˝ z1} ‰ }ξ}. In fact, }ξ} can be large.

We have

hpz2q ´ hpz1q

“
ˆ

Rd

ˆ

ϕpv2 ` wqgpz2˝p0, 0, wqqKf,z2pwq ´ ϕpv1 ` wqgpz1˝p0, 0, wqqKf,z1pwq
˙

dw,

“
ˆ

Rd

ˆ

ϕpv2 ` wqgpz2 ˝ p0, 0, wqq ´ ϕpv1 ` wqgpz1 ˝ p0, 0, wqq
˙

Kf,z1pwq dw

`
ˆ

Rd

ϕpv2 ` wqgpz2 ˝ p0, 0, wqq
ˆ

Kf,z2pwq ´ Kf,z1pwq
˙

dw,

“
ˆ

Rd

pτξϕg ´ ϕgqpz1 ˝ p0, 0, wqqqKf,z1pwq dw

`
ˆ

Rd

ϕpv2 ` wqgpz2 ˝ p0, 0, wqq
´

Kpf´τ
ξ´1fq,z2pwq

¯

dw.

This implies in particular that

|hpz2q ´ hpz1q| ď
ˆ

Rd

|pτξϕg ´ ϕgqpz1 ˝ p0, 0, wqq|Kf,z1pwq dw

`
ˆ

Rd

|ϕpv2 ` wqgpz2 ˝ p0, 0, wqq|
´

K|f´τ
ξ´1f |,z2pwq

¯

dw,

applying Lemma 6.3 and observing |v1| « |v2| « |v0|, we get

À
´

}f}C0

ℓ,q
N1 ` }ϕg}C0

ℓ,q
N2

¯

p1 ` |v0|q´q`γ ,

where

N1 :“ }τξϕg ´ ϕg}L1pB|v0|{8q,

N2 :“ sup
wPRd

`

|f ´ τξ´1f |pz2 ˝ p0, 0, wqq|v2 ` w|q
˘

.

Let us first analyze N2.

N2 “ sup
wPRd

|fpz2 ˝ p0, 0, wqq ´ fpz1 ˝ p0, 0, wqq|p1 ` |v2 ` w|qq,
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using that 1 ` |v1| « 1 ` |v2| « 1 ` |v0|, we compute

À sup
wPRd

minp1, dℓpz1˝p0, 0, wq, z2˝p0, 0, wqqαq p1`|v0`w|q´α{p1`2sq}f}Cα
ℓ,q`α{p1`2sq

,

using (3.5),

À sup
wPRd

min
´

1, dℓpz1, z2qα1 p1 ` |w|qα{p1`2sq
¯

p1`|v0 ` w|q´α{p1`2sq}f}Cα
ℓ,q`α{p1`2sq

,

À dℓpz1, z2qα1 p1 ` |v0|qα{p1`2sq}f}Cα
ℓ,q`α{p1`2sq

.

The factor N1 is estimated similarly in terms of

}ϕg}Cα
ℓ,q`α{p1`2sq

À }g}Cα
ℓ,q`α{p1`2sq

.

Thus, we conclude

|hpz1q ´ hpz2q| À }g}Cα
ℓ,q`α{p1`2sq

}f}Cα
ℓ,q`α{p1`2sq

p1`|v0|q´q`γ`α{p1`2sqdℓpz1, z2qα1

from which we get the desired estimate. �

Corollary 6.7. Let f, g P Cα
ℓ,fast for some α P p0,minp1, 2sqs. Let z0 such that

E1pz0q Ă r0,8q ˆ R
d ˆ R

d. Let ϕ be the smooth bump function supported in B|v0|{8
with ϕ “ 1 in B|v0|{9. Let h̄ : Q1 Ñ R be given by

h̄pzq :“
ˆ

Rd

ϕpv̄ ` wqgppT0zq ˝ p0, 0, wqqKf,T0zpwq dw

with T0z “ pt̄, x̄, v̄q. Then h P Cα1

ℓ pQ1q and for any q ą d ` pγ ` 2sq,

rh̄s
Cα1

ℓ
pQ1q ď C}g}Cα

ℓ,q`α{p1`2sq
}f}Cα

ℓ,q`α{p1`2sq
p1 ` |v0|q´q`γ`α{p1`2sq,

for a constant C depending on q, d, γ and s.

Proof. Apply Lemma 6.6 and observe h̄ “ h˝T0. Then use Lemma 5.20 to conclude.
�

We are now in position to derive the desired estimate for Q1pf, gq.

Lemma 6.8 (Bound for Q1). Let f P Cα
ℓ,fast and g P C2s`α

ℓ,fast for some 0 ă α ď
minp1, 2sq. Then Q1pf, gq P Cα1

ℓ,fast for α1 “ 2sα{p1 ` 2sq. Moreover, for any
q ą d ` γ ` 2s,

}Q1pf, gq}
Cα1

ℓ,q´γ´2s´α{p1`2sq
ď C}f}Cα

ℓ,q
}g}C2s`α

ℓ,q
.

Here, the constant C depends only on α, dimension, s, γ, and the constants in B

(the Boltzmann kernel).

Proof. The norm }Q1pf, gq}C0

ℓ,q´γ´2s
is already controlled by Lemma 6.5. We are

left with estimating the semi-norm rQ1pf, gqs
Cα1

ℓ,q´γ´2s
.

Let z0 “ pt0, x0, v0q be so that Qrpz0q Ă r0, T s ˆ R
d ˆ R

d for some r P p0, 1q like
in Definition 3.4 and let ϕ be the cutoff function as in (6.1). From Lemma 6.6, we
know that

(6.5) rQ1pf, ϕgqs
Cα1

ℓ
pQrpz0qq À }g}Cα

ℓ,q
}f}Cα

ℓ,q
p1 ` |v0|q´q`γ`2α{p1`2sq.
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In order to estimate }Q1pf, p1´ϕqgq}
Cα1

ℓ
pQrpz0qq, let us consider two points z1, z2 P

Qrpz0q. We have

Q1pf, p1 ´ ϕqgqpz2q ´ Q1pf, p1 ´ ϕqgqpz1q
“ LKf,z2

rp1 ´ ϕqgspz2q ´ LKf,z1
rp1 ´ ϕqgspz1q,

“
`

LKf,z2
rp1 ´ ϕqgspz2q ´ LKf,z2

rp1 ´ ϕqgspz1q
˘

`
`

LKf,z2
rp1 ´ ϕqgspz1q ´ LKf,z1

rp1 ´ ϕqsgpz1q
˘

.

In the first term we are fixing the kernel Kf,z2 (freezing coefficients) and evaluating
in the function p1 ´ ϕqg at two points z2 and z1. In the second term, we are
evaluating the operator at the same point z1, for the same function p1 ´ ϕqg, and
we will obtain cancellation from the two kernels Kf,z2 ´ Kf,z1 .

For estimating the first term, we use [34, Lemma 3.6]. It gives us that

|LKf,z2
rp1 ´ ϕqgspz2q ´ LKf,z2

rp1 ´ ϕqgspz1q|
À ΛKf,z2

rp1 ´ ϕqgs
C

2s`α1
ℓ

dℓpz1, z2qα1
,

À p1 ` |v0|q´q`γ`2s}f}C0

ℓ,q
}g}

C
2s`α1
ℓ,q

dℓpz1, z2qα1
,

using (4.21) and Lemma 2.4 to get the second inequality.
For the second term, we use Lemma 4.6, and compute

|LKf,z2
rp1 ´ ϕqgspz1q ´ LKf,z1

rp1 ´ ϕqgspz1q| À ΛpKf,z2
´Kf,z1

q}p1 ´ ϕqg}
C

2s`α1
ℓ

,

using (6.3) and estimating ΛpKf,z2
´Kf,z1

q from (4.21),

À p1 ` |v0|q´q}g}
C

2s`α1
ℓ,q

ˆ
ˆ

Rd

|fpz2˝p0, 0, wqq ´ fpz1˝p0, 0, wqq||w|γ`2s dw

˙

.

We proceed like in the proof of Lemma 5.21 to estimate the integral. Using (3.5),
we have that

|fpz2 ˝ p0, 0, wqq ´ fpz1 ˝ p0, 0, wqq|
À minp1, pdℓpz1, z2q ` dℓpz1, z2q2s{p1`2sq|w|1{p1`2sqqαqp1 ` |v1 ` w|q´q}f}Cα

ℓ,q
.

from which we get
ˆ

Rd

|fpz2˝p0, 0, wqq´fpz1˝p0, 0, wqq||w|γ`2s dwÀdℓpz1, z2qα1 }f}Cα
ℓ,q

p1`|v0|qα{p1`2sq,

provided that q ą d ` γ ` 2s ` α{p1 ` 2sq. Incorporating this inequality in the
computation above, we get

ˇ

ˇLKf,z2
rp1 ´ ϕqgspz1q ´ LKf,z1

rp1 ´ ϕqgspz1q
ˇ

ˇ

À p1 ` |v0|q´q`α{p1`2sq}g}
C

2s`α1
ℓ,q

}f}Cα
ℓ,q
dℓpz1, z2qα1

.

Collecting the two upper bounds above,

|Q1pf, p1 ´ ϕqgqpz2q ´ Q1pf, p1 ´ ϕqgqpz1q|
À p1 ` |v0|q´q`γ`2s`α{p1`2sqdℓpz1, z2qα1 }f}Cα

ℓ,q
}g}

C
2s`α1
ℓ,q

.

Combining with (6.5) and using that α{p1 ` 2sq ă 2s,

|Q1pf, gqpz2q´Q1pf, gqpz1q| À p1`|v0|q´q`γ`2s`α{p1`2sqdℓpz1, z2qα1 }f}Cα
ℓ,q

}g}
C

2s`α1
ℓ,q

.
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680 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

Thus, rQ1pf, gqs
Cα1

ℓ
pQ1pz0qq ď p1`|v0|q´q`γ`2s`α{p1`2sq}f}Cα

ℓ,q
}g}

C
2s`α1
ℓ,q

and we con-

cluded the proof. �

Remark 6.9. The lemmas in this section allow us to estimate the Hölder norm of
Qpf, gq in terms of the norms of f and g. When it comes to global Hölder norms,
we obtain certain decay exponent “q” in each of the lemmas. The precise value
(and loss) of decay exponent is not computed sharply because it was not necessary
for the purpose of the result in this paper. It might make sense to investigate
sharper version of the lemmas in this section if one tries to obtain C8 estimates as
in Theorem 1.2 for γ ď 0 but for solutions that do not decay rapidly as |v| Ñ 8.

7. Global Hölder estimates for the Boltzmann equation

In this section, we derive global Hölder estimates and global Schauder estimates
from the local ones derived in the previous sections.

7.1. Global Hölder estimates. The Hölder estimate in Theorem 4.2 applies di-
rectly to the Boltzmann equation. However, in doing so, it leads to a Hölder
estimate only locally, that is to say for a compact set of velocities. In order to
obtain a global estimate (which holds for v P R

d) we combine Theorem 4.2 with
the change of variables described in Section 5.

Proposition 7.1 (Global Hölder estimate). Let f be a solution of the Boltzmann
equation (1.1) in p0, T q ˆR

d ˆR
d so that Assumption 1.1 holds in its full domain.

Assume that for some q ą d, there exists Nq ą 0 such that for all pt, x, vq P
p0, T q ˆ R

d ˆ R
d,

fpt, x, vq ď Nqp1 ` |v|q´q

(this is the same as to say Nq “ }f}C0

ℓ,q
).

Let us set z0 “ pt0, x0, v0q P pτ, T q ˆ R
d ˆ R

d with |v0| ě 2, to be the center
of the change of variables T0 from Section 5. Then for all r P p0, 1q such that
Erpz0q Ă pτ, T q ˆ R

d ˆ R
d and all z̄1, z̄2 P Er{2pz0q,

|fpz̄1q ´ fpz̄2q| ď CpNqqp1 ` |v0|q´q`γ`dℓpz1, z2qα,
where C ą 0 and α P p0, 1q only depend on q, Nq, the parameters in Assumption 1.1,
dimension d, γ, s from (1.3) and τ . Here z̄i “ T0zi.

Remark 7.2. Our solutions f will be in C0
ℓ,fast with semi-norms controlled by The-

orem 2.2.

Remark 7.3. When t1 “ t2 and x1 “ x2, dℓpz1, z2q is the same as |v1 ´ v2|. It
is exactly comparable to the non-isotropic distance dGSpv̄1, v̄2q of Gressman and
Strain as defined in [23] (since r ă 1); see Lemma A.1 in the appendix.

Proposition 7.1 gives us a global Hölder estimate in all variables t, x and v.

We will use in Corollary 7.8 the following straightforward consequence of the
sharp global Hölder estimate from Proposition 7.1.

Corollary 7.4 (Hölder estimate with fast decay). Let f be a solution of the Boltz-
mann equation (1.1) in p0, T q ˆ R

d ˆ R
d so that Assumption 1.1 holds for all

pt, xq P p0, T q ˆ R
d. Moreover, assume f P C0

ℓ,fast.

Then, there is an α ą 0 so that for all τ P p0, T q, f P Cα
ℓ,fast with

}f}Cα
ℓ,q

ppτ,T qˆRdˆRdq ď Cq}f}C0

ℓ,q`q̃pγ,sqpp0,T qˆRdˆRdq for all q ą d.
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The constant Cq ą 0 depends on q, the parameters from Assumption 1.1, dimension
d, γ and s from (1.3) and time τ . The value of α ą 0 depends on the constants in
Assumption 1.1, d, γ and s. The value of q̃pγ, sq depends on s and γ only.

We now turn to the proof of the previous proposition.

Proof of Proposition 7.1. Without loss of generality, we assume τ ě 1 and take
r “ 1. Otherwise we would have to adjust the choice of r to be ď τ1{p2sq so that
Qrpz0q Ă p0, T q ˆ R

d ˆ R
d. The constants in the result would be affected by this

value accordingly.
Let ϕ be the cutoff function as in (6.1). In particular ϕ “ 0 in E1pv0q for

|v0| ě 2 because E1pv0q Ă B1pv0q. Let gpt, x, vq “ p1 ´ ϕpvqqfpt, x, vq. Thus,
}g}L8 ď Nqp1 ` |v0|q´q.

By a direct computation, we observe that g solves the equation

Btg ` v ¨ ∇xg “ LKf
pgq ` h1 ` h2 in p0, T q ˆ R

d ˆ E1pv0q,
where

h1 “
ˆ

Rd

ϕpv1qfpv1qKf pv, v1q dv1 and h2 “ Q2pf, fq “ cbpf ˚ | ¨ |γqf.

Recall that ϕ is supported in B|v0|{8. Thus, we apply Lemma 6.3 and obtain

|h1| À }ϕf}L1
v
Nqp1 ` |v0|q´q`γ

À M0Nqp1 ` |v0|q´q`γ

in E1pz0q Ă Q1pz0q.
In order to estimate h2, we note that if γ ě 0, then Lemma 2.3 implies that

| ¨ |γ ˚v f À p1 ` |v0|qγpM0 ` E0q. On the other hand, if γ ă 0, then Lemma 2.4
implies that | ¨ |γ ˚v f À Nqp1 ` |v0|qγ , provided that q ą d. Thus

|h2| À
#

p1 ` |v0|q´q`γNq, if γ ě 0,

p1 ` |v0|q´q`γN2
q if γ ă 0,

in E1pz0q Ă Q1pz0q.
Applying the change of variables T0 from (5.2) and Theorem 5.2, we have that

the function ḡ “ g ˝ T0 solves

Btḡ ` v∇xḡ “ LK̄f
ḡ ` h̄ in Q1

with

h̄ :“ |v0|´γ´2s ph1pT0pt, x, vqq ` h2pT0pt, x, vqq
and K̄f satisfies ellipticity conditions (4.9) (only if s ă 1

2
), (4.10), (4.11), (4.12),

(4.13), (4.14) (only if s ě 1
2
). Note that assumption 5.5 in Theorem 5.2 holds with

Cγ À Nq because q ą d; recall Lemma 2.4.
Applying Theorem 4.2 to ḡ, we get for all z1, z2 P Q1{2,

|ḡpz1q ´ ḡpz2q| ď C
`

}ḡ}L8pr´1,0sˆB1ˆRdq ` }h̄}L8pQ1q
˘

dℓpz1, z2qα,

ď C

ˆ

Nqp1 ` |v0|q´q ` pNq ` N2
q qp1 ` |v0|q´q`γ

˙

dℓpz1, z2qα,

ď CpNqqp1 ` |v0|q´q`γ`dℓpz1, z2qα.
This estimate yields the result since ḡ “ g ˝ T0 and T0zi “ z̄i for i “ 1, 2. �
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7.2. Global Schauder estimates for the Boltzmann equation. Our next task
is to use the change of variables in order to derive global Schauder estimates for
the Boltzmann equation. In this case, we work with a more general equation, the
linear Boltzmann equation,

(7.1) pBt ` v ¨ ∇xqg “ Q1pf, gq ` h in p0, T q ˆ R
d ˆ R

d.

Theorem 4.5 gives us local Schauder estimates for the solution g, with a precise
exponent, in terms of Hölder norms of h, g and the kernel Kf . We will combine
it with the change of variables described in Section 5 in order to obtain global
Schauder estimates.

We should not be deceived by the description of (7.1) as a linear equation.
Proposition 7.5 applies whenever a function g satisfies any equation of that form,
for any functions f and h. Whether the functions f , g and h are related to each other
or not is irrelevant for the estimates. In particular, if f “ g and h “ Q2pf, fq, the
estimate in Proposition 7.5 applies to the original (nonlinear) Boltzmann equation.
Equation (7.1) will also be satisfied when g is a directional derivative of f or some
incremental quotient, for an appropriate h in each case. In that sense, an estimate
for (7.1) as in Proposition 7.5 is more general than a Schauder estimate for merely
the original Boltzmann equation (1.1).

Proposition 7.5 (Global Schauder estimates). Let f : p0, T q ˆ R
d ˆ R

d Ñ r0,8q
be such that Assumption 1.1 holds. Assume also that f P Cα

ℓ,fast for some α P
p0,minp1, 2sqq. Let g P Cα

ℓ,fast be a solution of (7.1) with h P Cα1

ℓ,fast with α1 “ 2s
1`2s

α

and 2s`α1 R t1, 2u. Then for all τ ą 0, we have the following a priori estimate for

g in C2s`α1

ℓ,fast prτ, T s ˆ R
d ˆ R

dq, for each q ą d ` 2 ` 2s,

}g}
C

2s`α1
ℓ,q

prτ,T sˆRdˆRdq ď C
´

}g}Cα
ℓ,q`κ

pr0,T sˆRdˆRdqq ` }h}
Cα1

ℓ,q`κ
pr0,T sˆRdˆRdq

¯

,

where the constant κ depends on s and γ only, and C depends on r, q, dimension d,
parameters s, γ in (1.3), m0,M0, E0, H0 from Assumption 1.1, τ and
}f}Cα

ℓ,q`κ
pQrpz0qq.

Proof. Like in the proof of Proposition 7.1, we concentrate on |v0| ą 2 and assume
without loss of generality that τ ě 1. Let us pick any z0 so that E1pz0q Ă r0, T s ˆ
R

d ˆ R
d.

Let ϕ be the cutoff function as in (6.1).
We multiply g by p1´ϕq in order to concentrate on velocities |v| ě |v0|{9. Then,

we change variables by looking at ḡ “ rp1 ´ ϕqgs ˝ T0. Recall that T0 maps Q1

into the slanted ellipsoidal cylinder E1pz0q. The function ḡ satisfies the following
equation in Q1,

Btḡ ` v ¨ ∇xḡ “
ˆ
ˆ

Rd

pḡ1 ´ ḡqK̄f pt, x, v, v1q dv1
˙

` h̄ ` h̄2.

Here, K̄f is the kernel after the change of variables, as in (5.4).
The function h̄ corresponds to the source term h after the change of variables.

The new source term h̄2 is the result of our application of the cutoff factor p1´ϕq.
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The functions h̄ and h̄2 are given by

h̄ :“ |v0|´γ´2sh ˝ T0,

h̄2 :“ |v0|´γ´2s

ˆ

Rd

ϕpv1qgpt̄, x̄, v1qKf pt̄, x̄, v̄, v1q dv1.

As usual, we write z̄ “ pt̄, x̄, v̄q “ T0z.
According to the Schauder estimates of Theorem 4.5, we get

rḡs
C

2s`α1
ℓ

pQ1q À
ˆ

1 ` Ā
2s`α1´α

α1
0

˙

rḡsCα
ℓ

pr´22s,0sˆB2ˆRdq ` rh̄ ` h̄2s
Cα1

ℓ
pQ2q

` p1 ` Ā0q}h̄ ` h̄2}C0pQ2q,

“: T1 ` T2 ` T3.

Since we know from Lemma 5.20 that rgs
C

2s`α1
ℓ

pE1pz0qq À |v0|c̄p2s`α1qrḡs
C

2s`α1
ℓ

pQ1q,

the proof of this proposition will proceed by estimating the right hand side in the
inequality above. Let us estimate the three terms T1, T2 and T3, one by one.

For the first term, let us observe that by the construction of ϕ and the definition
of the norm Cα

ℓ,q,

rp1 ´ ϕqgsCα
ℓ

pr0,T sˆRdˆRdq À p1 ` |v0|q´q}g}Cα
ℓ,q

pr0,T sˆRdˆRdq.

Combining with the change of variables and using Lemma 5.20,

(7.2) rḡsCα
ℓ

pr´22s,0sˆB2ˆRdq ď p1 ` |v0|q´q1}g}Cα
ℓ,q1

pr0,T sˆRdˆRdq.

The estimate in (7.2) holds for any value of q1 ą 0.
Using Lemma 5.21, we have that, for any q1 ą d ` 2 ` α{p1 ` 2sq

Ā0 À p1 ` |v0|q α
1`2s

p1´2s´γq` }f}Cα
ℓ,q1

.

Combining it with (7.2), we estimate the first term T1 as

T1 À |v0|´q1}g}Cα
ℓ,q1

` |v0|´q1` α
1`2s

p1´2s´γq`
2s`α1´α

α1 }f}
2s`α1´α

α1
Cα

ℓ,q1

}g}Cα
ℓ,q1

,

“ |v0|´q1}g}Cα
ℓ,q1

` |v0|´q1`p1´2s´γq`p1´ α
2sp1`2sq q}f}

2s`α1´α

α1
Cα

ℓ,q1

}g}Cα
ℓ,q1

,

ď |v0|´q1}g}Cα
ℓ,q1

` |v0|´q1`1}f}
2s`α1´α

α1
Cα

ℓ,q1

}g}Cα
ℓ,q1

.

This is true for any q1 ą d ` 2 ` α{p1 ` 2sq.
For the other terms, we must estimate the Cα1

ℓ norms of h̄ and h̄2. In the case
of h̄, we simply observe that

}h̄}C0pQ2q “ |v0|´γ´2s}h}C0pE2pz0qq,

ď |v0|´γ´2s´q1}h}C0

ℓ,q1

.

rh̄s
Cα1

ℓ
pQ2q ď |v0|´γ´2srhs

Cα1
ℓ

pE2pz0qq,

ď |v0|´γ´2s´q1rhs
Cα1

ℓ,q1

.
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In the case of h̄2, we apply Lemma 6.3 (with q “ q1) and Corollary 6.7 (with
q “ q1 ´ α{p1 ` 2sq) and obtain for any q1 ą d ` pγ ` 2sq,

}h̄2}C0

ℓ
pQ2q À |v0|´q1´2s}g}C0

ℓ,q1

}f}C0

ℓ,q1

,

rh̄2s
Cα1

ℓ
pQ2q À |v0|´q1´2s`2α{p1`2sq}f}Cα

ℓ,q1
}g}Cα

ℓ,q1
.

We use these estimates to obtain upper bounds for T2 and T3.

T2 À |v0|´γ´2s´q1rhs
Cα1

ℓ,q1

` |v0|´q1´2s`2α{p1`2sq}f}Cα
ℓ,q1

}g}Cα
ℓ,q1

,

T3 À
´

1 ` |v0| α
1`2s

p1´2s´γq` }f}Cα
ℓ,q1

¯ ´

|v0|´γ´2s´q1}h}C0

ℓ,q1

`|v0|´q1´2s}g}C0

ℓ,q1

}f}C0

ℓ,q1

¯

.

Finally, using Lemma 5.20,

(7.3) rgs
C

2s`α1
ℓ

pE1pz0qq À |v0|c̄p2s`α1qrḡs
C

2s`α1
ℓ

pQ1q À |v0|c̄p2s`α1qpT1 ` T2 ` T3q.

Note that E1pz0q Ą Q|v0|´c̃pz0q with c̃ “ maxp1, pγ ` 2sq{p2sqq and (7.3) holds
at any point z0. Using Lemma 3.5, we extend the inequality to the larger domain
Q1pz0q,

rgs
C

2s`α1
ℓ

pQ1pz0qq À |v0|c̄p2s`α1qpT1 ` T2 ` T3q ` |v0|c̃p2s`α1q}g}C0

ℓ
pQ1pz0qq.

Collecting all inequalities, not tracking the dependence on }f}Cα
ℓ,q1

, and keeping

only the largest exponents of |v0|, we are left with

ď C
´

|v0|´q1`κ}g}Cα
ℓ,q1

` |v0|´q1`κ}h}
Cα1

ℓ,q1

¯

.

Here, the constant C depends on }f}Cα
ℓ,q1

and κ depends on s and γ only.

For any given value of q, we pick q1 “ q ` κ and conclude the proof of the
proposition. �

Remark 7.6. In Proposition 7.5, we obtain a priori estimates for the norms }g}
C

2s`α1
ℓ,q

in terms of }g}Cα
ℓ,q1

, }f}Cα
ℓ,q1

and }h}
Cα1

ℓ,q1

for q1 “ q ` κ. Note that we gain some

regularity in the estimate but we lose some decay from q to q1. We have made no
effort to make the choice of q1 as q ` κ optimal. Since we work with functions that
have a rapid decay as |v| Ñ 8, the precise exponent in the loss of decay in the
estimate has no consequence for our proof.

Remark 7.7. Following the proof of Proposition 7.5 one can compute how the con-

stant C depends on }f}Cα
ℓ,q`κ

. We get C « }f}
α`2s´α1

α1
Cα

ℓ,q`κ
“ }f}1{p2sq`p1`2sq{α

Cα
ℓ,q`κ

.

Corollary 7.8. Let f be a solution of the Boltzmann equation (1.1) in p0, T qˆR
dˆ

R
d so that Assumption 1.1 holds. If γ ď 0, assume further that fp0, x, vq “ f0px, vq

with

0 ď f0px, vq ď Nqp1 ` |v|q´q,

for all non-negative integers q.
Then, for some α ą 0 and every q P N, the norm }f}

C
2s`α
ℓ,q

ppτ,T qˆRdˆRdq is

bounded depending only d, γ, s, τ , the parameters in Assumption 1.1, and the
values of Nq (if γ ď 0).
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Proof. Applying Theorem 2.2, we get an estimate for the norms }f}C0

ℓ,q
pτ{3,T q̂ Rd̂ Rdq

for any value of q P N.
Applying Corollary 7.4, we get an estimate for the norms }f}Cα

ℓ,q
ppτ{2,T qˆRdˆRdq

for any value of q P N, and some small α ą 0.
Applying Proposition 7.5 to g “ f and h “ f , we conclude the proof of the

corollary. �

8. Increments

In order to bootstrap the regularity estimate from Corollary 7.8, we will apply
the global Schauder estimates from Proposition 7.5 to derivatives and increments
of the solution f iteratively.

Before doing that, we develop some technical lemmas about increments and
Hölder norms in this section. These lemmas allow us to deduce higher order Hölder
estimates from certain Hölder bounds on the increments of functions. The formulas
that we obtain are relatively natural, but some of the proofs are quite technical.
Some readers may choose to skim through this section, skipping the proofs for a
first read.

Let us write

Δyfpzq “ fpz ˝ p0, y, 0qq ´ fpzq and Δwfpzq “ fpz ˝ p0, 0, wqq ´ fpzq

for some small increments y P R
d and w P R

d. Roughly speaking, the global
Schauder estimate from Proposition 7.5 allows us to gain only 2s derivatives at
each iteration, which can be less than 1 if s ă 1{2. In order to gain one full
derivative in each variable, we will apply this estimate to increments of f as above.

The following fact about (usual) Hölder spaces is commonly used to study the
regularity of solutions to nonlinear equations (see [11, Lemma 5.6]). If f : R Ñ R is
a Cα function, and the Cα semi-norm of the increments fpx`hq ´fpxq is bounded
above by À |h|β, then f is Hölder continuous with the larger exponent minpα`β, 1q.
In our current context of kinetic equations, the underlying geometry and Galilean
invariance make the procedure more complicated. Here, we present two separate
lemmas that involve increments in space and velocity respectively. They allow us to
transfer a regularity estimate for an increment, into a higher order of differentiation.

In spite of the apparent simplicity of the statement, the proof is rather involved.
The first step in the proof is inspired by [11, Lemma 5.6].

Lemma 8.1 (Gaining regularity with increments). Let α1, α2 ą 0 and β ě 0.
Given a cylinder Q “ QRpz0q with R P p0, 1q and a bounded continuous function f

defined in Q, we consider the following function for any a P QR{2 with a “ p0, y, 0q
or a “ p0, 0, wq,

Δafpzq “ fpz ˝ aq ´ fpzq.

It is defined in Qint “ QR{2pz0q.
We assume there exists an N ą 0 such that for all a P QR{2 as above,

(8.1) }Δaf}C0pQintq ď N, rΔaf s
C

α1`α2

ℓ
pQintq ď N}p0, y, 0q}β.
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Let ι “ 1 if a “ p0, y, 0q and ι “ 0 if a “ p0, 0, wq. We assume that α2 P
p0,minp1, 2sqs, α1 `α2 ď 1` ι2s, α1 `β ď 1` ι2s. Then for all a P QR{2 as above,

#›

›Δaf
›

›

C
α2

ℓ
pQintq À N}a}α1`β if α1 ` α2 ` β ď 1 ` ι2s,

›

›Δaf
›

›

C
η

ℓ
pQintq À N}a}1`2s if α1 ` α2 ` β ą 1 ` ι2s,

for some η “ ηpα1, α2, β, sq ą 0.

Remark 8.2. One might expect that η “ α1 ` α2 ` β ´ p1 ` 2sq. Our proof gives
us a smaller number η ą 0, with an explicit formula. We do not know if the value
we obtain is sharp.

Proof. Let pz denote the polynomial expansion of f at z of kinetic degree strictly
smaller than α1 `α2. The assumption (8.1) implies in particular the following: for
all z P Qint and ξ such that z ˝ ξ P Qint,

(8.2) |Δafpz ˝ ξq ´ δapzpξq| ď N}a}β}ξ}α1`α2 ,

where Δafpzq “ fpz ˝aq ´fpzq and where δapz is the polynomial expansion of Δaf

at the point z.
We abuse notation by writing Δyf “ Δp0,y,0qf , δypz “ δp0,y,0qpz, Δwf “

Δp0,0,wqf and δwpz “ δp0,0,wqpz. Since α2 P p0,minp1, 2sqq, we aim at proving
that for z P Qint and a P QR{2 and ξ such that z ˝ ξ P Qint,

|Δafpz ˝ ξq ´ Δafpzq| À N}a}α1`β}ξ}α2 , if α1 ` α2 ` β ď 1 ` ι2s,(8.3)

|Δafpz ˝ ξq ´ Δafpzq| À N}a}1`ι2s}ξ}η, if α1 ` α2 ` β ą 1 ` ι2s,(8.4)

where ι “ 1 for a “ p0, y, 0q and ι “ 0 if a “ p0, 0, wq.
The remainder of the proof proceeds in several steps. The first one is reminiscent

of the proof of [11, Lemma 5.6].

Step 1. We claim that for all z P Qint and all k P N such that z ˝ p2kaq P Qint, we
have

|Δafpzq ´ 2´kΔ2kafpzq| ÀN}a}β`α1`α22
kpβ`α1`α2

1`ι2s
´1q` .(8.5)

In order to get such an estimate, we remark that

Δ2afpzq “ Δafpzq ` Δafpz ˝ aq.
Using (8.2), we thus get

|Δ2afpzq ´ 2Δafpzq| “ |Δafpz ˝ aq ´ Δafpzq|
À N}a}α1`α2`β ` |δapzpaq ´ Δafpzq|.

Since the polynomial pz is of degree strictly less than α1 ` α2, we have for ξ “
pξt, ξx, ξvq P R

1`2d,
(8.6)

δapzpξq “ Δafpzq ` pBt ` v ¨ ∇xqΔafpzqξt
looooooooooooomooooooooooooon

if α1`α2ą2s

` DvΔafpzq ¨ ξv
looooooomooooooon

if α1`α2ą1

` 1

2
D2

vΔafpzqξv ¨ ξv
looooooooomooooooooon

if α1`α2ą2

.

In particular, since α1`α2 ď 1 when a “ p0, 0, wq, we remark that, when evaluating
the previous expression with a “ p0, y, 0q at ξ “ p0, y, 0q or with a “ p0, 0, wq at
ξ “ p0, 0, wq,

δypzpp0, y, 0qq “ Δyfpzq.
In the case a “ p0, 0, wq, we used the assumption α1 ` α2 ď 1.
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We thus conclude that

|Δ2afpzq ´ 2Δafpzq| À N}a}α1`α2`β

or equivalently

|Δafpzq ´ 2´1Δ2afpzq| À 2´1N}a}α1`α2`β.

By induction, we get

|Δafpzq ´ 2´kΔ2kafpzq| À N

k
ÿ

j“1

2´j}2j´1a}α1`α2`β

À N}a}α1`α2`β
k

ÿ

j“1

2´j`pj´1q α1`α2`β

1`ι2s

À N}a}α1`α2`β2
kpα1`α2`β

1`ι2s
´1q` .

This achieves the proof of the claim.

Step 2. We claim now that for z P Qint and a P QR{2,

(8.7) |Δafpzq| À N}a}m

with m “ minpα1 ` α2 ` β, 1 ` ι2sq. It is enough to pick an integer k “ kpaq such
that }2ka} » 1 (or equivalently 2´k » }a}1`ι2s), and apply Claim (8.5) from Step 1.

Indeed, using the assumption α1 `α2 ď 1 in the case a “ p0, 0, wq, we can write
in both cases

|Δafpzq| À 2´k|Δ2kafpzq| ` N}a}α1`α2`β2
kpα1`α2`β

1`ι2s
´1q`

À }Δ2kaf}C0}a}1`ι2s ` N}a}minpα1`α2`β,1`ι2sq

À N}a}minpα1`α2`β,1`ι2sq.

Because α1 ` β ď 1 ` ι2s and a P Q1, we remark that this implies |Δafpzq| À
N}a}α1`β . We are thus left with estimating the semi-norm.

Step 3. We next claim that for z P Qint and a P QR{2,

(8.8)

$

’

’

&

’

’

%

|pBt ` v ¨ ∇xqΔafpzq| À N}a}m´p2sqθ if α1 ` α2 ą 2s,

|DvΔafpzq| À N}a}m´θ if α1 ` α2 ą 1,

|D2
vΔafpzq| À N}a}m´2θ if α1 ` α2 ą 2,

where

(8.9) m “ minpα1 ` α2 ` β, 1 ` ι2sq and θ “ min

ˆ

1,
1 ` ι2s ´ β

α1 ` α2

˙

.

It is a consequence of the assumption (8.2), the estimate (8.7) from Step 2 and
the interpolation inequality given by Proposition 3.3. For instance, in the case
a “ p0, y, 0q and if α1 ` α2 ą 2s, we have

rpBt ` v ¨ ∇xqΔyf sC0

ℓ
pQintq À rΔyf sC2s

ℓ
pQintq

À rΔyf s1´ 2s
α1`α2

C0

ℓ
pQintq rΔyf s

2s
α1`α2

C
α1`α2

ℓ
pQintq

` rΔyf sC0

ℓ
pQintq

À N}p0, y, 0q}
´

1´ 2s
α1`α2

¯

m` 2s
α1`α2

β
.
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We now remark that
´

1 ´ 2s
α1`α2

¯

m ` 2s
α1`α2

β “ m ´ 2sθ. The other cases are

treated similarly.

Step 4. Let z P Qint and a P QR{2 and ξ such that z ˝ ξ P Qint. Assume }ξ} ď }a}.
We derive from (8.6) and the previous step

|δapzpξq ´ Δafpzq| À N
`

}a}m´2sθ}ξ}2s ` }a}m´θ}ξ} ` }a}m´2θ}ξ}2
˘

,

“ N}a}m
˜

ˆ }ξ}
}a}θ

˙2s

`
ˆ }ξ}

}a}θ
˙

`
ˆ }ξ}

}a}θ
˙2

¸

.

Since θ ď 1 and we are now focusing on the case }ξ} ď }a},
(8.10)

|δapzpξq ´ Δafpzq| À N}a}m
ˆ }ξ}

}a}θ
˙minp1,2sq

“ N}a}m´θminp1,2sq}ξ}minp1,2sq.

Here m and θ are given in (8.9).

Step 5. Assume }a} Á }ξ}.
We first use (8.2) with }a} Á }ξ} to get

(8.11) |Δafpz ˝ ξq ´ δapzpξq| À N}a}α1`β}ξ}α2 .

We claim that in the case α1 `α2 `β ď 1`2s for a “ p0, y, 0q or α1 `α2 `β ď 1
for a “ p0, 0, wq, (8.3) holds true. Indeed, since in this case m “ α1 ` α2 ` β and
θ “ 1 and we also have α2 ă minp1, 2sq, in view of (8.10) we get

|δapzpξq ´ Δafpzq| À N}a}α1`α2`β´minp1,2sq}ξ}minp1,2sq À N}a}β`α1}ξ}α2 .

Adding the previous two inequalities, we get (8.3) for such a’s and ξ’s.
For those values of α1, α2 and β so that θ ‰ 1, we obtain a somewhat weaker

estimate. In this case, (8.10) tells us that

|δapzpξq ´ Δafpzq| À N}a}1`ι2s´minp1,2sqθ}ξ}minp1,2sq À N}a}1`ι2s}ξ}minp1,2sqp1´θq.

The last inequality holds because }ξ} À }a}.
In this case, using again that }ξ} À }a}, (8.11) implies that

|Δafpz ˝ ξq ´ δapzpξq| À N}a}α1`β}ξ}α2 À N}a}1`ι2s}ξ}α2´p1`ι2s´pβ`α1qq

À N}a}1`ι2s}ξ}p1´θqpα1`α2q.

Combining the two inequalities above, we get

|Δafpz ˝ ξq ´ Δafpzq| À N}a}1`ι2s}ξ}η,
where

(8.12) η “ minp1, 2s, α1 ` α2qp1 ´ θq.
Step 6. We finally claim that (8.3), (8.4) hold true in all cases. In order to prove
it, we only have to deal with the case }a} À }ξ} in which we pick k P N such that
}2ka} » }ξ}. In this case, we can use (8.3), (8.4) with 2ka and ξ (from Step 5) and
α1 ` β ď 1 ` ι2s and get

|2´kΔ2kafpz ˝ ξq ´ 2´kΔ2kafpzq| À N}a}α1`β}ξ}α2 if α1 ` α2 ` β ď 1 ` ι2s,

(8.13)

|2´kΔ2kafpz ˝ ξq ´ 2´kΔ2kafpzq| À N}a}1`ι2s}ξ}η, if α1 ` α2 ` β ą 1 ` ι2s.

(8.14)

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY ESTIMATES FOR BOLTZMANN 689

We now use twice what we obtained in Step 1, to z and z˝ξ, and get for α1`α2`β ď
1 ` ι2s (using α1 ` β ď 1 ` ι2s once again),

|Δafpz ˝ ξq ´ 2´kΔ2kafpz ˝ ξq| À N}a}α1`β}ξ}α2 ,(8.15)

|Δafpzq ´ 2´kΔ2kafpzq| À N}a}α1`β}ξ}α2 ,(8.16)

and for α1 ` α2 ` β ą 1 ` ι2s,

|Δafpz ˝ ξq ´ 2´kΔ2kafpz ˝ ξq| À N}a}1`ι2s}ξ}η,(8.17)

|Δafpzq ´ 2´kΔ2kafpzq| À N}a}1`ι2s}ξ}η.(8.18)

Summing (8.13), (8.15) and (8.16) yields (8.3) for all y and ξ. In the same way,
Summing (8.14), (8.17) and (8.18) yields (8.4) for all y and ξ. This achieves the
proof of the lemma.

�

Lemma 8.3 (Hölder continuous increments in x). Given y P BR1`2s{2 with R ď 1

and α P p0,minp1, 2sqs and some cylinder Q “ QRpz0q, let f P C2s`α
ℓ pQq. Then

Δyf lies in Cα
ℓ pQintq with Qint “ QR{2pz0q and

(8.19) }Δyf}Cα
ℓ

pQintq ď C}f}C2s`α
ℓ

pQq}p0, y, 0q}2s

for some constant C only depending on dimension and s.

Remark 8.4. This lemma and the following one can be seen as discrete counterparts
of [34, Lemma 2.5].

Proof. We remark that the assumption of the lemma implies that the assumption
of Lemma 8.1 holds true with β “ 0 and α1 “ 2s and α2 “ α with N “ 2}f}Cα

ℓ
pQq.

Applying Lemma 8.1 yields the desired result. �

Lemma 8.3 can also be proved directly along the lines of the proof of Lemma 8.5.
The proof would be easier because p0, y, 0q belongs to the center of the Lie group
and thus z ˝ p0, y, 0q ˝ ξ “ z ˝ ξ ˝ p0, y, 0q.
Lemma 8.5 (Hölder continuous increments in v). Given w P BR{2 with R ď 1, and

2s ` α ă 1 and α ď minp1, 2sq and some cylinder Q “ QRpz0q, let f P C2s`α
ℓ pQq

such that ∇xf P C0pQq. Then Δwf lies in Cα
ℓ pQintq with Qint “ QR{2pz0q and

(8.20) rΔwf sCα
ℓ

pQintq ď Cprf sC2s`α
ℓ

pQq ` |w|1´α}∇xf}C0pQqq}p0, 0, wq}2s

for some constant C only depending on dimension and s.

Proof. It is convenient to write a “ p0, 0, wq. We need to estimate the quantity

W :“ |Δafpz ˝ ξq ´ Δafpzq| “ |fpz ˝ ξ ˝ aq ´ fpz ˝ ξq ´ fpz ˝ aq ` fpzq|.
The easiest case is when }a} ď }ξ}. In this case, we apply Definition 3.2 at the
point z and z ˝ ξ with increment a. We get

|fpz ˝ ξ ˝ aq ´ pz˝ξpaq| ď rf sC2s`α
ℓ

}a}2s`α, |fpz ˝ aq ´ pzpaq| ď rf sC2s`α
ℓ

}a}2s`α.

The polynomials pz and pz˝ξ are of kinetic degree less than 2s`α ă 1. Thus, they do
not have any component in the “v” variable: pzp0, 0, wq “ fpzq and pz˝ξp0, 0, wq “
fpz ˝ ξq. Thus,

W ď 2rf sC2s`α
ℓ

}a}2s`α À rf sC2s`α
ℓ

}a}2s}ξ}α.
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The last inequality holds when }a} ď }ξ}. Note that for this case, we did not need
a correction in terms of }∇xf}C0pQq. For }a} ą }ξ}, we will need an alternative
chain of inequalities.

When }a} ą }ξ}, we apply Definition 3.2 at the point z and z ˝ a with increment
ξ. We get
(8.21)
|fpz ˝ a ˝ ξq ´ pz˝apξq| ď rf sC2s`α

ℓ
}ξ}2s`α, |fpz ˝ ξq ´ pzpξq| ď rf sC2s`α

ℓ
}ξ}2s`α.

The polynomials pz and pz˝a have kinetic degree less than 2s ` α ă 1. Thus, they
have at most two nonzero terms, the constant one, and the one in the “t” variable.
They are (see [34])
(8.22)
pzpξq “ fpzq`pBt`v ¨∇xqfpzqξt, pz˝apξq “ fpz˝aq`pBt`pv`wq¨∇xqfpz˝aqξt.

Note that z˝a˝ξ differs from z˝ξ˝a. We estimate this discrepancy. If z “ pt, x, vq
and ξ “ pξt, ξx, ξvq, we have

fpz ˝ a ˝ ξq ´ fpz ˝ ξ ˝ aq “ fpt ` ξt, x ` ξx ` ξtpv ` wq, v ` ξv ` wq
´ fpt ` ξt, x ` ξx ` ξtv, v ` ξv ` wq

“
ˆ 1

0

∇xfpt`ξt, x`ξx`ξtv`θξtw, v`ξv`wq ¨ ξtw dθ.

This implies that

|fpz ˝ a ˝ ξq ´ fpz ˝ ξ ˝ aq ´ pw ¨ ∇xfpz ˝ aqqξt|

ď |ξt||w|
ˆ 1

0

|∇xfpt ` ξt, x ` ξx ` ξtv ` θξtw, v ` ξv ` wq

´ ∇xfpt, x, v ` wq| dθ
ď 2}∇xf}C0}ξ}2s|w|.

We combine this with (8.21) and (8.22) to obtain the following upper bound for
W ,

W ď 2rf sC2s`α
ℓ

}ξ}2s`α ` }∇xf}C0 |w|}ξ}2s

` |pBt ` v ¨ ∇xqfpzq ´ pBt ` pv ` wq ¨ ∇xqfpz ˝ aq||ξt|.

Using [34, Lemma 2.7 for D “ pBt ` v ¨ ∇xq],

ď 2rf s
C

2s`α
ℓ

}ξ}2s`α ` }∇xf}C0
|w|}ξ}2s ` rf s

C
2s`α
ℓ

}a}α}ξ}2s,

À
´

rf sC2s`α
ℓ

` |w|1´α}∇xf}C0

¯

}a}2s}ξ}α.

For the last inequality, we used |w| “ }a} ě }ξ} and α ď 2s. �

9. The proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. By an iterative process, we
will establish the following family of inequalities. For all differential operators
D “ Bkt

t Dkx
x Dkv

v with k “ pkt, kx, kvq P N
1`2d, there exists α ą 0 so that for all

τ ą 0 and q ą 0 there is a constant Ck,q (depending on kt, kx, kv, q, τ , and the
parameters in Theorem 1.2) such that

(9.1) }Df}C2s`α
ℓ,q

prτ,8qˆRdˆRdq ď Ck,q.
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REGULARITY ESTIMATES FOR BOLTZMANN 691

The value of α that we obtain in the iteration will also depend on k and it will tend
to be smaller as the order of differentiation increases. A posteriori, we obtain a
C8 estimate for f , so the particular values of α after each iteration do not matter.
In order to be in position to apply the Schauder estimate and gain 2s derivatives,
we will always pick α P p0,minp1, 2sqq such that 2s ` α R t1, 2u. To do so, it is
convenient to work with exponents α such that α ă 1´2s if s ă 1{2 and α ă 2´2s
if s ě 1{2.

We use the (classical) definition Dpkt,kx,kvq “ Bkt

t Bk1

x
x1

. . . Bkd
x

xd Bk1

v
v1 . . . Bkd

v
vd if kx “

pk1x, . . . , kdxq and kv “ pk1v, . . . , kdvq. We recall that the order of a multi-index k P
N

1`2d is kt ` k1x ` . . . kdx ` k1v ` ¨ ¨ ¨ ` kdv and is denoted by |k|. In this section, when
we refer to the order of D, we mean literally the classical order of differentiation
(not the kinetic order as defined in [34]).

Note that the value of Ck,q depends on several parameters. We stress their
dependence with respect to k and q because it affects the order in which these
numbers are computed. As we said, we establish Inequalities (9.1) for every value
of k and q iteratively. We first prove them for k “ p0, 0, 0q and any value of q. Then,
we will compute Ck,q in terms of the values of Ci,q`κ`3 for multi-indices i P N

1`2d

so that either |i| ă |k| or |i| “ |k| and ix ą kx. In other words, the upper bounds for
the differential operator Dkf will depend on the bounds for lower order operators,
and on the bounds for operators with the same total order but higher order in x.
We observe that the computation of any of these values Ck,q would involve finitely
many iterations, starting from the family of inequalities (9.1) for k “ 0. Note the
addition “`γ” in the decay exponent q ` κ ` 3, which is not problematic since we
start with the inequality C0,q for every value of q. This loss κ ` 3 only depends on
the parameter s and γ from the collision kernel B; see (1.3).

There are several sequential orders which we could employ in order to compute
all the constants Ck,q. In this proof, we make the following (somewhat arbitrary)
choice. We first establish (9.1) for k “ p0, kx, 0q, with kt “ |kv| “ 0. In the second
step, we extend the inequalities (9.1) to indices of the form k “ pkt, kx, 0q, with
kv “ 0. In the third and last step, we establish (9.1) for all values of k P N

1`2d.
By proving Estimates (9.1) in this order, we ensure that we always have enough
previous information to establish the value of Ck,q in each step.

We start with a function f P C0
ℓ,fast (according to Theorem 2.2). The iteration

procedure described below allows us to obtain upper bounds of the form (9.1) for
increasingly higher values of |k|. If we only had an upper bound for }f}C0

ℓ,q
for

some finite exponent q, the iteration would provide regularity estimates only up to
certain order of differentiation.

The zeroth step of the iteration is to apply Corollary 7.8, which provides In-
equality (9.1) for kt “ 0, kx “ 0, kv “ 0. This is the case where Df “ f . The
remainder of the proof proceeds in three steps, as described above.

Step 1. We prove (9.1) holds true for all differential operators of the form D “ Dkx
x .

We proceed by induction on n “ |kx|. It is convenient to make the inductive
statement in terms of increments. More precisely, we are going to prove by induction
on n ě 1 that there exists an αn such that for any τ ą 0, there exists a Cn,q ą 0
so that
(9.2)

@kx P N
d, q ą 0, y P B1, |kx| ď n ´ 1 ñ }ΔyD

kx
x f}

C
2s`αn
ℓ,q

prτ,8qˆRdˆRdq ď Cn,q|y|,
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692 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

where we recall that Δyfpzq “ fpz ˝ p0, y, 0qq ´ fpzq.
Note that passing to the limit as y Ñ 0, the inequality above implies that for all

|kx| ď n,

(9.3) }Dkx
x f}

C
2s`αn
ℓ,q

prτ,8qˆRdˆRdq ď Cn,q.

Corollary 7.8 provides the case n “ 0 in (9.3). Note that (9.2) holds trivially for
n “ 0 since there is no kx so that |kx| ď ´1. In order to proceed by induction, we
assume we know (9.2) and (9.3) hold up to certain value of n P N and we prove it
for n ` 1.

Let |kx| “ n and g “ ΔyD
kx
x f . By the inductive hypothesis (9.3) combined with

Lemma 8.3, we have that for any value of τ ą 0 and q ą 0,

(9.4) }g}Cαn
ℓ,q

prτ,8qˆRdˆRdq À }p0, y, 0q}2s “ |y|2s{p1`2sq.

We want to enhance the exponent 2s{p1` 2sq on the right hand side all the way to
one. For that, we apply Lemma 9.1 successively.

Lemma 9.1 (Gain of regularity in x). Let g “ ΔyD
kx
x f (as above), β P p0, 1` 2sq

and assume that (9.2) holds true. If there exists ᾱ P p0, αns such that 2s`ᾱ1 R t1, 2u
and

}g}Cᾱ
ℓ,q`κ`3

prτ,8qˆRdˆRdq À }p0, y, 0q}β ,
then

}g}
C

2s`ᾱ1
ℓ,q

pr2τ,8qˆRdˆRdq À }p0, y, 0q}β,

with ᾱ1 “ 2s
1`2s

ᾱ. Here, κ is the constant in Proposition 7.5.

Proof. The key to this lemma is to differentiate (1.1) and compute an equation for
g. Then, we apply the global Schauder estimate of Proposition 7.5 together with
the estimates we have for each incremental quotient.

Indeed, by a direct computation, we verify that g verifies the equation

pBt ` v ¨ ∇xqg ´ Q1pf, gq “ h,

where

h “
ÿ

|i|ăn
iďkx

!

Q1pΔyD̂if, τyDifq ` Q1pD̂if,ΔyDifq
)

`
ÿ

iďkx

!

Q2pΔyD̂if, τyDifq ` Q2pD̂if,ΔyDifq
)

.

Here, i P N
d is a multi-index. When we write i ď kx, we mean that each component

of i is less than or equal to each component of kx. We write τyfpzq “ fpz˝p0, y, 0qq “
Δyf`f . We also write D̂i to denote the differential operator so that Dkx

x “ D̂i˝Di.
Since the index i in the first sum runs over |i| ă n, the inductive hypothesis (9.2)

tells us that both τyDif and ΔyDif are bounded in C2s`αn

ℓ,q`κ`3 by À |y|. Likewise,

for every value of i so that i ď kx, we have Dif , D̂if , ΔyDif , ΔyD̂if , all bounded
in Cαn

ℓ,q`κ`3 by À |y| except for the two extreme cases: ΔyDif for i “ kx and

ΔyD̂if for i “ p0, 0, 0q. Both functions coincide with ΔyD
kx
x f . For this reason, the

hypothesis of the lemma bounds these two functions in Cᾱ
ℓ,q`κ`3 by À }p0, y, 0q}β .
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Taking the previous paragraph into account, we bound each term in h using Lem-
mas 6.8 and 6.2. We obtain a bound for }h}

Cᾱ1
ℓ,q`κ`3´pγ`2sq´α{p1`2sq

and consequently

a bound for }h}
Cᾱ1

ℓ,q`κ
since γ ` 2s ` α{p1 ` 2sq ď 3.

Applying Proposition 7.5, we obtain the desired bound for }g}
C

2s`ᾱ1
ℓ,q

. �

Note that Lemma 9.1 provides a gain in regularity at the expense of a loss in
decay, from q`κ`3 to q. We did not try to make κ explicit in Proposition 7.5 and
`3 is a rather rough overestimation of the additional loss in the decay exponent
when applying Lemmas 6.8 and 6.2.

Applying Lemma 9.1 once, we transform (9.4) into the following inequality, for
every value of q ą 0,

(9.5) }g}
C

2s`α1
n

ℓ,q
pr2τ,8qˆRdˆRdq À }p0, y, 0q}2s “ |y|2s{p1`2sq.

Note that the time shift τ was updated to 2τ . This is because the application
of Proposition 7.5 in the proof of Lemma 9.1 requires a gap in time. We obtain
estimate for every value of τ ą 0 (with constants depending on τ ). So, the difference
between τ and 2τ is not relevant for the final estimates. In view of this observation,
we will omit the domain dependence in the estimates below as a way to unclutter
the expressions and focus on the Hölder and decay exponents.

The estimate (9.5) can be combined with Lemma 8.1 for pα1, α2, βq “ p2s, α1
n, 2sq.

We get

(9.6) }g}
C

α1
n

ℓ,q

À }p0, y, 0q}4s.

This is an improvement on the exponent on the right hand side of (9.4) from
2s to 4s (at the expense of reducing αn to α1

n). We continue applying Lemma 9.1
together with Lemma 8.1 successively improving the exponent on the right hand
side to 6s, 8s, 10s, . . . for as long as this exponent is strictly less than 1` 2s. After
j steps, we are left with the inequality

}g}
C

α̃j

ℓ,q

À }p0, y, 0q}2spj`1q where α̃j :“
ˆ

2s

1 ` 2s

˙j

αn.

This iteration continues identically until α̃j ` pj ` 1qp2sq ą 1 ` 2s. At that point,
Lemma 8.1 takes a different form and the next step gives us

}g}
C

α̃j`1

ℓ,q

À }p0, y, 0q}1`2s.

If the value of α̃j ` pj`1qp2sq is only barely above 1`2s, the value of α̃j`1 that we
would get applying Lemma 8.1 might be tiny. In order to avoid that inconvenience,
if α̃j ` jp2sq P p1, 1 ` ss, then we can perform an intermediate step gaining s

derivatives instead of 2s derivatives, i.e. taking α1 “ s when applying Lemma 8.1.
That way, we ensure that the value of α̃j`1 is bounded below only in terms of the
parameters of Theorem 1.2. One more application of Lemma 9.1 gives us

(9.7) }g}
C

2s`α̃j`1

ℓ,q

À }p0, y, 0q}1`2s “ |y|.

Recalling that g “ ΔyD
kx
x f , we finished the proof of (9.2) with αn`1 :“ α̃j`1 ď

αn ă 1´2s. This finishes Step 1 in the proof of Theorem 1.2. That is, we obtained
(9.1) when D involves derivatives with respect to x only.
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Step 2. We next prove that for all k “ pkt, kx, 0q, and all q ą 0 and τ ą 0,

we can control }Bkt

t Dkx
x f}

C
2s`αk
ℓ,q

for some small αk ą 0. That means that for any

τ ą 0, there is a Ck,q so that

(9.8) }Bkt

t Dkx
x f}

C
2s`αk
ℓ,q

prτ,8qˆRdˆRdq ď Ck,q.

We are going to derive (9.8) for all kx by induction on n “ kt. Remark that for
n “ 0, we proved these estimates for all kx in Step 1. We argue by induction as
follows: we prove that, given any n P N, n ě 1, and m P N, if (9.8) holds whenever
kt ď n ´ 1 and |kx| ď m ` 1, and also for kt “ n and |kx| ă m, then it also holds
true for kt “ n and |kx| “ m.

Let n ě 1 and kx P N
d be any multi-index with |kx| “ m. Using the inductive

hypothesis (9.8) with kt “ n ´ 1, we apply [34, Lemma 2.6] and, for any value of
q ą 0, get a bound on

}pBt ` v ¨ ∇xqBn´1
t Dkx

x f}Cα
ℓ,q

À Ck0,q

with k0 “ pn ´ 1, kx, 0q.
Using the induction assumption for kt “ n´ 1, |k̃x| “ m` 1, we also control the

norm of pv ¨ ∇xqBn´1
t Dkx

x f ,

}pv ¨ ∇xqBn´1
t Dkx

x f}C2s`α
ℓ,q

ď }Bn´1
t ∇xD

kx
x f}C2s`α

ℓ,q`1

À max
k̃

Ck̃,q`1

with k̃ “ pn ´ 1, k̃x, 0q and |k̃x| “ m ` 1.
Therefore, we combine the last two estimates to obtain the inequality, for some

α ą 0 and some constant C depending on n and m,

(9.9) }Bn
t D

kx
x f}Cα

ℓ,q
ď C.

Our next objective is to turn the estimate (9.9) into

(9.10) }Bn
t D

kx
x f}

C
2s`α1
ℓ,q

ď C.

Let g :“ Bn
t D

kx
x f . We compute an equation for g and get

pBt ` v ¨ ∇xqg ´ Q1pf, gq “ h,

where

h “
ÿ

iďpn,kx,0q
i‰pn,kx,0q

Q1pD̂if,Difq `
ÿ

iďpn,kx,0q
Q2pD̂if,Difq.

Here, i P N
1`2d is a multi-index, and like in Step 1, Bn

t D
kx
x “ D̂i ˝ Di.

An inspection of the functions involved in h shows that, by applying the inductive
hypothesis together with Lemmas 6.8 and 6.2, we bound }h}

Cα1
ℓ,q

for all q ą 0.

Finally, (9.10) follows after applying Proposition 7.5.
Step 3. In the third and last step, we establish the inequality (9.1) for every

differential operator D “ Bkt

t Dkx
x Dkv

v with k P N
1`2d, and for all q ą 0 and τ ą 0.

We will prove that

(9.11)
Dαn,m ą 0 { @k P N

1`2d, q ą 0, w P B1,

t|kv| ď n, kt ` |kx| ď mu ñ }Df}
C

2s`αn,m

ℓ,q

ď Cn,m.

We proceed the proof of Step 3 by a bidimensional induction similar as in Step 2.
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If s ě 1{2, we can proceed like in Step 2. Indeed, (9.11) implies that (See
Proposition 3.3)

}BviDf}
C

αn´1,m

ℓ,q

ď Cn´1,m.

Thus, we compute an equation for g “ ∇vDf and argue like in the previous step.
When s ă 1{2, like in Step 1, it is convenient to set up the induction keeping

track of the Hölder regularity of differential operators, and also of increments. Thus,
we prove that for all n ě 1, m P N,

(9.12)
Dαn,m P p0, 1 ´ 2sq, { @k P N

1`2d, q ą 0, w P B1,

t|kv| ď n ´ 1, kt ` |kx| ď mu ñ }ΔwDf}
C

2s`αn,m

ℓ,q

ď Cn,m|w|.

The constants αn,m depend on n, m and the parameters in Assumption 1.1. The
constants Cn,m depend in addition on τ and q. By taking w Ñ 0, (9.12) implies
(9.11).

The case n “ 0 of (9.11) was established in Step 2. The inequality (9.12) holds
trivially for n “ 0.

Now, let n ě 1 and k be any multi-index with |kv| “ n ´ 1 and kt ` |kx| “ m.
From the inductive hypothesis, Df satisfies (9.11). Remark that we can assume
without loss of generality that αn,m ă 1 ´ 2s in (9.11) and (9.12). Thus, for any
q ą 0,

(9.13) }Df}
C

2s`αn´1,m

ℓ,q

ď Cn´1,m.

Let w P B1. Since 2s ` αn´1,m ă 1, we apply Lemma 8.5 together with (9.13)
and obtain, for α “ αn´1,m ą 0,

}ΔwDf}Cα
ℓ,q

À
ˆ

}Df}
C

2s`αn´1,m

ℓ,q

` }∇xDf}
C

αn´1,m`1

ℓ,q

˙

|w|2s

À pCn´1,m ` Cn´1,m`1q |w|2s

À |w|2s.(9.14)

In order to obtain (9.12) for n and m, we need to enhance the exponent on
the right hand side of the inequality above, from 2s all the way to one. We do it
through an iterative process similar to Step 1.

Lemma 9.2 (Gain of regularity in v). Let g “ ΔwDf , β P p0, 1q and assume that
(9.12) holds true for smaller values of n ` m, or for the same value of n ` m with
n smaller. If there exists ᾱ P p0, αns such that 2s ` ᾱ1 R t1, 2u and

(9.15) }g}Cᾱ
ℓ,q`γ`3

prτ,8qˆRdˆRdq À |w|β ,

then

}g}
C

2s`ᾱ1
ℓ,q

pr2τ,8qˆRdˆRdq À |w|β ,

with ᾱ1 “ 2s
1`2s

ᾱ.

Proof. The proof is very similar to the proof of Lemma 9.1. The only difference is
that the equation for g will now have terms involving ∇xDf .

The function ḡ “ Df satisfies

pBt ` v ¨ ∇xqḡ ´ Q1pf, ḡq “ H̄
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with

H̄ “
ÿ

iďk
i‰k

Q1pD̂if,Difq `
ÿ

iďk

Q2pD̂if,Difq ` tpBt ` v ¨ ∇xq, Duf,

where tpBt ` v ¨ ∇xq, Duf “ pBt ` v ¨ ∇xqDf ´ DpBt ` v ¨ ∇xqf (Poisson bracket)

and Di and D̂i are such that Di ˝ D̂i “ D.
Since Bt and D commute, tpBt `v ¨∇xq, Du “ tv ¨∇x, Du. Given k “ pkt, kx, kvq,

by a direct computation one verifies that

tv ¨ ∇x, Du “
ÿ

k̃

Dk̃,

where the multi-index k̃ runs over all multi-indexes with the same order as k so
that Dk̃ “ Bxi

D̃ and Dk “ BviD̃ for some differential operator D̃ and i “ 1, . . . , d.

According to our induction hypothesis, (9.12) holds for all these indexes k̃; therefore

(9.16) }ΔwtpBt ` v ¨ ∇xq, Duf}C2s`α
ℓ,q

ď Cn´1,m`1|w|.

The function g “ ΔwDf satisfies the equation

pBt ` v ¨ ∇xqg ´ Q1pf, gq “ H in p0, T q ˆ R
d ˆ R

d,

where

H “ ΔwH̄ ´
d

ÿ

j“1

wjτwpBxj
Dfq,

“
ÿ

|i|ăn
iďkx

!

Q1pΔyD̂if, τyDifq ` Q1pD̂if,ΔyDifq
)

`
ÿ

iďkx

!

Q2pΔyD̂if, τyDifq ` Q2pD̂if,ΔyDifq
)

` ΔwtpBt ` v ¨ ∇xq, Duf ´
d

ÿ

j“1

wjτwpBxj
Dfq.

The last term is the commutator between Δw and the transport part pBt ` v ¨ ∇xq,
and it is bounded in C2s`α

ℓ,q , for all q ą 0, by the inductive hypothesis. The first
two terms are bounded identically as in the proof of Lemma 9.1. And the third
term was bounded in (9.16). The proof finish by applying Proposition 7.5 to g, in
the same way as in the proof of Lemma 9.1. �

Once Lemma 9.2 is established, the rest of the proof of Step 3 proceeds similarly
as in Step 1 using Lemma 8.1 this time for increments in v instead of increments
in x.

This finishes the proof of Theorem 1.2.

Appendix A. Gressman-Strain coercivity estimate

In this appendix, we show how the change of variables described in Section 5,
together with a local coercivity estimate like the one in Theorem 2.5, can be used to
recover the global coercivity estimate with respect to the lifted anisotropic distance
of Gressman and Strain [24] (see also the prequel paper [23]).
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The transformation T0 defined in (5.3) depends on a given point v0 P R
d. For

any such v0, let us consider the pushed forward distance: for v1, v2 P E1pv0q “
v0 ` T0pB1q,
(A.1) dapv1, v2q “ |T´1

0 pv1 ´ v2q|.
This distance da depends on the choice of v0. However, as we will see, for any
pair v1, v2 P R

d, all the possible values of dapv1, v2q are comparable for all possible
choices of v0 so that v1, v2 P E1pv0q.

We also recall the anisotropic distance defined in [23]: for all v1, v2 P R
d,

(A.2) dGSpv1, v2q “
c

1

4
p|v1|2 ´ |v2|2q2 ` |v1 ´ v2|2.

Lemma A.1 (The anisotropic distance da). Given v0 P R
d with |v0| ě 2, we have

for all v1, v2 P v0 ` T0pB1q,
dapv1, v2q » dGSpv1, v2q.

The hidden constants in » do not depend on any parameter, not even dimension.

Proof. Since T0 is linear, we have to estimate |T´1
0 pv1 ´ v2q|. Let v1,2 “ v1 ´ v2.

We have
v1,2 “ λ

v0

|v0| ` w with w ¨ v0 “ 0.

The real number λ satisfies λ|v0| “ v1,2 ¨ v0 and |v1,2|2 “ λ2 ` |w|2. Hence we have

dapv1, v2q “|T´1
0 pv1,2q| “

a

λ2|v0|2 ` |w|2

“
a

λ2p|v0|2 ´ 1q ` |v1 ´ v2|2

»
a

λ2|v0|2 ` |v1 ´ v2|2

“
a

ppv1 ´ v2q ¨ v0q2 ` |v1 ´ v2|2.
We finally use that T0pB1q is a convex subset of B1 in order to get

ˇ

ˇ

ˇ

ˇ

v1 ` v2

2
´ v0

ˇ

ˇ

ˇ

ˇ

ď 1

which allows us to conclude. �

In [23,24], Gressman and Strain obtained sharp coercivity estimates for the linear
Boltzmann collision operator under some conditions on f on mass, concentration
and moments. In Proposition A.2, we prove an inequality of the same nature.

Proposition A.2 (Coercivity estimate). Let f be non-negative and such that As-
sumption 1.1 holds. If γ ă 0, we also assume (5.5). Let g : Rd Ñ R be an arbitrary
function. Then

´
ˆ

Rd

Qpf, gqg dv(A.3)

ě c

¨

dGSpv,v1qăρ

pgpvq ´ gpv1qq2 p1 ` |v ` v1|qγ`2s`1

dGSpv, v1qd`2s
dv dv1

´ C

ˆ

Rd

gpvq2p1 ` |v|qmaxpγ,0q dv,

where the constants c, ρ and C only depend on dimension d and m0,M0, E0, H0

from Assumption 1.1 and Cγ in (5.5) (only if γ ă 0). We recall that Q denotes
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the Boltzmann collision operator defined in (1.2) and dGS denotes the non-isotropic
distance defined in (A.2).

We recall that the collision operator can be split in a principal part and a lower
order term; see (4.1). We prepare the proof of the proposition by first estimating
from below the principal contribution of the bilinear form xQpf, gq, gyL2 .

Lemma A.3. Let f be non-negative and such that Assumption 1.1 holds, and if
γ ă 0 also (5.5) holds true. Let g : Rd Ñ R be an arbitrary function. Then

¨

dGSpv,v1qăR

pgpvq ´ gpv1qq2Kf pv, v1q dv1 dv(A.4)

ě c

¨

dGSpv,v1qăρ

pgpvq ´ gpv1qq2 p1 ` |v ` v1|qγ`2s`1

dGSpv, v1qd`2s
dv dv1.

Here, the constants c ą 0 and ρ P p0, 1q, R P p2,`8q only depend on dimension d

and m0,M0, E0, H0 from Assumption 1.1 and Cγ in (5.5) (only if γ ă 0). We recall
that Kf is the kernel defined in (4.2) and dGS denotes the non-isotropic distance
defined in (A.2).

Proof. We are going to use the change of variables from Section 5. We recall that
a kernel K̄f is defined in (5.4) and that this kernel satisfies appropriate ellipticity
conditions.

From Corollary 5.8, we know that the kernel K̄f satisfies (5.7), with a constant
λ independent of v0.

Let R0 ě 2 and v0 such that |v0| “ R0. We change variables in (4.10). Recall
that v̄ “ v0 ` T0v and v̄1 “ v0 ` T0v

1. We also write ḡpvq “ gpv̄q. Note that
dv “ |v0| dv̄. Thus, (5.7) for K̄f translates into the following inequality for Kf ,

¨

E1pv0qˆE1pv0q
pgpv̄1q ´ gpv̄qq2|v0|1´γ´2sKf pv̄, v̄1q dv̄1 dv̄

Á |v0|2
¨

E1{2pv0qˆE1{2pv0q
pgpv̄1q ´ gpv̄qq2dGSpv̄, v̄1q´d´2s dv̄1 dv̄,

where we recall that Erpv0q “ v0 ` T0pBrq for r ą 0. We used the definition of da
and Lemma A.1. Rearranging the powers of |v0|, we get for any v0 P R

dzB2,

¨

E1pv0qˆE1pv0q
pgpv̄1q ´ gpv̄qq2Kf pv̄, v̄1q dv̄1 dv̄

Á p1 ` |v0|q1`γ`2s

¨

E1{2pv0qˆE1{2pv0q
pgpv̄1q ´ gpv̄qq2dGSpv̄, v̄1q´d´2s dv̄1 dv̄.

We remark that for v̄, v̄1 P E1{2pv0q, we have 1 ` |v0| » 1 ` |v̄ ` v̄1|. Hence, we get

¨

E1pv0qˆE1pv0q
pgpv̄1q ´ gpv̄qq2Kf pv̄, v̄1q dv̄1 dv̄

Á
¨

E1{2pv0qˆE1{2pv0q
pgpv̄1q ´ gpv̄qq2 p1 ` |v̄ ` v̄1|q1`γ`2s

dGSpv̄, v̄1qd`2s
dv̄1 dv̄.
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We now multiply the previous inequality by |v0|, integrate with respect to v0 P
R

dzB2. We get
¨

pgpv̄1q ´ gpv̄qq2Kf pv̄, v̄1qW1pv̄, v̄1q dv̄1 dv̄(A.5)

Á
¨

pgpv̄1q ´ gpv̄qq2 p1 ` |v̄ ` v̄1|q1`γ`2s

dGSpv̄, v̄1qd`2s
W1{2pv̄, v̄1q dv̄1 dv̄

with

W1pv, v1q :“
ˆ

RdzB2

|v0|1v,v1PE1pv0q dv0 and W1{2pv, v1q :“
ˆ

RdzB2

|v0|1v,v1PE1{2pv0q dv0,

where 1A denotes the indicator function of a set A: 1Apvq “ 1 if v P A and
1Apvq “ 0 if v R A.

We now observe that for some constants R ą 0 (large) and ρ ą 0 (small),

W1pv, v1q À 1tdGSpv,v1qăRu,(A.6)

W1{2pv, v1q Á 1tdGSpv,v1qăρu1tvRB2 or v1RB2u.(A.7)

As far as (A.6) is concerned, if there exists v0 P R
d such that v, v1 P E1pv0q, then

dapv, v1q ă 2; see (A.1). Thus, from Lemma A.1, dGSpv, v1q ă R for some universal
constant R. Moreover, since we have dapv, v0q ă 1, we also have dGSpv, v0q ă R. In
particular |v| « |v0|. The set of points v0 P R

d so that dGSpv, v0q ă R has volume
« p1 ` |v|q´1. Thus, W1 À |v|p1 ` |v|q´1 ď 1, and (A.6) follows. As far as (A.7)
is concerned, if dGSpv, v1q ă ρ for ρ small, then the set of v0 so that v, v1 P E1pv0q
will be indeed of volume « p1` |v|q´1. If v R B2 or v1 R B2, we ensure that at least
half of this set lies outside B2. Note that since |v0| « |v| ą 2 (or |v1| ą 2), we have
|v0|{p1 ` |v|q « 1 and (A.7) follows.

With (A.6) and (A.7) at hand, we can deduce from (A.5) that
¨

tdGSpv̄,v̄1qăRu
pgpv̄1q ´ gpv̄qq2Kf pv̄, v̄1q dv̄1 dv̄

Á
¨

tdGSpv̄,v̄1qăρu
pgpv̄1q ´ gpv̄qq21t|v̄|ą2 or |v̄1|ą2u

p1 ` |v̄ ` v̄1|q1`γ`2s

dGSpv̄, v̄1qd`2s
dv̄1 dv̄.

In order to deal with small velocities, the change of variables is not needed: we
apply (5.7) (scaled to B4) directly to Kf and get

¨

B4ˆB4

pgpv̄1q ´ gpv̄qq2Kf pv̄, v̄1q dv̄1 dv̄

Á
¨

B2ˆB2

pgpv̄1q ´ gpv̄qq2|v̄ ´ v̄1|´d´2s dv̄1 dv̄

Á
¨

tdGSpv̄,v̄1qăρu
pgpv̄1q ´ gpv̄qq21tv̄,v̄1PB2u

p1 ` |v̄ ` v̄1|qγ`2s`1

dGSpv̄, v̄1qd`2s
dv̄1 dv̄.

We conclude the proof by combining the estimate for large velocities with the
one for small velocities. �

We can now prove Proposition A.2.

Proof of Proposition A.2. From Corollary 5.8, we know that K̄f satisfies (5.7) with
a λ ą 0 independent of v0.
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We use again the decomposition (4.1) from [44,47]. After straight-forward arith-
metic manipulations, we get

´
ˆ

Rd

Qpf, gqg dv “ 1

2

¨

RdˆRd

pgpv1q ´ gpvqq2Kf pv, v1q dv1 dv

´ 1

2

ˆ

Rd

gpvq2
ˆ
ˆ

Rd

pKf pv, v1q ´ Kf pv1, vqq dv1
˙

dv,

´
ˆ

Rd

pf ˚ | ¨ |γqgpvq2 dv,

“ I1 ´ I2 ´ I3.

We use Lemma A.3 to estimate the first term. We use [35, Lemma 3.6] to
estimate the second term. In fact, the classical cancellation lemma from [1] (see
also [44, Lemmas 5.1 and 5.2]) tells us that the second and third terms are identical.
Thus, using (5.5) if γ ă 0,

I1 Á
¨

dGSpv,v1qăρ

pgpv1q ´ gpvqq2 p1 ` |v ` v1|q1`γ`2s

dGSpv, v1qd`2s
dv1 dv,

I2 “ I3 “
ˆ

Rd

gpvq2 pfpv ` wq|w|γ dwq dv

ď
#

Cp1 ` |v|qγ
´

Rd gpvq2 dv if γ ě 0, with C “ CpM0, E0q,
Cγ

´

Rd gpvq2 dv if γ ă 0.

The proof is now complete. �

Remark A.4. It is possible to justify that the universal constants R ą ρ can be
chosen arbitrarily using a covering argument as in [14, Section 5.2]. The norm N s

γ

in [23, 24] is defined with ρ “ 1.

Remark A.5. The coercivity estimate from [23] and the coercivity estimates from
[24] and in Proposition A.2 involve different operators. Our proposition, as well as
the estimate in [24], is for the linear operator

(A.8) Lpgq “ ´Qpf, gq,
for any given profile f for which the mass, energy and entropy are bounded above,
and the mass is bounded below. The estimate in [23] is for the linearized Boltzmann
operator

(A.9) Lpgq “ ´M´1{2QpM,M1{2gq ´ M´1{2QpM1{2g,Mq,
where M is a Maxwellian profile.

The linear operators (A.8) and (A.9) are different. The operator (A.8) is useful to
study (so far conditional) regularity estimates for generic solutions of the Boltzmann
equation. The operator (A.9) is useful to study the stability of the equation for
small perturbations around a Maxwellian.

Coercivity estimates from [24] and from Proposition A.2 are proved under slightly
different sets of assumptions. It is assumed in [24] that f satisfies for all v P R

d

and a P rγ, γ ` 2ss

(A.10)

ˆ

Rd

fpwq|w ´ v|ap1 ` |w|qi dw À p1 ` |v|qa
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with i “ 1 if s ă 1
2
and i “ 2 for s ě 1

2
. For γ ă 0, (A.10) implies (5.5) by choosing

a “ γ. Notice that (A.10) implies a control of moments of order 2`γ`2s if s ě 1{2
which can be larger than 2.

Note also that Assumption L in [24] is slightly more general than the upper
bound on the entropy in Assumption 1.1.
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