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1. INTRODUCTION

The Boltzmann equation is a fundamental nonlinear evolution model from statis-
tical mechanics. It describes the evolution of a system made of a very large number
of particles at an intermediate scale between the microscopic one (which consists of
the trajectory of every single particle and their interactions) and the macroscopic
one (the hydrodynamic models like Euler or Navier-Stokes equations).

We consider the space in-homogeneous Boltzmann equation without cut-off,

(1.1) Oif +v-Vaof =Q(f, f) for (t,z,v)e (0,T) x R x R,

Boltzmann’s collision operator Q(f, f) is typically written in the following way

12 Qrn) = [ [ (GO = Fon) f@) Bl = vl cos) o do

where v}, and v are computed in terms of v, and o by the formula

VA ve v — vy v+ ve v — vy
v = 5 + 5O and v, = 5 3

The angle 6 measures the deviation between v and v’. In this case, it is the angle
so that

j— /_
cosfi= ——* 4 ( and  sin(0/2) := . -o) .

v — vy v —wv
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626 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

We consider the standard non-cutoff collision kernels B. They have the form
(1.3) B(r,cos6) = r'b(cos) with b(cosf) ~ |sin(h/2)|~(4-D=2s

with v > —d and s € (0,1).

In a microscopic model where the particles repel each other by an inverse-power
law potential with exponent g > 2, the collision kernel has the form (1.3) with
v=(qg—2d+1)/(¢—1) and s = 1/(¢ — 1) (See for example [47, chapter 1, Section
1.4]). In three dimensions, for inverse-power law potentials, the value of y+2s would
be in the range [—1,1]. Our results in this paper apply to the range v+ 2s € [0, 2].
In Subsection 1.2.3, we briefly discuss the problem with the very soft potential case:
v+ 25 < 0.

We define the hydrodynamic quantities

M(t,x) = / f(t,z,v)dv (mass density),
Rd

E(t,x) ::/ f(t,z,v)|v|*dv  (energy density),
Rd

H(t,z):= fIn f(t,z,v)dv (entropy density).
Rd
These hydrodynamic quantities, together with moment density, are the quantities
associated with the solution of the Boltzmann equation that are macroscopically
observable.

In this article, we are concerned with regularity estimates for the solution of (1.1).
This is intimately related with the well-posedness problem for smooth classical so-
lutions. The question of existence of global smooth solutions for the Boltzmann
equation (1.1) is a well known and remarkable open problem. There is a warm dis-
cussion about it in the first chapter of Cédric Villani’s book [13]. The Boltzmann
equation is a more detailed model for the evolution of a fluid than the hydrody-
namic models like Euler or Navier-Stokes equations. Indeed, in certain asymptotic
regime (see [9]), the hydrodynamic quantities associated to the Boltzmann equa-
tion converge to the solution of the compressible Euler equation that is known to
develop singularities in finite time [43]. A next order expansion shows that the hy-
drodynamic quantities approximately solve a compressible Navier-Stokes equation,
for which the classical well-posedness problem is not well understood. It makes
sense to expect the Boltzmann equation to retain the difficulties of the hydrody-
namic models, and add some more. Should we expect singularity formation in finite
time then? The answer to this question is not straight forward. There are different
types of singularities that emerge from the flow of the compressible Euler equation.
Some of them may be compatible with the Boltzmann equation, and others are
not. In a shock singularity for the Euler equation, a discontinuity emerges from
the flow similarly as in Burgers equation. All the quantities involved stay bounded
up to the time of the discontinuity. One would not see this as a singularity for
the Boltzmann equation, since the kinetic model allows for different velocities to
co-exist at one point in space. The Navier-Stokes equation will not allow for shock
singularities either, since the viscosity would smooth out any discontinuity for as
long as solutions stay bounded and away from vacuum. A fundamentally different,
and much more delicate, kind of singularity is that of an implosion. In that case,
the mass and energy concentrate and become unbounded at one point. It was only
very recently (in fact, after this paper was initially posted) that smooth implosion
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REGULARITY ESTIMATES FOR BOLTZMANN 627

profiles for the compressible Euler equation were found and proved to be stable
in [37] and [38]. These implosion singularities exist for the compressible Navier-
Stokes equation as well. As of now, we cannot think of any reason to rule out the
existence of implosion singularities for the Boltzmann equation. If they did, which
seems like a likely scenario, the question that remains is whether this is the only
type of singularity that may emerge from the flow of the Boltzmann equation. Our
main result in this paper aims at answering that question.

As we explained in the previous paragraph, the unconditional regularity of so-
lutions to the in-homogeneous Boltzmann equation seems to be completely out
of reach. The problem that we study is conditional to pointwise bounds on the
hydrodynamic quantities. More precisely, we make the following assumption.

Assumption 1.1 (Hydrodynamic quantities under control). The following inequal-
ities hold uniformly in ¢ and =,

o 0 <mg < M(t,z) < M.

. E(t, JJ) < Fy.

° H(t, J,‘) < Ho.

We do not prove Assumption 1.1. We take it for granted (hence the name
assumption). Conditional to it, we obtain C* estimates that we state in our main
theorem. Assumption 1.1 is a way to disallow the implosion singularities that we
described above. Our result in this paper essentially says that no other types of
singularity may exist for the Boltzmann equation other than (potentially) the ones
that are hydrodynamically visible.

Theorem 1.2 (Global regularity estimates). Let f be a solution to the Boltzmann
equation in (0,T) x R? x R? (as in Definition 2.1) with a collision kernel of the
form (1.3) and v + 2s € [0,2]. If Assumption 1.1 holds, then for any multi-index
ke NY2d + >0 and g > 0,

11+ |”|)qufHL°°([T,T)dede) < Crygr-

Here D¥ is any arbitrary derivative of f of any order, in t, x and/or v.

When v > 0, the constants Cy, 4+ depend only on k, ¢ and T, and the constants
mg, My, Eg and Hy from Assumption 1.1, and the parameters s, v and dimension
d.

When v < 0, the constants Cy, 4 depend in addition on the pointwise decay of
the initial data. That is, on the constants N, with r = 0, given by

(1.4) N, :=sup(1 + |v])" fo(z,v) for each r = 0.

Note that the upper bounds on energy density and mass density in (1.1) corre-
spond to upper bounds for mass, moment and temperature density. Moreover, the
upper bound in entropy is slightly stronger than a lower bound for temperature
(and equivalent in the hydrodynamic limit).

We work with a strong notion of solution that we describe in Definition 2.1. See
Section 1.2.1 for a discussion about weaker notions of solutions. Moreover, we work
with functions f that are periodic in z. See Remark 1.5 for some discussion about
the periodicity assumption.

Remark 1.3. The difference between v > 0 and v < 0 in Theorem 1.2 has its origin
in the decay estimates from [32]. The decay of the solution f is self generated when
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628 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

~v > 0. However, when v < 0, the function f will decay rapidly only if it initially
does.

Remark 1.4. In the case v < 0, each constant C}, 4 - depends on one constant NV, in
(1.4) for a specific value of r depending on k and q. However, its explicit dependence
is hard to track. Obviously, the larger ¢, the larger the value of r will be required
to be. It turns out that for higher order derivatives D*, we also need to use larger
values of r.

Remark 1.5. The assumption that f is periodic in x is convenient but non-essential.
Indeed, the estimates in Theorem 1.2 are independent of the size of the period. The
periodicity assumption is only used for applying Theorem 2.2 that refers to the main
result in [32]. At some point in the proof in [32], we claim that the maximum of
the function f(t,z,v) — g(t,v) is achieved at certain point (tg,xo,vo). Here, g
is a suitable barrier-like function defined in that paper. The only use of the z-
periodicity assumption, in this whole regularity program, is to ensure the existence
of that point (g, o, vo) in [32].

There are other assumptions that would suffice for the attainability of the max-
imum for that step in the proof in [32] that could be used instead of periodicity.
One example is to assume that f: [0,7] x R? x R? — [0, %0) is a function so that,
for some fixed Maxwellian u(v),

| l‘im (t,z,v) = p(v) uniformly with respect to ¢t and v.

xr|—00
It is conceivable that the result of Theorem 1.2 would apply to any solution f :
[0,T] x R x R — [0,0) of (1.1) that satisfies Assumption 1.1 in the full space,
without any periodicity or asymptotic assumption as |z| — oo. However, that would
require further work specifically in generalizing the upper bounds in [32].

This discussion should not be confused with the much more delicate problem of
extending Theorem 1.2 to bounded domains with physical boundary conditions.

Remark 1.6. The main result in this paper can be seen as the culmination of
a series of papers by the authors on conditional regularity estimates for kinetic
integro-differential equations. Some of them are in collaboration with Clément
Mouhot. They are [32-35,44]. The Boltzmann equation is a nonlinear nonlocal
equation. There is some advantage in studying the Boltzmann collision operator
in the context of elliptic integro-differential operators, since our understanding of
elliptic and parabolic integro-differential equations has grown significantly in the
last twenty years. For other recent results about linear kinetic equations with
integro-differential diffusion, see for example [8,17,25,30,41,46].

1.1. Consequences of our main theorem.

1.1.1. Convergence to equilibrium. In a celebrated result [18], Desvillettes and Vil-
lani proved that solutions to the non-cutoff in-homogeneous Boltzmann equation,
periodic in x (or with other physical boundary conditions), converge to equilibrium
faster than any algebraic rate, conditional to the following two main assumptions

(1) The solution f stays in C® for all time with uniform bounds as ¢t — oo.

(2) The solution f is bounded below by some fixed Maxwellian.

A priori, these two assumptions appeared to be very strong. After Theorem 1.2,

they can be reduced to only Assumption 1.1. Indeed, the lower bound by a fixed
Maxwellian is obtained in our earlier work with Clément Mouhot [33].
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REGULARITY ESTIMATES FOR BOLTZMANN 629

Since the estimates in Theorem 1.2 do not depend on 7', we can take T" — o0
and deduce a uniform regularity estimate in (7,00] x R x R%. As a consequence,
we state the following improvement for the Theorem in [18].

Corollary 1.7. Let f be a solution of (1.1) in (0,00) xR xR? (as in Definition 2.1,
in particular periodic in x). Assume that Assumption 1.1 holds globally. Then f
converges to a Mazwellian as t — oo as described in Theorem 2 in [18].

1.1.2. Continuation criteria. Theorem 1.2 also suggests the following continuation
criteria. Let f be a solution to the Boltzmann equation (1.1) in (0,7) x R% x R?
as in Definition 2.1. Suppose that it cannot be extended further in time, that is, it
cannot be extended as a solution in (0,7 + ) x R? x R? for any & > 0. Then, one
of the following must happen

(1) limy_ 7 max,ega M(t,2) = +00.

(2) limy_,7 maxgege E(t, ) = +00.

(3) limy_,r max,epe H(t, z) = +00.

(4) limy,7r mingega M (¢, x) = 0.

This continuation criteria can be immediately justified by combining Theo-
rem 1.2 with an appropriate short time existence result. When s € (0,1/2) and
v € (—=3/2,0], we can use the short time existence from [40]. For any s € (0, 1) and
v < 0, there is a recent appropriate short time existence result in [28].

Note that the short time existence result in [5] requires the initial data to have
Gaussian decay, which is not propagated to positive times by our estimates in
Theorem 1.2.

This continuation criteria says that the only way a singularity can arise in finite
time for the Boltzmann equation without cutoff is by one of the hydrodynamic
quantities M, E or H to blow up, or by creation of vacuum. There is a recent
result in [29] saying that this continuation criteria can be reduced to the first two
items. That is, either the mass or the energy density should blow up if the solution
develops a singularity. It rules out the case in which there is creation of vacuum or
zero temperature while the mass and energy density stay bounded. It is conceivable
that this blow up criteria may be relaxed in some other way in the future. As we
explained above, a completely unconditional continuation criteria seems to be out
of reach with current techniques.

It is natural to expect a similar continuation criteria to hold in the cut-off case
as well. However, the reason for it would be fundamentally different. The cut-off
Boltzmann equation does not have a regularization effect. One would expect a
propagation of regularity provided that Assumption 1.1 holds. From the mathe-
matical point of view, it is a very different problem from the one we address here.
We will not analyze the cut-off case any further.

1.2. Future directions and open problems.

1.2.1. Regularity estimates for weak solutions. In this paper we obtain a priori
estimates for classical solutions. Working with a weaker notion of solution would
entail several technical difficulties. We thought it was not the right time to take
on that burden yet. In fact, we consider a very strong notion of solution (see
Definition 2.1). It would be interesting to extend Theorem 1.2 as a regularity
estimate for renormalized solutions with a defect measure as defined in [6]. Below,
we analyze the difficulties of this problem.
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The biggest challenge of such an extension would be to recover the pointwise
estimates from [44] and [32]. The proofs in these papers use a maximum principle
type argument that seems to be difficult to adapt to the setting of [6].

Once a weak solution is proved to be bounded, we can apply the result in [35]
(Theorem 4.2) and deduce the Holder continuity of the solution.

There is a (presumably minor) difficulty in the application of the Schauder es-
timates from [34] in order to derive Corollary 7.8 in this paper. This is because
the result of [34] is not stated for weak solutions. The later applications of the
Schauder estimates in our proof of Theorem 1.2 in Section 9 are not problematic.
In each step of the iteration we apply the Schauder estimates to increments that
are qualitatively as regular as the function itself.

1.2.2. The grazing collision limit. When s — 1, the Boltzmann equation converges
formally to the Landau equation. For that, we need the collision kernel B to satisfy

(1.5) B~ (1 —5)|v— vy|"sin(g/2) 41725,

The normalizing factor (1 — s) is transferred into the ellipticity conditions on the
Boltzmann kernel Ky (defined in (4.2)). It is well known in the literature of nonlocal
equations that this is the necessary factor to have uniform bounds as s — 1 (see
for example [10] or [36]).

It is to be expected that the estimates of Theorem 1.2 would remain uniform as
s — 1 if B satisfies (1.5). However, it is still an open problem. Below, we explain
the difficulties with our current approach.

Note that any technique that establishes the estimates from Theorem 1.2 uni-
formly as s — 1 would also imply the corresponding regularity estimates for the
Landau equation as a consequence. A method that provides estimates uniform as
s — 1 must use techniques that apply both to integro-differential equations and
second order parabolic equations.

The most challenging difficulty in proving uniform estimates as s — 1 would be
to establish the pointwise bounds from [44] and [32]. The proofs in these papers
use purely nonlocal techniques. The constants obtained in the estimates there
certainly blow up as s — 1. The corresponding pointwise upper bound for the
Landau equation is established in [12] using different methods.

The Hoélder estimates from [35] are robust as s — 1. We would also expect
the Schauder estimates from [34] to be robust as s — 1; however it does not
follow directly from the current proof in [34] because it is non constructive. Some
constants are proved to exist under a compactness argument, and by that we lose
track of their dependence on s. It is conceivable that a refinement of the proof in
[34] may lead to robust estimates since the proof in that paper works for second
order equations as well.

1.2.3. Other open problems. The following is a (non exhaustive) list of other open
questions related to the main result of this article.

(1) Interior estimates: if Assumption 1.1 holds for (¢,z) € (—1,0] x By, can we
establish the regularity estimates as in Theorem 1.2 for (¢, z) € (—1/2,0] x
By )7

(2) Bounded domains: when the equation is supported in a smooth bounded
domain z € Q < R?, with physical boundary conditions, do the estimates
from Theorem 1.2 hold in the full domain 27
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(3) Weaker conditions: can we reduce Assumption 1.1 to a weaker condition?

(4) Very soft potentials: can we establish regularity estimates when v+2s < 07
This is a very difficult problem that is open even in the space homogeneous
setting. The most challenging step seems to be obtaining the L® estimate
as in [44].

1.3. Previous regularity results for the Boltzmann and Landau equations.
The well-posedness and regularity of the space homogeneous Boltzmann equation is
well understood in the case of hard and moderately soft potentials (i.e. y+2s = 0).
See [2,3,15,19,31,39]. Note that in the space homogeneous case, Assumption 1.1
is trivially satisfied by the conservation of mass and energy and the monotonicity
of entropy.

Results on the regularity for the space in-homogeneous Boltzmann equation are
scarce. Other than the papers that are part of our program, the most relevant
previous result is the C'® regularity of solutions conditional to a uniform bound
in H 350711’ plus infinite bounded moments, plus a lower bound on the mass density.
These results were established in [4,5,16]. We improve these results by significantly
lowering the condition for regularity to the bounds of Assumption 1.1, which are
physically meaningful. We refer to [35, §1.3.2] for further discussion on other results
in the literature.

Our program of establishing conditional regularity provided that the hydrody-
namic quantities are controlled as in Assumption 1.1 has also been studied for the
Landau equation. It is currently fairly well understood in the cases of hard and
moderately soft potentials. The local Holder estimates were obtained in [22]. The
upper bounds and Gaussian decay bounds (when appropriate) for moderately soft
potentials were obtained in [12] using the estimates from [22] combined with a
change of variables that inspires our construction in Section 5. The higher regular-
ity of solutions was studied in [26] applying a kinetic version of Schauder estimates.
These regularity estimates were extended to the case of hard potentials in [45]. In
[27], they refine the continuation criteria for the in-homogeneous Landau equation
as mentioned in Subsection 1.1.2.

1.4. Strategy of proof. The result in this paper is obtained as the final step in a
program of conditional regularity that started in 2014. Here, we use the previous
results by the authors, and also by the authors in collaboration with Clément
Mouhot, who were part of this program. Theorem 1.2 is proved by combining the
following ingredients.

e An L* estimate for positive time depending only on the hydrodynamic
quantities. This holds provided v + 2s > 0. It is proved in [44].

e A weak Harnack inequality for kinetic integro-differential equations. They
give us local C'* estimates for some a > 0 small. They were obtained in
[35].

e Schauder estimates for kinetic integro-differential equations. They give us
local C%5F< estimates. They were obtained in [34].

e Pointwise decay estimates. They say f < (1+|v|)~2 for all ¢ > 0. They are
self generated if v > 0 and they propagate from the initial data if v < 0. It
was proved in [32].

e A change of variables that turns our local Holder and Schauder estimates
into global ones. We develop it in Section 5.
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e Some new inequalities for kinetic Holder spaces (defined in Section 3) and
how they interact with the Boltzmann collision operator (see Section 6) and
increments (see Section 8).

e A bootstrapping mechanism by iterating the global version of the Schauder
estimates.

In order to obtain regularity estimates like the ones in this article, it is key
to think of the Boltzmann equation as a kinetic equation with integral diffusion
in the v variable plus a lower order term, in the way that was described in [44].
Using Carleman coordinates and the cancellation lemma (as in [1]), the Boltzmann
equation takes the following form

(16) atf +v- vxf = A{d(f/ - f)Kf(t,.’E,’U,’U,) dv’ + C(f *y | : |V)f

The kernel K; depends on the solution f itself. We give more details in Sec-
tion 4.1 and recall the formula for K; in (4.2). When Assumption 1.1 holds, the
kernel K satisfies certain ellipticity conditions that allow us to derive regularity
estimates.

In [35], we obtained a weak Harnack inequality for kinetic integro-differential
equations. It implies a regularity estimate for the local Hoélder regularity, for a
small exponent, of bounded solutions to (1.1) that satisfy Assumption 1.1. In [34],
we obtained a Schauder estimate for kinetic integro-differential equations. It implies
a local estimate of Holder regularity with exponent 2s + « for some o > 0. It is
enough regularity to make sense of the equation classically. These are two results
for generic kinetic integro-differential equations. They apply to the solution of the
Boltzmann equation thanks to the expression (1.6). They also apply to derivatives
of f with respect to t, x and v provided that we can appropriately bound each of the
extra error terms that come up in the equation when differentiating the collision
and transport terms. In order to turn this procedure into a bootstrap iteration
leading to C'* estimates we need to turn the local regularity estimates from [35]
and [34] into global ones.

The weak Harnack inequality in [35] and the Schauder estimate in [34] depend
on ellipticity conditions on the kernel K; in (1.6). In these papers, we showed
how these ellipticity conditions are implied locally by Assumption 1.1. However,
they degenerate for large velocities. In order to obtain global estimates from the
application of the weak Harnack inequality and Schauder estimates, we construct a
special change of variables. It transforms the function f into a solution to a kinetic
integro-differential equation whose kernel is uniformly elliptic with parameters that
do not degenerate for large velocities. This change of variables is a key ingredient
in the proof of this paper. It is described in Section 5. It allows us to turn any
local (in velocity) estimate for the Boltzmann equation into a global one.

The bootstrap iteration consists in applying the global version of Schauder esti-
mates (via the change of variables) to the equation satisfied by derivatives of the
solution f. The extra error terms are handled by careful (and new) estimates in
Hélder spaces for the Boltzmann collision operator, increments and derivatives (de-
scribed in Sections 6 and 8). In each step of the iteration, we gain a regularity
estimate for a higher derivative in terms of the estimates already obtained for the
lower order ones. There is a loss of decay exponent in each differentiation step.
Thus, we need to start with a function with rapid decay at infinity in order for the
iteration to continue indefinitely. This initial decay is provided by the result in [32].
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1.5. Notation. We use the notation a < b to denote the fact that there exists a
constant C' so that a < Cb. The constant C' can depend on a variable collection
of parameters depending on context. This notation is used mostly inside proofs
of lemmas, propositions and theorems. In each statement, we explain what the
constants depend on. The implicit constants in each symbol < inside a proof
depend on the parameters specified in the corresponding statement. Even though
this notation might be arguably confusing at times, it allows us to clean up the
computations substantially.

The symbol a ~ b means that a < b and a = b.

We use the standard notation B, to denote a ball of radius r in R? centered at
the origin. We also write B,(w) to denote a ball centered at some point w € R%.
The kinetic cylinders @, c R x R? x R? are explained in Section 3.3.

2. PRELIMINARY ESTIMATES FOR THE BOLTZMANN EQUATION

In this section, we collect some preliminary results for the Boltzmann equation
that play a role in the proofs in this paper.

As we mentioned before, we work with a very strong notion of classical solutions.
In this way, all the results in the literature are applicable and we avoid technical
difficulties. We give the definition below.

Definition 2.1. A function f : (0,7) x R? x R — R is a solution to the Boltzmann
equation (1.1) when

It is non-negative everywhere.

It is C* in all variables ¢, z, v.

It solves (1.1) for every value of (t,z,v) in the classical sense.

For each value of (¢,z), the function f decays rapidly as |v| — oo. More
precisely, for any g > 0, we have

f(t,z,v)

im ———= =
[o]—o0 (1 + |v])4

)

locally uniformly in (¢, ). For derivatives of f, we only assume that there
is sufficient decay so that

[ D20l o7 v < 4o
Rd

for every value of ¢ and z.

For simplicity, we will also consider f to be periodic in z.

The results in this paper certainly apply to a weaker notion of solution as well.
We discussed it in Section 1.2.1. However, by considering a strong notion of solution
as in Definition 2.1, we avoid superfluous technical difficulties that would make this
paper harder to read.

In the last section of [32], we discuss how to replace the rapid decay assumption
in the last item of Definition 2.1 with a weaker algebraic decay condition.

The last condition on the integrability of D2?f is convenient for Lemmas 5.15
and 5.17. These are the only parts of this paper where it plays a role.
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2.1. Decay estimates. We start by reviewing the decay estimates in the velocity
variables obtained in [32] for solutions of the Boltzmann equation. When v > 0,
these decay estimates are forced by the equation regardless of the initial data.
When v < 0, we need to impose the appropriate decay on the initial data, and it is
propagated in time by the equation.

Theorem 2.2 (Decay estimates in the velocity variables). Let the parameters v, s
from (1.3) satisfy v + 2s € [0,2] and let f be a solution of the Boltzmann equa-
tion (1.1) in (0, T) xR xR, periodic in z, such that f(0,z,v) = fin(x,v) in RExR?
and such that Assumption 1.1 holds. If v < 0, we also assume that for all ¢ > 0,
there exists a constant No , so that fi(2,v) < No4(1 + [v])~9 for (z,v) € R? x R4,
Then the solution f satisfies

Pt 0) < Ny(L+ o)™ in (0,7) x RY x RY,

for some constant Ng only depending on dimension d, parameters v,s from the
collision kernel, see (1.3), and the hydrodynamical bounds mg, My, Eo, Hy from As-
sumption 1.1, and, in the case v < 0, also on the constants No 4.

We include Lemmas 2.3 and 2.4 about the decay or growth of convolutions of f
with different powers of |v|. They will be applied repeatedly in several parts of the
paper. The first one gives us an upper bound depending on the mass and energy
of f only. The second one is in terms of its pointwise upper bounds.

Lemma 2.3. Let f:RY — [0,00). Assume that 0 < k < 2. Then
/ Fw+ w)wl dw < C (1 + [v])* Mo + Eo)
Rd
where C is a universal constant and My and Ey are numbers so that
f(v)dv < My and / f(v)|v|?dv < Ey.
Rd R
Proof. We compute directly
[t wlulaw= [ e - o du,
R R
< [ £ (ul* + o) du,
]Rd
< [ #w) (0w + i) du,
]Rd
< (/ Flw)|wl? dw + (1 + |v|)”/ Fw) dw) O
R Rd

Lemma 2.4. Let f: R% — [0,00) and k > —d. Assume that f(v) < N(1 + |v|)~¢
for some g > d+ ky. Then

/ F(o + w)|w]* dw < CN(1 + |o])",
Rd

for some constant C' depending on d, k and g only (neither on N nor v).

Proof. We do a different computation depending on whether x > 0 or k < 0.
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For k = 0, it is very similar to Lemma 2.3. We compute
[t s ol = [ e o de,
R4 Rd
< [ £ (ul* + o) du,
Rd
< (0 by o [0 ol 7).
R4 Rd

Since —q + k < —d and k > —d, the integrals are computable for each value of ¢

and xk = 0.
For k < 0, we estimate the integrals differently. In this case we will use that
q>d.
/ fv+w)|wl® dw
Rd
< N/ (1+ | + w])~7w|* du,
R4
=N (1+ v+ w) Yw/"dw+ N (1+ v+ w]) w|” dw,
[w|<|v|/2 [w|>|v]/2
<N I+ o) Yw|"dw+ N (1+ v+ w|) v|* dw,
lw|<|v|/2 [w|>|v]/2
<N (1+|v|)*q|w|“dw+N/ (1+ v+ w]) v|" dw,
lw|<|v]/2 R4

S N1+ [o) o]+ + [o]©
< N1+ o))" O

2.2. A coercivity condition for integro-differential operators. In [14], there
is a practical condition to verify if the quadratic form associated with an integro-
differential operator is coercive with respect to the H® semi-norm. The result says
the following.

Theorem 2.5 (Coercivity condition — [14, Theorem 1.3]). Let K : By x By — [0,
be a kernel satisfying the following assumption. There exists A > 0 and p € (
such that for any v € By and any ball B < By that contains v,

o)
1)
[{v' € B: K(v,v') = Ao/ —v|7972%}| = u|B|.

Then, for any function u: By — R,

//Bz><32 (u(v') = u(v))?K (v,v") dv' dv = c)\// % 2 do.

B1x B
The constant ¢ depends on dimension and p only.

We recall from (1.6) that the Boltzmann equation can be written as an integro-
differential equation with some kernel K; depending on the solution f itself. The

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



636 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

explicit formula for Ky is worked out in [44] and we recall it now,

d—1
(2.1) K¢(v,v") 2 f(v +w)B(r,cos 0)r~42 dw

a ‘/U/_’U| wlov'—v

) r? = v — ]2 + |w|?,
with cos ) — w—(v—2") . w+ (v —v)
(o= Twt (o)

This kernel K¢ satisfies the assumption of Theorem 2.5 in the stronger form of a
cone of nondegeneracy as described in [44]. We describe it in Proposition 2.6.

Proposition 2.6 (Cone of nondegeneracy — [44, Lemma 7.1]). Let f : R? — R be
a nonnegative function and Ky be the corresponding Boltzmann kernel as in (2.1).
For any v € R?, there exists a symmetric subset of the unit sphere A(v) < S9!
such that

o |A(v)] = p(1+ o))~

e Foreveryo e A(v), |o-v| < C (i.e. A(v) is concentrated around the equator

perpendicular to v with width < C/(1 + |v])).
e For any o € A(v) and r > 0,

Ki(v,v+r0) = A1 + |v]) +725p—d=2,

Here, the constants p, A and C depend only on dimension and on the hydrodynamic
bounds of Assumption 1.1.

The cone of nondegeneracy described in Proposition 2.6 immediately implies the
assumption of Theorem 2.5. Thus, the Boltzmann kernel K satisfies a coercivity
inequality restricted to velocities in By. Naturally, we can apply a translated and
dilated version of Theorem 2.5 to derive a coercivity condition for the Boltzmann
collision kernel in any bounded set of velocities. It naturally implies a local coer-
civity inequality. However, as we see in Proposition 2.6, the thickness of the cone of
nondegeneracy degenerates as |v| — c0. This is natural in view of the fact that the
optimal global coercivity inequalities for the Boltzmann collision operator depend
on certain modified distance and weight that degenerate as |v| — oo (see [24]).

We are able to recover the optimal coercivity estimates for large velocities using
Theorem 2.5 and Proposition 2.6 together with the change of variables described
in Section 5. See Appendix A for a derivation of the global coercivity estimate in
[24] along these lines.

3. KINETIC HOLDER SPACES

Here, following [34], we describe the appropriate formulation of Holder spaces
for kinetic equations. These are, in the context of Holder spaces, what the spaces
described in [7] are in the context of Sobolev spaces. They are adapted to the group
of translations and dilations that leave the equation in an invariant ellipticity class.
In order to motivate and explain all the necessary machinery related to these spaces,
it is best to first consider the simpler fractional Kolmogorov equation

(3.1) Ouf +v-Vaof + (=A)Sf = 0.

Equation (3.1) is the simplest kinetic equation with integro-differential diffusion of
order 2s and it serves as a model equation to start our analysis. The Boltzmann
collision operator is the sum of a nonlinear integro-differential operator of order 2s
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(which is not the fractional Laplacian) plus a lower order term. This decomposition
is precisely given by the two terms in (1.6).

3.1. Scaling and translation invariances. Assume that a function f solves (3.1)
in some domain. For any r > 0, if we scale the function by

(3.2) fr(t,z,v) = f(r¥t,r 25 ro),

then the scaled function f,. satisfies the same equation in the appropriately scaled
domain.

The space R x R? x R¢ is endowed with the following Lie group structure: for
all &€ = (h,y,w) and z = (t,z,v), the operator £ o z is given by the formula

(3.3) Eoz=(h+tx+y+twv+w).
If f is a solution of (3.1) and 2o = (to, zo, vo) € R1T24 is arbitrary, then the function

f(z) = f(z002)

solves the same equation (in a translated domain).

The scaling invariance and left-translation invariance described here are the mo-
tivation for the definitions of kinetic cylinders, distance, degree and Holder spaces
given below.

In Sections 4.2 and 4.3, we will describe the results from [35] and [34] which are
kinetic integro-differential versions of the classical regularity results of De Giorgi
and Schauder for elliptic equations with variable coefficients. These equations are
not invariant by scaling or translations individually, but rather as a class. Scaling
or left translations of functions solving an equation as in Theorem 4.2 or 4.5 will
solve an equation with the same structure and the same ellipticity parameters.

3.2. Kinetic distance. We recall the notion of kinetic distance defined in [34]. Tt
is constructed so that it agrees with the scaling given in (3.2) and the left action of
the group (3.3).

Definition 3.1. The kinetic distance between two points z; = (t1,21,v1) and
2y = (t2,22,v9) in R1T24 is given by the following formula

1
2s
)

vy — wl, |vg — w|)}

We show in [34] that d; is indeed a distance when s > 1/2. For s < 1/2, the
triangle inequality fails for dg; however dy(z1, 22)%* is in fact a distance. We still
work with d, for any value of s € (0,1) in order to keep our formulas consistent.

This distance is scale invariant in the following sense: for any z;, 2z, € R1*2¢ and
r > 0, if we scale S,.z; := (r25ty,r' 72551, rvy) and S,zg 1= (r¥ty, r1 252, rvy), we
have

@1 — T — (ty — ta)w| T,

dg(Zl, 2’2) = Hgl&{max (|t1 - f,g
w:

de(Srz1, Srz2) = rde(21, 22).

This distance is also left invariant by (3.3). Indeed, for any three points &, z;
and zy in R'*2? we have

de(€0 21,6 022) = dy(21, 22).

It is also convenient to define the length of a vector z € R1*24 by | z|| := dy(z,0).
Technically, |z| is not a norm. It is not homogeneous of degree one, but rather it is
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homogeneous with respect to the scaling in (3.2). It satisfies the triangle inequality
with respect to the group action (3.3):

(3.4) |21 0 22 < a1l + [[z2]

There are several convenient equivalent expressions for ||z| that we write below.

v—ul,ul)},

1
T — tw| T
o).

The symbol ~ denotes in this context that the quantities on both sides are
comparable up to a factor depending on s and dimension d only. The last two
expressions would not satisfy (3.4), but they are easier to compute in some cases
in which the constant factors do not matter.

Note that due to the left invariance of this distance, dy(z1,22) = |25 ' © z1].

The distance d; is left invariant but not right invariant. This lack of right
invariance is occasionally problematic and it results in smaller Hélder exponents in
some estimates for kinetic equations than the ones that one would naively expect.
It is essentially the reason why the exponents « and o' are different in the Schauder
estimates of [34]. The following inequality is used repeatedly to estimate an error
term in integral operators due to the failure of right-invariance: for all zy, 2o € R*+24
and w € R?, a direct computation shows that

€L
2s
)

I2] = min {max (\t
weR4

1 1
25 1+42s
i) J?‘ 2,

~ max (\t

1 1
# o]+ o,

%|t

dl(zl © (Ov Oa w)v 220 (Oa 0, U))) < dl(zlv 22) + ‘tl - t2|1/(1+28) ‘w|1/(1+2s)a

(3.5)
< dé(zhzz) + dZ(Zh22)28/(1+2S)|w‘1/(1+28)-

Moreover, when dy(z1, 22) < 1, then the last inequality is also less than or equal to
d(21, 20)%/ A28 (1 4 |w])Y(1+29) . We see that the right translations z; o (0,0, w)
and 22 o (0,0,w) may be an order of magnitude further apart than the original
points z; and z».

3.3. Cylinders. When working with parabolic equations, one often considers par-
abolic cylinders of the form (tq — 72,t9] x B,.(z0). Because of the invariant trans-
formations we mentioned above, it is natural and convenient to consider cylinders
respecting them. For all zy € R'*2?, we define

Qr(20) = {(t,,v) 1 tg — > <t < to, |x —m0 — (t — to)ve| < 2% v — wo| < r}.

Cylinders centered at the origin (0,0, 0) and of radius r > 0 are simply denoted by
Q-

Note that under this definition (¢, z,v) belongs to Q1 if and only if (r25t, r1 2z,
rv) belongs to @,. Thus, our cylinders honor the scaling given in (3.2). Moreover,
for any zy € R**2¢ we have Q,(20) = 20 o Q,, where o denotes the Lie group
operator given in (3.3).

3.4. Kinetic degree of polynomials. We recall the definition of kinetic degree
from [34], for polynomials p in R[t, z,v]. Given a monomial m of the form

(e} .
m(t,x,v) = ct®x{* . xglo] T 0G2 with ¢ # 0,
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we define its kinetic degree as

d 2d
degkm:2sao+(1+25)2aj+ Z Q.
j=1 j=d+1

That is, the degree of m is computed by counting 2s times the exponent for the
variable ¢, 1 + 2s for the exponents in the variables x; and 1 for variables v;. This
definition is justified by the fact that we want a notion of kinetic degree consistent
with the scaling (3.2). With this definition in mind,

m(r?5t, v 25, ro) = rd8 M (t, x, v).

Given any non-zero polynomial p in R[t,z,v] we define the kinetic degree of
p (and we write it degy p) as the maximum of the kinetic degree of each of its
(non-zero) monomials.

The kinetic degree of the zero polynomial is not properly defined above. It is
appropriate to make it equal to —oo (or perhaps —1). The fact that the kinetic
degree of the zero polynomial is a negative value is relevant for the definition of the
CJ norm given in Definition 3.2.

3.5. Kinetic Holder spaces. We recall here the kinetic Holder spaces introduced
in [34].

Definition 3.2 (Kinetic Hélder spaces). Given an open set D < R'*2? and a
parameter « € [0,00), a continuous functions f : D — R is a-Hélder continuous at
a point zg € R'T24 if there exists a polynomial p € R[t, 2, v] such that deg, p < a
and for any z € D

1f(2) = p(2)| < Cde(z, 20).
When this property holds at every point zp in the domain D, with a uniform
constant C', we say f € Cf*(D). The semi-norm [f]oe(p) is the smallest value of

the constant C' so that the inequality above holds for all zy, z € D.
Note that with this definition [f]copy = ||f|cop) = [flz=(p). We define the

norm | fllce(py to be [floo () + [ flco(p).-
We recall the interpolation inequalities proven in [34, Proposition 2.10].

Proposition 3.3 (Interpolation inequalities — [34]). Given 0 < oy < az < ag so
that as = Oay + (1 — 0)as, we have for all functions f e C;*(Qr(20)),

(4 1-6 a)—«
[f]CP(QT(ZO)) <C ([f]cfl(QT(ZO))[f]C?s(QT(Zo)) o 2[f]C§I(er~(ZO))) ’
for some constant C depending on ay, as and dimension only.

In this article, we will iteratively gain a priori estimates for solutions to the
Boltzmann equation on Holder spaces with increasingly large exponents a. We
deal with global estimates that work for all v € R%. We need to keep track of the
asymptotic behavior of these norms for large velocities. The most convenient way
to do it is by considering functions in Holder spaces with fast decay that we define
below.

Definition 3.4 (Hoélder spaces with fast decay). Given « € [0,0), a function
f:[7,T] x R? x RY lies in Cftasy if, for all ¢ > 0 and all r € (0, 1], there exists
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C, > 0 such that for all z € [7,T] x R x RY, with Q,(z) < [7,T] x R x RY,

C
« < —q'

This is a locally convex vector space with the following family of semi-norms
[fleg, (rrixrixra)
= sup {(1 + o) flos @, ¢ 7 € (0,1] and @, (2) < [1,T] x R? Rd} .

We also write ||flcg = HfHng + [fleg,- Thus, a function f belongs to Cfp,
when [ flcg < oo for all ¢ > 0.

Note that [f]cqu > [f]czq{z if g1 = g2. Also, the norm | f|ce (@, (z)) is monotone
increasing with respect to . It is pointless to consider small values of r in Defi-
nition 3.4. In practice, one would only take the largest r that the interval [7,T]
allows, which will often be r = 1.

We know that the property of a function being Hoélder continuous is local, but
its Holder norm is not (at least for non-integer exponents). Lemma 3.5 is useful to
obtain a Holder estimate in a large domain by covering with smaller patches where
the Holder norm is bounded.

Lemma 3.5. Let « > 0, rg > 0, f: @1 — R be a bounded continuous function.
Assume that for every zo € Q1, there is a polynomial p,, of kinetic degree strictly
less than o such that

(200 €) == (E)] < Coll€]*
whenever €| < g and zpo & € Q1. Then fe CH(Q1) and

[flee (@i < Co + Crg® osc fs

for a constant C' depending on o and dimension only. Here oscq, f = supg, f —
ianl f

Proof. The inequality we assume for |f(zo 0 &) — ps, ()| when ||€]| < 7o is identical
to the one in Definition 3.2. We need to extend this inequality to every value of £
so that zp o & € @1, regardless of whether |£| < rg or not.

Without loss of generality, let us assume infg, f = 0 (otherwise, repeat the proof
below for f —infg, f). Thus, in this case oscq, f = | f[co(g,)- In the following we
simply write | flco for | fcoga).

For any point zy € ()1, let us analyze the polynomial p,,. We know that whenever
€]l < ro and zp 0 & € Q1, |f(20 0&) — pz (&) < Col&]*. In particular, |p,,| <
Cor§ + | flco at those points.

We use Lemma 2.8 in [34] (See also the proof of Lemma 2.7 and Proposition 2.10
in [34]), and get that for any point zg € @1, the polynomial p,, has the form

P=(2) = D a;m;(2),

jeNt+2d

where a; # 0 only for multi-indexes so that deg;, m; < o, and moreover

a1 < € (Corg ™8™ + | flcorg *5™).
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Thus, when zg 0 £ € Q1 but |£]| > ro, we estimate
£ (20 08) = P (O] < | f o + P2 (€)1,
<|fleo+ D, lagllgiesm,

jeNl+2d
o [
<|fleo +C(Cor§ + Iflce) Y, = :
jeN1+2d To
deg;, m;<a
< (ot [}
< (Corg + [ fllco) :
To
= (Co+ 19 [ flleo) I€]1*.
And we conclude the proof. O

Remark 3.6. Comparing with classical Holder spaces C'%, we observe that the es-
timate in Lemma 3.5 is not optimal for large values of «. Consider for example
the Lipschitz norm that corresponds to a = 1 and is purely local. So, the opti-
mal inequality for the classical Lipschitz space would not have the second term in
Lemma 3.5. Holder norms are non-local, so some dependence on ry ought to be
retained at least when « is not an integer (or a ¢ N+ 2sN for kinetic Holder spaces).

Lemma 3.7. Let f,ge C3(Q1). Then fge CP(Q1) and
HfQHC;(Ql) < OHch;(Ql)Hch;(QI),

for a constant C depending on dimension and o only.
Proof. Tt is clear that the CY norm satisfies the inequality with constant C' = 1.

We are left with verifying the inequality for the semi-norm []ce. To that end, let
z € (01 and consider the polynomials p and ¢ of kinetic degree less than « so that

|f(z08) =pO < [fleglé]*  and  [g(208) —q(§)] < [glep €]

Thanks to Lemma 3.5, it is sufficient to consider the case || < 1. We have

[f(z08)g(z 0 &) = p(&)a(€) < [f(z08)llg(z 0 &) —a(©)] + [f(z 0 &) — p(&)a(E)],
< (lgleg [ flleo + [fleg lallco) €17,
S lglleg 1 fleg gl

The last inequality holds for |£]] < 1 due to the identification of the coefficients of
q with derivatives of g and [34, Lemma 2.7] (see also [34, Remark 2.9]).

The polynomial p(£)g(€) may have a kinetic degree higher than «. In that case,
let 7(€) be the sum of the terms in p(£)q(€) of kinetic degree larger than or equal
to a. We also see from the application of [34, Lemma 2.7 & Remark 2.9], reasoning
term by term, that [r(§)| < [f[ce|gllcy |€]* whenever €] < 1. Thus, the lemma
follows. |

4. KINETIC EQUATIONS WITH INTEGRAL DIFFUSION

4.1. The kernel associated with the Boltzmann equation. Like in (1.6), we
use the decomposition of the Boltzmann collision operator described in [44] and
suggested earlier in [47, Chapter 2, Section 6.2]. We split Boltzmann’s collision
operator Q(f, f) appearing in (1.1) as the sum of two terms Q = Q; + Qy. The
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first term Qi (f, f) is an integro-differential operator and Qs(f, f) a lower order
term,

A(f, f) =Lk, f,
Q(f, f)=cl(f=|-I"f,

where ¢, is a positive constant only depending on the function b appearing in (1.3)
and where the integro-differential diffusion operator Lk, is defined as

(4.1)

Lic;g(t x,v) = PV/ (9(t, 2, 0") — g(t, 2, v)) K¢ (t, x,v,0") dv’.
Rd

The kernel Ky characterizing the operator Lk, is given by the following formula

2d—1
(4.2) Ky(v,v') = W —a f(v +w)B(r, cos B)r~42 dw
U=V Jwlv—v
ith {TQ == o+l
wi _ w—(v=v) | wt(v'—v)
€080 = =Gom] T o=
The following expressions are easier to handle in computations.
(43) Kplo) =10 = ol [ fmo w) A~ ol el dw
wlov'—v
(14 s [ ) dw,
wl(v'—v)

where A ~ 1 is a bounded function only depending on the collision kernel B.

In Formula (4.2) we omitted the (¢,z) dependence in Ky = K(t,z,v,v") and
f = f(t,z,v). This is because for every fixed value of (¢, z), we think of f(¢,z,) asa
function of v and compute the kernel Ky accordingly by Formula (4.2). Thus, if f =
f(v) is a function of v only, the kernel Ky = Ky(v,v) depends on v and v'. When f
depends on other parameters, so does K. In particular, Ky = K¢(t,x,v,v") when
f = f(t,z,v). In the same spirit, we occasionally refer to Assumption 1.1 for a
function f = f(v) depending only on v as a way to state that its mass, energy and
entropy are bounded by constants mg > 0, My, Ey and Hy. This abuse of notation
is convenient when stating lemmas that relate bounds for f with bounds for K.

There are two general regularity results for general kinetic integro-differential
equations that we apply in this paper. The first one, given in [35], is a Holder
estimate with a small exponent, in the style of the well known theorem of De
Giorgi and Nash. It is, in some sense, the integro-differential version of the result
in [22]. The second one, given in [34], is a higher order Holder estimate in the style
of the classical result by Schauder for linear elliptic equations. We will iterate these
Schauder-type estimates, and combine them with the large-velocity decay estimates
from [32], in order to obtain C'* estimates. Each of these two regularity results
depends on different conditions on the diffusion kernel K. In the next two sections,
we discuss the assumptions for each of these results.

Remark 4.1. The theorems for kinetic integro-differential equations in the style of
De Giorgi/Nash (explained in Section 4.2) and the Schauder-type results (described
in Section 4.3) depend on assumptions on the kernel that look rather different from
each other. These assumptions are best understood by comparing them with the
corresponding conditions for the Landau equation, in terms of classical second order
diffusion, that formally correspond to the limit as s — 1.
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The in-homogeneous Landau equation is also a kinetic equation of the form

(45) atf+11vmf = QL(fa f)7

where the collision operator Qy (f, f) involves second order derivatives of the func-
tion f. It can be written in divergence form

(4.6) Qu(f, f) = v, (alio, f +b]1).

The Hoélder estimates (as in [22]), obtained following De Giorgi method, depend on
this expression and on the uniform ellipticity conditions on the diffusion matrix alfj
(that depend on the solution f itself through its hydrodynamic quantities). The
term 0, (b{ f) is of lower order.

The application of a Schauder type estimate (for example as in [42]) would
depend on the expression of Qr(f, f) in non-divergence form. In the case of the

Landau equation, it takes the form
(4.7) QL(f, f) = aljdvn f + ¢ f.

Here, the lower order term is ¢/ f. The Schauder estimate depends on the diffusion
coefficients (in this case aifj) being uniformly elliptic and Hoélder continuous.

The difference between the divergence and nondivergence structures in (4.5)
and (4.7) translates in different structure assumptions for the diffusion kernel in
their integro-differential counterpart. The two terms in the decomposition of the
Boltzmann collision kernel (4.1) correspond more naturally to (4.7) than to (4.5).

One can apply divergence-form techniques to integro-differential operators when
these have a variational structure. It corresponds to cancellation conditions be-
tween K (t,z,v,v") and K(¢t,z,v',v). Ideally, the case of symmetry of the form
K(t,xz,v,v") = K(t,z,v',v) would correspond to an integro-differential operator in
divergence form without lower order terms. However, we see in (4.6) that there
is a first order lower order term in the Landau equation. In Section 4.2 we will
state the precise cancellation conditions for K (¢, z,v,v") — K(t,2,v’,v) so that the
asymmetry in the kernel is of lower order than the diffusion. The Holder estimate
in the style of the theorem of De Giorgi, Nash and Moser in Section 4.2 depends
on this cancellation condition.

One can apply nondivergence techniques to integro-differential operators when
their structure allows us to make pointwise estimates. It corresponds to the can-
cellation condition K (¢, z,v,v + w) = K(t,z,v,v — w). The Boltzmann kernel Ky
satisfies this symmetry by construction. Thus, the application of nondivergence
techniques to the Boltzmann equation is more direct. This will be reflected in the
assumptions of the Schauder-type estimate described in Section 4.3.

4.2. The local Holder estimate. A local Holder estimate for a general class of
kinetic equations with integral diffusion was obtained in [35] following classical ideas
from De Giorgi. It applies to equations of the form

(4.8) g +v-Veg=Lkg+h,

where h is a given source term and L is an integral operator of the form

Lrgt,z,v) =PV [ (g(t,z,v") — g(t,z,v))K(t,z,v,0")d
R4

associated with a (non-negative) kernel K (¢, z,v,v’) defined in (—1,0]x By x By xR,
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The Holder estimates for kinetic integro-differential equations developed in [35]
are a result comparable to the theorem of De Giorgi, Nash and Moser for elliptic or
parabolic equations in divergence form. These regularity estimates are independent
of any well-posedness questions. It does not matter where the kernel K comes from,
whether it depends on f or not, or how smooth it is with respect to any of its
parameters. It is a result that only requires some uniform ellipticity conditions on
the kernel K that we describe below.

The following list of assumptions must be met uniformly in ¢ and x. In order to
keep the formulas short, we omit their dependence on ¢ and z.

Non-degeneracy conditions.

(4.9) For allve By and 7 > 0, |i\nf1/ (v =) - e)2 K(v,v') dv' = Ar?~ 25,
€=+ J By (v)

(4.10) For any f supported in Ba, / F)(f(v) = fW)K(v,v") dv’ dv
By xR4
5 Ny — M ey

The first non-degeneracy condition (4.9) is necessary only for s < 1/2. It is not
clear if the second condition (4.10) may actually follow from (4.9). In practice,
(4.9) is usually much easier to check than (4.10).

Boundedness conditions.

(4.11) For all v € By and r > 0, / K(v,v")dv' < Ar—2.
RANB;.(v)

(4.12) For all v' € By and r > 0, / K(v,v")dv < Ar—2.
R\ B, (v7)

Cancellation conditions.
(4.13)

For all v € By, <A

PV/ (K(v,v') = K(v',v)) dv/
Bi/4(v)

(4.14)
For all r € [0,1/4] and v € By4, PV/ (K(v,v") = K(V',v)) (v —v) dv’
B (v)

<A+ 172,

The second cancellation condition (4.14) is necessary only for s > 3.
The cancellation conditions (4.13) and (4.14) correspond to the representation of
the integral diffusion as a divergence form operator with a lower order asymmetry
(see Remark 4.1).
The nondegeneracy and boundedness conditions (4.9), (4.10), (4.11) and (4.12)
correspond to the uniform ellipticity of the integral diffusion kernel. In practice,

the most difficult to verify is the coercivity assumption (4.10).

Theorem 4.2 (Local Hélder estimate — [35]). Let K : (—1,0] x By x By x R —
[0, +00) be a kernel satisfying the ellipticity conditions (4.9) (only if s < %), (4.10),
(4.11), (4.12), (4.13), (4.14) (only if s > 1). Let f : (—1,0] x By x R? be a solution
of (4.8) in Q1 for some bounded function h. Assume also that f is bounded in
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(—1,0] x By x R%. Then f is Hélder continuous in Q% and the following estimate
holds

[f]C;(Q%) < O fl Lo ((=1,01x B xrey + (Bl (@1));

where a € (0,1) and C > 0 only depend on dimension d, and the constants A and
A appearing in the assumptions.

In [35], we verified that the Boltzmann kernel Ky (given in (4.2)) satisfies (lo-
cally in v) the assumptions (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14) with
parameters depending only on the hydrodynamic constants mg, My, Ey and Hg of
Assumption 1.1.

We point out that there is a similar Holder estimate for kinetic integro-differential
equations in [46]. Its proof is simpler and it allows for an unbounded right-hand
side. However, it only applies for a more restricted family of kernels that makes it
unsuitable for our application to the Boltzmann equation.

Remark 4.3. In [35], the Holder estimate is obtained in a classical Holder space
for some a > 0 sufficiently small. Such a Holder estimate implies an estimate
in the kinetic Holder space used in the present work at the expense of reducing
the exponent « by a factor min(2s,1). This is because for any two points z, zy €
R x By x R? such that dy(z, 29) < 1, we have |z — zo| < Cdy(z, 20)™"(1:2%), Indeed,
when |vg| < 1, we have

|z — z0] = |t — to| + |z — zo| + |v — vo|
< (1 + |’U0|)|t — t0| + |l‘ — X9 — (t —to)Uo‘ + |U — ’Uo‘
< C(dy(z,20)* + do(z,20) 7% + dy(2, 20))

for some constant C' only depending on s. In particular, if for all zp,z € @ 1

we have [f(z) — f(20)] < Calz — 20|, then |f(2) — f(20)] < CCudy(z, 20)* with
& = min(1, 2s)a. The constant C only depends on s and «.

4.3. A Schauder estimate for kinetic integro-differential equations. The
classical Schauder estimates for elliptic or parabolic equations of second order apply
whenever we have an equation with uniformly elliptic and Holder continuous coef-
ficients. In [34], we obtained a Schauder-type estimate for kinetic equations with
integro-differential diffusion like (4.8) in non-divergence form. The result depends
on the kernel satisfying different ellipticity conditions than the ones ensuring the
local Holder estimate (Theorem 4.2). In some sense, the conditions described be-
low reflect that the integro-differential equation is in non-divergence form and the
kernel has a Holder continuous dependence with respect to (¢, 2,v). They should
be understood from the perspective described in Remark 4.1.

There are two types of conditions that are necessary for a Schauder-type esti-
mate: uniform ellipticity and Holder continuity of coefficients. We should think of
the kernel K (t,z,v,v') as a map from the first three variables (¢, z,v) to a kernel
depending on a single parameter w € R? given by K, , ,)(w) := K(t,z,v,v + w).
The uniform ellipticity assumption will say that for every value of (¢, z,v), the ker-
nel K, .) belongs to a certain ellipticity class. The Holder continuity will say that
for two different values z; = (t1,x1,v1) and 2o = (t2, 22, v2), the kernels K, and
K., are in some sense at distance < dp(z1, 22)°.

Let us recall the ellipticity class of order 2s defined in [34].
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Definition 4.4 (The ellipticity class). Let s € (0,1). A non-negative kernel K :
R? — R belongs to the ellipticity class K if

(i) K(w) = K(-w),
(if) For all >0, [ Jw[*K(w)dw < Ar?=2s,
(ili) For all R > 0 and ¢ € C*(Bg),

(4.15) //B L pl) ~ )R = o) v do

> A// (p(v") = p(©)* —v|~972* dv’ do.
Brj2axBRr/2
(iv) For any r > 0 and e € S,

/ (w-e) K (w)dw > Ar?25,
B

Some remarks are in order.

(1) Definition 4.4 is borrowed from [34]. However, the definition in that paper
is more general since K(w)dw is supposed to be a nonnegative Radon
measure that is not necessarily absolutely continuous. For the purpose
of this paper, because we deal with classical solutions, our kernel K will
always be given by a non-negative density function and we do not need to
deal with singular measures.

(2) The last two items (iii) and (iv) might be redundant. Indeed, we do not
know any example of a kernel satisfying (i) and (ii) and either (iii) or (iv),
without satisfying all of them. This is related to the problem of coercivity
for integro-differential operators. See the discussion in [35], [20], [21] and
[14]. Ttem iv. is in practice much easier to verify than iii.

(3) Earlier works on integro-differential equations concentrated on a more re-
stricted class of kernels that were pointwise comparable to the fractional
Laplacian: K(w) ~ |w|~972%. This traditional assumption does not suffice
to study the Boltzmann equation. The diffusion kernel that appears in the
Boltzmann equation belongs to the more general class of Definition 4.4,
with parameters depending on the constants in Assumption 1.1.

The condition on the Holder dependence of K, with respect to the point z is
given in the assumption (4.16).

Theorem 4.5 (Local Schauder estimate — [34]). Let s€(0,1) and e (0, min(1, 2s))
and o/ = 1-2FS28a' Let K : (—(2r),0] x Bigpyi+2: X REx R — [0, +00) such that for
all z = (t,x,v) € (—(2r)?%,0] X Bigpyi+2: x RY, the kernel K. (w) = K(t,2,v,v+w)
belongs to the ellipticity class IC from Definition 4.4. Assume moreover that for all
21,22 € Qo and all p > 0,

’

(4.16) / K., (w) — K., (w)] |w]* dw < Agp* **dy(z1, 22)"

P

with z; = (t;,x;,v;) fori=1,2.
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If f € C((—(2r)2,0] x Bgpyr2s x R?) solves (4.8) in Qay, then

(4.17)
, 2s+al/7a
[Flezeser g, < C<max (Tzsa T Ay e ) [fleg (- @r2e01x By, 1400 xR

+ [h]C,?’(Qm-) + HlaX(Tia aA0)|h|CO(Q2r)>7

where the constant C depends on d, s, and the constants A\, A from the definition of
K.

Proof. The main result in [34] is for » = 1 and the constant C' depends on Aq in
an unspecified way. In order to justify (4.17) we work out explicitly its dependence
on r and Ay. It is a consequence of Theorem 1.6 in [34] combined with a scaling
argument. Indeed, let S,(t,z,v) = (r?t,r1*25z rv). This is the natural scaling
that maps @7 into @,. The function f o S, satisfies the scaled equation

(O +v-Vy)[foS]=Lg +71%hoS,,

where
K.(w) = r"* 2 Kg _(rw).

We point out that K satisfies assumption (4.16) with r® Ay instead of Ag. Indeed,

/ (K (w) = Koy (w)w]? dw

B,

- / P2 (K (rw) — Ks, o (rw) Juo]? du,
B

P

2 /B (K2, (1) — K, -, (@) ] dw,

rp
’

< Agr® 7 2(rp)2 2 dy (S 21, Srz2)® = (Aor® )p? 2 dy(z1, 22)° .

Provided that r® Ay < 1, we apply Theorem 1.6 in [34] (same as Theorem 4.5
but for » = 1 and constants depending implicitly on Ag). We get
(4.18)

[f ¢ Sr]cézs+a’(Q1) <C ([f o ST]CZ((—ZZS,O]XBQHQS xR%) + 7“28Hh © Sr”Cg’(QQ)) .

We can take a universal constant C' (depending on d, A, A and s only) provided
that Agr® < 1. In that case, we scale back to express (4.18) in terms of the original
functions f and h to obtain

(4.19)

[Flezsar (g,
<C (7"“‘25_“ [fleg ((—@r2e01x By 20 xr) T [Ploar (@, 777 “hHCO(Q%)) ’

provided that Agr® < 1.
If Agre®’ > 1, we should further look at a smaller scale 7 < r so that Api® = 1.
In that case, the inequality (4.19) holds with 7 instead of 7, and for any cylinder
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Q7 (z0) < Q. Taking into account Lemma 3.5, we get

[f]cZSJro/(QT)
<C (7101—28—(1 [f]cﬁ((*(Qr)zs,O]><B(2r)1+25 xRd) T [h]CZX/(er) +7 HhHCO(Qz’")) '

Taking into account that 1/7 = A}/ ' we get
(4.20)
ez,

2s+a’—a
<C (Ao " Uleg @ 01xB g o xn) + (Mo @, + Ao|hc°<cam) :
Combining (4.19) with (4.20) we obtain (4.17). O

The Boltzmann kernel Ky ; , .y as in (4.2) belongs (locally) to the class K pro-
vided that Assumption 1.1 holds. This follows from computations that are in the
literature. Indeed, at least when v stays in a bounded domain, we have

(i) The symmetry of the Boltzmann kernel is immediate by construction. We
see in the formula (4.2) that K (t,z,v,v + w) = K¢(t,z,v,v — w).

(ii) The condition (ii). in Definition 4.4 tells us that the kernels K € K are
bounded in an averaged sense. It is a weaker condition than the more
classical pointwise bound K(w) < Alw|~972¢. By a simple computation,
we can verify that it is equivalent to any of the following two alternative
formulations (see [35, Section 2.2])

/ K(w)dw < Ar™2s,
RY\B,

/ K(w)dw < Ar~2.
B2, \B;

In each case, the inequality is supposed to hold for all » > 0 and the value
of A may need to be adjusted by a dimensional constant when passing from
one formulation to another.
The assumption for Theorem 4.5 that every kernel K , ., satisfies (ii)
in Definition 4.4 is the same as the assumption (4.11) for Theorem 4.2.
This boundedness assumption for a kernel K, together with the symme-
try condition (i) in Definition 4.4, allows us to estimate the value of the
integro-differential operator Lk f pointwise. See Lemma 4.6.
(iii) Using that v + 2s € [0, 2], the integral upper bound on item (ii) in Defini-
tion 4.4 holds for the Boltzmann kernel K (at least locally) according to
[44, Lemma 4.3]. Indeed, that lemma says that for any f : RY — R,

(4.21) / Ky(v,v+w)dw < (/ f(v+w)|w+? dw) r2
R%\B,. R

applying Lemma 2.3,
< (14 o)™ My + Eo)r—2°.

(iv) The coercivity condition for Ky ,.) is easier to verify than the usual
coercivity estimates for the Boltzmann equation. This is because Ky (s 4.0)
depends on the single variable w € RY. We should think of the kernel
Ky (t,2,0) @ what we get from the original kernel Ky by freezing coefficients.
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The coercivity estimate (iii) in Definition 4.4 is a direct consequence of the
existence of a cone of nondegeneracy described in [44, Lemma 4.8] combined
with the coercivity conditions from [21] or from [14].

(v) The last nondegeneracy assumption, i.e. item (iv) in Definition 4.4, is a
straight-forward consequence of the existence of a cone of nondegeneracy
described in [44, Lemma 4.8].

An important difficulty is apparent at this point: the constants A in (ii) and
A in (iii) and (iv) deteriorate as |v| — oo. The kernel Ky ;) belongs to an
ellipticity class only locally in v. In order to control the asymptotic behavior of all
our regularity estimates, it will be important to establish precise asymptotics on
the ellipticity of the kernel as v — o0. The same difficulty arises in regards to the
assumptions for Theorem 4.5. A change of variables will be described in Section 5
that addresses this difficulty.

Now we state and prove the lemma mentioned above about pointwise bounds for
Lk f. For more applicability, we state it for kernels K satisfying only (i) and (ii) in
Definition 4.4, and that might even change sign. It is related to [34, Estimate (3.4)].

Lemma 4.6. Let K : R? — R be a symmetric kernel (i.e. K(w) = K(—w)) so
that

/ |K (w)| dw < Ar—2.
R4\B,

Consider the integro-differential operator Ly,
£ (@) = PV [ (F(0-+ 0) = F)K(w)du,
If f is bounded in R? and C**< at v for some a € (0,1), then

Fa ta
f

‘EKf(U” < OA|f co(rd) L Igzs+a(y)-

The constant C' depends on dimension, s and a.

We use the standard notation [-]ca(y) to denote the smallest value of N > 0 so
that there exists a polynomial ¢ of degree strictly less than a so that |f(v + w) —
q(w)| < N|w|* for all w € R%. Note that 25+« may be larger than 2 in Lemma 4.6.

Proof. The fact that f is C?**% at the point v means that

o [flv+w)— fv)] < [f]czs+u(v)|w|2s+a if 2s + a € (0, 1].

o [flv+w)—f(v)—w- -Vf(v)|< [f]025+a(v)|w|23+°‘ if 2s + a € (1, 2].

o [flotw)—f(v)—w-Vf(v)—Fwiw;di; f (v)] < [flozsta (o |w[* T if 2s+a €

(2,3].

For some r > 0 to be determined later, we use the inequalities above to estimate
the part of the integral where w € B,.. Note that the term w - Vf(v) is odd in w.
Since the kernel K is symmetric, it vanishes in the principal value. We have

PV/B (f(v+w)— f(v))K(w)dw

r

1
< [ (emeiolobre + { guansioy s}

A (lozrar® + DO}, L)

) Il o

if2s + o« > 2
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If 2s + a > 2, We use the (classical) interpolation inequality in the full space
2sta—2

‘DQf(’U)| < [ ]éztia U)|f|c?15(]%(o¥l )

2sta—2
< 8 (Ulomerr® + {E . Mk 72} ).
if2s +a>2

For the part of the integral w ¢ B,., we bound |f(v +w) — f(v)| by 2|f[cora). We
get

[ s w - @)K w) dw] < flencasy [ VK] du,
R4\ B, R4

< Alfleomayr™

Adding up the two (or three if 2s + @ > 2) terms,
Lk f(v)|
2sta—2

<8 (Ulemerr® + { N8 Ik 72} v )
if2s +a>2

We finish the proof by choosing (the optimal) r > 0 as

_( | flcomay )m 0
[fle2s+o (v '

5. THE CHANGE OF VARIABLES

5.1. The change of variables. The ellipticity of Boltzmann’s collision operator
degenerates for large velocities. This shows up, for example, in the weights of the
well known coercivity estimates from [24]. Correspondingly, the constants A and A
in the assumptions of Theorem 4.2 are bounded for K only locally in v. Likewise,
if we want to apply Theorem 4.5 to the Boltzmann kernel Ky given in (4.2), the
constants A and A in Definition 4.4 would only exist for a bounded set of velocities.

This is a major obstruction in order to obtain global regularity estimates using
Theorems 4.2 and 4.5. Moreover, global regularity estimates are crucial in order
to carry out an iterative gain of regularity. The constants in Theorems 4.2 and 4.5
do not have an explicit dependence on the parameters A and A in the assumptions.
There is no hope to obtain a global regularity estimate unless we are able to ap-
ply these theorems with fixed values of the ellipticity parameters A and A for all
velocities in R?.

In this section, we describe a change of variables that resolves this difficulty. For
any point zg = (o, o, Vo) € R*2¢ we construct a function 7 that maps the kinetic
cylinder Q7 into a product of ellipsoids centered at zy;. Moreover, the function fo 7y
satisfies a kinetic integro-differential equation whose kernel is elliptic with constants
A and A (either in the sense of Theorem 4.2 or Theorem 4.5) depending only on
the constants mg, My, Eg, Hp, s and dimension, but not on vg.

This change of variables allows us to turn our local regularity results (as in
Theorems 4.2 and 4.5) into global estimates with precise asymptotics as |v| — 0.
It is a key tool for the proofs of the main results in this paper. It was motivated
by a similar change of variables for the Landau equation from [12].

In order to illustrate the significance of this change of variables, we show in
Appendix A how it can be used to derive the global coercivity estimate with respect
to the anisotropic distance obtained by Gressman and Strain in [23] and [24].
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Given ty € R, 2o € R? and vy € R?, we consider the transformed function

(5.1) ft,z,v) = ft,z,0)

with (¢,Z,0) = To(t,z,v). The transformation 7y depends on the reference point

20 = (to,70,v0) € R1T24. If |uy| < 2, we will simply take Toz := 29 0 z. When
|vo| = 2, which is the important case, we define

- t Tox + tvg
(5.2) (t,Z,0) = To(t,z,v) := (to + \U0|7+257x0 BNRREZ y o + Tov) ;

= 20 0 (|vo| 777 %¢, [vo| T Ty, Tov)
and T : R — R? is the following transformation:

(5.3) To(avy + w) = ivo +w for all w L vg,a € R.

|vol

Note that Ty maps B into an ellipsoid E; with radius 1/|vg| in the direction of vg
and 1 in the directions perpendicular to vg. For consistency, let us also define T} as
the identity operator whenever |vg| < 2. The following sets are naturally associated
with the change of variables. For zy € R™*2¢ and r > 0, we consider

gr(ZO> = %(Qr)a Er(”O) =+ TO(B’I‘>

The set of velocities E,(vg) is an ellipsoid in R?. The linear operator 7o maps Q;
into

E1(20) 1= EM"(20) x E1(vo) where E17(20)
= {(to + |vo| 7772, o + |vo| TV 2 (Tow + twg)) : t € [-1,0],z € By}
is a slanted cylinder.

Lemma 5.1 (The equation after the change of variables). If f satisfies the Boltz-
mann equation in E1(zo) then f solves the equation

atf—’—vvxfzﬁkff—’—ﬁv (t,$7’l)>EQ1,
where

(5.4) Ky(t,x,0,0") = |vo| 772K (4,2, 0,00 + Tov')

Proof. Given z = (t,z,v) € Q1, let z = (¢,Z,v) be defined by (5.2). We compute
(0 +v- Vo) f(2) = |vol 772%(0 + 0 Va) £(2)

ﬁf(ff(z) = PV/Rd(f_(t,x,v') — f(t,z,v))f(f(t,x,v,v') dv’

= |’U0|717’y72S PV/ (f(f,f,’l)o + To’l)/)
R4
— f(t,2,0))Kf(t,Z,0,v0 + Tpv') dv’,

make the change of variables ' = vy + Tpv" and use the fact that det Ty = |vg|~*
in order to get

— | 2PV / (F(E,2,7) — f(5.2,0)K;(F,7,0,0) do'.
]Rd
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Recall that the Boltzmann kernel satisfies the symmetry property K (¢, z, v, v+w) =
K(t,x,v,v—w) and this is what ensures the convergence of the integral around the
origin in the principal value sense if s > 1/2. This cancellation is unaffected by the
linear change of variables.

If f satisfies the Boltzmann equation then f satisfies d;f + v -V, f = nger h

with 2(z) = [vo| "2 F(2)(f * o] - ) (2). -

The point of this change of variables is to straighten up the ellipticity of the
Boltzmann kernel Ky. Theorem 5.2 says that we are able to apply the Holder
estimates of Theorem 4.2 with uniform ellipticity constants to f.

Theorem 5.2 (Change of variables - I). Let zy = (o, zo,v0) and £1(20) = £ (20) X
Ei(vo) be defined as above. Assume that Assumption 1.1 holds for all (t,z) €
EV (), and

(5.5) if v <0, sup flv+uw)|ul"du < C,.

veRd J By
Then the kernel Ky satisfies (4.9) (only if s < 1/2), (4.10), (4.11), (4.12), (4.13)
and (4.14) (only if s = 1/2), with constants depending on d, s,y and mg, My, Ey
and Hy (and C, if v < 0) only, uniformly with respect to vy.

Remark 5.3. Condition (5.5) is weaker than imposing an L* bound for f. Such a
bound is proved in [44] for solutions of the Boltzmann equation for ¢ > 0 and it
only depends on the hydrodynamic quantities appearing in Assumption 1.1 when
v+ 2s € [0,2].

Remark 5.4. Note that our computation works for v + 2s € [0, 2]. For values of s
and v away of that range, we would need further assumptions on either integrability
of f (for v + 2s < 0) or higher moments (if v + 2s > 2).

We also have a corresponding result for the ellipticity assumptions of the
Schauder-type estimates in Theorem 4.5.

Theorem 5.5 (Change of variables - II). Let zg = (to,zo,v0) with vy € R? and
E1(z0) = Ef’w(zo) x F1(vg) be defined as above. Assume that Assumption 1.1 holds
for all (t,z) € E"(20). Then, for every z = (t,x,v) € Q1, the kernel Ky . (w) =
I_(f(t,sc,v,v + w) belongs to the class K of Definition 4.4. The constants A and A
in Definition 4.4 depend on d, s,y and mg, My, Eg and Hy (and C,, if v <0) but
not on vg.

The proofs in this section largely consist in direct computations to verify the
claims. However, rather involved manipulations of multiple integrals are needed,
especially for the proof of the second cancellation condition in Lemma 5.19.

Remark 5.6. When |vg| < 2, there is no need for a change of variables. All our
ellipticity conditions hold for any arbitrary (but fixed) bounded set of velocities.
The results of Theorems 5.2 and 5.5 are already established in [35] and [34] for
|vo| < 2. Here, we need to prove them for |vg| = 2. The purpose of the change of
variables 7g is to analyze the asymptotic behavior of the estimates for large values
of |vg|. Thus, the case |vg| = 2 is the important one. Yet, we define 7y for any value
of vy for consistency. The change of variables Ty does not modify the equation at
all when |vg| < 2.
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5.2. Non-degeneracy conditions. The nondegeneracy condition (4.9) and the
coercivity condition (4.10) are a consequence of the existence of a cone of nonde-
generacy described in Proposition 2.6.

Proposition 2.6 describes a set of directions A(v) depending on each point v € R?,
along which the kernel K; has a lower bound. Using the notation introduced in
[44], we call the cone of nondegeneracy Z(v). Here

(v) := {w = A(v)}.

|w]

[1]

Proposition 2.6 says that for each value of v € R, the set of directions A(v) <
S4-1 is contained in a strip of width ~ 1/(1+ |v|) around the equator perpendicular
to v, with measure = 1/(1 + |v]), so that K(v,v + w) 2 (1 + |v|)1T7F28|w| 428
whenever w belongs to Z(v).

Naturally, there is a cone of nondegeneracy for K ¢ corresponding to the cone of
nondegenerate directions for K. Indeed, we write

E(w) = {we R : Tow € E(vp + Tov)},
A(v) = {o e ST Tyo/|Too| € A(vo + Tov)}.

By construction, we have that w € Z(v) if and only if w/|w| € A(v). Moreover,
E(vo + Tov) = To(E(v)). B

Lemma 5.7 tells us that Ky has its nondegenerate directions A(v), and both its
lower bound K and the volume of A(v) are independent of the center point vy of
the change of variables.

Lemma 5.7 (Transformed cone of nondegeneracy). Let f be a function such that
Assumption 1.1 holds. Let vg € R? and v € By, with A(v) and Z(v) defined as
above. Then
o K;(v,v+w) = Mw|~%2% whenever w € Z(v).
e |A(v)| = i for some i > 0 depending on the parameters of Assumption 1.1
and dimension, but not on vg.

Proof. Proposition 2.6 immediately implies the result of this lemma when |vg| < 2.
In order to prove it for |vg| = 2, we need to analyze the interaction of the change
of variables with the bounds in Proposition 2.6.

We first check the first item in the lemma. Pick w such that w € Z(v), i.e.
Tow € Z(vg + Tov). Then

Ky(v,v+w)= WKJC(U()‘FT()’U,’UQ +Tov+Tow) = N Tow| =42 = Nw| =972,
For the last inequality, we used the fact that |To(w)| < |w].

We are left with checking the second item. Note that A(vy + Tov) and A(v) are
subsets of S?~! related by the nonlinear map o ~ Tyo/|Too|. In order to relate
their volumes, we would have to make a computation involving the Jacobian of
the map, which in this case is the determinant of the derivatives that act on the
tangent space of S%~!. This kind of computations are confusing to the best of
us. So, instead, we opt to estimate the volume of A(v) through Z(v). Indeed, the
following elementary formula allows us to relate the volume of a set of directions
with the volume of the corresponding cone. For any R > 0,

d _ = d =
|A(vo+Tov)|3a—1 = E|:(UO+TOU)GBR\ and |A(v)|3ga—r = ﬁ|:(v)mBR|.
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Combining this formula with the estimate in Proposition 2.6, we have, for any
R >0,

- R4 _
(5.6) |=(vo + Tov) N Br| = 7u(1+|vo+Tov|) L

Let us recall the definition of Ty. Given any w € RY, we write it as w = avg +w™
with v -wt = 0. Then Tow = avy/|ve| +wt. We want to estimate an upper bound
for a under the condition that Tow € Z(vg + Tov) N Bg.

According to the width condition in Proposition 2.6, if Tow € E(vg + Tov), we
must have

T()’U)

m . (’UO + TO’U) < Co.

Replacing the formula Tow = avg/|vo| + w, and recalling w™ - vy = 0, we get
la|

Towl

< Co + |Tov| < Cp + 2.

|vo]

If in addition we know that |Tow| < R, we conclude that
< (Co + 2>R.

la] <

|vol

Now, for every w such that Tow € Z(vg + Tov) N Br, we have

ol = y/a% uol? + w2,
alvo] + |,

<
< R(Co + 3)

Let us pick R = (Co + 3)~1, which is a constant depending on the parameters of
Assumption 1.1 and dimension only. We deduce that

Ty (E(vo + Tov) N Br) < By.
Therefore,
IZ2(v) N By| = |Ty H(E(vo + Tov) N Br)l,
= (det Ty ) |=(vo + Tov) N Brl,
> |vo|(1 + |vo + Tov|) *uR?/d  using (5.6) and Lemma 2.4,
>

i
for some constant iz > 0 depending only on the constants p and Cy of Proposition 2.6
and dimension (and not on vy). O

Corollary 5.8 (Non-degeneracy conditions for the Hélder estimates). When f
satisfies Assumption 1.1, the kernel K satisfies (4.9) and also the inequality

N — a(oN2K +(v.v") dv' dv (g(v’)fg(v))Q v dw
57 [ 600 =) e ava >A//BWBW A

for a parameter A > 0 depending on the constants in Assumption 1.1 (uniform with
respect to (tg, o, vp) ).
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Proof. The cone of nondegeneracy described in Lemma 5.7 trivially implies (4.9)
for Ky. It also fulfills the assumption of Theorem 2.5, from which the inequality
(5.7) follows. O

Recall that for z = (t,x,v), K;.(w) denotes the kernel K(t,x,v,v + w).

Corollary 5.9 (Non-degeneracy conditions for the Schauder estimates). When f
satisfies Assumption 1.1, the kernel K; . satisfies for any z € Q1 the coercivity
conditions (i) and (iv) in Definition 4.4 for a parameter A > 0 uniform with
respect to (to, zo, vo).

Note that the statement of Corollary 5.9 is not the same as (5.7). One is for
the kernels K fiz R? — R? depending on a single parameter w € R%. The other
is for the kernels K; as a function of both v and v'. The dependence of ¢,z is
irrelevant for either statement. The coercivity condition given in Corollary 5.9 is in
some sense simpler than (5.7) given in Corollary 5.8 since it applies to the kernel
with frozen coefficients (referring to standard terminology from elliptic PDEs).
Theorem 2.5 is sufficiently strong that it implies both Corollaries 5.8 and 5.9. One
could alternatively justify Corollary 5.9 using coercivity results that are suitable for
translation invariant integro-differential operators like the ones described in [21].

Proof of Corollary 5.9. Let f((w) = I_(fyz(w). The cone of nondegeneracy de-
scribed in Lemma 5.7 applies to K 7, and therefore also to K. In this case, we
have

(5.8) K(w) = Nw| ™42 whenever w € Z(z).

Here, Z(2) is the cone of nondegeneracy for K; at the point z = (¢,2,v). The
frozen kernel K has this cone of nondegeneracy at every point v € R%.

The coercivity condition (iv) from Definition 4.4 easily follows from the existence
of the cone of non-degeneracy for K.

The properties of condition of the cone of nondegeneracy described in Lemma 5.7
imply the assumptions of Theorem 2.5. Therefore, we have

//B2X32(<P(v’)—so(v))2f((v,v’)dv’dv > 5\//Blwl(@(q,’)_w(v)mv/_wdzs do' do.

Since the inequality (5.8) is scale invariant, a standard scaling argument allows us
to conclude (4.15) for any R > 0. O

5.3. First boundedness condition.

Lemma 5.10 (First boundedness condition). Let us assume that v + 2s € [0, 2]
and an upper bound in mass and enerqgy

fv)dv < My, / f)|v]* dv < Ey.
R4 R4

The kernel Ky from (5.4) satisfies (4.11) with the parameter A depending on Mo,
Ey, v, s and d only.

We start with the following computation.
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Lemma 5.11. Let vg € R\By and v € By. For any r > 0, we have

/ Ki(v,o")dv' < Ar—2®
RANBy- (v)

2 S
with A — |v0|—v—2s/ F@+w) (ol = (v0- %) 1] w2 dw.
weR® |U}‘

Proof. In view of the definition of K, we can write

_ du
Ky(v,v')dv' = / lvo| T2 K (0,0 4 u) —r
/Rd\BT(,U) ! RA\E,. ! det Ty

= "l}o|7’y72S /]Rd\E Kf(17717+u)du,

where ¥ = vy + Tyv and E,. = Ty(B;). The set E,. is an ellipsoid centered at the
origin with radius r/|vg| in the direction of vy and 7 in the directions perpendicular
to V-

Using (4.4), we rewrite the expression above as

/ Ky(v,0")dv'
RA\B;(v)

sl [ e (g o ) d
ueR\ E,. wlu

= |v0|_V_25/ /ulw |u|_d+1_25 du f(17+w)|w\"’+25 dw.
weR? uERd\ET

‘We used the fact that

(5.9) /u{/wm(...)dw} du=/w{/um(...)%du} dw,

In order to estimate the integral in the inner factor, we analyze the intersection
of the ellipsoid E, with the hyperplane {u : v L w}. This is of course a (d — 1)-
dimensional ellipsoid whose dimensions are computable. Its smallest radius p equals

r
(5.10) p =
2 VoW 2 VoW 2
ool (1= () ) + (o)
Indeed, it is an elementary planar computation: for v € JF, with |u| = p and
u L w, we write u = (u - 99)0p + w1 with uy L vy and 99 = vg/|vg|. In particular,

p? = (u-19)? + |u1|%. From the definition of E, and our choice of u, we know that

the vector v = (u - 0g)|vo|Do + w1 is of norm r. We now write
r? = (u-00)*fvol® + fus |
(5.11) = (u-90)*(lvo]* = 1) + p*.

Use next the fact that v 1 w and get p=2(u - 99)? + (0 - 6p)? = 1 with @ = w/|w|.
In particular,

(u-80)* = p*(1 = (i %)*).
Combining the formulas for r? and (u - 6y)? yields (5.10).
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Therefore

. |u‘fd+172s du < /ulw, ‘u|7d+1725 du < pf2s

ueR\E,. ueRN\B,

2 2\ ¢
_ 2 fuo? 1_(110 w> +<vo w>
|vo |w] |vo |w]
w\? ’
<7"728 |’U0‘2— <’UO'—> +1
|w]

Substituting in our previous formula, we get the desired result. O

We next aim at estimating the constant A appearing in Lemma 5.11.

Lemma 5.12. Let f : R — [0,00), vg € RABy, |v —vo| <2 and s = 0; then for
all w e RY,

2 S
—y—2s w s
w7 [ o) (Uo|2—<’00'|w—|> +1> 0l dw
weR

< C/ @)@+ [0]* + [8]7F2*) do
Ra
< C(My + Ep)
for a constant C depending on s and dimension only (not on vy ).

Proof. Tt is enough to prove

(5.12)

S

2
lvo| 7772 <|v02 — (Uo : %) + 1) w2 <1+ Jvg + w|* + v + w[+?
w

ST+ v+ w® + v+ w2

The second of these inequalities follows simply because |v — vg| < 2. We need to
prove the first one. Note that

2 s 2\ °
|U0|27 1)0'ﬂ +1 s |'U()‘27 ’Uo'i + 1.
|wl |w]

o0 7772 w72 < Juo| T2 (fvo + w7 Juo 7)< 1+ g + w] 7

Moreover,

using that |vg| > 1. We are left with studying an upper bound for

2 S
—v—2s w s
(5.13) 0p] 72 (|vo|2— (00 1) ) T+,

It is convenient to write w = awp/|vo| + b, where a € R and b € R is perpendicular
to vg. With this notation

2
ol — (vo . ﬂ) _ lwl?p?

|w] |w]?
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Thus, the expression in (5.13) equals |vg|~7[b|?*|w|7. We need to study an upper
bound for it. The key observation here is that |b| satisfies the two inequalities
|b] < |w| and |b] < |vg + w], both of which are immediate from its definition.

If |w| < 2Jvo| and v = 0, we have |vg|~7|b]**|w|” < [b]** < |vo + w|?** and (5.12)
follows. The same conclusion holds if |vg| < 2|w| and v < 0.

If v = 0 and 2|vg| < |w]|, we use that |b|] < |vg +w| and |w|” < (Jvg +w|” + |vo|?).
Thus,

lvo| ~7[B**[w|” < [vol ™ |vo + w[** (Jvo + w|” + |vo|”)
< |vo + w[*® + v + w7

We are left to analyze the case v < 0 and |vg| > 2|w|. Using that |b] < |w| and
v+ 2s = 0, we have

ool 7w [B1** < Juol T w2 < Juol** < Juo + wl**.

We conclude that the inequality (5.12) holds in all cases. The proof is now
complete. 0

From Lemmas 5.11 and 5.12, we can derive Lemma 5.10.

Proof of Lemma 5.10. We get from Lemma 5.12 that

2 S
—y—2s w s
w7 [ fo+w) (Uo|2—<’00'|w—|> +1> 0l dw
weR

< C/ F@)(1+ 9> + |8]772) do.
Rd

Combining this estimate with Lemma 5.11 yields

/ Ki(v,o')dv' < Ar—2®
R4\ B, (v)

S (/ F@)(1+ |9 + |@|V+2S)d1~)> —
Rd

then use the fact that v+ 2s € [0, 2],

< (/Rd F@)(1+ |17|2)d17> 2

< (My + Eo)r—2. O

Lemma 5.10 is phrased in terms of the condition (4.11) for Theorem 4.2. As
far as Theorem 5.5 is concerned, we remark that it is the same condition as the
second item in Definition 4.4. We rephrase it in Corollary 5.13. Recall that K . (w)
denotes K (t,z,v,v + w) for z = (t,x,v).

Corollary 5.13 (Item (ii) in Definition 4.4 for Ky). Let f € [7,T] x R% x R? —
[0,00) and Ky be given by (4.2). Then, for any z € Q1,

[ Krelas<c ([ arloPiseaa) e
B, Rd

with z = (t,z,v) and (¢,Z,0) = To(z). The constant C' on the right hand side
depends on v, s and dimension only.
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Proof. In terms of the notation K'fyz, Lemmas 5.11 and 5.12 say exactly that

/ Kfz(w)dw < C (/ (1+ [0 + | T29) f(2, 7, 0) dv) P2
R4\ B, R4
<C (/ (1 + [v]?)f(t, z,v) dv) r2s
R

with (¢,z,7) = To(t,z,v). The bound for the integral of the kernel on the com-
plement of any ball R%\ B, is equivalent to the bound of the integral of the same
kernel times |w|? on any ball. Indeed, the inequality above implies that

/ Ky (w)|w]® dw < (/ (1 + [v]?) f(E z,v) dv) F2-2s
B2T\Br R4

Applying this inequality to dyadic rings for 7 = r/2,r/4,7/8,... and summing the
resulting estimates, we conclude the proof. O

5.4. Second boundedness condition.

Lemma 5.14 (Second boundedness condition). Let us assume that vy + 2s € [0, 2]
and let the upper bound in the mass and energy hold

f(v)dv < My, / f)|v|* dv < Ey.
R4 R4

If v+ s <0, we also assume (5.5).
Then, the kernel Ky from (5.4) satisfies (4.12) with the parameter A depending
on My, Ey, v, s, d and C,, (in case vy +s <0).

Proof. For |vg| < 4 (or any other fixed constant) the result follows from [35, Lemma
3.5]. Here, we concentrate on the case |vg| = 4.
Given v’ € By, recall that v/ = vy + Tpv' and write

/ Ky(v,0") dv
RAB,(v')
<1 / K(v,v")dv
< ———= 0,0")do
[vo| 772 Jra\ g, (5 d

1 / S —d—2 - 25+1 -
~ |v" — 7 s f(0+w)|lw" ™ dw ; do
lvo |7 25 Jra\ g, (o) wl (5'—v)

we use polar coordinates for o: ¥ — 0’ = po; we denote r, to be max{p : po € E,}

1 / /Oc dQS{ =1 +25+1 d—1
= p f@ 4 po + w)|w|" T dw p pT dpdo,
|’UO|’Y+2S Sd=1 Jr, wlo

writing u = po + w, we have dwdp = duand p=u-o

1 / / s 2541 —1-2
< — F@ +w)u/" T (u- o) *dudo
|’UO|’Y+2S Sd=1 J{u:u-o>rs}
—1-2s
S P SR LA T (-
= f@" +u)|ul|” (— . 0’) dudo
|U0|’YJF2S Sd=1 J{uu-o>ry} |u|

—1-2s
1 , , u
- - — do | du.
|UO|’y+2s /Rd f(v +u)\u| (/{a:u.awg} <|u| J) 0) U
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We computed above r, = p; see (5.11) with v = po = r,o. In particular, this
implies
r

\/(0’ . 7)0)2(1 — |’U0‘_2) + 1'

re =

For |vg| “large” (as a matter of fact |ug| = 2), we have

Thus, we are left with the inequality

/ Ky(v,0") dv
RNB, (v/)

—1—2s
1 u
< — v+ w)|ul” / (—'0') do | du.
‘U0|’Y+2s /]RC" f( )| ‘ {O'ZU'O'> } |U"

We need to estimate the inner integral now. For that, it is essential to understand

Te X

__r
V1+(ovg)?

the smallest value of o - u/|u| in the set {0’ tu-o > m} Let us write

e = u/|u] and vg = ae +b. We see that for every o in the domain of integration we
have

(e-0)\/1+ (e-0)2a2 + |b2 > r/|ul.
Therefore, either (e-o)4/1+ |02 2 r/|u| or (e-0o)le-o||a] = 7/|u|. In other words,

1/2
e-o 2 min ! r =:pg
- [ul (1 + [b[2)1/27 \ |al|u| '
Therefore

” —1-2s
/ (— . a) do
{u~0>;2} |U|
V1+(o-vq)

< / (e-0) ' 7% do
{e-0Zpo}

—2s
< Po

1/2 —2s
= min " ( " )
Jul (1 + [b[2)Y27 \ |a|[u]

< 2l (14 [P + 7 ful el

w)2\ ¢
2y (1 + [uo[2 — —(”Tu? ) o

S

u
— -V

|ul

Thus, we are left with

/ Ki(v,v')dv < I + Iy,
RANBy (v')
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where
. 2 S
I (G i (1+vo|2—%) du,
R4 u

I = T*S|v0|7”’75/ F@ + u)|u|"** du.
Rd

The term I; is bounded thanks to Lemma 5.12.

The term I, is lower order in the sense that it has a smaller power of . Note
that only the values of r € (0,2) are relevant for (4.12), since for larger values of
r the domain of integration is empty. We still need to make sure that the factor
multiplying 7~° in the definition of I is bounded independently of vg.

When v + s > 0, we apply Lemma 2.3,

/ F@ +w)u ™ du < (1+[0)7F ~ (1 + |vo])***
Rd'

yielding
12 g rs.

The case v + s < 0 is more involved. We split the integral in I into three
subdomains

Dy =RN\B,, /4, Dy = Bjyy|-1, D3 = RN(Dy U Dy).

We estimate each subintegral separately. In Dy, we have |u| 2 |vg|. Thus,

FO 4+ w)|u|" du < Mo|ve|7™*.
D,

In Dy, we have |u|""* < |u|"|vg|~%. Therefore

F@ +w)u] ™ du < |U0|_s/ @+ u)u] du
Dy Do

vo| ¥ (Mo + C,)

<|
< Jvo| " (Mo + C) using that v + 2s > 0.

We estimate the integral on D3 using the upper bound on the energy: Fy. We use
the fact that in D3, we have on the one hand |?' + u| 2 |vg| and on the other hand
|u| = |vg|~t. In particular,

F@ + w)u"** du < Eolvo|[vo| 77
D3

< Eolvo|"*® using that v + 2s > 0 and 2s < 2.

Adding the three terms together, we conclude that I < Cr~*, for a constant C
independent of vg. The proof is now complete. |

5.5. First cancellation condition. The cancellation condition (4.13) involves an
integral in the principal value sense. We have to be careful when we compute a
change of variables of such an integral. There is a delicate cancellation that takes
place and we have to make sure that the change of variables does not cause an
imbalance around the origin that would ruin this cancellation. Lemma 5.15 is
precisely what we need in order to carry out the rest of our computations.
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Lemma 5.15 (Modified principal value). Assuming that
D2f € LNRY, (1 + o)) ™2 dv),
we have

(5.14) lim (K§(0,9 +w) — K¢(0+w,0))dw = 0.
R—0+ Br\Egr

The result of Lemma 5.15 is certainly to be expected by common sense. However,
its rigorous verification requires some work. We prove it under the condition that
D?f € LY(R%, (1 + |v|)Y*2%dv). It holds under much more general conditions on
the function f. However, due to the kind of solutions that we work with, the scope
of Lemma 5.15 is enough for the purpose of this article. A proof of a version of
Lemma 5.15 under less restrictive assumptions on the function f would require
considerably more work. Note that Lemma 5.15 is merely a qualitative result.
There is no estimate resulting from this lemma in terms of the weighted L' norm of
D?f. We invite the reader to skip its proof that we include below for completeness.

Proof of Lemma 5.15. For all v = vy + Tov with v € By, we expand the integral in
terms of the formula (4.3) and symmetrize it.

() :=/B o U 4 w) = Ky 04 w,9) du

1 ~ o .
c [ A e
Br\Er Juulw

with (62f)(v,w) = f(v +w) + f(v — w) — 2f(v) and A is a bounded function.
We express this second order differential quotient using D? f using the elementary

formula
1

(62f)(v,w) = / (1 —|7))D*f(v + Tw)w - wdr.

~1
Thus, we bound the integral in terms of | D2 f[ 11 (ga, jujv+2: do)-

1
(1) < / / / |D12)f(17+u+Tw)||w\_d_28+2\u|7+28+1 d7 du dw.
BR\ER ulw —1

For each value of w € R?, we make the change of variables (7,u) — z = u + Tw;
in particular dz = |w|dudr and 7 = (2 - w)/|w|? and |u| < |z|. Therefore, we
estimate the integral above by

I < D2f(0 + 2)||w| "2z T2 2 dw,
( v
Bgr\Er J —|w|2<zw<|w|?

switching the order of integration,

=/ d\z|7+25+1|D5f(17+2)| / weBn lw|'=472 dw § dz,
z€R i

—|w|?<zw<|w|?

we claim that

<R [ D22l d
zeR?
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In order to justify the last inequality, observe that the set {w : —|w|?> < z-w <
|w|?} is the complement of two balls of radius |z|/2 centered at z/2 and —z/2
respectively. The intersection of that set with the ball B is of volume < R4*1|z| L.
Thus, the following inequality follows by an elementary computation:

(5.15) Jw|' =972 dw < R?>72%|2| 7L

weBR,
—|w|?<z-w<|w|?

Since s € (0, 1), R?72% converges to zero as R — 0, which concludes the proof. [J

Lemma 5.16 (First cancellation condition). Let f : R? — R be a function so that
Assumption 1.1 holds. If v < 0, we assume (5.5) in addition. Then, the kernel K'f
given in (5.4) satisfies (4.13) with parameters depending on My, Ey, v, s, d, and
also C if v < 0. More precisely, for v e Bs,

Sl [ ol

- (Mo + Eq)|vo| =2 if v €10,2],
T (Mo + CV>|’U0|_V_2S if v < 0.

‘PV (Ky(v,0") — Kp(v',v)) dv’
R

The inequality in Lemma 5.16 implies (4.13) because the tail of the integral (i.e.
v =] > is bounded by Lemmas 5.10 and 5.14.
! 1/4) is bounded by L 5.10 and 5.14

Proof of Lemma 5.16. When |vg| < 2, the result is proved in [35, Lemma 3.6], and
it corresponds to the classical cancellation lemma. Here, we focus on the case
lvg| = 2.

As before, for v € By, we write 0 = vy + Tov € Ba(vg). Using Lemma 5.15, we
compute

PV/}Rd(f(f(v,v’) — Kf(v’,v))dv’

= |vo| 72T PV /d(Kf(vo + Tov, v + Tov') — K¢ (vo + Tov', vo + Tov)) dv’
R

= |vo|77"%7 lim (K (0,0 + Tow) — K¢ (v + Tow, v)) dw
R—0+ |z|>R
= |vg| 7772 lim (K (0,0 +w) — Ky(v+ w,v)) dw
R—0% Jra\E,
= |vo|7""% lim (K; (0,0 +w) — Ky(0 + w,v)) dw

R—0* |@|=>R
= |vo| 772 PV/ (Ks(v,0+w) — K¢(v + w,v)) dw.
R4
We now use [35, Lemma 3.6] and get

‘PV/ (Ky(v,v') — K (v, v)) dv/ <C\v0r7*28/ F@)|T — o] de.
R4 Ra

If v < 0, we use (5.5) and get

‘PV/ (K j(0,0') — K5(v',0)) dv'| < ool 772 (Mo + C),
Ra
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while for v > 0, we estimate it using Lemma 2.3,

PV [ (Kf(v,v) =K', v)) dv'| < |vol| ™2 (Eo + Mo(1+|9])7) < (Mo + Eo)|vo| ~2*.
Rd

The proof is now complete. O

5.6. Second cancellation condition. Like in the first cancellation condition, the
second cancellation (4.14) also involves the principal value of an integral. In this
case, the following technical lemma is the one that ensures that we can perform the
change of variables.

Lemma 5.17 (Modified principal value). Assuming that
Vo f e LYRY, (1 + [v])Y+2 dv),
we have

(5.16) lim wK (v +w,v) dw = 0.
£=0)Br\ER

Like in Lemma 5.15, the identity (5.16) is clearly to be expected by common
sense but it takes some work to prove it rigorously. As before, the condition Df €
LY(RY, (14 |v])725 dv) is a qualitative requirement that does not affect any of our
estimates.

Proof of Lemma 5.17. As in the proof of Lemma 5.15, we expand the integral using
(4.3) and symmetrize it in w.
|u[7+25+1

/ wKy(v+w,v) dw / { fo+w+u)A(lul, [w]) = = du} dw,
Br\Er Br\Er | ‘

= %/BR\ERw {/ulw(f(v—i—w—ku)—f(v—w+u))A(|u|, |w|)% du} dw.

We write the increment f(o + w + u) — f(0 —w + u) in terms of the integral of the
derivative along the segment, and proceed like in the proof of Lemma 5.15.

/ wa(v—i-w,v)dw}
Br\Er

1
< / / |u|”+25+1|w|27d725/ V(0 + 7w+ uw)| dr dudw,
BR\ER ulw —1

for fixed w, we write z = 7w + u and observe that dz = |w|dudr and |u| < |2|,

< / / |22 o 251 £ (5 4 2)] de d,
BRr\ER J —|w]2<z-w<|w|?

switching the order of integration,

</ |22V F (D + 2)| |w\1_d_25 dw } dz,
zeR2 weBr,

—|w|?<z-w<|w|?

using again (5.15),

< RHS/ 12425V f(5 + 2)| da.
zeRA
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REGULARITY ESTIMATES FOR BOLTZMANN 665

This converges to zero as R — 0, so the proof is concluded. (]

The following auxiliary lemma contains an estimate that will be useful in the
next lemma.

Lemma 5.18. Let s € [1/2,1). For any vy € R)\By, v € By(vg), and r € (0,1), we
have

/ v+ 2)]z[" min(1,7272%|2)?572) dz < Clvp| 25 1t 728
Rd

for some constant C depending on My, Ey, s, vy, dimension d, and C., if v <0, but
not on vgy.

Proof. Note that since s > 1/2 and r < 1, we have r172¢ > 1.
If v + 2s > 1 the inequality follows easily applying Lemma 2.3. Indeed,

/ f(’l) + Z)|Z|’Y+1 min(l,r2_25|z\25_2) dz < ’1"2_25/ f(v + Z)|z|v+25—1 dz,
R4 Rd

< 7,2725(E0 + (1 + |U|7+2571)M0)7
< T2—2s|vo"y+23—17

< 7‘1725|’UQ"Y+2871.
We used that r € (0,1) and |[v| ~ |vo].
So, let us concentrate on the more difficult case v + 2s < 1.

We split the domain of integration between z € B, and z ¢ B,.. Let us call each
term I; and I,

I !=/ flv+2))z7 T dz,
|z|<r

Iy =22 / flv+2)|zP T2 dz.
|z|=r

We now estimate I; and Is separately.
When v + 1 > 0, we easily get I1 < Folvo| ™2 < |vo|?T2* 7111725 since r < 1 and
lvo| = 2. If v+ 1 < 0, we use Holder inequality and get

L= f(v+z)|z|7+1dz<< f(v+z)|z|7dz> ”( f(v—!—z)dz) W
|z|<r |z|<r

|z|<r

o
<Co E51/7|v0|%.

Since 2/y < —1 and v + 2s > 0, then v+ 2s — 1 > 2/y and I} < |vo|?T271 <
lvg|7 T2~ 11725 This concludes the upper bound for I.

As far as I5 is concerned, we further split the integral between two subdomains.
If v+ 2 € Bjy,2 and |z| = 7, we use that [z] ~ |vo|. If v+ 2 ¢ By and |z| = 7,
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we have

/ flo+ 2)]z[" T dz S/ fo+2)(Jo+ 2725 + |7 2%) dz
U+Z¢B‘vo|/2 ’U+Z¢B‘v0‘/2

S/ F+2) (o 2[2[uo 172572+ oo +2%) dz
v+2¢Byg|/2

S/ flo+2)(Jo+z)>+1)|ve| 272 d2
v+z¢B‘1,0V2

< (Eo + Mo)|vo| 772572,

With such an estimate at hand, we can now write

12 § r2723|vo|ﬁy+2571/

v+2€B)|yq|/2

flo+2) dz—|—r172s/ flo+2)]z[7T% dz,

+2¢Bjug /2

< T2723|v0|fy+2571M0 + ’1”1725‘1}0|7+2572(E0 + MO) < T1725|U0|’Y+2571.
Adding up the upper bounds for I; and Iy, we finish the proof of the lemma. [

The main result of this subsection is the following.

Lemma 5.19 (Second cancellation condition). Let s = 1/2 and f(v) be a function
so that Assumption 1.1 holds. If v < 0, we assume (5.5) as well. Then, the kernel
Ky from (5.4) satisfies (4.14) with a parameter A depending on My, Ey, v, s, d,
and also C if v < 0.

Proof. For |vg| < 2, the result was established in [35, Lemma 3.7]. Here, we focus
on the case |vg| = 2.

Given 7 € [0,1/4], note that for s = 1/2, r'=2% = 1, whereas for s > 1/2,
ri=2s > 1.

For any v € R? and r > 0, we have

1

PV (’U/ — ’U)]_(f(’l), ’U/) d’l)/ = W

PV/ wK(v,0 4+ Tyw) dw = 0.

Here, we write © = vg + Tov and we use the symmetry of the Boltzmann kernel:
K¢(v,0+w) = Kf(v,0 — w).

Therefore, the proof is reduced to estimating the term in (4.14) involving
K¢ (v',v) only. That is, we need to estimate the quantity I(v") for v’ € B7), given
by

I(V) =

PV/ (v —v)Kp(v,0") dv|.
B, (v")

Let us change variables. As usual, we write ¥/ = vy + Tov’ and @ = Tp(v' — v).
We get

I(v') = Jvo| 777

PV/ (Ty ') Kf(@’m,@’)dw‘.
We used Formula (5.4), det Ty ' = |vg|, and Lemma 5.17 in order to justify the
change of variables under the principal value.

Recall that the domain of integration F, is an ellipsoid. In order to capture
the cancellations correctly, it is better to work with a round ball B,. We use that
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REGULARITY ESTIMATES FOR BOLTZMANN 667

I(V') < I + I, where

1= |UO‘7ﬁy72s

PV/ (Ty ') K¢ (v — w, ") dw|
B,

/BT\ET(...)dw.

The rest of the proof is divided into two steps corresponding to establishing the
bound for each one of the terms I; and Is.

I = Juo| 2

Step 1 (I < r'=2%). In order to estimate 5, we do not need to take any cancellation
into consideration. We simply take absolute values everywhere and estimate each
factor separately. Recalling Formula (4.4), we have

luo| Y251, = (Ty 'w) K¢ (v — w,v") dw

B, \E,

< / | Ty o] |w] 42 / f@ =@ + ) |u)* 3 du dw.
B, \E, ulw

Like in the proof of Lemma 5.14 about the second boundedness condition, we use
polar coordinates —iw = po, and we write r, ~ (14 (0 -v9)?)~"/? for the maximum
value of p so that po € Er

= / / p 2Ty o / f@ + po +u)|u/" 25 dudpdo.
ceSi=1 Jr,<p<r ulo

We now write z = po + u so that dz = dpdu, and observe p = z - ¢ and |u| < ||

< / / (z-0) 2T Lo | f (0 + 2) |2 P25 d2 do,
ceSd-1 Jro<zo<r

=/ F@ + 2]z (/ (U'Z/|Z|)25|To_10|d0) dz,
R4 {or,<o-z<r}
:/ F@ + 2)|27H / (0-2/2]) > —do | dz,

Rd {o:re<o-z<r} To

~ /]Rd f@ +2) |zt (/{ } (o-2/)2])"*A/1 + (0 - vo) da> dz.
Ore<o-Z<T

We analyze the spherical integral similarly as in the proof of Lemma 5.14.
We write e = z/|z|, vo = ae + b with b L e and a = vy - e. We observe

1+ (o )2 < (1+a%(c-e)?+ |b|2)1/2. We divide the domain of integration
depending on whether a?(o - €)? > 1 + |b|> or not. The purpose of these two sub-
domains is to know which term in 7, to focus on. Let us call S; and S5 these two
integrals respectively. We have

I < \v0|_"’_25 /d f@ + z)|z\"’+1(51 +.53)dz
R
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where

S1 < / (o-e) > a|do
o-e<r/|z|
< lafmin (1, (r/[2])*77) ,

Sy < / (e-0)2*(1 + |]*)"? do,
e S¢0

< T1_28|Z|28_1(1 + |b|2)s

For the first term in I, we have |a| < |vp| and consequently,
|vorw*25/ F@ + 2)|2" T8 dz
Rd

<ol 72 [ el min1, ) de
]Rd
< pl2s thanks to Lemma 5.18.

Note that |b]? = |vg|? — (vo - €)%. So, for the second term in I3, we have

|U0|_7_28/ S+ 2)|z[711 Sy dz
Rd

S 7“I_ZSIU(J\_W_QS/ F@ + 2|27 (1 + Juol* — (vo - 2)*/121%)* dz,
Rd
< pl72s thanks to Lemma 5.12.
Adding all the terms, we get the announced estimate on Is.

Step 2 (I; < r'=2%). The cancellation inside the integral, and in particular in the
principal value, plays a central role in the inequality for I;. We proceed similarly as
in Step 1 but without taking absolute values and keeping equalities. We use polar

coordinates w = ro and write z = —ro + u with dz = dr du.
|,U0|’7+2511
= ‘PV f@ + )15 {/ olo-2)7%
zeR4 oeSi-1:.0<z.o<r

y+2s+1

(|2)? = (2-0)%) 2 A(.. .)da} dz

Here, A is the function from (4.3). In this case, its value depends on o - z/|z| only:
A(...)=A(o - z/|z|) = 1.

If we write o = pz/|z| + 0% with o perpendicular to z, we see that the only
factor in the integrand that depends on ot is 0. Since o takes values on a (d —2)-

dimensional circle, its values cancel out in the integral. Thus, we reduce the integral
to

|,UO‘7+2sIl

— —2sm—1 < z i
f0 + 2)|z| 7T, — o-—
zeRd |2 ceSd—1:0<z-o<r |2|

(22 = (z-0)) ™5 A

Ao - z/|z|) do dz|.
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At this point, the cancellations have been taken into account already. All quantities
that remain are positive so we continue with inequalities. We use that T, || =

1 = [vo
and that A is bounded
1-2s
Al ()
o=
oceSi—1:0<z.0<r |Z|

(2> = (2 )) Sﬂfla z/|z|) do dz,

<lol [ e+l ( (o)
zeR4 oceSi—1:.0<z.o<r ‘Z|

Shol [ £+ 2P min(L (/1))
ZE

We conclude that I; < r'~2% by applying Lemma 5.18.

< F +2)]2| 7%

zeR4

Iyt

[F]

O

The change of variables theorems derive from the series of lemmas established
in this section.

Proof of Theorem 5.2. Combine Corollary 5.8 and Lemmas 5.10, 5.14, 5.16, 5.19.
The inequality (4.10) is a combination of (5.7) with (4.13). O

Proof of Theorem 5.5. Combine Corollary 5.9 and Corollary 5.13. (]

5.7. Holder spaces through the change of variables. We examine how the
change of variables Ty defined in (5.2) affects the kinetic Holder spaces introduced
in Section 3.

Lemma 5.20. Given zy € R*24 gnd F : Eg(z0) — R, we define F : Qr — R by
F(z) = F(To(%)). Then, for any 5 >0,

(5~17) ”FHCf(QR) < HFHCf(gR(ZO)) < \1}0|65HF'H05(QR),

with ¢ = max ("”2:28 , 1).

Proof. We point out that we only need to prove this Lemma for |vg] > 2 (See
Remark 5.6).
We can write Tg as zg o T with
T(t,x,v) = (Jvo| 772, Juo| 7Y 2% (Tox), Tov).
We first prove that for vy € R4\ By and for all z, 2, € R1*24,
(5.18) de(T 2, T 21) S |volde(z, 21),
(5.19) de(Tz, Tz1) < de(2, 21)

¥+2s y+2s

with ¢ = max(152, {352

dy, we write

+1). As far as (5.18) is concerned, using the definition of

(T2, T 20) = i e (ol = 1)),
w

S1rn— 1/(1+2s
([0l 28| Ty M — 0 — (¢ — t1)w)]) /72
|Tal<vw>7Tal<v1w>|}7
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note that ||y | = |vol,

25+

428 241 . L
< max (|vo\ % ug| 12 ,|vo|) min max {[t—t;]2,
weR4

|z—a1 — (t—t1 )w| 775,

lv—w], |v1—w|},

< |vol°de(z, 21).

Note that \U0|7ﬁ3:1 < max (|vo\%, |v0|). This justifies (5.18). The verification

of (5.19) is very similar using that |Tp| = 1.

Since dy is left invariant, (5.18) implies that for vy € R\ By, 2,2, € R*24 and
z= 7627 zZ = 76217
(5.20) de(Z,%1) < de(2,21) < |vol|°de(Z, 21).

We deduce (5.17) from (5.20). Given any z1,z € Qr, and zZ = Toz, z1 = Toz1,
let p be the polynomial expansion of F' at the point z; so that |F(z) — p(z)| <
[F]Cf d¢(2,2)? and deg,, p < 3. We observe that po 7y is a polynomial of the same

degree. Thus,
|[F(2) = poTo(2)| = |F(2) = p(2)| < [Flepde(z,21)" < [Floade(z, 1),

We deduced the first inequality in (5.17) from the first inequality in (5.20). We
deduce the second one similarly. (Il

5.8. Holder continuity of the kernel. In Lemma 5.21 we explore how a Holder
estimate for f of the form f € Cf,  results in a Holder estimate for the kernel K
as in the assumption (4.16) in Theorem 4.5.

Lemma 5.21 (Holder continuity of the kernel). Let f : [7,T] x R? x R? be such

that f € Cf.- Then (4.16) holds true for Ky with o/ = li‘asa and

Ay <0 (Ifleg, + (1+ ol #0211 ey )

Here, q can be any number larger than d + 2 + /(1 + 2s). The constant C' depends
only on dimension, 7, s, min(1,T — 1), and the choice of q.

Proof. Without loss of generality, let us assume T — 7 > 1. The effect of this as-
sumption is that we take cylinders of the form Q1 (zo) < [r, T] x R? x R?. Otherwise
we would have to work with cylinders @, (zo) for a smaller » > 0 and the choice of
r, depending on T'— 7, would affect the constants in the lemma.

As usual, we also focus on |vg| > 2.

Recall that the definition of Cy t.s says that for all ¢ > 0, there exists a constant
Cq = [fleg, so that

I flce (@i (o)) < Cq(l+[vol)™,
whenever Q1 (z0)  [7,T] x R? x R?. In particular, for z = (¢, z,v),
fI<Cil+ )™ and  [f(21) = f(22)] < Cyde(21, 22)* (1 + |va])*

whenever dy(z1, 22) < 1.
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As usual, we write Z = Tpz. According to the change of variables formula (5.4),
we thus have for all 21, 25 € Q1 (in particular dg(z1,22) < 1),

(5'21) I_{fle (w) - [_(f,22 (w) = ‘U0|_1_’y_23 (Kf751 (Tow) - Kf722 (Tow)) .
From the formula (4.3), we observe that, for any z; = Toz1 and Z = Toza,
|Kf751 (w) - Kf’52 (w)|

= |w‘_d_23 /L ‘ulv+28+1A(|w|v |u‘> (f(il © (0707u)) - f(22 © (07 0, u))) du,

< Jw|[747% /L [u "2 A(|wl, [ul) | f(21 0 (0,0,u) — f(£0 2 0(0,0,u))| du,
= Kayz (w),

where Af(2) = |f(2) — f(€02)] and € = Z; 0 Z; *. Combining with (5.21), we get

[ 1R @) - Bpa@liofde < [ [Raps @)l do.

P B,

we now apply Corollary 5.13 to obtain

g(Afl+M%AﬂhwhmdQP*%,
_ (/Rd(l + 101 + w]?)| (21 0 (0,0,w)) — £(Z2 0 (0,0,w))] dw) s

In order to estimate the difference |f (21 0 (0,0,w)) — f(Z20(0,0,w))|, we use the

Cf, semi-norms of f. We use (3.5) and we get

(5.22)

|f(51 © (07 0, w)) - f(22 o (07 va))|
_ (de(21, %) + [f1 — B VO+2 |V 20) % (1 + |5y + w]) [ fleg,,
S {A o+ w) T (L o wl) T e

The first line applies whenever d;(z; o (0,0, w), Z2 o (0,0,w)) < 1. Note that from
(3.5), this distance is less than or equal to the factor inside the parenthesis on the
first line.
The second line applies whenever dy(z; 0 (0,0, w), Z20(0,0,w)) > 1. In that case,
it is better to estimate the left hand side in (5.22) by the C° norm of each term.
Note that since 01,73 € By (vg), then (14|01 +w]|) =~ (1+|va+w|) = (14 |vg+w)).
Recall that we write |f|cg = [flcg, + \|f\|02q. Thus, in any case we have

(5.23) |f(210(0,0,w)) — f(Z2 0 (0,0,w))]
< (de(51752) 4 lE - 52|1/(1+25)\w|1/(1+25)> 1+ |5 + w|)_quHCZq-

By the definition of the transformation 7y, we always have dy(Z1, Z2) < de(21, 22).
Moreover, |t; — ta| = |vo| ™Y 72%t1 — ta.
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672 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

We estimate

/(1 o1+ W) (21 0 (0,0,w)) — (22 0 (0,0,w))| duw

< [ (dutan ) + = 2O 029) (0 fug + ) e, du

< lleg, (dn(e1 220 ool 5 —ta] 735 [ 0l (14 o + 0w

f (=25t Do
S Wleg, (dg(zth)a + de(z1,22)" |vo| T ) ;
S ”fHCquZ(Zl, Zg)a,‘y0|ﬁ(1*7725)+'

In the last inequality we used dy(z1, 22) < 1 and |vg| > 2. We also used Lemma 2.4
to estimate the last integral, which holds provided that ¢ > d+2+ «/(1+2s). O

6. BOUNDS FOR THE BILINEAR OPERATOR Q(-, ")

The right hand side of the Boltzmann equation Q(f, f) is a quadratic function
of f. Its structure as a bilinear operator Q(f, g) is relevant when differentiating the
equation. In this section we collect several lemmas to evaluate the Holder regularity
of Q(f,g) in terms of Holder norms of f and g.

Recall that we write Q@ = Q7 + Q5. We obtain bounds for each of these two
terms separately.

6.1. Bounds for Qs. Recall that Qs(f, g) = ¢p(f*]+|7)g. We start with estimating
how the convolution with | - |7 affects the local Hélder norm of a function.
Lemma 6.1 (Convolution with |- [7). Let f € Cfy, . ([7,T] x R x RY) for 0 < a <
min(1,2s). Let us consider the convolution of f with |- |7 in velocity. That is

o2) = [ Flzo 00wl du.

Then for all zp € [1,T] x R* x R and r € (0,1) such that Q,(z) < [1,T] x R% x RY,
and any g > d +v4 + /(1 + 2s),

l9llce’ @,z < A+ |U0Dm+vaHC;’jq

’U]Zth C = C(d77a S, Oé) a’nd O/ = %a'

Proof. Let zg = (tg,z0,v0), 21 = (t1,71,v1) € [1,T] x R? x RY with dy(20,21) < 1.
We will show the two inequalities below from which the conclusion follows.

l9(z0)| < C(1 + ool [ e

19(21) — 9(z0)| < C(L+ lool) 547 flog, de(z0, 1)

Note that the assumption o < min(1,2s) implies that any polynomial of degree less
than o must be constant. Thus, the Holder semi-norm of order « involves merely
increments.

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY ESTIMATES FOR BOLTZMANN 673

Let us start with the first inequality. Using Lemma 2.4 (since ¢ > d + 1), we
compute

lg(20)] < /d |f1(to, zo,vo + w)|w|” dw,
R

A

<[fleg, [ (1-+ oo+ wl) ol do.
< Clfleg (1 +[wo])7

The second inequality requires a slightly longer computation,

l9(21) — g(20)] </ |f(z10(0,0,w)) = f(z0 © (0,0, w))[|w]” dw,

Rd

</ (...)dw+/ (...)dw,
‘w|<dg(2(),21)725 |w\>d[,(z0,z1)*25

=:T+1I

For the first integral I, we use the inequality (3.5) together with the semi-norm
[f]C?_q' In this domain, we have

dg(Z() o (070,11}), 20 (070,11})) )25/(1+2S)|w|1/(1+25),

(20, 21) + de(20, 21

Therefore, using again Lemma 2.4,

I< [f]Czq/Rd (dz(ZO, z1) +de(20, 21)25/(1+2S)‘w|1/(1+25)) lw| (1 + v + w]) ™9 duw,

slfleg, (dz(zo,zl)a(l + \Uo|)y+de(zo7z1)°//d Jw| /A2 (L 4 Jug + w]) dw)
R

(recall o = 2sa/(1 + 25))

< o, (deCzo, 20 (1 + uol) + ez, 2 (1 + [ugl)/0+24)

since ¢ > d + v4 + /(1 + 2s).

Naturally, the second term is larger than the first one.
For the second integral II we bound |f(zp o (0,0,w)) — f(z1 o (0,0,w))| using
[f]cgq- That is

T < [fleo / ((1+ Joo + w)™ + (1 + Jor + )~ w]? dw.
09 Jw|>dy (z0,21) 2

We analyze two cases depending on whether dy(zq,21)"2* > (1 + 3|vg|) or not. In
the first case, we have |v; + w| 2 |w| and |v1 + w| 2 |w|; therefore

IT < [f]eo / |w| =9 dw,
0 S w|>de(z0,21) 720
< [fley de(z0, 1)@=,

S [fleg, (1 + [vo])de(z0, 21)*.

A
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674 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

The last inequality holds because ¢ > d + v+ + a/(1 + 2s) and dy(z0, 21) "% >
(1 + 3|vg|). Indeed, in this case we have
de (29, 21)**09 4

=d , 2s(q—d—y—a/(142s)) 1+ —
L+ o) de (oo, 2y~ A0r21) (1+ Juo]) 7,

< (1 + Jug|)~ladr—a/(1+29)) =
= (14 ug) (o720,
1.

A

In the second case dy(zo,21) 2* < (1 + 3|vg|), which means that d(zg,21) >
(1 + 3Jvg|)~Y(29). Therefore

-
< ey / ((1+ oo + )™ + (1 + Jon + w]) )] duw,
oo

24

< [fleo q(l + |vol)7,
< [fleg, (14 Jvol) "+ 75 dy (20, 21), using d(z0,21) 2 (1 + |vo) "2
Adding the upper bounds for I and IT we conclude the proof of Lemma 6.1. (]

Lemma 6.2 (Bound for Q). Let f,g € Oy ([7,T] x R x RY) for 0 < a <
min(1,2s). Then Q2(f,9) € Cf ([T, T] X R? x RY) and the following estimates
hold for any g > d + v4 + /(1 + 2s),

1Q2(f, 9|

with C = C(d77757a) and o' = liSZSOé'

oz < Clfleg,l9lcer

£,g+a/(1+28)+~

Proof. Recall that Qa(f,9)(v) = ¢ (fga f(v +w)|w|" dw) g(v). Given Q,(20) <
[7,T] x R? x R%, we combine Lemma 3.7 and Lemma 6.1 to get

(1+ [00))?1Q2 (- D) og (g aoyy S (1 + o)+ T8

Taking the supremum over @Q..(zp) yields the announced estimate. ]

fleg, |‘g“clf"/(Qr,»(Zo))'

6.2. Bounds for Q. This section is dedicated to the derivation of appropriate
bounds for Qi(f,g) when f e CP, and g € C’fsf;?‘ For this purpose, we need to
localize around a given point zy. In order to measure the effect of this localization
procedure, we need some preparatory lemmas.

The proof of Lemma 6.3 uses ideas introduced in [32]. It is used to bound a part

of the integral involved in the computation of an integro-differential operator.
Lemma 6.3. Let f be such that for ¢ > d + (v + 2s) and for all v e R?,

|f ()] < Ng(1 + Jof)71

Let Ky be the Boltzmann kernel given in formula (4.2) applied to this function f.
Then for all v € By.(vo) with r € (0,1) and g € L'(Bjyy/s),

Sy OO0 40" < ONylglaa5,,0(1+ a7+

[v'|<|vol/8

for some C' depends on q,d,~,s and the constants in B (the Boltzmann kernel).

Remark 6.4. Later on, Lemma 6.3 will be applied to large values of |vg|. In that case,
the inequality |v'| < |vo|/8, together with v € By (vg), implies |[v' — v| > 1 + |vg]/8.
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REGULARITY ESTIMATES FOR BOLTZMANN 675

Proof. The proof is very similar to the ones of [32, Propositions 4.7, 4.8]. Using
(4.4), we first write for v € B.(vp),

/Vw|>1+|’uo\/87 |g(v + w)‘Kf(’Ua v+ w) dw,
lv+w|<|vo|/8

= /w\>1+\vo\/& lg(v + w)erdi% {/J_ f+u)A(|wl, |u‘)|u‘7+2s+1 du} dw,

[v+w|<|vo|/8
<N 1+ |vo|/8)"% 2  max / 1+ |o4u)) " u 2 du b,
ol o1+ ol oo
[v+w|<|vg|/8

Since |v + w| < |vg|/8, we also have

7
|w| = |vg| = [v—vo| — |V + w| = §|v0| —1.

Thus
|w] +1
7

> v+ wl.
Therefore, we get for v L w,

1+ v4u =21+ u—w|—|v+w,

>1+|u—w\—|w'—+1,
7

= 2k (P oy - 1

6l el Jul

TRt e T T

2 (1+ |u| + |w]).

We use this inequality to continue our estimate from the beginning of this proof.

/w|>1+|vo|/8, lg(v + w)|K¢(v,v 4+ w) dw,
[v4+w|<|vo|/8

Sl o> ([ 0ot o))
ulw

SN 1+ —d—2s ma 1+ |w —q+v+2s+d
8B (0D 72 max (14 ) ,
SNGIgl Lt (B ) (L 1v0]) .
The implicit constant in < depends only on d, g, s,y. The proof is now complete.
(]

For the next lemmas in this section, we define a cutoff function in the following
way. Let ¢ be a fixed smooth nonnegative bump function supported in By g so that
¢ =11in Byg. For any given value of vy # 0, we define the cutoff function ¢ as

(6.1) p(v) := @(|vo| 1)

This function ¢ is supported in By, /s and is identically 1 in Bj,, 9. Note that
Lemma 6.3 can be reformulated using ¢ in the following way (at least for |vg| large;
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676 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE
see Remark 6.4),
(6.2)

Vve By (vo), Q1(f, g)(v) = /Rd 9(v") (W) Ky (v,v") dv" < Nolpg| 1 ey (1 +[vo]) =77

By the definition of |g]cg , we see that for any o> 0 and ¢ > 0,

(6.3) (1= @)glleg @iy = (L+ o) gl -

In Lemma 6.5, we establish the upper bound and decay as |[v| — o for Q;(f,g)
in terms of corresponding norms of f and g.

Lemma 6.5 (Pointwise upper bound for Q). Let f € C7 g, ([0,T] x R x R?) and
g€ ng;?([o, T]xRIxR?) for some o > 0. Then Q1(f,g) € CP st ([0, T xRIxRY).
Moreover, for any q > d + v + 2s,

(6.4) 1Q1(f,9)l ey

L,q—vy—2s

< Clfley, lglozese-

Here, the constant C depends only on «, dimension, s, vy, and the constant in B
(the Boltzmann kernel).

Proof. Let us start by recalling the formula for Q; (f,g).
Quf) = [ (o ~ 9K (t.z.0) v
= [ (a2 0,0,0) = g2 ..w) o
Rq

Here, K is the Boltzmann kernel depending on the function f as in (4.2). As
usual, we write Ky ,(w) = K¢(t,z,v,v + w) for z = (t,z,v).

We need to establish an upper bound for Qi(f,g)(z0) for any given z, =
(to, zo,v0) € [0,T] x R? x R

If |vg| < 2, we use (4.21) together with Lemma 4.6 and conclude the inequality
immediately.

If |vg| > 2, we decompose Q1(f,g) = Q1(f,vg)+ Q1(f, (1 —p)g). Here, ¢ is the
cutoff function defined in (6.1).

For Q;(f,pg), we use Lemma 6.3 to get (6.2) and obtain

1912 20)(20)] < | flog lalop, (1 + o) =0+,

For Q1(f, (1 —¢)g), we apply (4.21) and Lemma 4.6. We get
Q17,1 = )Gl 5 ( [ Fltoan, o+ w)ul™> dw) 1= Pglpere
< HgHC?H—a HfHng(l + |vg|) et H2s using Lemma 2.4.

Adding the estimates for |Q1(f, ¢g)(20)| and |Q1(f, (1 —)g)(20)|, we conclude the
proof. O

In order to estimate the Holder semi-norm of Q;(f, g), we need Lemma 6.6 that

is the C'® version of Lemma 6.3.
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REGULARITY ESTIMATES FOR BOLTZMANN 677

Lemma 6.6. Let f,g € Cfy,, for some a € (0, min(1,2s)]. Let zo = (to, o, vo)
such that |vg| > 2 and Q1(z) < [0,00) x R? x RL. Let ¢ be the smooth bump
function supported in By, /s with ¢ =1 in By 9. Let h: Q1(z0) — R be given by

h(z) := /]Rd (v +w)g(z0(0,0,w))K; . (w) dw.

Then h € C’E‘I(Ql(zo)) and for any q > d + v + 2s,
Ifleg

2 asi2e) (1+ |v0|)*q+7+a/(1+2s)’

(Mg (@i oy < Cllglleg

£,q+a/(1+42s)

for a constant C' depending on q, d, v and s.

Proof. Let z1, z9 € Q1(20). We need to estimate an upper bound for |h(z1) — h(z2)|.
We write £ = zp02; '. As usual, 7¢ denotes the right translation operator ¢ f(z) :=

f(€o2).
Note that dg(z1, 20) ~ |25 0 21| # ||€]. In fact, |€] can be large.
We have

h(z2) — h(z1)
= [ (ptom + 010(:2000.0.0) K 0) = (01 + 010000, Koy 1))
R
= [, (o2 4 w)gten (0.0,0) = o0 + w0l ©0,0,0) ) K7 () o
R
[ ot wlgtea 0 0.0.0) (Ko 0) - Ky w)) du
R
= [ (reva = 0)(e1 0 0,0,0) Koy ) o
+ [ ploa+ gz 2 0,0,0) (Kipor, s (@) du
Rd
This implies in particular that
n(z2) = el < [ [(reon = eo)len o 0.0,0) Koy ) o
+ / |50(U2 + w)g(z2 © (Oa 0, w))‘ (K\f—7'§71 fliz2 (w)) dU),
R
applying Lemma 6.3 and observing |v1| ~ |va| & |vg|, we get

< (Iflog, Mi + lpglieg Mo ) (1+ [uo) =747,

where
Ny :
Ns :

Ireg = gllLr (B )
sup (|f — Te-1 f|(22 0 (0,0,w))|ve + w\q) .

weRd

Let us first analyze Ns.
N3 = sup ‘f(zQ © (070,11})) - f(Zl © (0707’“}))‘(1 + |U2 + w|)q7

weRd
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678 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE
using that 1 + |v1| & 1 + |vg| & 1 + |vg|, we compute

<sup min(1,de(210(0,0,w), 250(0,0,w))*) (L+]vo +w|) =+ f]

weRd

N
Clata/it2s)’

using (3.5),

< sup min (1, de(z1, 22) (14 o) 02 1+ oo + wl) =02 £

2,q+a/(1+2s)’
weR? /" )

< do(z1, 22)% (1 + |uo)/O+29) | £ e

L,q+a/(1+2s)

The factor N; is estimated similarly in terms of

leglce

L,q+a/(142s) < ”gHCZ

gta/(142s)°

Thus, we conclude

|h(21) = h(z2)| < gl

/
& e/ (t2e) (1+ |U0|)_q+7+°‘/(1+23)d4(zl, 25)°

flce

2,q+a/(14+2s)

from which we get the desired estimate. ([l

Corollary 6.7. Let f,g € Cy . for some o € (0,min(1,2s)]. Let 2o such that
E1(z0) = [0,0) x R x RY. Let o be the smooth bump function supported in Biy,/8
with o =1 in Bjy,9- Let h:Qi — R be given by

h(z) := /Rd 0T+ w)g((Toz) 0 (0,0, w)) K ¢ 1 (w) dw

with Toz = (t,Z,0). Then h € C?/(Ql) and for any q > d + (v + 2s),
h fleg

[h]cf/(Ql) < CHQHC‘* Cqto)(1425)

sy 1+ |v0|)—q+~/+oz/(1+23)7

for a constant C depending on q, d, v and s.

Proof. Apply Lemma 6.6 and observe h = ho7y. Then use Lemma 5.20 to conclude.
O

We are now in position to derive the desired estimate for Q1 (f, g).

Lemma 6.8 (Bound for Q1). Let f € Cfy, and g € CF5t for some 0 < a <
min(1,2s). Then Qi(f,g) € ngast for o = 2sa/(1 + 2s). Moreover, for any

q>d+vy+2s,
191 (f, 9)”07;7

Here, the constant C depends only on «, dimension, s, vy, and the constants in B
(the Boltzmann kernel).

< e
y—2sca/(142s) C|‘f|‘cﬁq|‘g‘|czq+

Proof. The norm |[Q1(f,g)[co _ is already controlled by Lemma 6.5. We are

left with estimating the semi-norm [Ql(f,g)]cgf .
,q—y—2s

Let zo = (to, 2o, v0) be so that Q,.(z0) < [0,7] x R? x R? for some r € (0,1) like
in Definition 3.4 and let ¢ be the cutoff function as in (6.1). From Lemma 6.6, we
know that

(6.5) [Q1(f, 09)lce’ @, o0y < l9llcg, IFlcg, (L4 o) ~at72a/0420),
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REGULARITY ESTIMATES FOR BOLTZMANN 679

In order to estimate | Q1 (f, (1—¥)g) HC?'(QT(ZO))’ let us consider two points 21, 22 €
Q- (z0). We have

Q1(f, (1 —¢)g)(22) — Qi(f, (1 — ¥)g)(21)
=Lk, ., [(1 = 9)gl(22) — Lk, . [(1 = ¢)g](z1),
= (Lx, ., [(1—)gl(22) — Lk, [(1 - ¢)g](z1))
+ (Lx, ., [(1=9)gl(z1) = Lk, . [(1=9)]g(z1)) -

In the first term we are fixing the kernel K ., (freezing coefficients) and evaluating
in the function (1 — ¢)g at two points z2 and z;. In the second term, we are
evaluating the operator at the same point 21, for the same function (1 — ¢)g, and
we will obtain cancellation from the two kernels Ky ., — Ky ..

For estimating the first term, we use [34, Lemma 3.6]. It gives us that

[Lrc; ., [(1=0)gl(22) — Lk, ., [(1 = ¢)g](21)]
< AKf,z2 [(1 - w)g]cfs‘*'”'df(zlv 22)(1,3
<1+ |v0|)’q”+2s|\f|\cgqngcgs;a'dfz(zhZ2)a/,

using (4.21) and Lemma 2.4 to get the second inequality.
For the second term, we use Lemma 4.6, and compute

Lrs, [(1=0)g1(21) = L, . (L= 9)9)(20)] S Aies o, —ip oI = @)l gears

using (6.3) and estimating Ak, . from (4.21),

fw21)

S (T4 Teol) gl geseor (/Rdlf(on(o,o,w)) — f(210(0,0, w))|[w] 2 dw).

We proceed like in the proof of Lemma 5.21 to estimate the integral. Using (3.5),
we have that

|f (22 0(0,0,w)) = f(z10(0,0,w))]
< min(1, (de(z1, 22) + de(z1, 22) >/ 2w VO D) (1 4 o+ w]) 7 fllog,
from which we get

/]Rdlﬂon(o,o,w))—f(zlom,o,w»uww*% dw S dg(21,2) | fllog, (1+[vo)) /42,

provided that ¢ > d + v + 2s + /(1 + 2s). Incorporating this inequality in the
computation above, we get

1Lk, ., [(1 = @)gl(21) = L, ., [(1 = 9)g](21)]
< (1 + |wp|)ate/(1+29) HQHC;’””' Ifllcg, de(z1, 2)”.

Collecting the two upper bounds above,

1Q1(f, (1 —¢)g)(22) — Qi(f, (1 —¢)g)(21)]

< (1 + |wp|) T H2ste/ (429 g, () ZQ)O/Hch;q HgHC?SM,.
Combining with (6.5) and using that a/(1 + 2s) < 2s,
1Q1(f,9)(22)— Q1 (f, 9) (21)| € (L+vg|) 0T T2/ A2 g (5 2p) [fleg, 9l gzerar-
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680 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

Thus, [Q1(f,9)]0e’ @y 20y < (1H[vol)~F7#25 /0429 f oo [ g] g2+ and we con-
cluded the proof. ’ O

Remark 6.9. The lemmas in this section allow us to estimate the Hélder norm of
Q(f, g) in terms of the norms of f and g. When it comes to global Hélder norms,
we obtain certain decay exponent “¢” in each of the lemmas. The precise value
(and loss) of decay exponent is not computed sharply because it was not necessary
for the purpose of the result in this paper. It might make sense to investigate
sharper version of the lemmas in this section if one tries to obtain C'® estimates as

in Theorem 1.2 for v < 0 but for solutions that do not decay rapidly as |v] — oo.

7. GLOBAL HOLDER ESTIMATES FOR THE BOLTZMANN EQUATION

In this section, we derive global Holder estimates and global Schauder estimates
from the local ones derived in the previous sections.

7.1. Global Holder estimates. The Holder estimate in Theorem 4.2 applies di-
rectly to the Boltzmann equation. However, in doing so, it leads to a Holder
estimate only locally, that is to say for a compact set of velocities. In order to
obtain a global estimate (which holds for v € RY) we combine Theorem 4.2 with
the change of variables described in Section 5.

Proposition 7.1 (Global Holder estimate). Let f be a solution of the Boltzmann
equation (1.1) in (0,T) x R? x R? so that Assumption 1.1 holds in its full domain.
Assume that for some q¢ > d, there exists Ny > 0 such that for all (t,z,v) €
(0,T) x R? x R4,
f(tax’v) < Nq(l + |v|)7q

(this is the same as to say N, = HfHC?,q)'

Let us set zy = (tg,z0,v0) € (1,T) x R x R? with |vg| = 2, to be the center
of the change of variables Ty from Section 5. Then for all r € (0,1) such that
E(z0) c (1,T) x RE x RY and all 2,2 € & 2(20),

|f(21) = f(22)] < C(Ng) (1 + [vo]) "1™ do (21, 22)%,
where C > 0 and o € (0, 1) only depend on q, Ny, the parameters in Assumption 1.1,
dimension d, v, s from (1.3) and 7. Here Z; = Tpz;.

Remark 7.2. Our solutions f will be in C’gfast with semi-norms controlled by The-
orem 2.2.

Remark 7.3. When t; = to and x; = o, d¢(z1,22) is the same as |v; — vo|. Tt

is exactly comparable to the non-isotropic distance dgs(v1,v2) of Gressman and

Strain as defined in [23] (since r < 1); see Lemma A.1 in the appendix.
Proposition 7.1 gives us a global Holder estimate in all variables ¢, x and v.

We will use in Corollary 7.8 the following straightforward consequence of the
sharp global Holder estimate from Proposition 7.1.

Corollary 7.4 (Holder estimate with fast decay). Let f be a solution of the Boltz-
mann equation (1.1) in (0,T) x R? x R? so that Assumption 1.1 holds for all
(t,z) € (0,T) x RL. Moreover, assume f € CP fast -

Then, there is an a > 0 so that for all 7 € (0,T), f € Cfy, with

Ifleg, (rmyxraxrey < Call flleg .. . 0.1)xRIxR) for all ¢ > d.
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The constant Cy > 0 depends on q, the parameters from Assumption 1.1, dimension
d, v and s from (1.3) and time 7. The value of a > 0 depends on the constants in
Assumption 1.1, d, v and s. The value of G(v,s) depends on s and vy only.

We now turn to the proof of the previous proposition.

Proof of Proposition 7.1. Without loss of generality, we assume 7 > 1 and take
r = 1. Otherwise we would have to adjust the choice of r to be < 7/(2%) 50 that
Q. (20) = (0,T) x R? x R, The constants in the result would be affected by this
value accordingly.

Let ¢ be the cutoff function as in (6.1). In particular ¢ = 0 in Ej(vg) for
|vo] = 2 because Ej(vg) < Bi(vg). Let g(t,z,v) = (1 — ¢(v))f(t,x,v). Thus,
lgllzee < Ng(1 + Jvol) ™.

By a direct computation, we observe that g solves the equation

019 +v-Vag =Lk (g) + h1 + hy in (0,7) x R% x Ey(vy),

where
m= [ WK ) and e = Qu(f ) = alf ¢S,
R
Recall that ¢ is supported in Bj,,|/s. Thus, we apply Lemma 6.3 and obtain

7] < ol No(1 + [vo]) =™
< MoNg(1 + [wo])~"

in £1(20) < Q1(20).

In order to estimate hs, we note that if v > 0, then Lemma 2.3 implies that
| <7y f < (14 |uo|)?"(Mo + Ep). On the other hand, if v < 0, then Lemma 2.4
implies that |- |7 %, f < Ny(1 + |vo|)?, provided that ¢ > d. Thus

‘hg‘ < (1+|UO‘)7q+’YNqa lf’)/}(),
T (L4 |wel)TITYNZify <0,

in & (z0) < Q1(20).
Applying the change of variables 7y from (5.2) and Theorem 5.2, we have that
the function g = g o 7T solves
01§ +vVeg = Lg,g+h in Q,
with
b= |vo| 77725 (hi(To(t, 2,v)) + ho(To(t, z,v))

and K satisfies ellipticity conditions (4.9) (only if s < 1), (4.10), (4.11), (4.12),

(4.13), (4.14) (only if s > %). Note that assumption 5.5 in Theorem 5.2 holds with
C, < N, because ¢ > d; recall Lemma 2.4.
Applying Theorem 4.2 to g, we get for all 21, 22 € Q1 2,

19(21) — §(22)] < C (|9 22 ((=1,01x By xra) + [Bll L= (1)) de(z1, 22),
< C(Nqu + Jool)7 + (N, + N2)(1 + |vo|>-q+v)de<zl,@>“,

S CO(Ng) (L + |vo|) ™7 dy(21, 22)°.

This estimate yields the result since g = g o Ty and Tpz; = Z; for i = 1, 2. O
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7.2. Global Schauder estimates for the Boltzmann equation. Our next task
is to use the change of variables in order to derive global Schauder estimates for
the Boltzmann equation. In this case, we work with a more general equation, the
linear Boltzmann equation,

(7.1) (0 +v-Va)g = Qi(f,9) + hin (0,T) x R? x R%

Theorem 4.5 gives us local Schauder estimates for the solution g, with a precise
exponent, in terms of Holder norms of h, g and the kernel Ky. We will combine
it with the change of variables described in Section 5 in order to obtain global
Schauder estimates.

We should not be deceived by the description of (7.1) as a linear equation.
Proposition 7.5 applies whenever a function g satisfies any equation of that form,
for any functions f and h. Whether the functions f, g and h are related to each other
or not is irrelevant for the estimates. In particular, if f = g and h = Qa(f, f), the
estimate in Proposition 7.5 applies to the original (nonlinear) Boltzmann equation.
Equation (7.1) will also be satisfied when g is a directional derivative of f or some
incremental quotient, for an appropriate h in each case. In that sense, an estimate
for (7.1) as in Proposition 7.5 is more general than a Schauder estimate for merely
the original Boltzmann equation (1.1).

Proposition 7.5 (Global Schauder estimates). Let f: (0,7) x R? x R — [0, c0)

be such that Assumption 1.1 holds. Assume also that f € Cfyy for some a €
(0,min(1,2s)). Let g € Cfyy be a solution of (7.1) with h e Czlfast with o/ = li‘;sa
and 2s+ o' ¢ {1,2}. Then for all T > 0, we have the following a priori estimate for

g in C’fsf,:s‘txl([ﬂ T] x R% x RY), for each ¢ > d + 2 + 2s,

HgHCfT“’([T,T]dede) <C (HQHCZﬁR([O,T]de><]Rd)) + Htha’ ([OVT]X]RdXRd)) )

£,a+r
where the constant k depends on s and 7y only, and C' depends on r,q, dimension d,
parameters s,y in  (1.3), mo, My, Eo, Hy from Assumption 1.1, 7 and

[flleg, .. @ o

Proof. Like in the proof of Proposition 7.1, we concentrate on |vg| > 2 and assume
without loss of generality that 7 = 1. Let us pick any zo so that & (z) < [0,T] x
R? x R4,

Let ¢ be the cutoff function as in (6.1).

We multiply ¢ by (1—¢) in order to concentrate on velocities |v| = |vg|/9. Then,
we change variables by looking at § = [(1 — ¢)g] o To. Recall that Ty maps Qq
into the slanted ellipsoidal cylinder &£;(z9). The function g satisfies the following
equation in @1,

0§ +v-Vag = (/ (g’ g)Kf(t,x,u,u’)dv’) + h + ha.
Rd

Here, K is the kernel after the change of variables, as in (5.4).
The function h corresponds to the source term h after the change of variables.
The new source term hy is the result of our application of the cutoff factor (1 — ¢).
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The functions h and hs are given by
hi=|vg| 7 **ho Ty,

ho i= |vo\*”*25/ o(g(t, z,v")Ks(t,z,0,0") dv’.
Rd

As usual, we write z = ({,z,0) = Toz.
According to the Schauder estimates of Theorem 4.5, we get

2s+a’' —« —
[9]02s+a @) S (1 +A4, ° ) [9)ce ((—225 .0]x BaxRa) + [h + hz]c?’(QQ)
+ (1 + Ao)H}_L + iLQHCO(Qz),
= T1 + TQ + T3.

Since we know from Lemma 5.20 that [g]Cf““'(Sl(zo)) < |vp|e@sta) [g]cl?”“'(cgl)’

the proof of this proposition will proceed by estimating the right hand side in the
inequality above. Let us estimate the three terms Ty, T> and T3, one by one.
For the first term, let us observe that by the construction of ¢ and the definition

of the norm C'

[(T = ¥)gloe (o1 xrexrey < (1 + |UO\)7q|\chgrq([0,T]dede)~
Combining with the change of variables and using Lemma 5.20,
(7.2) [9)ce (1225 0)x By xRy < (14 [vo|) ™" ngcgql([o,T]de xRd)-

The estimate in (7.2) holds for any value of ¢; > 0.
Using Lemma 5.21, we have that, for any ¢; > d + 2 + /(1 + 29)

Ao < (L Juo ) =025  fleg

£ (11
Combining it with (7.2), we estimate the first term 7} as

2a+a —«

Ty ool @ lglcg,, + ool T 02+

Floas " lale,,.
/

- — 1—2s— 1— =
= |vg| qlﬂgHCqu + Jvo] a1+ (1-2s—7)4 ( 2;<1+2s>)”f|‘ca o7 Hg”Cj?‘ql

2sta’—
< lvo[~lglez,, + ool I fllee” “llles,, -

This is true for any ¢; > d + 2 + a/(1 + 2s).
For the other terms, we must estimate the Cg‘/ norms of h and hy. In the case
of h, we simply observe that

[Pl coq@a) = ol Ihllco s o

< Joo| 77 hle

(Mo (u) < ol ey e,y

—~—25—
< Joo | ] g
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In the case of hy, we apply Lemma 6.3 (with ¢ = ¢;) and Corollary 6.7 (with
q=q — a/(1+2s)) and obtain for any ¢; > d + (v + 29),
Ihzlos@a < Iool " lglos . |flcs, -

< fuo 71220429 £ glop.

h2]ep @)
We use these estimates to obtain upper bounds for T, and T5.

T, < |U0|7v—2sfq1[h]cg_; N 25+2a/(1+28)Hcha gleg,.

Ty < (1+ ool #= 02704 £l ) (ool 72 hlep,

ool Iglcy, 1flcp, ) -

Finally, using Lemma 5.20,
(73) [g]cl?s-%-m'(gl(z(])) s |UO‘E(2S+Q )[g]C§S+a,(Q1) s |U0|E(2S+a )(Tl + T2 + T3)

Note that &1 (20) D Quy|-2(20) With ¢ = max(1, (v + 2s)/(2s)) and (7.3) holds
at any point zp. Using Lemma 3.5, we extend the inequality to the larger domain

Ql(ZO)v
[g]C?SJrQ/(Ql(zO)) < |o P TN(Ty + Ty + Ts) + |up|?3+e )HQHCQ(QI(zO)y

Collecting all inequalities, not tracking the dependence on || f HC?ql7 and keeping
only the largest exponents of |vg|, we are left with

—q1+ —q1+
< 0 (ol lglez,, + ool Al )

Here, the constant C' depends on | f chxq and k depends on s and ~ only.
241

For any given value of ¢, we pick ¢ = ¢ + x and conclude the proof of the
proposition. O

Remark 7.6. In Proposition 7.5, we obtain a priori estimates for the norms H9”c25+a’
L,q

e

regularity in the estlmate but we lose some decay from ¢ to g;. We have made no
effort to make the choice of ¢; as ¢ + k optimal. Since we work with functions that
have a rapid decay as |v| — o0, the precise exponent in the loss of decay in the
estimate has no consequence for our proof.

in terms of |g|ce and HhHC?; for g1 = ¢ + k. Note that we gain some
»d1

£,q1

Remark 7.7. Following the proof of Proposition 7 5 one can compute how the con-

stant C' depends on || f||ce We get C' ~ HfHCQ Hle/(2s)+ Lt2s)/e

g+’

Corollary 7.8. Let f be a solution of the Boltzmann equation (1.1) in (0, T) x R? x
R so0 that Assumption 1.1 holds. If v < 0, assume further that f(0,z,v) = fo(x,)
with
< fo(z,v) < Ny(1 + |v])~9
for all non-negative integers q.
Then, for some o > 0 and every ¢ € N, the norm Hf”cfij“((T,T)dede) is

bounded depending only d, v, s, T, the parameters in Assumption 1.1, and the
values of N, (if v <0).
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Proof. Applying Theorem 2.2, we get an estimate for the norms Hf”c,? L (7/3,T)xRAxRA)
for any value of g € N. ’

Applying Corollary 7.4, we get an estimate for the norms HfHC?q((T/Q’T)XRded)
for any value of g € N, and some small o > 0. Y

Applying Proposition 7.5 to g = f and h = f, we conclude the proof of the
corollary. O

8. INCREMENTS

In order to bootstrap the regularity estimate from Corollary 7.8, we will apply
the global Schauder estimates from Proposition 7.5 to derivatives and increments
of the solution f iteratively.

Before doing that, we develop some technical lemmas about increments and
Holder norms in this section. These lemmas allow us to deduce higher order Hoélder
estimates from certain Holder bounds on the increments of functions. The formulas
that we obtain are relatively natural, but some of the proofs are quite technical.
Some readers may choose to skim through this section, skipping the proofs for a
first read.

Let us write

Ayf(z) = f(z0(0,5,0)) = f(z) and Ay f(2) = f(z0(0,0,w)) — f(2)

for some small increments y € R? and w € R? Roughly speaking, the global
Schauder estimate from Proposition 7.5 allows us to gain only 2s derivatives at
each iteration, which can be less than 1 if s < 1/2. In order to gain one full
derivative in each variable, we will apply this estimate to increments of f as above.

The following fact about (usual) Hélder spaces is commonly used to study the
regularity of solutions to nonlinear equations (see [11, Lemma 5.6]). If f : R — R is
a C'* function, and the C semi-norm of the increments f(z +h)— f(z) is bounded
above by < |h|?, then f is Holder continuous with the larger exponent min(a+ 3, 1).
In our current context of kinetic equations, the underlying geometry and Galilean
invariance make the procedure more complicated. Here, we present two separate
lemmas that involve increments in space and velocity respectively. They allow us to
transfer a regularity estimate for an increment, into a higher order of differentiation.

In spite of the apparent simplicity of the statement, the proof is rather involved.
The first step in the proof is inspired by [11, Lemma 5.6].

Lemma 8.1 (Gaining regularity with increments). Let oy, 2 > 0 and § = 0.
Given a cylinder Q = Qr(zo0) with R € (0,1) and a bounded continuous function f
defined in Q, we consider the following function for any a € Qg with a = (0,y,0)
ora=(0,0,w),

Aaf(z) = f(z0a) - f(2).

It is defined in Qiny = Qry2(20)-
We assume there exists an N > 0 such that for all a € Qg as above,

1) JAdfleo@ur <N [Baflpmies g, < N0,5,0))%

i
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Let v = 1 if a = (0,9,0) and ¢+ = 0 if a = (0,0,w). We assume that oz €
(0, min(1,2s)], a1 + o < 1+:2s, a1+ < 1+12s. Then for all a € Qg as above,
{‘Aafﬂc;?(@mt) <NJa|™ P ifar +as+ B <1+ 2s,

HAafHCZ(Qint) < Nla|'+* if on + o+ 8> 1+12s,

for some n = n(ay,as, 8,s) > 0.
Remark 8.2. One might expect that n = a3 + as + 8 — (1 + 2s). Our proof gives

us a smaller number 7 > 0, with an explicit formula. We do not know if the value
we obtain is sharp.

Proof. Let p, denote the polynomial expansion of f at z of kinetic degree strictly
smaller than a; + ap. The assumption (8.1) implies in particular the following: for
all z € Qint and £ such that z o £ € Qiyy,

(8.2) |Aaf(208) = dap=(§)] < Nlla| "¢+,
where A, f(z) = f(zo0a) — f(z) and where d,p, is the polynomial expansion of A, f
at the point z.

We abuse notation by writing A, f = A y.0)f, 0Pz = 00,00z ADuwf =
Aw,0,w)f and Sup. = 0(0,0,w)P-- Since az € (0,min(1,2s)), we aim at proving
that for z € Qi and a € Qo and § such that 2 0 § € Qi
(8.3)  |Auf(z0&) — Auf(2)| S Na|*+P|g|z, if g +ag + 8 <1425,
(8.4) |Auf(z0€) — Auf(2)] < Na|**2€|", ifa; +as+p>1+12s,
where ¢ = 1 for a = (0,y,0) and ¢« = 0 if a = (0,0, w).

The remainder of the proof proceeds in several steps. The first one is reminiscent
of the proof of [11, Lemma 5.6].

Step 1. We claim that for all z € Qi and all k € N such that z o (2%a) € Qiut, we

have
togtag

(85)  18uf() 27 Ay, f(2)] SNaf e resg ()L
In order to get such an estimate, we remark that
Aouf(2) = Auf(2) + Asf(zoa).
Using (8.2), we thus get
A2 f(2) = 280 f(2)] = [Aaf(z0a) = Aaf(2)]
< Na|* #9274 18,p2(a) — Aaf(2)].

Since the polynomial p, is of degree strictly less than a; + as, we have for £ =

(§t7 gw; Ev) € R1+2d7
(8.6)

5apz(§) = Aaf(z) + (at +v- V:L’)Aaf(z)gt + DvAaf(Z) 'gv + %DgAaf(z>§v 'fv-

if ag+az>2s if a1 +as>1 if a1 +ae>2

In particular, since a; +as < 1 when a = (0,0, w), we remark that, when evaluating
the previous expression with a = (0,y,0) at & = (0,y,0) or with a = (0,0,w) at
f = (Oa 0, w),

6yp2((05 y70)) = Ayf(z)

In the case a = (0,0, w), we used the assumption a; + as < 1.
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We thus conclude that
|Agaf(2) — 20, f(2)| < Nafortez+s
or equivalently
IALFf(2) — 27 Ag f(2)] S 27 N +o2+5,
By induction, we get
IALf(2) =27 FAgko f(2)] S N Zkl 9-i||gi~1q|orto2+h
j=1

ajtas+f

k
< NHaHOtl-i'Otz‘Fﬁ Z 2—j+(j—1) TTios
j=1

SNHaHa1+az+ﬁ2"?(a1+7L2:ﬁ 1)+.

This achieves the proof of the claim.
Step 2. We claim now that for 2 € Qin and a € Qg/s,
(8.7) 1Aaf(2)] < Naf™

with m = min(a; + as + 8,1+ :2s). It is enough to pick an integer k = k(a) such
that [2%a| ~ 1 (or equivalently 27% ~ |a|***2%), and apply Claim (8.5) from Step 1.
Indeed, using the assumption a; + s < 1 in the case a = (0,0, w), we can write
in both cases
B0l ()] £ 2MAgio f(2)] + Naor rostog (TE ),

< [Qoraflooaf T2 4 N[t toztBiisezs)

< NHaHmin(alJraerﬁ,lJrﬂs) )

Because a1 + 8 < 1+ :2s and a € @)1, we remark that this implies |A, f(2)| <
Nlla|***#. We are thus left with estimating the semi-norm.

Step 3. We next claim that for z € Qi and a € Qg/2,

(0 +v- Vo) Aaf(2)] < Nlla| ™ @D i oy +a > 25,

(8.8) |DyAyf(2)] < Na|™° if a; +ag > 1,
|D3Aaf(z)| < NHaHm*ze if a1 + ag > 2,
where
1425 —
(8.9) m =min(a; + az + 5,1+ 12s) and 6 = min (1, H—Sﬂ) .
o1 + Q2

It is a consequence of the assumption (8.2), the estimate (8.7) from Step 2 and
the interpolation inequality given by Proposition 3.3. For instance, in the case
a = (0,y,0) and if o + ag > 2s, we have

[0+ v Vi) Ay floo@ue) < [Dyfloze (@)

2s 2s

1—

< NJ(0.5.0)1 (" >’”—6
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a1 tag aytaz

We now remark that (1 R )m + —25_3 — m — 2s#. The other cases are

treated similarly.

Step 4. Let z € Qiny and a € Qo and £ such that z 0§ € Qiye. Assume ||| < [lal.
We derive from (8.6) and the previous step

1692 () — Aaf(2)] < N (lal™ 2 €]** + al ™ le] + lal™ 2 1€]?) ,

v (1) () - (5))

Since 6 < 1 and we are now focusing on the case ||]| < |al,
(8.10)

€] ™) 6 min(1,2 in(1,2
164p- () — Auf(2)] < Na|™ (W) = N|a|m-0min@.25) | ¢|min(1,2s)

Here m and 6 are given in (8.9).

Step 5. Assume |al 2 [€].
We first use (8.2) with |al| 2 |€]| to get
(8.11) Ao f(z0€) = 0ap:(€)] < Nla|***7]g] .

We claim that in the case oy + s+ 8 < 1+2s fora = (0,y,0) or a1 +as+ 5 < 1
for a = (0,0, w), (8.3) holds true. Indeed, since in this case m = a; + as + § and
6 =1 and we also have as < min(1,2s), in view of (8.10) we get

[6a92(€) = Aaf(2)] < Naf*rFoztfmmintl2)emint29) < N |+ ],

Adding the previous two inequalities, we get (8.3) for such a’s and ¢’s.
For those values of oy, as and 8 so that 8 # 1, we obtain a somewhat weaker
estimate. In this case, (8.10) tells us that

|5apz(£) . Aaf(2)| < NHaH1+L257min(1,25)0ngmin(lﬂs) < NHaHl+L2sHé-”min(l,Qs)(lfe).

The last inequality holds because |¢] < |a].
In this case, using again that [|£]| < ||la|, (8.11) implies that

|Aaf (2 0€) = 8aps(6)] S Nla| P[] < Na|'+25|¢| o2 (tHe2em@ren)

< NHaHl+L2s H§H(176)(o¢1+o¢2)'

Combining the two inequalities above, we get
|Aaf(z0€) = Auf(2)] < Nlal'*2[¢]",
where
(8.12) 17 =min(1l,2s, a1 + az)(l —0).

Step 6. We finally claim that (8.3), (8.4) hold true in all cases. In order to prove
it, we only have to deal with the case |ja| < |£| in which we pick k € N such that
|2%al| =~ |€]. In this case, we can use (8.3), (8.4) with 2¥a and ¢ (from Step 5) and
a1+ <1+ 2s and get

(8.13)
2 Agio f(206) = 2 P g, f(2)] € NlalPles oy +as+f <142,
(8.14)
127% Mgk f(z06) — 27F Agi f(2)] S Nllaf 422 €|, if o+ 4+ 8 >1+2s.
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We now use twice what we obtained in Step 1, to z and zo&, and get for a1 +as+ <
1+ ¢2s (using aq + B < 1+ ¢2s once again),

(8.15) [Aaf(z0€) =27 Aga f(z 0 )] S Nla|* 7],
(8.16) 1A f(2) = 27 Agia f(2)] S Nla]* 7€) o2,
and for a; + as + 8 > 1+ 12s,

(8.17) Aaf(206) = 2 Mgy f(20 €)] < Nlal*25]€?,
(8.18) Aaf(2) = 275 Dgry f(2)] < Nlal*2e]".

Summing (8.13), (8.15) and (8.16) yields (8.3) for all y and &. In the same way,
Summing (8.14), (8.17) and (8.18) yields (8.4) for all y and £. This achieves the
proof of the lemma.

O

Lemma 8.3 (Holder continuous increments in z). Given y € BRri+2sjp with R <1
and a € (0,min(1,2s)] and some cylinder Q = Qr(20), let f € C2*7*(Q). Then
Ay f lies in CF(Qint) with Qine = Qry2(20) and

(8.19) 18y fleg @i < Clflgzerag)l(0,5,0)**
for some constant C only depending on dimension and s.

Remark 8.4. This lemma and the following one can be seen as discrete counterparts
of [34, Lemma 2.5].

Proof. We remark that the assumption of the lemma implies that the assumption
of Lemma 8.1 holds true with 3 = 0 and a; = 2s and az = a with N = 2| f[ce (Q).
Applying Lemma 8.1 yields the desired result. ([l

Lemma 8.3 can also be proved directly along the lines of the proof of Lemma 8.5.
The proof would be easier because (0,y,0) belongs to the center of the Lie group
and thus z o0 (0,y,0)0& = z0£0(0,y,0).

Lemma 8.5 (Holder continuous increments in v). Given w € Brj, with R < 1, and
2s +a < 1 and o < min(1,2s) and some cylinder Q = Qr(20), let f € C3*7*(Q)
such that V. f € C°(Q). Then Ay f lies in C§(Qint) with Qine = Qr/2(20) and

(8.20) [Awfleg@u < Cflgzera(gy + W™V fleo@))(0,0,w)]*

for some constant C only depending on dimension and s.

Proof. Tt is convenient to write a = (0,0, w). We need to estimate the quantity

Wi=|Aaf(z08) = Aaf(2)| = [f(z080a) = f(z08) = f(zoa) + f(2)].
The easiest case is when |al| < [£]. In this case, we apply Definition 3.2 at the
point z and z o & with increment a. We get

[f(z0€0a) = paeg(a)] < [flezeralal® ¥, |f(z0a) —pa(a)] < [flgaesaa] .

The polynomials p, and p..¢ are of kinetic degree less than 2s+a < 1. Thus, they do
not have any component in the “v” variable: p,(0,0,w) = f(2) and p,o¢(0,0,w) =
f(z0&). Thus,

W < 2[floaeen ]+ < [Flozesa o> |€]"
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The last inequality holds when [la| < [|£||. Note that for this case, we did not need
a correction in terms of |V, f|cogy. For |a| > [|£], we will need an alternative
chain of inequalities.

When |a| > ||€]|, we apply Definition 3.2 at the point z and z o a with increment
& We get
(8.21)

[f(z0a08) = peoa(§)] < [flozral€]®*, [f(208) = p2(€)] < [flezera €]

The polynomials p, and p,., have kinetic degree less than 2s + « < 1. Thus, they
have at most two nonzero terms, the constant one, and the one in the “¢” variable.
They are (see [34])

(8.22)

p=(§) = f(2)+ (0 +v Vo) f(2)&,  Pzoal§) = f(20a)+ (0 +(v+w) Vi) f(20a)&:.
Note that zoaof differs from zo€oa. We estimate this discrepancy. If z = (¢, z,v)
and & = (&,&:, &), we have

f(zoaof&)— f(zofoa)= f(t+ &,z +& +&(v+w),v+ & +w)
—ft+&, 24+ & +&v,v+ & +w)

1
=/ Vef(t+&, x+E& +&Ev+ 08w, v+E, +w) - Ewdd.
0
This implies that
|f(zoaof) = f(zooa) — (w-V,f(z0a))&l

1
< & |w / Vo f(t+ &2+ & + §v + 0w, v + &, + w)
0
— V. f(t,z,v+w)|dd
< 2|Vafleol€]?*w].

We combine this with (8.21) and (8.22) to obtain the following upper bound for
w,

W < 2[flcaera €127 + Vo flleolwl €[>
(0 +v- Vi) f(2) = (0 + (v +w) - Vo) f(z 0 a)][&].
Using [34, Lemma 2.7 for D = (é; + v - V)],
< 2[flzera €T + Ve fllco W€ + [flze+alal* €],

< ([lezese + [0l =192 ey ) Il €1,

For the last inequality, we used |w| = |a| = ||£| and a < 2s. O

9. THE PROOF OF THEOREM 1.2

This section is devoted to proving Theorem 1.2. By an iterative process, we
will establish the following family of inequalities. For all differential operators
D = 0% DFs Do with k = (ky, kg, ky) € N'*24 there exists a > 0 so that for all
7 > 0 and ¢ > 0 there is a constant Cj , (depending on ki, ks, ks, ¢, 7, and the
parameters in Theorem 1.2) such that

(9.1) HDfHCLf”Sq*O‘([T’oo)XRdXRd) < Ckyg-
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The value of « that we obtain in the iteration will also depend on k and it will tend
to be smaller as the order of differentiation increases. A posteriori, we obtain a
C™ estimate for f, so the particular values of « after each iteration do not matter.
In order to be in position to apply the Schauder estimate and gain 2s derivatives,
we will always pick « € (0,min(1,2s)) such that 2s + a ¢ {1,2}. To do so, it is
convenient to work with exponents « such that « < 1—2sif s < 1/2 and o < 2—2s
if s >1/2.

We use the (classical) definition Dktkasky) — 8,{“ ’;% . 652 513 555 if k, =
(kL ... k%) and k, = (kl,... k?). We recall that the order of a multi-index k €
N2 s oy + kL + .. k% + kL + - + k% and is denoted by |k|. In this section, when
we refer to the order of D, we mean literally the classical order of differentiation
(not the kinetic order as defined in [34]).

Note that the value of C},, depends on several parameters. We stress their
dependence with respect to & and ¢ because it affects the order in which these
numbers are computed. As we said, we establish Inequalities (9.1) for every value
of k and ¢ iteratively. We first prove them for & = (0,0, 0) and any value of g. Then,
we will compute Cj, 4 in terms of the values of C; 44,43 for multi-indices i € N1+24
so that either |i| < |k| or |i| = |k| and 4, > k. In other words, the upper bounds for
the differential operator D f will depend on the bounds for lower order operators,
and on the bounds for operators with the same total order but higher order in x.
We observe that the computation of any of these values C , would involve finitely
many iterations, starting from the family of inequalities (9.1) for k¥ = 0. Note the
addition “++” in the decay exponent ¢ + x + 3, which is not problematic since we
start with the inequality Cj 4 for every value of g. This loss x + 3 only depends on
the parameter s and «y from the collision kernel B; see (1.3).

There are several sequential orders which we could employ in order to compute
all the constants Cj 4. In this proof, we make the following (somewhat arbitrary)
choice. We first establish (9.1) for k = (0, k5, 0), with k; = |k,| = 0. In the second
step, we extend the inequalities (9.1) to indices of the form k = (ki ks,0), with
k, = 0. In the third and last step, we establish (9.1) for all values of k € N1*+24,
By proving Estimates (9.1) in this order, we ensure that we always have enough
previous information to establish the value of Cj, , in each step.

We start with a function f € C7y,, (according to Theorem 2.2). The iteration
procedure described below allows us to obtain upper bounds of the form (9.1) for
increasingly higher values of |k|. If we only had an upper bound for ||f Hcgq for
some finite exponent ¢, the iteration would provide regularity estimates only ﬁp to
certain order of differentiation.

The zeroth step of the iteration is to apply Corollary 7.8, which provides In-
equality (9.1) for k; = 0, k, = 0, k, = 0. This is the case where Df = f. The
remainder of the proof proceeds in three steps, as described above.

Step 1. We prove (9.1) holds true for all differential operators of the form D = D¥=.
We proceed by induction on n = |k;|. It is convenient to make the inductive
statement in terms of increments. More precisely, we are going to prove by induction
on n > 1 that there exists an «,, such that for any 7 > 0, there exists a Cy, 4 > 0
so that

(9.2)

Vk,eNYg>0,ye By, |k/<n—-1= HAyDIz%f”cjj""([T,w)dede) < Chqlyl,
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where we recall that A, f(2) = f(20(0,y,0)) — f(2).
Note that passing to the limit as y — 0, the inequality above implies that for all
kz| <,

(93) H‘Dlﬂz’:waCZi;'””([T,oo)de XRd) < Cn,q‘

Corollary 7.8 provides the case n = 0 in (9.3). Note that (9.2) holds trivially for
n = 0 since there is no k; so that |k;| < —1. In order to proceed by induction, we
assume we know (9.2) and (9.3) hold up to certain value of n € N and we prove it
for n + 1.

Let |k;| = n and g = A, D¥ f. By the inductive hypothesis (9.3) combined with
Lemma 8.3, we have that for any value of 7 > 0 and ¢ > 0,

(94) |\9HCZQ([T,QO)XWXBW) < 1(0,y,0)* = |y|2s/(1+2s).

We want to enhance the exponent 2s/(1 + 2s) on the right hand side all the way to
one. For that, we apply Lemma 9.1 successively.

Lemma 9.1 (Gain of regularity in z). Let g = A, D" f (as above), B € (0,1 + 25)
and assume that (9.2) holds true. If there exists & € (0, o, | such that 2s+a&' ¢ {1,2}

and

Hg”C?,qJMJrS([T,OO)XRd><]Rd) < [(0,4,0)]7,
then

195 gor sy < 10,3, 0)1%
with &' = 142-8235" Here, K is the constant in Proposition 7.5.

Proof. The key to this lemma is to differentiate (1.1) and compute an equation for
g. Then, we apply the global Schauder estimate of Proposition 7.5 together with
the estimates we have for each incremental quotient.

Indeed, by a direct computation, we verify that g verifies the equation

(0 +v-Vai)g— Qi(f,9) = h,

where

=3 {QuaDif 7 Dif) + QuDf, A Dif) |
oy
+ 3 { QA Dif 1y Dif) + Qa(Dif, A D)}

1<ky

Here, i € N¢ is a multi-index. When we write i < k,, we mean that each component
of i is less than or equal to each component of k,. We write 7, f(2) = f(20(0,y,0)) =
Ay f+f. We also write D; to denote the differential operator so that D¥= = D,;oD;.

Since the index ¢ in the first sum runs over || < n, the inductive hypothesis (9.2)

tells us that both 7,D; f and A, D, f are bounded in C’?‘Zﬁ‘f;’jrg by < |y|. Likewise,

for every value of i so that i < k,, we have D;f, D, f, AyD;f, Ayf)if, all bounded
in CZ;+K+3 by < |y| except for the two extreme cases: A,D;f for ¢ = k; and
A, D;f fori = (0,0,0). Both functions coincide with A, D¥= f. For this reason, the
hypothesis of the lemma bounds these two functions in C7_,, 5 by < [(0,y, 0)||”.
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Taking the previous paragraph into account, we bound each term in h using Lem-

mas 6.8 and 6.2. We obtain a bound for |A a and consequently
£,q+r+3—(v+2s)—a/(1+2s)

a bound for |[h| s since vy + 25 + /(1 4 2s) < 3.
L,g+k
Applying Proposition 7.5, we obtain the desired bound for HgHCzH&/. O
£,q

Note that Lemma 9.1 provides a gain in regularity at the expense of a loss in
decay, from g+ K+ 3 to ¢. We did not try to make x explicit in Proposition 7.5 and
+3 is a rather rough overestimation of the additional loss in the decay exponent
when applying Lemmas 6.8 and 6.2.

Applying Lemma 9.1 once, we transform (9.4) into the following inequality, for
every value of ¢ > 0,

(9.5) 0,y,0)[% = [y[>/(+2).

Hg”cjj(’%([%po)dede) <
Note that the time shift 7 was updated to 27. This is because the application
of Proposition 7.5 in the proof of Lemma 9.1 requires a gap in time. We obtain
estimate for every value of 7 > 0 (with constants depending on 7). So, the difference
between 7 and 27 is not relevant for the final estimates. In view of this observation,
we will omit the domain dependence in the estimates below as a way to unclutter
the expressions and focus on the Holder and decay exponents.

The estimate (9.5) can be combined with Lemma 8.1 for (aq, ag, 5) = (25, al,, 2s).
We get

(9.6) 9l ger, < 100, y,0)]*.

q

This is an improvement on the exponent on the right hand side of (9.4) from
2s to 4s (at the expense of reducing o, to af,). We continue applying Lemma 9.1
together with Lemma 8.1 successively improving the exponent on the right hand
side to 6s, 8s, 10s, ... for as long as this exponent is strictly less than 1+ 2s. After
j steps, we are left with the inequality

) 2s J
25(j+1 ~ . i
Hg”cf; < (0, y,0)| s(+1) where &; := <1 +25> Q.

This iteration continues identically until &; + (j + 1)(2s) > 1 + 2s. At that point,
Lemma 8.1 takes a different form and the next step gives us

90l ien < 100,y 0)1 2.
L,q

If the value of &; + (j +1)(2s) is only barely above 1+ 2s, the value of &;1 that we
would get applying Lemma 8.1 might be tiny. In order to avoid that inconvenience,
if &; + j(2s) € (1,1 + s], then we can perform an intermediate step gaining s
derivatives instead of 2s derivatives, i.e. taking a; = s when applying Lemma 8.1.
That way, we ensure that the value of &;,1 is bounded below only in terms of the
parameters of Theorem 1.2. One more application of Lemma 9.1 gives us

(9.7) gl g2erasn = 10,5, 0)['*2* = [yl.

Recalling that g = A, D« f we finished the proof of (9.2) with ay,41 1= &1 <
an < 1—2s. This finishes Step 1 in the proof of Theorem 1.2. That is, we obtained
(9.1) when D involves derivatives with respect to « only.
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STEP 2. We next prove that for all k¥ = (k;, k,,0), and all ¢ > 0 and 7 > 0,
we can control ”aftDI;meCZeﬂ»ak for some small oy > 0. That means that for any
L,q

T > 0, there is a C}, 4 so that

(98) |0t Dy £ 2 < Crg.

Ok ([7,00) xR XRY) )

We are going to derive (9.8) for all k, by induction on n = k;. Remark that for
n = 0, we proved these estimates for all k, in Step 1. We argue by induction as
follows: we prove that, given any n € N, n > 1, and m € N, if (9.8) holds whenever
ki <nm—1and |k;| < m + 1, and also for k; = n and |k,| < m, then it also holds
true for k; = n and |k,| = m.

Let n > 1 and k, € N be any multi-index with |k,| = m. Using the inductive
hypothesis (9.8) with k; = n — 1, we apply [34, Lemma 2.6] and, for any value of
q > 0, get a bound on

[0 + v Va)or T D= fllog, < Choyg

with kg = (n — 1, ks, 0).
Using the induction assumption for k; = n—1, |k;| = m + 1, we also control the
norm of (v-V,)o; ' Dk f,

(v V)8 DY fl e < 0771 VaDl fllggese < maxCy

k,q+1

with k = (n — 1, k,,0) and |k,| = m + 1.
Therefore, we combine the last two estimates to obtain the inequality, for some
a > 0 and some constant C' depending on n and m,

(9.9) 07 D% fls. < C.
Our next objective is to turn the estimate (9.9) into

(9.10) 107 D2 fl pa:or < C.

Let g := 0P D= f. We compute an equation for g and get
(at tu- vz)g - Ql(fag) = ha

where

h= > QDf.Dif)+ Y, Qa(Dif,Dif).
i<(n,kq,0) i<(n,k,0)
i#(n,ks,0)

Here, i € N'*27 is a multi-index, and like in Step 1, 3/ DF= = D; o D;.
An inspection of the functions involved in A shows that, by applying the inductive
hypothesis together with Lemmas 6.8 and 6.2, we bound HhHC?/ for all ¢ > 0.
»d

Finally, (9.10) follows after applying Proposition 7.5.

STEP 3. In the third and last step, we establish the inequality (9.1) for every
differential operator D = 0;* D¥* DF» with k € N**2¢ and for all ¢ > 0 and 7 > 0.
We will prove that

Jpm >0/ Ve e N 24 ¢ > 0 we By,

(911) {‘kv| < ’n,k/‘t + ‘km‘ < m} = HDfHCQS+an,m < Cn,m.
t,q

We proceed the proof of Step 3 by a bidimensional induction similar as in Step 2.
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If s = 1/2, we can proceed like in Step 2. Indeed, (9.11) implies that (See
Proposition 3.3)

Ha’Ui,DfHCZ‘n—Lm < Cnfl,m~
»q

Thus, we compute an equation for g = V, D f and argue like in the previous step.

When s < 1/2, like in Step 1, it is convenient to set up the induction keeping
track of the Holder regularity of differential operators, and also of increments. Thus,
we prove that for alln > 1, me N,

Jtnm € (0,1 —25), /Vke N2 ¢ >0 we By,

(9.12) {lkol <n—1, ki + |ko| <m} = [ADS| 2eronm < Crm|w]-

L,q
The constants o, ,, depend on n, m and the parameters in Assumption 1.1. The
constants C,, ,,, depend in addition on 7 and ¢. By taking w — 0, (9.12) implies
(9.11).

The case n = 0 of (9.11) was established in Step 2. The inequality (9.12) holds
trivially for n = 0.

Now, let n = 1 and k be any multi-index with |k,| = n — 1 and ki + |k;| = m.
From the inductive hypothesis, Df satisfies (9.11). Remark that we can assume
without loss of generality that o, ,,» <1 —2s in (9.11) and (9.12). Thus, for any
q>0,

(9.13) IDS] 2e+on-sm < Cortim-
£,q

Let w € By. Since 25 + ap—1,m < 1, we apply Lemma 8.5 together with (9.13)
and obtain, for a = ayp_1,m > 0,

2
18001z, = (1D7] s s + 192D lcgysn ) ol

S (Cnfl,m + Cnfl,erl) ‘w|2s
(9.14) < Jw]?s.
In order to obtain (9.12) for n and m, we need to enhance the exponent on

the right hand side of the inequality above, from 2s all the way to one. We do it
through an iterative process similar to Step 1.

Lemma 9.2 (Gain of regularity in v). Let g = A,Df, € (0,1) and assume that
(9.12) holds true for smaller values of n + m, or for the same value of n +m with
n smaller. If there exists @& € (0, ay,] such that 2s + &' ¢ {1,2} and

(9.15) l9les,, o royxrixra) S |w]?,
then
B
”gHCZSqJ“S‘/([27-,00)dede) < |wl”,
. _ 2 —
with & = 35; @

Proof. The proof is very similar to the proof of Lemma 9.1. The only difference is
that the equation for g will now have terms involving VD f.
The function g = D f satisfies

(e +v-Vy)g—Qi(f,9) =H
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with
H = Z Qi(Dif, Dif) + Z Qo(D;f, Dif) +{(é; +v - V), D},
i<k i<k
ik

where {(0; + v-V,),D}f = (0 +v-Vy)Df — D(0 + v - V) f (Poisson bracket)
and D; and ﬁz are such that D; o ljz =D.

Since ¢; and D commute, {(0; +v-V,), D} = {v-V,, D}. Given k = (ki, kz, ky),
by a direct computation one verifies that

{v-V,,D} =Y DF,
E

where the multi-index k runs over all multi-indexes with the same order as k so
that D*¥ = 0,, D and D¥ = 0,, D for some differential operator D and i = 1,...,d.
According to our induction hypothesis, (9.12) holds for all these indexes k; therefore

(9.16) [Aw{(0r +v - Vy), D}chgf‘q*a < Ch—1my1|w].
The function g = A, D f satisfies the equation
(0 +v-Vai)g— Qi(f,9) =H in (0,T) x RY x RY,

where

d
H = AwH - Z ijw(aijf)v

Jj=1

= 3 {QuADifmyDif) + QuDif, A, Dif) }
L
+ 2 { QA Dif 7y Dif) + Qa(Dif, A, Dif)}

d
+ Au{(0r + v Va), D} = > w;Ty (0, DF).
j=1
The last term is the commutator between A,, and the transport part (d; + v - V),
and it is bounded in C’QHQ for all ¢ > 0, by the inductive hypothesis. The first
two terms are bounded 1dent10ally as in the proof of Lemma 9.1. And the third
term was bounded in (9.16). The proof finish by applying Proposition 7.5 to g, in
the same way as in the proof of Lemma 9.1. |

Once Lemma 9.2 is established, the rest of the proof of Step 3 proceeds similarly
as in Step 1 using Lemma 8.1 this time for increments in v instead of increments
in z.

This finishes the proof of Theorem 1.2.

APPENDIX A. GRESSMAN-STRAIN COERCIVITY ESTIMATE

In this appendix, we show how the change of variables described in Section 5,
together with a local coercivity estimate like the one in Theorem 2.5, can be used to
recover the global coercivity estimate with respect to the lifted anisotropic distance
of Gressman and Strain [24] (see also the prequel paper [23]).
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The transformation Tj defined in (5.3) depends on a given point vy € R%. For
any such v, let us consider the pushed forward distance: for vy,vy € FE1(vg) =
vo + 1o (Bl>,

(A1) da(v1,02) = |Tg (01 — o).
This distance d, depends on the choice of vg. However, as we will see, for any
pair vy, v € R?, all the possible values of d, (v, v2) are comparable for all possible

choices of vy so that vy, vy € Eq(vp).
We also recall the anisotropic distance defined in [23]: for all vy, vy € R?,

1
(A.2) das(v1,v2) = \/Z (Jo1]2 = Jv2[?)® + Jv1 — va]?.
Lemma A.1 (The anisotropic distance d,). Given vg € R? with |vy| > 2, we have
for all v1,v9 € vg + To(B1),
da(v1,v2) =~ das(v1,v2).
The hidden constants in ~ do not depend on any parameter, not even dimension.

Proof. Since Ty is linear, we have to estimate |T(;1(v1 —vg)|. Let v12 = v1 — va.
We have

Vi = | O|+w with w - vy = 0.

The real number A satisfies A|vg| = v12 - vo and |vy 2| = A? + |w|?. Hence we have
da(v1,v2) =|Ty ' (v1,2)] = V/\2|Uo\2 + |wf?
=V 22([vo]? = 1) + |v1 — v2?
~/ A2 |2 + |’U1 —vg?
=/ ((v1 —v2) -10)2 + |v1 — va|2.

We finally use that Tp(Bq) is a convex subset of By in order to get

U1 + U2
2

which allows us to conclude. O

—vo| <1

In [23,24], Gressman and Strain obtained sharp coercivity estimates for the linear
Boltzmann collision operator under some conditions on f on mass, concentration
and moments. In Proposition A.2, we prove an inequality of the same nature.

Proposition A.2 (Coercivity estimate). Let f be non-negative and such that As-
sumption 1.1 holds. If v < 0, we also assume (5.5). Let g : R* — R be an arbitrary
function. Then

a3 - [ fgd
R
(L+ Jo +of|)rr2ett /
>c g(v) — g(v"))? - dv dv
/ » M( () o) P
- c/ 2(1 -+ [u])mx10) dy,

where the constants ¢, p and C only depend on dimension d and mg, My, Ey, Hy
from Assumption 1.1 and C, in (5.5) (only if v < 0). We recall that Q denotes
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the Boltzmann collision operator defined in (1.2) and dgs denotes the non-isotropic
distance defined in (A.2).

We recall that the collision operator can be split in a principal part and a lower
order term; see (4.1). We prepare the proof of the proposition by first estimating
from below the principal contribution of the bilinear form {Q(f, g), g rz=.

Lemma A.3. Let f be non-negative and such that Assumption 1.1 holds, and if
v < 0 also (5.5) holds true. Let g : R? — R be an arbitrary function. Then

— g(")?Kf(v,v") dv' dv
an ) g

(L+ |v+ o/])r+2+]

>c g(v) — g(v"))? - dvdv'.
[ e e

Here, the constants ¢ > 0 and p € (0,1), R € (2,+) only depend on dimension d
and mo, Mo, Eo, Hy from Assumption 1.1 and Cy in (5.5) (only if v < 0). We recall
that Ky is the kernel defined in (4.2) and dgs denotes the non-isotropic distance
defined in (A.2).

Proof. We are going to use the change of variables from Section 5. We recall that
a kernel K ¢ is defined in (5.4) and that this kernel satisfies appropriate ellipticity
conditions.

From Corollary 5.8, we know that the kernel K satisfies (5.7), with a constant
A independent of vg.

Let Ro = 2 and vg such that |ug] = Ry. We change variables in (4.10). Recall
that o = vg + Tov and ¥ = vg + Tpv'. We also write g(v) = ¢(v). Note that
dv = |vp| dv. Thus, (5.7) for K translates into the following inequality for K,

I (9(0) — 9(0) o] =72 K (5, ') o
E1(vo)x E1(vo)
Z [vol? // (9(¥) — g(v))das(v,0") 42 dv’ dv,
E1/2(U0) ><E1/2(Uo)

where we recall that E,.(vg) = vg + To(B,) for r > 0. We used the definition of d,
and Lemma A.1. Rearranging the powers of |vy|, we get for any vy € R\ By,

J (9(0) — 9(0) K (0,2 o
E1(vo)x E1(vo)
1+~v+2s =/ =\\2 ~ ~I\—d—2s 1~/ 1+
2 o ff (9(0) — (1)) dass (7, 7).
E1/2(vo)x E12(vo)

We remark that for v,9" € Ey5(vo), we have 1+ [vo| ~ 1 + [0 + 0'|. Hence, we get

// (9(v") — g(v))* K¢ (v,7") dv’ dv
E1(vo) X E1(vo)

1 5 5V 1+v+2s
= (9@) - g@P TV g,
E1)2(vo) X Eq/2(vo) dGS(Uv v ) s
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We now multiply the previous inequality by |vg|, integrate with respect to vy €
RN B,. We get

a5 o) - g@P K0 Wi ) do' do

(1 + |’l7 +@/|)1+7+2s

2 ] ) 00 e Waa(o, ) ' d

with
Wy (U, UI) ::/ "U0|]lv,'u'eE1 (vo) dvg and Wl/Q(Uv U/) ::/ |v0|]l'u,v’eE1/2('uo) dev
R4\ By R4\ By

where 1,4 denotes the indicator function of a set A: 14(v) = 1if v € A and
Ta(v)=0ifv¢ A
We now observe that for some constants R > 0 (large) and p > 0 (small),

(A.6) Wi (v,v") € L{ags (o) <R
(A7) Wi)2(0,0") 2 Liags (o0 <pi Livg By or v/¢Bs}-

As far as (A.6) is concerned, if there exists vg € R? such that v, v’ € Ey(vp), then
da(v,v") < 2; see (A.1). Thus, from Lemma A.1, dgs(v,v") < R for some universal
constant R. Moreover, since we have d,(v,vg) < 1, we also have dgg(v,v9) < R. In
particular |v| & |vg|. The set of points vy € R? so that dgg(v,v9) < R has volume
~ (1+ [v])7t. Thus, Wi < |v|(1 + |v])™! < 1, and (A.6) follows. As far as (A.7)
is concerned, if dgs(v,v") < p for p small, then the set of vy so that v,v" € Eq(vg)
will be indeed of volume = (1 + |v])~!. If v ¢ By or v’ ¢ Ba, we ensure that at least
half of this set lies outside By. Note that since |vg| & |v] > 2 (or |v'| > 2), we have
lvo|/(1 + |v]) ~ 1 and (A.7) follows.

With (A.6) and (A.7) at hand, we can deduce from (A.5) that

A (0(0') — 9(0)* K (5.0") s
{das(v,0")<R}
(]_ + |1—) + ,U/|)1+’7+2s

z (9(0") — 9(0))*L(j5/>2 or | — dv’ da.
//{dGS(UxU')<P} tol=2 or [1=2 77 g g (0, /) d+2s

In order to deal with small velocities, the change of variables is not needed: we
apply (5.7) (scaled to By) directly to Ky and get

//B4><B4 —9(0))*K(0,0") dv’ dv
N //]32x32 (9(t) = g(9))*|p = v'|7"*"dv" dv

_ _ 1+ |o+0'|)yF2s+t
< (9(0") _Q(U))Q]l v,0 — dv’ dw.
//{dcs(v,v/)<P} frrebs) das (v, 07)4+2s

We conclude the proof by combining the estimate for large velocities with the
one for small velocities. O

We can now prove Proposition A.2.

Proof of Proposition A.2. From Corollary 5.8, we know that Ky satisfies (5.7) with
a A > 0 independent of vyg.

Licensed to Univ of Chicago. Prepared on Fri Jun 24 18:49:37 EDT 2022 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



700 CYRIL IMBERT AND LUIS ENRIQUE SILVESTRE

We use again the decomposition (4.1) from [44,47]. After straight-forward arith-
metic manipulations, we get

1 / 2 / /
~ [ etragan=5 [ (o) =g Ks 00
1

=5 [0 ([ st~ gt opat) a,

= [ (1 Phgto) o
=1 — I I

We use Lemma A.3 to estimate the first term. We use [35, Lemma 3.6] to
estimate the second term. In fact, the classical cancellation lemma from [1] (see
also [44, Lemmas 5.1 and 5.2]) tells us that the second and third terms are identical.
Thus, using (5.5) if v < 0,

(1 + |U + v/‘)1+w+2s ,
nz (9(v)) — 9(0))? av' dv,
das(v,v')<p dGS(U7v/)d+2s

B=h= [ o@P (w0 w)el dw) do

- C(1+ o))" [pag(v)?dv if vy > 0, with C = C(My, Eq),
SOy Jrag(v)?dv if v < 0.

The proof is now complete. |

Remark A.4. It is possible to justify that the universal constants R > p can be
chosen arbitrarily using a covering argument as in [14, Section 5.2]. The norm N,f
in [23,24] is defined with p = 1.

Remark A.5. The coercivity estimate from [23] and the coercivity estimates from
[24] and in Proposition A.2 involve different operators. Our proposition, as well as
the estimate in [24], is for the linear operator

(A.8) L(g) = —Q(f,9),

for any given profile f for which the mass, energy and entropy are bounded above,
and the mass is bounded below. The estimate in [23] is for the linearized Boltzmann
operator

(Ag) L(g) = _Mil/zg(Mv Ml/Qg) - M71/2Q(M1/2ga M)v

where M is a Maxwellian profile.

The linear operators (A.8) and (A.9) are different. The operator (A.8) is useful to
study (so far conditional) regularity estimates for generic solutions of the Boltzmann
equation. The operator (A.9) is useful to study the stability of the equation for
small perturbations around a Maxwellian.

Coercivity estimates from [24] and from Proposition A.2 are proved under slightly
different sets of assumptions. It is assumed in [24] that f satisfies for all v € R?
and a € [y,7 + 2s]

(A.10) [ Sl =011+ ol dw < (1+ ol
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with i =1if s < 1 andi=2for s > 1. For v < 0, (A.10) implies (5.5) by choosing
a = 7. Notice that (A.10) implies a control of moments of order 2+~ +2sif s > 1/2
which can be larger than 2.

Note also that Assumption L in [24] is slightly more general than the upper
bound on the entropy in Assumption 1.1.
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