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Singular solutions to parabolic equations in nondivergence form

LUIS SILVESTRE

Abstract. For any ˛ 2 .0; 1/, we construct an example of a solution to a
parabolic equation with measurable coefficients in two space dimensions which
has an isolated singularity and is not better that C ˛ . We prove that there exists
no solution to a fully nonlinear uniformly parabolic equation, in any dimension,
which has an isolated singularity where it is not C 2 while it is analytic elsewhere,
and it is homogeneous in x at the time of the singularity. We build an example of a
non homogeneous solution to a fully nonlinear uniformly parabolic equation with
an isolated singularity, which we verify with the aid of a numerical computation.

Mathematics Subject Classification (2020): ???????? (primary); ???????? (sec-
ondary).

1. Introduction

In this work, we are interested in the emergence of singularities from the flow of

parabolic equations. We study two related types of equations. The equations with

measurable coefficients have the form

ut � aij .t; x/@ij u D 0: (1.1)

Here the coefficients aij satisfy the ellipticity condition �I  faij .t; x/g  ƒI, for

every point .t; x/ in the domain of the equation. No regularity is assumed for aij

with respect to either x or t .

The other class of equations is that of translation-invariant fully nonlinear

parabolic equations of the form

ut � F.D2u/ D 0: (1.2)

Here, we always assume that the function F is uniformly elliptic in the sense that

for any pair of symmetric matrices A; B 2 R
d⇥d , if B � 0, we have � tr B 

F.A C B/ � F.A/  ƒ tr B .

The author is supported by NSF grant DMS-1764285. The computational component in the veri-
fication of (almost)-Theorem 1.2 was completed in part with resources provided by the University
of Chicago Research Computing Center.

Received November 30, 2020; accepted in revised form March 26, 2021.

Published online June 2022.



994 LUIS SILVESTRE

Centered around the work of Krylov and Safonov [9], there is a well developed

regularity theory for parabolic equations in nondivergence form. Solutions to an

equation with measurable coefficients like (1.1) are known to be Hölder continuous.

Solutions to a fully nonlinear parabolic equation like (1.2) are known to be C 1C˛ ,

for some ˛ > 0 depending on dimension and the ellipticity parameters � and ƒ.

Without further assumptions, there is no regularity estimate that ensures D2u to be

well defined.

There are some important examples that show that our currently known reg-

ularity results are sharp for elliptic equations in non-divergence form. These ex-

amples can also be interpreted as singular solutions to fully nonlinear parabolic

equations that are constant in time. However, what we seek in this work is to un-

derstand whether a solution to a parabolic equation may start smooth and flow into

a singularity after some finite positive time. We are interested in constructing a

solution to a parabolic equation which has an isolated singularity in space-time.

For elliptic equations in three dimensions, M. Safonov constructs an example

in [20] showing that the Hölder continuity result in his joint work with Krylov [9]

is optimal. Precisely, for any ˛ 2 .0; 1/, he constructs a function u W R3 ! R,

homogeneous of degree ˛, smooth in R
3 n f0g, so that

aij .x/@ij u.x/ D 0 in R
3 n f0g; (1.3)

for some uniforly elliptic coefficients aij . Moreover, he shows that this function

u can be approximated with smooth functions satisfying a uniformly elliptic equa-

tion in the full space. The singular function u is also a viscosity solution to the

corresponding inequalities for the Pucci operators (see Section 2 below) in the full

space R
3.

For fully nonlinear elliptic equations, there is a series of examples of homo-

geneous solutions with an isolated singularity at the origin (see [10–14,16,17]). In

particular, in [10], Nadirashvili, Tkachev and Vl˘aduţ construct a solution to a fully

nonlinear elliptic equation with an isolated singularity in dimension five. All these

examples are homogeneous functions.

Let us state our first main result concerning equations with measurable coef-

ficients.

Theorem 1.1. For any ˛ 2 .0; 4/, there exists a continuous function u W .�1; 0ç ⇥

R
2 ! R such that:

✏ The function u is parabolic-homogeneous of degree ˛. In other words, for all

a > 0,

u.t; x/ D a�˛u.a2t; ax/I

✏ The function u is analytic in ..�1; 0ç ⇥R
2/ n f.0; 0/g and satisfies an equation

of the form (1.1) for some uniformly elliptic coefficients aij .t; x/.

Theorem 1.1 shows that the Hölder continuity regularity obtained by Krylov and

Safonov in [9] is not improvable for parabolic equations in dimension two or more,
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even if we impose regularity on the initial data. Note that unlike Safonov’s ex-

ample, our construction can be done in dimension two. This is a stark difference

with respect to the elliptic case. Indeed, there is an old result by Nirenberg in [19]

proving that uniformly elliptic equations in 2D are always C 1C˛ regular, for some

˛ > 0. Safonov’s example takes advantage of a purely three dimensional geometric

construction. Our example for Theorem 1.1 is three dimensional in space-time.

Solutions to a parabolic equation like (1.1) in one space dimension are always

C 1C˛ in space (see for example [8]). So, an analog of Theorem 1.1 would not hold

in the one-dimensional setting.

If u is a solution to a fully nonlinear parabolic equation like (1.2), then its par-

tial derivatives satisfy an equation with measurable coefficients like (1.1). Studying

the regularity of solutions to (1.1) is the most direct technique leading to regularity

results for (1.2). Theorem 1.1 suggests that perhaps one might be able to con-

struct a singular solution to a fully nonlinear parabolic equation in two dimensions.

However, this is not possible. Ben Andrews proved in [1] that solutions to fully

nonlinear parabolic equations are C 2C˛ . We also discuss it in Proposition 1.5 be-

low. Note that Theorem 1.1 answers negatively the question raised in [1], at the

end of the second page.

Our second main result is about a solution to a fully nonlinear parabolic equa-

tion like (1.2). We present a solution which has an isolated singularity in space-

time. Our justification has some part that is verified by a numerical computation.

Because of that, it may be inappropriate to call it a Theorem. Still, we believe our

verification is sufficiently covincing so that we can confidently state it as a true fact.

(almost) Theorem 1.2. There exists a function u W Q1 ! R such that u is an-

alytic everywhere except at .0; 0/. It solves a fully nonlinear uniformly parabolic

equation like (1.2), and yet u is not second differentiable in space at .0; 0/.

Here Q1 WD .�1; 0ç ⇥ B1, and B1 is the unit ball in R
5.

Unlike every example constructed so far for elliptic equations, the function u in

(almost)-Theorem 1.2 is not homogeneous. In fact, there is no singular solution u
that is homogeneous in x on t D 0. This is arguably unexpected, so we presented

it as our third main result.

Theorem 1.3. For any dimension, there exists no function u solving the equation

(1.2) in Q1 so that u.0; x/ is homogeneous of degree two in x, u is analytic in

Q1 n .0; 0/, but u is not C 2 at the origin.

There are some non-existence results for elliptic equations in the literature that are

worth mentioning, and comparing them with Theorem 1.3.

There is a result by Han, Nadirashvili and Yuan [6] proving that there exists

no singular solution of (1.3) that is homogeneous of degree one. Note that the

examples that Safonov constructs in [20] are homogeneous of degree strictly below

one. Our examples in Theorem 1.1 can be homogeneous of degree one or even

larger (but for parabolic equations).
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Thanks to the result in [15], we know that there exist no singular solution to a

fully nonlinear elliptic equation of the form F.D2u/ D 0, homogeneous of degree

two and analytic away from the origin, in dimensions four or less. Even though this

result shows there is a serious obstruction to build a singular solution similar to that

of [10], it does not rule out the existence of singular solutions that are homogeneous

of a smaller degree, or not homogeneous at all.

It is also worth mentioning the result in [18] saying that a homogeneous so-

lution of a fully nonlinear elliptic equation, of any degree other than two, in any

dimension, must be a polynomial if F 2 C 1.

In analogy with the elliptic constructions in [15] and the proof of Theorem 1.1,

it would seem natural to try to build a parabolic-homogeneous solution of a fully

nonlinear parabolic equation of the form (1.2). That is, a function u W .�1; 0ç ⇥

R
d ! R such that

u.t; x/ D ��1�˛u.�2t; �x/ for all � > 0:

Such a function would necessarily be C 1C˛ in space but not C 2C˛ on t D 0.

However, there is no function of this form that solves a fully nonlinear parabolic

equation since its time derivative ut would fail to be bounded around the origin. It

is well known that the time derivative of a solution to a fully nonlinear parabolic

equation must be Hölder continuous, and in particular locally bounded. Singular

solutions to a fully nonlinear parabolic equation as in (almost)-Theorem 1.2 cannot

be parabolic-homogeneous.

Every solution to a fully nonlinear parabolic equation is also a solution to an

elliptic equation with right hand side ut , for every fixed value of t . Since ut is

Hölder continuous, any singular solution to a parabolic equation must agree with a

singular solution to an elliptic equation with a Hölder continuous right hand side at

the final time. After this observation, it would be natural to attempt to build such

a singular solution by making u.0; x/ equal to some of the known examples of

singular solutions to elliptic equations, for example the one from [10]. However, all

these known examples are homogeneous in x. Theorem 1.3 rules out any function

of this form. Its proof involves an analysis of the time derivative ut , but it is more

subtle than the analysis above for parabolic-homogeneous functions.

In Section 2 we present a few lemmas that characterize when a function u
solves an equation of the form (1.1) for some uniformly elliptic coefficients. In

order to prove Theorem 1.1, we show a simple explicit formula for the function u
that satisfies the criteria established in Section 2. The main difficulty of proving

Theorem 1.1 is in finding the right function u. Once the explicit formula for u is

exposed, it is admittedly easy to verify it satisfies an equation like (1.1).

The justification of (almost)-Theorem 1.2 is given in Section 5. We prove

a lemma characterizing the functions u that solve some fully nonlinear parabolic

equation. Then we write an explicit function that satisfies that condition. The veri-

fication of the condition is done numerically with the help of a computer. Because

of that, it is not a complete analytical proof, but it is very convincing.

The proof of Theorem 1.3 is given in Section 6. The idea is to use the ho-

mogeneity assumption together with the C ˛ estimates to prove that ut .0; x/ is
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constant. The time derivative ut solves a uniformly parabolic equation with coeffi-

cients depending on D2u. A unique continuation result gives us backward unique-

ness for that equation from which we determine that ut is constant everywhere in

Q1 and that leads to the proof.

The functions that realize the examples in Theorems 1.1 and 1.2 are explicit.

For Theorem 1.1 it is

u.t; x/ D
jxj2 C t

.jxj2 � t /1�˛=2
:

For (almost)-Theorem 1.2, it is

u.t; x/ D
P5.x/

�t C
p

jxj2 C t2
C

1

12
P5.x/:

Here, P5 is the isoperimetric Cartan cubic polynomial in dimension five, used in

[10], given by the formula

P5.x/ D x3
1 C

3

2
x1.x2

3 C x2
4 � 2x2

5 � 2x2
2/ C

3
p

3

2
.x2x2

3 � x2x2
4 C 2x3x4x5/:

The equations are not explicit. We do not compute the coefficients aij for Theo-

rem 1.1, or the function F for (almost)-Theorem 1.2.

Remark 1.4. For historical reasons, we use the term measurable coefficients to

refer to an equation of the form (1.1). It is important that the coefficients aij are

uniformly elliptic but they do not satisfy any further continuity assumption. The

measurability of these coefficients is largely irrelevant.

The equation is restated in terms of the Pucci operators in Section 2. Note

that since the equation is in non-divergence form, the solutions cannot be under-

stood in the sense of distributions. An appropriate way to make sense of whether

a non-smooth function u solves an equation like (1.1) for some uniformly elliptic

coefficients aij is given by two inequalities that must be satisfied in the viscosity

sense. The coefficients aij are implicit, their pointwise values are not necessarily

well defined.

1.1. Complementary results

We include a few extra results that complement our main theorems above. They

answer some natural related questions and they are proved through similar tech-

niques.

In two space dimensions, solutions to uniformly elliptic fully nonlinear para-

bolic equations are C 2C˛ in space. We state that fact in the first complementary

result.

Proposition 1.5. Let B1 be the unit ball in R
2 and u W Q1 ! R be a viscosity

solution to a fully nonlinear equation of the form

ut � F.D2u/ D 0 in Q1:
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Assume F is uniformly elliptic. Then u is C 2C˛ in space and C 1C˛=2 in time for

some ˛ > 0. Moreover, it satisfies the estimates

kD2
xukC ˛.Q1=2/  C kukC 0.Q1/:

We use the notation Qr D .�r2; 0ç ⇥ Br to denote the parabolic cylinder

centered at the origin.

Proposition 1.5 was proved in [1] for a more general class of equations. Per-

haps because of that, our estimate here is slightly more precise. We review the

proof of Proposition 1.5 in Section 4.

We are able to extend Theorem 1.3 to other degrees of homogeneity provided

that F is homogeneous of degree one.

Proposition 1.6. If we assume futher than F is homogeneous of degree one, then

there exists no function u solving an equation like (1.2), in any dimension, so that

u.0; x/ is homogeneous of degree less than two in x, and u is analytic in Q1n.0; 0/.

The analyticity assumption on u is also removable at the expense of further

smoothness assumptions on F and having u globally defined.

Proposition 1.7. If we assume futher than F a C 1;1 function, then there exists no

function u W .�1; 0ç ⇥R
d ! R, in any dimension, C 3 away from .0; 0/, solving an

equation like (1.2), so that u.0; x/ is homogeneous of degree two in x, it is not C 2

at the origin, and j.@t ; rx/D2
xuj . jxj�1.

For the proof of Proposition 1.7, we replace the analyticity condition in Theo-

rem 1.3 with a unique continuation argument for parabolic equations. The assump-

tion that F 2 C 1;1 arises in similarly as in [2] as a way to obtain a linearized equa-

tion with Lipchitz coefficients. The proof of Proposition 1.7 relies on the backward

uniqueness result from [23]. Note that this type of uniqueness results for parabolic

equations would not apply to solutions in a bounded domain.

2. Preliminaries

In this section we review some standard notions for elliptic and parabolic equations

in nondivergence form. None of the statements in this section is new.

Given any two ellipticity constants ƒ � � > 0, we define the usual Pucci

operators over the set of real symmetric matrices.

P C.M/ WD ƒ tr MC � � tr M�;

P �.M/ WD � tr MC � ƒ tr M�:

Here, we write MC and M� to represent the positive and negative parts of the

symmetric matrix M . We use the convention that both MC and M� are positive

definite. Thus, M� D �M when M is negative definite.



SINGULAR SOLUTIONS TO PARABOLIC EQUATIONS IN NONDIVERGENCE FORM 999

The Pucci operators represent the extremal elliptic operators with ellipticity

constants � and ƒ. In fact, the following identity holds.

P C.M/ D max ftr.AM / W �I  A  ƒIg ; (2.1)

P �.M/ D min ftr.AM / W �I  A  ƒIg : (2.2)

Identities (2.1) and (2.2) are very well known. Probably because of their simplicity,

their proofs are most often omitted. Let us write a quick justification. The first

thing to notice in order to prove (2.1) is that it holds when M is positive definite.

Indeed, in that case we have tr AM D tr M 1=2AM 1=2 and �M D M 1=2�M 1=2


M 1=2AM 1=2
 M 1=2ƒM 1=2 D ƒM . Thus, � tr M  tr AM  ƒM when M is

positive definite. If M is not positive definite, we write M D MC � M�, use the

previous inequality for MC and M� and the linearity of the trace to get

tr AM D tr AMC � tr AM�  ƒ tr MC � � tr M� D P C.M/:

Similarly, we also get tr AM � P �.M/. The equality in (2.1) is achieved when

A equals ƒ times the projector over the positive eigenvalues, plus � times the

projector over its orthogonal complement. The equality in (2.2) holds with the

opposite choice of constants.

From the characterization of P C and P � as in (2.1-2.2), we deduce the fol-

lowing corollary.

Corollary 2.1. Given any symmetric matrix M 2 R
d⇥d the following two state-

ments are equivalent:

1. There exists a symmetric matrix A 2 R
d⇥d , so that �I  A  ƒI, and tr AM D

0;

2. P C.M/ � 0 � P �.M/.

There are different ways to consider non-smooth solutions to an equation like (1.1).

One possibility is to consider a function u, whose derivatives in the sense of dis-

tributions ut and @ij u make sense as functions, at least in L1
loc

, and solve (1.1)

for some uniformly elliptic measurable coefficients aij .t; x/. Without any further

regularity assumption on u, this notion of solution in the sense of distributions has

some severe shotcomings (lack of existence and lack of uniqueness among others).

It is most convenient to reformulate the equation (1.1) in the viscosity sense using

the Pucci operators. From Corollary 2.1, we see that a smooth function u solves

(1.1) for some uniformly elliptic coefficient aij .t; x/ if and only if

ut � P C.D2u/  0 and ut � P �.D2u/ � 0: (2.3)

The equation (1.1) with undetermined rough coefficients aij .t; x/, turns out to be

equivalent to the pair of nonlinear inequalities (2.3). An advantage of (2.3) is that

we can make sense of the inequalities in the viscosity sense, for functions u that are

merely continuous. The example we construct in this paper to verify Theorem 1.1
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is a function u that remains smooth up to the point of the singularity. In that sense,

it is not necessary for us to work with any generalized notion of solution. Yet, we

verify the two inequalities in (2.3) rather than constructing the coefficients aij .t; x/
explicitly.

It is also common and useful to restate the notion of uniform ellipticity for a

nonlinear function F in terms of the Pucci operators. Indeed, the function F is

uniformly elliptic with parameters � and ƒ if and only if for any pair of symmetric

matrices A; B 2 R
n⇥n, it holds

P �.B/  F.A C B/ � F.A/  P C.B/:

In this case, the inequalities hold for any two symmetric matrices A and B , without

requiring B to be symmetric. It is easy to verify that the Pucci operators P C and

P � are themselves uniformly elliptic with the same constants � and ƒ.

2.1. Review on regularity results for parabolic equations

The following two theorems summarize the fundamental regularity results that fol-

low from the work of Krylov and Safonov [9]. In the context of viscosity solutions,

we also reference [21, 22], and the lecture notes [7].

Theorem 2.2. Let u be a continuous function that satisfies the two inequalities

(2.3) in the viscosity sense in Q1. Then, for some ˛ > 0 small depending on �, ƒ
and dimension only, u 2 C ˛.Q1=2/ and

kukC ˛.Q1=2/  C kukC 0.Q1/:

The constant C depends also on �, ƒ and dimension only.

Applying Theorem (2.2) to incremental quotients of a solution to a fully nonlinear

parabolic equation like (1.2), we obtain the following C 1C˛ estimate.

Theorem 2.3. Let u be a continuous function that satisfies (1.2) in the viscosity

sense in Q1. Assume that F is uniformly elliptic. Then, for some ˛ > 0 small

depending on �, ƒ and dimension only, u 2 C 1C˛.Q1=2/ and

k.@tu; ru/kC ˛.Q1=2/  C kukC 0.Q1/:

The constant C depends also on �, ƒ and dimension only.

The C ˛ estimate on the time derivative ut plays an important role in the proof of

Theorem 1.3. In [4], they prove that the estimate on ut holds even if we add a C ˛

right hand side to the equation.

The last theorem we want to reference in this section is a C 2C˛ estimate for

fully nonlinear elliptic equations in 2D with a Hölder continuous right hand side.
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Theorem 2.4. Let u W B1 ! R be a viscosity solution of

F.D2u/ D f .x/ in B1:

Here B1 is the unit ball in R
2 and F is uniformly elliptic. Then, for some ˛ > 0

small depending on �, ƒ and dimension only, u 2 C 2C˛.B1=2/ and

kukC 2C˛.B1=2/  C
�

kukC 0.B1/ C kf kC ˛.B1/

�

:

The constant C depends also on �, ƒ and dimension only.

The C 2C˛ estimate of Theorem 2.4 is originally due to Nirenberg [19] when the

right hand side is zero. Caffarelli’s Schauder estimates for fully nonlinear elliptic

equations (see [3, Section 8.1]) allow us to add a Hölder continuous right hand side

to essentially any elliptic equation that satisfies a C 2C˛ estimate.

Naturally, the smaller cylinder Q1=2 can be replaced with Q⇢ in Theorems 2.2,

2.3 and 2.4, for any value of ⇢ 2 .0; 1/, by adjusting the constants C .

3. Singular solutions to parabolic equations with measurable coefficients
in 2D

Theorem 1.1 is justified by the following explicit function

u.t; x/ D
jxj2 C t

.jxj2 � t /1�˛=2
: (3.1)

Once we know the function u explicitly, the proof of Theorem 1.1 is a relatively

short computation to verify that (2.3) holds.

Proof of Theorem 1.1. We have to verify that the function u given in (3.1) satisfies

(2.3). It is clear that this function is smooth away from .0; 0/ and that it has the

desired homogeneity.

The function u is radially symmetric with respect to x, so the eigenvectors

of D2u are in the radial direction and its perpendicular. Let us use polar coordi-

nates and call r D jxj. The eigenvalues of D2u are precisely urr and ur=r . The

following are the values of ut and ur=r , obtained via a direct computation.

ut D .r2
� t /�2C˛=2

⇣

.2 � ˛=2/ r2
�

˛

2
t
⌘

;

ur

r
D .r2

� t /�2C˛=2
�

˛r2
� .4 � ˛/t

�

:

We observe that wherever t < 0, we have both ur=r > 0 and ut > 0. The value of

urr may have either sign and we do not need to compute it explicitly.
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The function u is parabolic-homogeneous of degree ˛. That means that

�˛u.t; x/ D u.�2t; �x/. Therefore, we also have

ut .�
2t; �x/ � P ˙.D2u.�2t; �x// D �˛�2

�

ut .t; x/ � P ˙.D2u.t; x//
�

:

Thus, it is enough to verify the hypothesis (2.3) on the surface S WD fjxj2 � t D
1g \ ft  0g.

Note that S is a compact surface. The functions ut and ur=r achieve their

maximum and minimum positive values. In order to verify (2.3) on S , we pick �
and ƒ such that

max
S

ut � ƒ min
S

.ur=r/ C � max
S

u�

rr  0;

min
S

ut � � max
S

.ur=r/ � � max
S

uC
rr � 0:

First, using that minS ut > 0, we pick � > 0 small enough to ensure that the

second inequality holds. Then, using that minS.ur=r/ > 0, pick ƒ large enough

to ensure that the first inequality holds. These two inequalities ensure that (2.3)

holds everywhere on S . Because of the homogeneity of u, (2.3) holds everywhere,

which concludes the proof.

Remark 3.1. From the construction in the proof of Theorem 1.1, one can verify

that the coefficients aij in (1.1) can be chosen with the relatively simpler form

aij .t; x/ D �ıij C f

✓ jxj
p

�t

◆ ✓

ıij �
xixj

jxj2

◆

;

for some suitable function f .

4. Fully nonlinear parabolic equations in 2D

In this section, we review the proof of Proposition 1.5 following the ideas from [1].

It follows essentially from combining the C ˛ estimates on ut from Theorem 2.3

with Nirenberg’s regularity estimates for fully nonlinear equations in two dimen-

sions.

From Theorem 2.3, we know that any viscosity solution u to a fully nonlinear

parabolic equation, in any dimension, is differentiable in time and satisfies, for any

⇢ < 1.

kutkC ˛.Q⇢/ . kukC 0.Q1/:

Thus, given any solution to the parabolic equation ut �F.D2u/ D 0, we can freeze

time and consider the elliptic equation

F.D2u/ D ut :
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Here, we think of ut as the right hand side of an elliptic equation. For any t ,

the function u.t; �/ solves a uniformly elliptic equation with a C ˛ right hand side.

Applying Theorem 2.4, we have that D2u.t; �/ exists and is Hölder continuous for

every fixed value of t . Moreover,

kD2u.t; �/kC ˛.B3=4/ . ku.t; �/kC 0.B7=8/ C kut .t; �/kC ˛.B7=8/ . kukC 0.Q1/:

From here, we have the existence and Hölder continuity in space of D2u. We are

only left to establish its Hölder continuity in time.

It is convenient to state the Hölder continuity with respect to the parabolic

distance. In this case, since ˛ is small, and Q1=2 has a fixed size, the result would be

equivalent to its Höder continuity with respect to the Euclidean distance in space-

time. The parabolic distance is scale invariant with respect to the parabolic scaling.

Because of that, it is the most appropriate distance when working with parabolic

equations. It is

dp..t; x/; .s; y// WD jx � yj C
p

js � t j:

Using that ut is Hölder continuous with respect to the parabolic distance dp , and

that u.t; �/ 2 C 2C˛ for every fixed value of t , we will prove that D2u is Hölder

continuous in space-time with respect to the parabolic distance.

Let .t; x/ and .s; x/ be two points in Q1=2 so that jt � sj < r2. Let us analyze

the values of u on ftg ⇥ Br.x/ and fsg ⇥ Br.x/.

Using the C ˛ regularity of ut , with respect to the parabolic distance, we get,

for any y 2 Br.x/

ju.t; y/ � u.s; y/ � .t � s/ut .t; y/j  C r2C˛:

Moreover, since jut .t; y/ � ut .t; x/j  C r˛ , we also get

ju.t; y/ � u.s; y/ � .t � s/ut .t; x/j  C r2C˛:

Let us now compare their second order Taylor expansions in the space variable.

Since u is C 2C˛ in space, we have

ju.t; y/ � u.t; x/ � .y � x/ � ru.t; x/ �
1

2
.yi � xi /.yj � xj /@ij u.t; x/j  C r2C˛

ju.s; y/ � u.s; x/ � .y � x/ � ru.s; x/ �
1

2
.yi � xi /.yj � xj /@ij u.s; x/j  C r2C˛:

Adding the three inequalities above, we deduce an inequality for a second order

polynomial that says

sup
z2Br

jaij zizj C b � z C cj  C r2C˛;
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where, z stands for y � x, and the coefficients of the polynomial are

aij D @ij u.t; x/ � @ij u.s; x/;

b D ru.t; x/ � ru.s; x/;

c D u.s; x/ � u.t; x/ C .t � s/ut .t; x/:

The sup norm on the space of second order polynomials is equivalent to any other

norm since it is a finite dimensional space. In this case, taking the scaling into

account, that means

jaij j  C r˛;

jbj  C r1C˛;

jcj  C r2C˛:

Thus, we obtained that jD2u.t; x/ � D2u.s; x/j  C r˛ . This is the Hölder conti-

nuity of D2u in time and we finished the proof of Proposition 1.5.

5. Singular solutions to Fully nonlinear parabolic equations

In this section, we explain how to verify if a function u solves some equation of

the form (1.2). We explain the justification of (almost)-Theorem 1.2

We start with the following lemma, characterizing the functions that solve a

uniformly parabolic fully nonlinear equation.

Lemma 5.1. Let ƒ � � > 0. Given a (space-time) set � ⇢ R⇥R
d and a function

u W � ! R, which is second differentiable in x and differentiable in t , then the

following two statements are equivalent:

1. There exists a uniformly elliptic function F so that ut � F.D2u/ D 0 holds in

�;

2. For any pair of points .t; x/ and .s; y/ in �, we have

P �.D2u.t; x/ � D2u.s; y//  ut .t; x/ � ut .s; y/

 P C.D2u.t; x/ � D2u.s; y//:
(5.1)

Here, P C and P � are the extremal Pucci operators defined in (2.1) and (2.2)

with ellipticity parameters � and ƒ.

Proof. We start with the easy implication .1/ ) .2/. For any pair of points .t; x/,
.s; y/ we know that the equation in (1) holds at both points. Using the ellipticity of

F , we get that P �.D2u.t; x/ � D2u.s; y//  F.D2u.t; x// � F.D2u.s; y// 

P C.D2u.t; x/ � D2u.s; y//, from which 2. follows.
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In order to prove 2: ) 1:, we need to construct a nonlinear function F for

any given function u satisfying the inequalities in (2). Such function may not be

unique. One possibility is given by the formula

F.M/ D sup
.t;x/2�

ut .t; x/ C P �.M � D2u.t; x//: (5.2)

Let us first argue that our definition makes sense. For that, we have to verify that

the right hand side is finite. Let us fix any point .t0; x0/ 2 �. Using the uniform

ellipticity of P �, we observe that for any other .t; x/ 2 � we have

P �.A � D2u.t; x//  P C.A � D2u.t0; x0// C P �.D2u.t0; x0/ � D2u.t; x//:

Therefore, using 2. with .s; y/ D .t0; x0/,

ut .t; x/ C P �.A � D2u.t; x//  ut .t0; x0/ C P C.A � D2u.t0; x0//:

This gives us a uniform bound for the right hand side of (5.2). Thus, F.M/ is well

defined and finite for every symmetric matrix M . We are left to verify that F is

uniformly elliptic.

Let A and B be any two symmetric matrices in R
n⇥n. Let us compare the val-

ues of F.M C B/ and F.M/. Using that the Pucci operator P � itself is uniformly

elliptic, for any .t; x/ 2 � we get

ut .t; x/CP �.A�D2u.t; x//CP �.B/ut .t; x/ C P �.A C B�D2u.t; x//

ut .t; x/CP �.A�D2u.t; x//CP C.B/:

Therefore F.A/ C P �.B/  F.A C B/  F.A/ C P C.B/, thus F is uniformly

elliptic.

The following is a similar characterization as in Lemma 5.1. It is slightly

easier to implement in a numerical computation.

Corollary 5.2. Given a (space-time) set � ⇢ R ⇥ R
d and a function u W � ! R,

which is second differentiable in x and differentiable in t , then the following two

statements are equivalent:

1. For some ƒ � � > 0, there exists a uniformly elliptic function F so that

ut � F.D2u/ D 0 holds in �;

2. There exists some constant C � 1, so that for any pair of points .t; x/ and .s; y/
in �, we have

C �1


.@tu.t; x/ � @tu.s; y//� C tr.D2u.t; x/ � D2u.s; y//C

.@tu.t; x/ � @tu.s; y//C C tr.D2u.t; x/ � D2u.s; y//�

 C: (5.3)

Here, we write aC and a� to denote the positive and negative part of a number

or a symmetric matrix. We use the convention a� D �a if a  0.
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Proof. We prove that the second condition in Corollary 5.2 is equivalent to the

second condition in Lemma 5.1. Indeed, if (2) in Lemma 5.1 holds, we observe

that (2) in Corollary 5.2 holds as well with C D max.ƒ; ��1; ƒ=�/. Conversely,

if (2) in Corollary 5.2 holds, then (2) in Lemma 5.1 holds as well with ƒ D C and

� D C �1.

The main strategy for finding singular solutions to some fully nonlinear

parabolic equation is to write a candidate function and verify condition (2) in Corol-

lary 5.2. A similar strategy is used in [10] to verify that their function solves a fully

nonlinear elliptic equation. In that case, the homogeneity and some symmetries

of the functions are used to simplify the computation and a fully analytical proof

is given. We do not give a full analytical proof of Theorem 1.2 in this paper. In-

stead, we verify numerically that the condition from Corollary 5.2 holds for certain

candidate function. Below, we describe our implementation of this verification.

A straight forward brute-force approach to verify the condition in Corollary 5.2

would be to sample a large number of random pairs of points and verify that they

satisfy (5.3). If either the numerator or the denominator in (5.3) vanishes in a large

proportion of Q1, we would identify some of these points quickly and rule out our

candidate function. However, this naive algorithm is prone to false positives due

to the curse of dimensionality. There exist functions for which the numerator and

denominator in (5.3) only vanish on surfaces with a relatively high codimension.

It is very difficult to randomly find a pair of points sufficiently near such a surface.

For example, let us consider the function

u.t; x/ D
P5.x/

p

jxj2 � t
: (5.4)

Here, P5 is the cubic polynomial used in [10]. If we sample a million pairs of

random points in Q1, in all likelihood, all of them would verify condition (5.3)

for a constant C being approximately 15. However, this function is not a solution

to a fully nonlinear parabolic equation since its time derivative is unbounded near

zero. The condition (5.3) is only invalidated when jt � sj is small, and jx � yj is

much smaller. Since x and y are five dimensional vectors, it is very unlikely that

a random selection of points will ever sample a pair where x and y are practically

identical.

A possible (but arguably unnatural) workaround would be to start by testing

that ut , and all the partial derivatives @xi
u, satisfy an equation with measurable

coefficients like (1.1). This can be tested by checking that large sample of points

verifies (2.3) for every one of those derivatives. The function above would not pass

the test for ut . However, this algorithm will fail to rule out other functions. For

example, let

u.t; x/ D
P5.x/

�t C
p

jxj2 C t2
: (5.5)

For this function, we have that ut satisfies (2.3). The partial derivatives @xi
u do

not, but they only fail on the line t D 0 and x D aei , for a 2 R. This is a segment
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that has codimention 5 in Q1. Again, it is very unlikely for a random sample of

points to ever hit near a set of codimension five.

The algorithm that easily rules out both examples above is to follow a stochas-

tic gradient flow for the ratio (5.3) and verify that it stays bounded. Note that the

gradient flow will tend to some local maximum for the ratio in (5.3), and there may

be many of them. If u does not satisfy (5.3), the gradient flow may or may not

diverge depending on the choice of the initial point. Thus, we still have to sample

several possible random initial points and start our stochastic gradient flow from

each one of them.

In our test, we see the ratio diverge very quickly for the function (5.4). For

the example (5.5), the gradient flow seems to diverge for approximately 2% of the

initial points.

According to our test, the following function satisfies (5.3) for C D 14 (the

optimal value we get is approximately C D 13:7).

u.t; x/ D
P5.x/

�t C
p

jxj2 C t2
C

1

12
P5.x/: (5.6)

We ran a large test by performing a stochastic gradient flow (with two million iter-

ations) starting from a collection of several thousand random initial pairs of points

in Q1. The computation was carried out in the University of Chicago Research

Computing Center. This is the function that verifies (almost)-Theorem 1.2.

Note that the quotient in (5.3) is discontinuous on .s; y/ D .t; x/. The limits

in each direction correspond to directional derivatives of u. In fact, according to

our computations, the maximum value of the quotient is achieved near the diagonal

.s; y/ D .t; x/.
Even though this numerical computation cannot be considered a rigorous proof,

it seems very convincing to us. Our algorithm could only fail in the unlikely sce-

nario that the gradient flow for the quotient in (5.3) for this function u, diverges

only for some tiny proportion of the initial points.

For those who may want to perform numerical experiments themselves, we

posted our source code at

The formula (5.6) was clearly constructed by understanding where (5.4) and

(5.5) fail to verify (5.3) and modifying the functions accordingly. At this point,

it is arguably not worth recounting all the other candidates that we tested and the

reasons why they failed. It is interesting to point out that understanding why (5.5)

fails to solve a fully nonlinear parabolic equations is what motivated the proof of

Theorem 1.3 below.

Remark 5.3. There is a curious fact that we observed applying our algorithm to

verify some of the examples that we already knew for singular solutions to uni-

formly elliptic fully nonlinear elliptic equations. The optimal constant C in (5.3)

appears to be an integer in those cases.

For elliptic equation, the condition (5.3) applied to a function u W � ! R that

depends on x only says that there exists a constant C � 1 such that for all pairs
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x; y 2 �,

C �1


tr.D2u.x/ � D2u.y//C

tr.D2u.x/ � D2u.y//�

 C:

For each such solution u, there is a smallest value of the constant C that makes

the condition hold. This would be the optimal value of C . If we let u be the

homogeneous of degree two function in five dimensions constructed in [10], our

computation (with the algorithm described above) tells us that the optimal value of

C that makes the condition hold is C D 9. The fact that it is exactly an integer

number suggests that there should be a clean way to compute it. From the proofs

in [10], one can deduce an upper bound for the optimal C , but we do not know any

way to compute its exact value.

We learned the following (unpublished) example in nine dimensions from

Charles Smart. If we let

u.x1; : : : ; x9/ D
1

jxj
det

0

@

x1 x2 x3

x4 x5 x6

x7 x8 x9

1

A ;

then it also solves some fully nonlinear elliptic PDE. In this case, the smallest value

of the constant C is thirteen (13), also an integer number.

6. Impossibility of singular homogeneous solutions for fully nonlinear
parabolic equations

In this last section, we prove Theorem 1.3 and the related complementary results

of Propositions 1.6 and 1.7.

The strategy of the proof is to use the homogeneity of the equation and the C ˛

regularity of ut to deduce that ut is constant at the final time t D 0. Then, since

ut satisfies a parabolic equation of the form (1.1), we use a unique continuation

argument to prove that ut is constant everywhere. This means that any singularity

at the final time t D 0 would be propagated backwards to any earlier time.

Lemma 6.1. Let u be a solution to a fully nonlinear parabolic equation

ut � F.D2u/ D 0 in Q1:

Assume that F is uniformly elliptic, u.0; x/ is homogeneous of degree two in x and

C 2 away from the origin. Then ut .0; x/ is constant for all x 2 B1.

Proof. Since u.0; x/ is homogeneous of degree two, then D2u.0; x/ is homoge-

neous of degree zero. In other words D2u.0; ax/ D D2u.0; x/ for any a > 0.

From the equation, we have that ut .0; x/ D F.D2u.0; x//, therefore ut .0; x/
is also constant along every ray emanating from the origin.

From Theorem 2.3, we know that ut is Hölder continuous. However, the only

homogeneous functions of degree zero that are continuous are the constant ones.

So, ut .0; x/ must be constant.
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Lemma 6.2. Let u be a solution to a fully nonlinear parabolic equation

ut � F.D2u/ D 0 in Q1:

Assume that ut .0; x/ D 0 for all x 2 B1. Then, for every x0 2 B1 and every r > 0,

the function ut is identically zero in .�r; 0ç ⇥ Br.x0/ or it takes both positive and

negative values there.

Proof. Assume that ut does not change sign in a neighborhood of .0; x0/. That is,

ut W .�r; 0ç ⇥ Br.x0/ ! R is either non negative or non positive everywhere.

We know that ut satisfies a uniformly parabolic equation with measurable

coefficients. Since u.0; x0/ D 0, the strong maximum principle implies that u
must be identically zero.

Note that the strong maximum principle for parabolic equations is a direct

consequence of the Harnack inequality. See [7, Theorems 2.4.32] and [5, Sec-

tion 7.1.4].

Proof of Theorem 1.3. From Lemma 6.1, we know that ut .0; x/ is constant for x 2
B1. Without loss of generality, we can assume that ut .0; x/ D 0. Otherwise, we

would consider the function Qu.t; x/ D u.t; x/ � ct . Clearly, u satisfies (5.1) if and

only if Qu does.

From Lemma 6.2, we know that for every x0 2 B1 and for every r > 0, the

function ut is either constant or sign changing in .�r; 0ç ⇥ Br.x0/. Using that u is

analytic, we will show that ut must be constant zero everywhere.

Let us pick any x0 2 B1 n f0g. We claim that @k
t u.0; x/ D 0 for all x in a

neighborhood of x0. Let us assume for the sake of a contradiction that was not the

case. Let k be the smallest positive integer so that @k
t u.0; x/ is not identically zero

for x is some neighborhood of x0. We know that ut .0; x/ ⌘ 0, so k � 2. Thus,

there exists r > 0 so that @
j
t u.0; x/ D 0 for all x 2 Br.x0/ and j D 1; : : : ; k � 1.

However, there is also an x1 2 B1.x0/ so that @k
t u.0; x1/ ¤ 0. From continuity, we

know that @k
t u does not change sign in some neighborhood of .0; x1/. Therefore,

for any .t; x/ in that neighborhood of .0; x1/, the function @tu.t; x/ will have the

same sign as .�1/k�1@k
t u.0; x1/ whenever t < 0. This contradicts Lemma 6.2.

The contradiction comes from the existence of k. Therefore @k
t u.0; x/ is identically

zero for all x 2 B1 n f0g and all k D 1; 2; 3; : : : . From the analyticity of u away

from .0; 0/ (with respect to time) we conclude that ut is identically zero in Q1.

This means that u.t; x/ is constant with respect to t . So, it cannot fail to be

C 2 at .0; 0/ without having a singularity at .t; 0/ for all t < 0.

The proof of Proposition 1.6 follows similarly, replacing Lemma 6.1 by the

following lemma

Lemma 6.3. Let u be a solution to a fully nonlinear parabolic equation

ut � F.D2u/ D 0 in Q1:
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Assume that F is uniformly elliptic and homogeneouns of degree one, u.0; x/ is

homogeneous of any degree smaller than two in x and C 2 away from the origin.

Then ut .0; x/ D 0 for all x 2 B1.

Proof. Let us say that u.0; x/ is homogeneous of degree ˛, for some ˛ < 2.

Then D2u.0; x/ is homogeneous of degree ˛ � 2. In other words D2u.0; ax/ D
a˛�2D2u.0; x/ for any a > 0.

From the equation, we have that ut .0; x/ D F.D2u.x; 0//. Therefore, using

the homogeneity of F ,

ut .0; ax/ D F.D2u.0; ax// D F.a˛�2D2u.0; x// D a˛�2F.D2u.0; x//

D a˛�2ut .0; x/:

Thus, ut .0; x/ is also homogenous of degree ˛ � 2 < 0. The only way for such a

function to be continuous at the origin is if it is identically zero.

From Theorem 2.3, ut is Hölder continuous. Then ut .0; x/ must be zero for

all x 2 B1.

The proof of Proposition 1.7 also proceeds along the same lines, but using a

backwards uniqueness result for the equation satisfied for ut instead of its analyt-

icity.

Proof of Proposition 1.7. Like in the proof of Theorem 1.3, we use Lemma 6.1 to

conclude that ut .0; x/ is constant for x 2 R
d . Withour loss of generality, we assert

that ut .0; x/ D 0 for all x 2 R
d .

Differentiating the equation with respect to t , we obtain the following equation

for ut ,

@t .ut / � aij .t; x/@ij .ut / D 0;

where aij .t; x/ D @F.D2u/=@Xij .

From our assumptions, the coefficients aij .t; x/ D @F.D2u/=@Xij are Lip-

chitz and decay for large jxj like in the conditions for the backward uniqueness

result in [23]. Therefore, ut ⌘ 0 everywhere, and we conclude in the proof of

Theorem 1.3.
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[15] N. NADIRASHVILI and S. V ˘LADUŢ, Homogeneous solutions of fully nonlinear elliptic
equations in four dimensions, Comm. Pure Appl. Math. 66 (2013),1653–1662.
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