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Singular solutions to parabolic equations in nondivergence form

LUIS SILVESTRE

Abstract. For any ¢ € (0,1), we construct an example of a solution to a
parabolic equation with measurable coefficients in two space dimensions which
has an isolated singularity and is not better that C%. We prove that there exists
no solution to a fully nonlinear uniformly parabolic equation, in any dimension,
which has an isolated singularity where it is not C2 while it is analytic elsewhere,
and it is homogeneous in x at the time of the singularity. We build an example of a
non homogeneous solution to a fully nonlinear uniformly parabolic equation with
an isolated singularity, which we verify with the aid of a numerical computation.

Mathematics Subject Classification (2020): ??7?7???? (primary); 7?27?7227 (sec-
ondary),

1. Introduction

In this work, we are interested in the emergence of singularities from the flow of
parabolic equations. We study two related types of equations. The equations with
measurable coefficients have the form

u,—aij(t,x)aiju = 0. (1.1)

Here the coefficients a;; satisfy the ellipticity condition AI < {a;; (¢, x)} < Al for
every point (¢, x) in the domain of the equation. No regularity is assumed for a;;
with respect to either x or 7.

The other class of equations is that of translation-invariant fully nonlinear
parabolic equations of the form

u; — F(D*u) = 0. (1.2)

Here, we always assume that the function F is uniformly elliptic in the sense that
for any pair of symmetric matrices A, B € R4 _if B > 0, we have Atr B <
F(A+ B) - F(A) < AuB.
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Centered around the work of Krylov and Safonov [9], there is a well developed
regularity theory for parabolic equations in nondivergence form. Solutions to an
equation with measurable coefficients like (1.1) are known to be Holder continuous.
Solutions to a fully nonlinear parabolic equation like (1.2) are known to be C 1%,
for some @ > 0 depending on dimension and the ellipticity parameters A and A.
Without further assumptions, there is no regularity estimate that ensures D?u to be
well defined.

There are some important examples that show that our currently known reg-
ularity results are sharp for elliptic equations in non-divergence form. These ex-
amples can also be interpreted as singular solutions to fully nonlinear parabolic
equations that are constant in time. However, what we seek in this work is to un-
derstand whether a solution to a parabolic equation may start smooth and flow into
a singularity after some finite positive time. We are interested in constructing a
solution to a parabolic equation which has an isolated singularity in space-time.

For elliptic equations in three dimensions, M. Safonov constructs an example
in [20] showing that the Holder continuity result in his joint work with Krylov [9]
is optimal. Precisely, for any @ € (0, 1), he constructs a function u : R3 — R,
homogeneous of degree «, smooth in R3 \ {0}, so that

aij (x)d;ju(x) = 0in R*\ {0}, (1.3)

for some uniforly elliptic coefficients a;;. Moreover, he shows that this function
u can be approximated with smooth functions satisfying a uniformly elliptic equa-
tion in the full space. The singular function u is also a viscosity solution to the
corresponding inequalities for the Pucci operators (see Section 2 below) in the full
space R3.

For fully nonlinear elliptic equations, there is a series of examples of homo-
geneous solutions with an isolated singularity at the origin (see [10-14,16,17]). In
particular, in [10], Nadirashvili, Tkachev and Vddut construct a solution to a fully
nonlinear elliptic equation with an isolated singularity in dimension five. All these
examples are homogeneous functions.

Let us state our first main result concerning equations with measurable coef-
ficients.

Theorem 1.1. Forany « € (0, 4), there exists a continuous function u : (—oo, 0] X
R? — R such that:

o The function u is parabolic-homogeneous of degree a. In other words, for all
a >0,
u(t, x) = a *u(a®t,ax);

e The function u is analytic in ((—oo, 0] x R?) \ {(0, 0)} and satisfies an equation
of the form (1.1) for some uniformly elliptic coefficients a;; (¢, x).

Theorem 1.1 shows that the Holder continuity regularity obtained by Krylov and
Safonov in [9] is not improvable for parabolic equations in dimension two or more,



SINGULAR SOLUTIONS TO PARABOLIC EQUATIONS IN NONDIVERGENCE FORM 995

even if we impose regularity on the initial data. Note that unlike Safonov’s ex-
ample, our construction can be done in dimension two. This is a stark difference
with respect to the elliptic case. Indeed, there is an old result by Nirenberg in [19]
proving that uniformly elliptic equations in 2D are always C ! ™* regular, for some
a > 0. Safonov’s example takes advantage of a purely three dimensional geometric
construction. Our example for Theorem 1.1 is three dimensional in space-time.

Solutions to a parabolic equation like (1.1) in one space dimension are always
C % in space (see for example [8]). So, an analog of Theorem 1.1 would not hold
in the one-dimensional setting.

If u is a solution to a fully nonlinear parabolic equation like (1.2), then its par-
tial derivatives satisfy an equation with measurable coefficients like (1.1). Studying
the regularity of solutions to (1.1) is the most direct technique leading to regularity
results for (1.2). Theorem 1.1 suggests that perhaps one might be able to con-
struct a singular solution to a fully nonlinear parabolic equation in two dimensions.
However, this is not possible. Ben Andrews proved in [1] that solutions to fully
nonlinear parabolic equations are C27%. We also discuss it in Proposition 1.5 be-
low. Note that Theorem 1.1 answers negatively the question raised in [1], at the
end of the second page.

Our second main result is about a solution to a fully nonlinear parabolic equa-
tion like (1.2). We present a solution which has an isolated singularity in space-
time. Our justification has some part that is verified by a numerical computation.
Because of that, it may be inappropriate to call it a Theorem. Still, we believe our
verification is sufficiently covincing so that we can confidently state it as a true fact.

(almost) Theorem 1.2. There exists a function u : Q1 — R such that u is an-
alytic everywhere except at (0,0). It solves a fully nonlinear uniformly parabolic
equation like (1.2), and yet u is not second differentiable in space at (0, 0).

Here Q1 := (—1,0] x By, and By is the unit ball in R>.

Unlike every example constructed so far for elliptic equations, the function u in
(almost)-Theorem 1.2 is not homogeneous. In fact, there is no singular solution u
that is homogeneous in x on ¢t = 0. This is arguably unexpected, so we presented
it as our third main result.

Theorem 1.3. For any dimension, there exists no function u solving the equation
(1.2) in Q1 so that u(0, x) is homogeneous of degree two in x, u is analytic in
01\ (0,0), but u is not C? at the origin.

There are some non-existence results for elliptic equations in the literature that are
worth mentioning, and comparing them with Theorem 1.3.

There is a result by Han, Nadirashvili and Yuan [6] proving that there exists
no singular solution of (1.3) that is homogeneous of degree one. Note that the
examples that Safonov constructs in [20] are homogeneous of degree strictly below
one. Our examples in Theorem 1.1 can be homogeneous of degree one or even
larger (but for parabolic equations).
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Thanks to the result in [15], we know that there exist no singular solution to a
fully nonlinear elliptic equation of the form F(D?u) = 0, homogeneous of degree
two and analytic away from the origin, in dimensions four or less. Even though this
result shows there is a serious obstruction to build a singular solution similar to that
of [10], it does not rule out the existence of singular solutions that are homogeneous
of a smaller degree, or not homogeneous at all.

It is also worth mentioning the result in [18] saying that a homogeneous so-
lution of a fully nonlinear elliptic equation, of any degree other than two, in any
dimension, must be a polynomial if F € C!.

In analogy with the elliptic constructions in [15] and the proof of Theorem 1.1,
it would seem natural to try to build a parabolic-homogeneous solution of a fully
nonlinear parabolic equation of the form (1.2). That is, a function u : (—o0, 0] X
R4 — R such that

u(t,x) = A7 (A%¢, Ax) forall A > 0.

Such a function would necessarily be C!*% in space but not C2*% on t = 0.
However, there is no function of this form that solves a fully nonlinear parabolic
equation since its time derivative u; would fail to be bounded around the origin. It
is well known that the time derivative of a solution to a fully nonlinear parabolic
equation must be Holder continuous, and in particular locally bounded. Singular
solutions to a fully nonlinear parabolic equation as in (almost)-Theorem 1.2 cannot
be parabolic-homogeneous.

Every solution to a fully nonlinear parabolic equation is also a solution to an
elliptic equation with right hand side u,, for every fixed value of . Since u; is
Holder continuous, any singular solution to a parabolic equation must agree with a
singular solution to an elliptic equation with a Holder continuous right hand side at
the final time. After this observation, it would be natural to attempt to build such
a singular solution by making u(0, x) equal to some of the known examples of
singular solutions to elliptic equations, for example the one from [10]. However, all
these known examples are homogeneous in x. Theorem 1.3 rules out any function
of this form. Its proof involves an analysis of the time derivative u;, but it is more
subtle than the analysis above for parabolic-homogeneous functions.

In Section 2 we present a few lemmas that characterize when a function u
solves an equation of the form (1.1) for some uniformly elliptic coefficients. In
order to prove Theorem 1.1, we show a simple explicit formula for the function u
that satisfies the criteria established in Section 2. The main difficulty of proving
Theorem 1.1 is in finding the right function u. Once the explicit formula for u is
exposed, it is admittedly easy to verify it satisfies an equation like (1.1).

The justification of (almost)-Theorem 1.2 is given in Section 5. We prove
a lemma characterizing the functions u that solve some fully nonlinear parabolic
equation. Then we write an explicit function that satisfies that condition. The veri-
fication of the condition is done numerically with the help of a computer. Because
of that, it is not a complete analytical proof, but it is very convincing.

The proof of Theorem 1.3 is given in Section 6. The idea is to use the ho-
mogeneity assumption together with the C* estimates to prove that u,(0, x) is
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constant. The time derivative u; solves a uniformly parabolic equation with coeffi-
cients depending on D?u. A unique continuation result gives us backward unique-
ness for that equation from which we determine that u, is constant everywhere in
01 and that leads to the proof.

The functions that realize the examples in Theorems 1.1 and 1.2 are explicit.
For Theorem 1.1 it is
|x|* + 1

u(t,x) = W.

For (almost)-Theorem 1.2, it is

P 1
u(t, x) = 5(0) + — Ps(x).
—t 4+ I|x|2+2 12

Here, Ps is the isoperimetric Cartan cubic polynomial in dimension five, used in
[10], given by the formula

33

3
Ps(x) = x; + Exl(xg +x7—2x2-2x3) + T(xzxg — X2X7 + 2X3X4X5).

The equations are not explicit. We do not compute the coefficients a;; for Theo-
rem 1.1, or the function F for (almost)-Theorem 1.2.

Remark 1.4. For historical reasons, we use the term measurable coefficients to
refer to an equation of the form (1.1). It is important that the coefficients a;; are
uniformly elliptic but they do not satisfy any further continuity assumption. The
measurability of these coefficients is largely irrelevant.

The equation is restated in terms of the Pucci operators in Section 2. Note
that since the equation is in non-divergence form, the solutions cannot be under-
stood in the sense of distributions. An appropriate way to make sense of whether
a non-smooth function u solves an equation like (1.1) for some uniformly elliptic
coefficients g;; is given by two inequalities that must be satisfied in the viscosity
sense. The coefficients a;; are implicit, their pointwise values are not necessarily
well defined.

1.1. Complementary results

We include a few extra results that complement our main theorems above. They
answer some natural related questions and they are proved through similar tech-
niques.

In two space dimensions, solutions to uniformly elliptic fully nonlinear para-
bolic equations are C27% in space. We state that fact in the first complementary
result.

Proposition 1.5. Let By be the unit ball in R? and u : Q1 — R be a viscosity
solution to a fully nonlinear equation of the form

u; — F(D*u) = 0in Q;.
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Assume F is uniformly elliptic. Then u is C2T% in space and C'1+%/2

some a > 0. Moreover, it satisfies the estimates

in time for

IDullce(o,,») < Cllullcoc,)-

We use the notation Q, = (—r2,0] x B, to denote the parabolic cylinder
centered at the origin.

Proposition 1.5 was proved in [1] for a more general class of equations. Per-
haps because of that, our estimate here is slightly more precise. We review the
proof of Proposition 1.5 in Section 4.

We are able to extend Theorem 1.3 to other degrees of homogeneity provided
that F is homogeneous of degree one.

Proposition 1.6. If we assume futher than F is homogeneous of degree one, then
there exists no function u solving an equation like (1.2), in any dimension, so that
u(0, x) is homogeneous of degree less than two in x, and u is analytic in Q1\ (0, 0).

The analyticity assumption on u is also removable at the expense of further
smoothness assumptions on F and having u globally defined.

Proposition 1.7. If we assume futher than F a C ' function, then there exists no
functionu : (—1,0] xR — R, in any dimension, C> away from (0,0), solving an
equation like (1.2), so that u(0, x) is homogeneous of degree two in x, it is not C?
at the origin, and |(3;, Vx)D2u| < |x| 7L

For the proof of Proposition 1.7, we replace the analyticity condition in Theo-
rem 1.3 with a unique continuation argument for parabolic equations. The assump-
tion that F € C! arises in similarly as in [2] as a way to obtain a linearized equa-
tion with Lipchitz coefficients. The proof of Proposition 1.7 relies on the backward
uniqueness result from [23]. Note that this type of uniqueness results for parabolic
equations would not apply to solutions in a bounded domain.

2. Preliminaries

In this section we review some standard notions for elliptic and parabolic equations
in nondivergence form. None of the statements in this section is new.

Given any two ellipticity constants A > A > 0, we define the usual Pucci
operators over the set of real symmetric matrices.

PY(M): =AMy —Atr M_,
P (M) =AMy —Atr M_.
Here, we write M and M_ to represent the positive and negative parts of the

symmetric matrix M. We use the convention that both M and M_ are positive
definite. Thus, M_ = —M when M is negative definite.
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The Pucci operators represent the extremal elliptic operators with ellipticity
constants A and A. In fact, the following identity holds.

PT(M) = max {tr(AM) : A\l < A < AI}, 2.1
P~ (M) = min{tr(AM) : A < A < Al}. (2.2)

Identities (2.1) and (2.2) are very well known. Probably because of their simplicity,
their proofs are most often omitted. Let us write a quick justification. The first
thing to notice in order to prove (2.1) is that it holds when M is positive definite.
Indeed, in that case we have tr AM = tr MY/2AM Y2 and AM = MY2)M1/2 <
MYV2AMY2 < MV2AMY2 = AM. Thus, A tr M < tr AM < AM when M is
positive definite. If M is not positive definite, we write M = M4 — M_, use the
previous inequality for M and M_ and the linearity of the trace to get

trAM =trAM, —trAM_ < AtrM, —Atr M_ = Pt (M).

Similarly, we also get tr AM > P~ (M). The equality in (2.1) is achieved when
A equals A times the projector over the positive eigenvalues, plus A times the
projector over its orthogonal complement. The equality in (2.2) holds with the
opposite choice of constants.

From the characterization of P and P~ as in (2.1-2.2), we deduce the fol-
lowing corollary.

Corollary 2.1. Given any symmetric matrix M € R*4 the following two state-
ments are equivalent:

1. There exists a symmetric matrix A € RdXd, sothat A1 < A < AL andtr AM =
0;
2. PY(M)>0> P~ (M).

There are different ways to consider non-smooth solutions to an equation like (1.1).
One possibility is to consider a function u, whose derivatives in the sense of dis-
tributions u; and 8,-ju make sense as functions, at least in Ll1 oc? and solve (1.1)
for some uniformly elliptic measurable coefficients a;; (¢, x). Without any further
regularity assumption on u, this notion of solution in the sense of distributions has
some severe shotcomings (lack of existence and lack of uniqueness among others).
It is most convenient to reformulate the equation (1.1) in the viscosity sense using
the Pucci operators. From Corollary 2.1, we see that a smooth function u solves
(1.1) for some uniformly elliptic coefficient a;; (¢, x) if and only if

u; — PT(D?*u) <0and u; — P~ (D?u) > 0. (2.3)

The equation (1.1) with undetermined rough coefficients a;; (¢, x), turns out to be
equivalent to the pair of nonlinear inequalities (2.3). An advantage of (2.3) is that
we can make sense of the inequalities in the viscosity sense, for functions u that are
merely continuous. The example we construct in this paper to verify Theorem 1.1
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is a function u that remains smooth up to the point of the singularity. In that sense,
it is not necessary for us to work with any generalized notion of solution. Yet, we
verify the two inequalities in (2.3) rather than constructing the coefficients a;; (¢, x)
explicitly.

It is also common and useful to restate the notion of uniform ellipticity for a
nonlinear function F in terms of the Pucci operators. Indeed, the function F' is
uniformly elliptic with parameters A and A if and only if for any pair of symmetric
matrices A, B € R™*"_it holds

P7(B) < F(A+ B)— F(4) = P7(B).

In this case, the inequalities hold for any two symmetric matrices A and B, without
requiring B to be symmetric. It is easy to verify that the Pucci operators Pt and
P~ are themselves uniformly elliptic with the same constants A and A.

2.1. Review on regularity results for parabolic equations

The following two theorems summarize the fundamental regularity results that fol-
low from the work of Krylov and Safonov [9]. In the context of viscosity solutions,
we also reference [21,22], and the lecture notes [7].

Theorem 2.2. Let u be a continuous function that satisfies the two inequalities
(2.3) in the viscosity sense in Q1. Then, for some o > 0 small depending on A, A
and dimension only, u € C*(Q/2) and

lullce(g, ) < Cllullcocg,)-
The constant C depends also on A, A and dimension only.

Applying Theorem (2.2) to incremental quotients of a solution to a fully nonlinear
parabolic equation like (1.2), we obtain the following C ™% estimate.

Theorem 2.3. Let u be a continuous function that satisfies (1.2) in the viscosity
sense in Q1. Assume that F is uniformly elliptic. Then, for some o > 0 small
depending on A, A and dimension only, u € C't%(Q1/,) and

[1@:u, Vu)llca(g, /) < Cllullcoco,y-
The constant C depends also on A, A and dimension only.

The C“ estimate on the time derivative u; plays an important role in the proof of
Theorem 1.3. In [4], they prove that the estimate on u; holds even if we add a C*
right hand side to the equation.

The last theorem we want to reference in this section is a C2** estimate for
fully nonlinear elliptic equations in 2D with a Holder continuous right hand side.
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Theorem 2.4. Let u : By — R be a viscosity solution of
F(D?u) = f(x)in B;.

Here By is the unit ball in R? and F is uniformly elliptic. Then, for some a > 0
small depending on A, A and dimension only, u € C***(By,,) and

[ullc2+as, ) = € (lullco, + 1/ lcxs)) -
The constant C depends also on A, A and dimension only.

The C?*¢ estimate of Theorem 2.4 is originally due to Nirenberg [19] when the
right hand side is zero. Caffarelli’s Schauder estimates for fully nonlinear elliptic
equations (see [3, Section 8.1]) allow us to add a Holder continuous right hand side
to essentially any elliptic equation that satisfies a C2+% estimate.

Naturally, the smaller cylinder O/, can be replaced with O, in Theorems 2.2,
2.3 and 2.4, for any value of p € (0, 1), by adjusting the constants C.

3. Singular solutions to parabolic equations with measurable coefficients
in 2D

Theorem 1.1 is justified by the following explicit function

|x|? + ¢

u(t,x) = W.

3.D

Once we know the function u explicitly, the proof of Theorem 1.1 is a relatively
short computation to verify that (2.3) holds.

Proof of Theorem 1.1. We have to verify that the function u given in (3.1) satisfies
(2.3). It is clear that this function is smooth away from (0, 0) and that it has the
desired homogeneity.

The function u is radially symmetric with respect to x, so the eigenvectors
of D2y are in the radial direction and its perpendicular. Let us use polar coordi-
nates and call 7 = |x|. The eigenvalues of D?u are precisely u,, and u,/r. The
following are the values of u, and u, /r, obtained via a direct computation.

ue = (2 =072 (@—a/2)? - 2i),

Ur _ r?— t)_2+°‘/2 (ar2 —(4- a)t) .

We observe that wherever ¢ < 0, we have both u,/r > 0 and u; > 0. The value of
U, may have either sign and we do not need to compute it explicitly.
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The function u is parabolic-homogeneous of degree . That means that
A%u(t, x) = u(A?t, Ax). Therefore, we also have

ur (A%t Ax) — PE(D*u(A*t, Ax)) = A%72 (u, (¢, x) — PE(D%u(t, x))).

Thus, it is enough to verify the hypothesis (2.3) on the surface S := {|x|> —t =
1}N{r <0}.

Note that S is a compact surface. The functions u; and u,/r achieve their
maximum and minimum positive values. In order to verify (2.3) on S, we pick A
and A such that

mgxut — An}gin(ur/r) + )tmgxur_r <0,

: +
minu; — Am;lx(ur/r) — kmgxu,, > 0.

First, using that mins 1, > 0, we pick A > 0 small enough to ensure that the
second inequality holds. Then, using that mins(u,/r) > 0, pick A large enough
to ensure that the first inequality holds. These two inequalities ensure that (2.3)
holds everywhere on S. Because of the homogeneity of u, (2.3) holds everywhere,
which concludes the proof. O

Remark 3.1. From the construction in the proof of Theorem 1.1, one can verify
that the coefficients a;; in (1.1) can be chosen with the relatively simpler form

| x| XiX;
a0 =241 () (- i)

for some suitable function f.

4. Fully nonlinear parabolic equations in 2D

In this section, we review the proof of Proposition 1.5 following the ideas from [1].
It follows essentially from combining the C* estimates on u; from Theorem 2.3
with Nirenberg’s regularity estimates for fully nonlinear equations in two dimen-
sions.

From Theorem 2.3, we know that any viscosity solution u to a fully nonlinear
parabolic equation, in any dimension, is differentiable in time and satisfies, for any
p <1

luellcaco,) S lullcoco,)-

Thus, given any solution to the parabolic equation u; — F (D?u) = 0, we can freeze
time and consider the elliptic equation

F(D*u) = u,.
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Here, we think of u; as the right hand side of an elliptic equation. For any ¢,
the function u(z, -) solves a uniformly elliptic equation with a C* right hand side.
Applying Theorem 2.4, we have that D?u(t, -) exists and is Holder continuous for
every fixed value of ¢. Moreover,

ID?u(t, )l ca(sag S N Mcos, s + luet. e, S lhullco,)-

From here, we have the existence and Holder continuity in space of D?u. We are
only left to establish its Holder continuity in time.

It is convenient to state the Holder continuity with respect to the parabolic
distance. In this case, since « is small, and Q4 /2 has a fixed size, the result would be
equivalent to its Hoder continuity with respect to the Euclidean distance in space-
time. The parabolic distance is scale invariant with respect to the parabolic scaling.
Because of that, it is the most appropriate distance when working with parabolic
equations. It is

dp((l’x)’(S,J/)) = |X—y| + \% |S—l|.

Using that u; is Holder continuous with respect to the parabolic distance d,, and
that u(t,-) € C?%¥ for every fixed value of ¢, we will prove that D?u is Holder
continuous in space-time with respect to the parabolic distance.

Let (7, x) and (s, x) be two points in Q15 so that | —s| < r?. Let us analyze
the values of u on {¢} x B,(x) and {s} x B,(x).

Using the C* regularity of u,, with respect to the parabolic distance, we get,
forany y € B,(x)

u(t, y) —u(s, y) = (t = s)us (1, )] < Cr+e,

Moreover, since |us (¢, y) — us (¢, x)| < Cr%, we also get
lu(t, y) —u(s, y) — (t —$)u(t, x)| < Cr>*e,

Let us now compare their second order Taylor expansions in the space variable.
Since u is C2% in space, we have

1
ult, y) —ult. x) = (v —x) - Vult, x) = o (yi = x:)(yj —x;)0iu(t, )| = Crte

1
(s, y) —u(s.x) = (y = x) - Vuls, x) = 5 (v =) (y; = x;)diju(s. )| = crete.

Adding the three inequalities above, we deduce an inequality for a second order
polynomial that says

sup |aijzizj +b-z +c| < Cr2te,
zZE€EBy



1004 LUIS SILVESTRE

where, z stands for y — x, and the coefficients of the polynomial are

ajj = 0ju(t,x) — diju(s, x),
b = Vu(t,x) — Vu(s, x),
c=u(s,x)—u(t,x)+ ( —s)u(t, x).

The sup norm on the space of second order polynomials is equivalent to any other
norm since it is a finite dimensional space. In this case, taking the scaling into
account, that means

laij| = Cre,
|b| §Cr1+°‘,

le| < Cr2te.

Thus, we obtained that | D?u(t, x) — D?u(s, x)| < Cr®. This is the Holder conti-
nuity of D?u in time and we finished the proof of Proposition 1.5.

5. Singular solutions to Fully nonlinear parabolic equations

In this section, we explain how to verify if a function u solves some equation of
the form (1.2). We explain the justification of (almost)-Theorem 1.2

We start with the following lemma, characterizing the functions that solve a
uniformly parabolic fully nonlinear equation.

Lemma 5.1. Let A > A > 0. Given a (space-time) set @ C RxR? and a function
u : Q2 — R, which is second differentiable in x and differentiable in t, then the
following two statements are equivalent:

1. There exists a uniformly elliptic function F so that u; — F(D?u) = 0 holds in
Q;
2. For any pair of points (t, x) and (s, y) in 2, we have

P (D?u(t, x) — Du(s, y)) < us(t,x) —us(s, y) 5.1)
< PH(Du(t,x) — D?u(s, ). '
Here, Pt and P~ are the extremal Pucci operators defined in (2.1) and (2.2)
with ellipticity parameters A and A.

Proof. We start with the easy implication (1) = (2). For any pair of points (, x),
(s, y) we know that the equation in (1) holds at both points. Using the ellipticity of
F, we get that P~ (D?u(t,x) — D?u(s,y)) < F(D?u(t,x)) — F(D?u(s,y)) <
Pt (D?u(t,x) — D?u(s, y)), from which 2. follows.
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In order to prove 2. = 1., we need to construct a nonlinear function F for
any given function u satisfying the inequalities in (2). Such function may not be
unique. One possibility is given by the formula

F(M) = sup u(t,x)+ P~ (M — D*u(t,x)). (5.2)
(t,x)eQ

Let us first argue that our definition makes sense. For that, we have to verify that
the right hand side is finite. Let us fix any point (¢g, xo) € 2. Using the uniform
ellipticity of P, we observe that for any other (¢, x) €  we have

P~ (A— D?u(t,x)) < PT(A— D%u(ty, x0)) + P~ (D?u(to, xo) — Du(t, x)).
Therefore, using 2. with (s, y) = (o, xo),
u;(t,x) + P~ (A — D?u(t,x)) < us(to, xo) + P (A — D?u(to, x0)).

This gives us a uniform bound for the right hand side of (5.2). Thus, F(M) is well
defined and finite for every symmetric matrix M. We are left to verify that F is
uniformly elliptic.

Let A and B be any two symmetric matrices in R"*", Let us compare the val-
ues of F(M + B) and F(M). Using that the Pucci operator P~ itself is uniformly
elliptic, for any (¢, x) € Q we get

ui(t,x)+ P (A=D?u(t,x))+ P (B)<u;(t.x) + P~ (A + B—D?u(t, x))
<u;(t,x)+ P~ (A—D?u(t,x))+ P (B).

Therefore F(A) + P~ (B) < F(A + B) < F(A) + P*(B), thus F is uniformly
elliptic. O

The following is a similar characterization as in Lemma 5.1. It is slightly
easier to implement in a numerical computation.

Corollary 5.2. Given a (space-time) set @ C R x R? and a function u : Q@ — R,
which is second differentiable in x and differentiable in t, then the following two
Statements are equivalent:

1. For some A > A > 0, there exists a uniformly elliptic function F so that
u; — F(D?u) = 0 holds in Q;

2. There exists some constant C > 1, so that for any pair of points (t, x) and (s, y)
in 2, we have

—1 _ @t x) — dpus, y))— + te(D?u(t, x) — D2u(s, )+
= (Qu(t,x) — osu(s, y)+ + tr(D2u(t, x) — D2u(s, y))—

C <C. (5.3)

Here, we write a4 and a_ to denote the positive and negative part of a number
or a symmetric matrix. We use the conventiona_ = —a ifa < 0.
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Proof. We prove that the second condition in Corollary 5.2 is equivalent to the
second condition in Lemma 5.1. Indeed, if (2) in Lemma 5.1 holds, we observe
that (2) in Corollary 5.2 holds as well with C = max(A,A~!, A/1). Conversely,
if (2) in Corollary 5.2 holds, then (2) in Lemma 5.1 holds as well with A = C and
A=CL O

The main strategy for finding singular solutions to some fully nonlinear
parabolic equation is to write a candidate function and verify condition (2) in Corol-
lary 5.2. A similar strategy is used in [10] to verify that their function solves a fully
nonlinear elliptic equation. In that case, the homogeneity and some symmetries
of the functions are used to simplify the computation and a fully analytical proof
is given. We do not give a full analytical proof of Theorem 1.2 in this paper. In-
stead, we verify numerically that the condition from Corollary 5.2 holds for certain
candidate function. Below, we describe our implementation of this verification.

A straight forward brute-force approach to verify the condition in Corollary 5.2
would be to sample a large number of random pairs of points and verify that they
satisfy (5.3). If either the numerator or the denominator in (5.3) vanishes in a large
proportion of Q1, we would identify some of these points quickly and rule out our
candidate function. However, this naive algorithm is prone to false positives due
to the curse of dimensionality. There exist functions for which the numerator and
denominator in (5.3) only vanish on surfaces with a relatively high codimension.
It is very difficult to randomly find a pair of points sufficiently near such a surface.
For example, let us consider the function

Ps(x)
VIxP=1

Here, Ps is the cubic polynomial used in [10]. If we sample a million pairs of
random points in Q1, in all likelihood, all of them would verify condition (5.3)
for a constant C being approximately 15. However, this function is not a solution
to a fully nonlinear parabolic equation since its time derivative is unbounded near
zero. The condition (5.3) is only invalidated when |t — s| is small, and |x — y| is
much smaller. Since x and y are five dimensional vectors, it is very unlikely that
a random selection of points will ever sample a pair where x and y are practically
identical.

A possible (but arguably unnatural) workaround would be to start by testing
that u,, and all the partial derivatives d,;u, satisfy an equation with measurable
coefficients like (1.1). This can be tested by checking that large sample of points
verifies (2.3) for every one of those derivatives. The function above would not pass
the test for u;. However, this algorithm will fail to rule out other functions. For
example, let

u(t,x) = (5.4)

Ps(x)
—t + /|x]? + 12

For this function, we have that u, satisfies (2.3). The partial derivatives 0, u do
not, but they only fail on the line # = 0 and x = ae;, for a € R. This is a segment

u(t,x) = (5.5
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that has codimention 5 in Q. Again, it is very unlikely for a random sample of
points to ever hit near a set of codimension five.

The algorithm that easily rules out both examples above is to follow a stochas-
tic gradient flow for the ratio (5.3) and verify that it stays bounded. Note that the
gradient flow will tend to some local maximum for the ratio in (5.3), and there may
be many of them. If u does not satisfy (5.3), the gradient flow may or may not
diverge depending on the choice of the initial point. Thus, we still have to sample
several possible random initial points and start our stochastic gradient flow from
each one of them.

In our test, we see the ratio diverge very quickly for the function (5.4). For
the example (5.5), the gradient flow seems to diverge for approximately 2% of the
initial points.

According to our test, the following function satisfies (5.3) for C = 14 (the
optimal value we get is approximately C = 13.7).

Ps(x)
—t + |x|2+t2

1
u(t,x) = + EPS(X)' (5.6)

We ran a large test by performing a stochastic gradient flow (with two million iter-
ations) starting from a collection of several thousand random initial pairs of points
in Q;. The computation was carried out in the University of Chicago Research
Computing Center. This is the function that verifies (almost)-Theorem 1.2.

Note that the quotient in (5.3) is discontinuous on (s, y) = (¢, x). The limits
in each direction correspond to directional derivatives of u. In fact, according to
our computations, the maximum value of the quotient is achieved near the diagonal
(s.y) = (t.x).

Even though this numerical computation cannot be considered a rigorous proof,
it seems very convincing to us. Our algorithm could only fail in the unlikely sce-
nario that the gradient flow for the quotient in (5.3) for this function u, diverges
only for some tiny proportion of the initial points.

For those who may want to perform numerical experiments themselves, we
posted our source code at

The formula (5.6) was clearly constructed by understanding where (5.4) and
(5.5) fail to verify (5.3) and modifying the functions accordingly. At this point,
it is arguably not worth recounting all the other candidates that we tested and the
reasons why they failed. It is interesting to point out that understanding why (5.5)
fails to solve a fully nonlinear parabolic equations is what motivated the proof of
Theorem 1.3 below.

Remark 5.3. There is a curious fact that we observed applying our algorithm to
verify some of the examples that we already knew for singular solutions to uni-
formly elliptic fully nonlinear elliptic equations. The optimal constant C in (5.3)
appears to be an integer in those cases.

For elliptic equation, the condition (5.3) applied to a function u : 2 — R that
depends on x only says that there exists a constant C > 1 such that for all pairs
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x,y €Q,
1 _ (D) — D2u(y)y _
T w(D%u(x) — D2u(y)- T

For each such solution u, there is a smallest value of the constant C that makes
the condition hold. This would be the optimal value of C. If we let u be the
homogeneous of degree two function in five dimensions constructed in [10], our
computation (with the algorithm described above) tells us that the optimal value of
C that makes the condition hold is C = 9. The fact that it is exactly an integer
number suggests that there should be a clean way to compute it. From the proofs
in [10], one can deduce an upper bound for the optimal C, but we do not know any
way to compute its exact value.

We learned the following (unpublished) example in nine dimensions from
Charles Smart. If we let

X1 X2 X3
u(xl,...,xg)zﬂdet X4 X5 X¢ |,
X7 X8 X9

then it also solves some fully nonlinear elliptic PDE. In this case, the smallest value
of the constant C is thirteen (13), also an integer number.

6. Impossibility of singular homogeneous solutions for fully nonlinear
parabolic equations

In this last section, we prove Theorem 1.3 and the related complementary results
of Propositions 1.6 and 1.7.

The strategy of the proof is to use the homogeneity of the equation and the C*
regularity of u; to deduce that u; is constant at the final time + = 0. Then, since
u; satisfies a parabolic equation of the form (1.1), we use a unique continuation
argument to prove that u; is constant everywhere. This means that any singularity
at the final time ¢+ = 0 would be propagated backwards to any earlier time.

Lemma 6.1. Let u be a solution to a fully nonlinear parabolic equation
u; — F(D*u) = 0in Q.

Assume that F is uniformly elliptic, u(0, x) is homogeneous of degree two in x and
C? away from the origin. Then u; (0, x) is constant for all x € Bj.

Proof. Since u(0, x) is homogeneous of degree two, then D?u(0, x) is homoge-
neous of degree zero. In other words D?u(0, ax) = D?u(0, x) for any a > 0.
From the equation, we have that u, (0, x) = F(D?u(0, x)), therefore u, (0, x)
is also constant along every ray emanating from the origin.
From Theorem 2.3, we know that u; is Holder continuous. However, the only
homogeneous functions of degree zero that are continuous are the constant ones.
So, u;(0, x) must be constant. O
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Lemma 6.2. Let u be a solution to a fully nonlinear parabolic equation
u; — F(D*u) =0in Q.

Assume that u; (0, x) = 0 for all x € By. Then, for every xo € By and everyr > 0,
the function u; is identically zero in (—r, 0] X B, (xg) or it takes both positive and
negative values there.

Proof. Assume that u; does not change sign in a neighborhood of (0, xo). That is,
u; : (—r,0] x Br(x¢) — R is either non negative or non positive everywhere.

We know that u; satisfies a uniformly parabolic equation with measurable
coefficients. Since u(0, xg) = 0, the strong maximum principle implies that u
must be identically zero.

Note that the strong maximum principle for parabolic equations is a direct
consequence of the Harnack inequality. See [7, Theorems 2.4.32] and [5, Sec-
tion 7.1.4]. ]

Proof of Theorem 1.3. From Lemma 6.1, we know that u, (0, x) is constant for x €
B;. Without loss of generality, we can assume that u,(0, x) = 0. Otherwise, we
would consider the function (2, x) = u(t, x) — ct. Clearly, u satisfies (5.1) if and
only if # does.

From Lemma 6.2, we know that for every xo € B; and for every r > 0, the
function u; is either constant or sign changing in (—r, 0] X B, (xo). Using that u is
analytic, we will show that 1, must be constant zero everywhere.

Let us pick any xo € B; \ {0}. We claim that Bfu(O, x) = Oforall xina
neighborhood of x. Let us assume for the sake of a contradiction that was not the
case. Let k be the smallest positive integer so that Bi‘ u(0, x) is not identically zero
for x is some neighborhood of x¢. We know that u,(0,x) = 0, so k > 2. Thus,
there exists 7 > 0 so that 3/ u(0, x) = 0 forall x € By(x¢)and j = 1,...,k — 1.
However, there is also an x; € Bj(xg) so that 8£‘u(0, x1) # 0. From continuity, we
know that af u does not change sign in some neighborhood of (0, x;). Therefore,
for any (¢, x) in that neighborhood of (0, x1), the function d,u(¢, x) will have the
same sign as (—1)k—la§€ u(0, x1) whenever t < 0. This contradicts Lemma 6.2.
The contradiction comes from the existence of k. Therefore 8;‘ u(0, x) is identically
zero for all x € By \ {0} and all k = 1,2, 3,.... From the analyticity of u away
from (0, 0) (with respect to time) we conclude that u, is identically zero in Q;.

This means that u(¢, x) is constant with respect to . So, it cannot fail to be
C? at (0,0) without having a singularity at (¢, 0) for all # < 0. O

The proof of Proposition 1.6 follows similarly, replacing Lemma 6.1 by the
following lemma

Lemma 6.3. Let u be a solution to a fully nonlinear parabolic equation

u; — F(D*u) = 0in Q;.
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Assume that F is uniformly elliptic and homogeneouns of degree one, u(0, x) is
homogeneous of any degree smaller than two in x and C? away from the origin.
Then u;(0,x) = 0 for all x € B;.

Proof. Let us say that u(0, x) is homogeneous of degree «, for some a < 2.
Then D2u(0, x) is homogeneous of degree o — 2. In other words D?u(0,ax) =
a®*"2D?u(0, x) for any a > 0.

From the equation, we have that u,(0, x) = F(D?u(x,0)). Therefore, using
the homogeneity of F,

u;(0,ax) = F(D*u(0,ax)) = F(a* 2D?u(0, x)) = a* 2F(D*u(0, x))

= a* 2u; (0, x).

Thus, u;(0, x) is also homogenous of degree « — 2 < 0. The only way for such a
function to be continuous at the origin is if it is identically zero.

From Theorem 2.3, u; is Holder continuous. Then u,(0, x) must be zero for
all x € B;. O

The proof of Proposition 1.7 also proceeds along the same lines, but using a
backwards uniqueness result for the equation satisfied for u, instead of its analyt-
icity.

Proof of Proposition 1.7. Like in the proof of Theorem 1.3, we use Lemma 6.1 to
conclude that u, (0, x) is constant for x € RR?. Withour loss of generality, we assert
that 1, (0, x) = 0 for all x € R?.
Differentiating the equation with respect to ¢, we obtain the following equation
for u,,
¢ (ur) —aij(t, x)0; (ur) = 0,

where a;; (¢, x) = 0F(D?u)/0Xi;.

From our assumptions, the coefficients a;;(t,x) = 0F(D?u)/dX;; are Lip-
chitz and decay for large |x| like in the conditions for the backward uniqueness
result in [23]. Therefore, u; = 0 everywhere, and we conclude in the proof of
Theorem 1.3. O
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