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ABSTRACT

The transcriptional plasticity of cancer cells pro-
motes intercellular heterogeneity in response to an-
ticancer drugs and facilitates the generation of sub-
population surviving cells. Characterizing single-cell
transcriptional heterogeneity after drug treatments
can provide mechanistic insights into drug efficacy.
Here, we used single-cell RNA-seq to examine tran-
scriptomic profiles of cancer cells treated with pa-
clitaxel, celecoxib and the combination of the two
drugs. By normalizing the expression of endogenous
genes to spike-in molecules, we found that cellular
mRNA abundance shows dynamic regulation after
drug treatment. Using a random forest model, we
identified gene signatures classifying single cells
into three states: transcriptional repression, ampli-
fication and control-like. Treatment with paclitaxel or
celecoxib alone generally repressed gene transcrip-
tion across single cells. Interestingly, the drug com-
bination resulted in transcriptional amplification and
hyperactivation of mitochondrial oxidative phospho-
rylation pathway linking to enhanced cell killing ef-
ficiency. Finally, we identified a regulatory module
enriched with metabolism and inflammation-related
genes activated in a subpopulation of paclitaxel-
treated cells, the expression of which predicted pa-
clitaxel efficacy across cancer cell lines and in vivo
patient samples. Our study highlights the dynamic
global transcriptional activity driving single-cell het-
erogeneity during drug response and emphasizes
the importance of adding spike-inmolecules to study
gene expression regulation using single-cell RNA-
seq.

INTRODUCTION

A major challenge of cancer therapy is the acquired resis-
tance of cancer cells to chemotherapy drugs and associ-
ated disease relapse. A driver of drug resistance is intercellu-
lar heterogeneity of gene expression resulting from genetic
mutations and epigenetic alterations (1,2). The pre-existing
and rewired gene expression programs of cancer cells de-
termine their ultimate fates after drug treatment. Emerg-
ing evidence shows that even genetically identical cells show
transcriptional heterogeneity in response to external stimuli
under both physiological and in vitro conditions because of
their transcriptional plasticity (3,4). Characterizing single-
cell transcriptomic dynamics after drug treatment can pro-
videmechanistic insights into cell fate decisions and identify
predictive biomarkers of efficacy (5).
Paclitaxel is a commonly used chemotherapy drug for

treating diverse human cancers, such as ovarian, breast
and lung cancers. It binds to the microtubule polymer and
disrupts its disassembly, which triggers mitotic arrest and
apoptosis (6). However, most patients develop chemoresis-
tance after several sessions of treatment. Many studies have
been devoted to identifying the molecular mechanisms me-
diating paclitaxel resistance and developing combinatory
therapeutic strategies (7,8). For example, synergistic inhibi-
tion of NF-�B and PI3K signaling pathways can sensitize
paclitaxel-resistant cancer cells (9,10). Combination treat-
ment with the nonsteroidal anti-inflammatory drug cele-
coxib (a COX-2 inhibitor) can increase paclitaxel’s efficacy
at killing cancer cells (11–13).
Despite extensive effort, the molecular mechanisms regu-

lating paclitaxel efficacy remain elusive. A limitation is that
many studies were carried out using bulk cancer cells, with-
out considering the contribution of intercellular hetero-
geneity. Recently, using partial wave spectroscopic (PWS)
microscopy, we observed that treatment with paclitaxel in-
creases the packing density scaling of chromatin domains
and their intercellular heterogeneity in surviving subpop-
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ulations of cancer cells, suggesting that surviving cells ex-
hibit a phenotype consistent with enhanced single-cell tran-
scriptional heterogeneity (14). On the other hand, celecoxib
treatment decreases the chromatin packing density scal-
ing within chromatin domains of cells. Due to the oppo-
site effects of paclitaxel and celecoxib on chromatin pack-
ing in the nucleus observed from our imaging experiments
(14), we hypothesized that their combination may induce
a de novo transcriptional program promoting cancer cell
death.
To obtain molecular insights into the drug response, we

performed full-length single-cell RNA sequencing (scRNA-
seq) with Smart-seq2 (15) and profiled the transcriptomes
of several hundred single cells at different time points after
treatment with paclitaxel, celecoxib and the combination of
the two drugs, respectively. To compare the global transcrip-
tomic levels across single cells, we added a constant amount
of polyA-tailed spike-in molecules to each cell during the
library preparation (16). By normalizing endogenous gene
expression levels to those of spike-in molecules, we found
that global transcriptomic levels are heterogeneous across
single cells and are dynamically regulated after drug treat-
ment.
Paclitaxel treatment alone generally repressed transcrip-

tomic levels, while its combination with celecoxib resulted
in transcriptional amplification. We developed a random
forest model and classified single cells based on their tran-
scriptional states. The model revealed that the downregula-
tion of the cell cycle pathway is associated with transcrip-
tional repression, and the hyperactivation of mitochondrial
oxidative phosphorylation (OXPHOS) contributes to the
transcriptional amplification and enhanced cell killing ef-
ficacy after the drug combination. Furthermore, we identi-
fied a coherent gene module regulating cellular metabolism
and inflammation, the higher expression of which predicts
worse paclitaxel response in cancer cell lines and patients.
Altogether, our study highlights the unprecedented effects
of single-cell heterogeneity on global transcriptional activ-
ity in regulating the anticancer drug response.

MATERIALS AND METHODS

Cell culture

A2780 ovarian endometroid adenocarcinoma cells were a
gift from Dr Chia-Peng Huang Yang at the Albert Einstein
College of Medicine obtained from Dr Elizabeth de Vries
at the UniversityMedical Center Groningen. The cells were
cultured in RPMI 1640 medium (Thermo Fisher Scientific,
Waltham, MA) supplemented with 10% fetal bovine serum
(Thermo Fisher Scientific, Waltham, MA) on 35-mm six-
well glass bottom plates (Cellvis, Mountain View, CA) until
60–85% confluent. All cells were given at least 24 h to read
here before drug treatment.

Cell growth and apoptosis experiments

Cells were treated with 75 �M celecoxib, 5 nM paclitaxel,
or a combination of 75 �M celecoxib and 5 nM pacli-
taxel for 48 h. Cells were then imaged to determine the
percent coverage of the well for each treatment. To deter-
mine the amount of cell growth inhibition based on a treat-

ment, the amount of cell coverage was normalized to the
control group. Apoptosis staining was performed using the
CellEvent Caspase-3/7 Green Flow Cytometry Assay Kit
(Thermo Fisher Scientific, Waltham,MA). Stained cell sus-
pensions weremeasured with the BDLSRFortessa Cell An-
alyzer (BD Biosciences, San Jose, CA) at the Northwestern
University Flow Cytometry Core Facility.

scRNA-seq Library preparation using SMART-seq2

Cells were treated with 75 �M celecoxib for 2 and 16 h, 5
nM paclitaxel for 16 and 48 h, or a combination of 75 �M
celecoxib and 5 nM paclitaxel for 16 h prior to trypsiniza-
tion and resuspension in growth medium. Cell suspensions
were sorted with a C1 single-cell capture system (Fluidigm,
South San Francisco, CA) by the University of Illinois at
Chicago Genomics Core. scRNA-seq libraries were pre-
pared according to the Smart-seq2 protocol and sequenced
using the NextSeq 500 Sequencing System (Illumina, San
Diego, CA) by the University of Illinois at Chicago Se-
quencing Core. A predesigned set of three polyA-tailed
spike-in RNAs (sequences are shown in Supplementary Ta-
ble S1) was added to each well during the library prepara-
tion.

scRNA-seq data processing

We trimmed the adapter sequences of raw sequenc-
ing reads using the Trim Galore software (https://www.
bioinformatics.babraham.ac.uk/projects/trim galore/). We
used RSEM (17) to calculate RNA expression levels using
scRNA-seq data.We created an RSEM index with the com-
bination of the human hg38 transcriptome (GENCODE
version 28 (18)) and 3 spike-in molecules. We calculated
RNA expression usingRSEM1.3.0 with the default param-
eters and Bowtie2 (19) as the aligner. We normalized the
expression levels of endogenous genes to that of the highest
expressed spike-in molecule (16,20). Given M single cells,
to control the dynamic regulation of endogenous gene ex-
pression in single cell k, the ‘transcript per million’ (TPM)
value of gene j is normalized to that of spike-in 1 (s), which is
the highest spike-in molecule. The normarlized expression
of gene j in the cell k (Njk) was calculated as:

Njk = TPMjk /

(
TPMsk/

((
M∑

i = 1

TPMsi

)
/M

))

As the RNA capturing complexity of the scRNA-seq li-
brary is∼10% of bulk RNA-seq (21), we divided the above-
normalized TPM values by 10, and the expression level of
gene j in cell k was quantified as the E-value Ejk:

Ejk = log2

(
Njk

10
+ 1

)

We performed quality-control of the scRNA-seq data
and filtered out cells with housekeeping genes poorly de-
tected (averaged E-value of the genes <1) (22). The house-
keeping genes were defined in (23). We only included genes
detected in >30% of single cells in at least one experimental
condition in further analyses.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Examining intercellular expression variance within each
treatment group

To identify genes showing high intercellular expression
variance within each treatment group, we calculated the
log10 (coefficient of variation (CV)) for each gene (24,25).
CV was measured as the ratio of the standard deviation
of E-values across single cells to the mean. We then sepa-
rated genes into 100 bins based on the mean E-values and
calculated the ‘standard deviation of log10(CV)’ for each
bin. Genes showing >2-fold of the ‘standard deviation of
log10(CV)’ than those in the same bin were considered to
have high intercellular expression variance. We used only
highly expressed genes with mean E-values> 1 for the anal-
yses.

Principal component analysis and random forest modeling to
classify the cell states

We used the averaged E-values of a gene across single cells
to indicate its expression upon drug treatment. We selected
6175 genes showing differential expression after drug treat-
ment (>1.5-fold change compared to control cells) for the
principal component analysis and building the random for-
est model. For each gene, the control-normalized E-values
were used as the input for the analyses.
To examine whether single cells from a drug treatment

group are homogenous with unique gene signatures, we
used the random forest model and associated out-of-bag es-
timates to measure the prediction power to classify the sin-
gle cells from each drug treatment group versus those from
other groups. The out-of-bag analyses were done using the
R package ‘randomForest’ with the following parameters:
ntree = 600, importance = TRUE, do.trace = 100, proxim-
ity=TRUE, keep.inbag=TRUE, and 6 classes (each treat-
ment condition represents one class). Based on the out-of-
bag analysis results, we used 200 trees for the downstream
classification analyses.
To further classify the single cells based on their tran-

scriptomic states, we used the control cells, cells treated with
celecoxib for 16 h, and cells treated with both paclitaxel and
celecoxib to represent the control-like, transcriptional re-
pression and activation states, respectively.We randomly se-
lected 2/3 of single cells from these treatment conditions to
train the model with the following parameters: ntree = 200,
importance = TRUE, do.trace = 100, proximity = TRUE,
keep.inbag = TRUE, and 5-fold cross-validation. The clas-
sification of the remaining 1/3 of the cells was used to mea-
sure the algorithm performance using the receiver operating
characteristic (ROC) curves. Genes with a mean decrease in
accuracy (MDA) value >0 from the model contributed sig-
nificantly to the classification. Finally, the model was used
to classify all single cells into all three states with three cor-
responding P-values. The sum of the three P-values was 1,
and the state with the largestP-valuewas defined as the clas-
sified state.
To further test the robustness of our classification, we

used a different method to select single cells for the train-
ing set based on the PCA results. We selected control-like
cells as ‘PC2 > 15’, cells with transcriptional repression as
‘PC1> 15 & PC2< 0 & PC3> 5’, and these with transcrip-
tion amplification as ‘PC1 < -15 & PC2 < 0’. This selection

method did not restrict the preexisting cell labels. We ran-
domly selected 25 single cells from each group, trained the
random forest model, and applied the model to classify sin-
gle cell states. We then calculated the fraction of single cells
showing consistent classified states from this new method
versus these from themodel described in the last paragraph.
We repeated the process 200 times to get the median value
and 90% confidence interval.

Differential gene expression and pathway analysis

Wegrouped regulated genes after drug treatments into three
coherent clusters based on their relative differential expres-
sion changes after drug treatment. We used the average E-
values across single cells in a drug treatment condition to
indicate the expression level. About 1389 genes in cluster I
were down-regulated >1.5-fold at 16 h of celecoxib treat-
ment and up-regulated >1.5-fold at 16 h of combination
drug treatment. About 2852 genes in cluster II were down-
regulated at 16 h of celecoxib treatment and showed no
dynamic expression change after combination treatment.
About 1547 genes in cluster III were up-regulated>1.5-fold
after combination treatment and showed no dynamic regu-
lation after celecoxib treatment. These three clusters effec-
tively captured 94% of all dynamically regulated genes in
five different drug treatment conditions. The gene ontology
analyses were performed using the Database for Annota-
tion, Visualization and IntegratedDiscovery (DAVID) (26).
For a geneset regulating a biological process, we com-

pared its expression levels across single cells after each drug
treatment. Taking the OXPHOS pathway for example, we
used the expressed genes in GO:0006119 for the analyses.
Suppose there are G genes in the geneset. For each gene j,
we first normalized its E-value in cell k to the mean of the
control cells as Mjk. The relative expression of the geneset
in cell k was then calculated as the mean(Mjk) j = 1, 2. . . G.
Using this method, we calculated the relative expression

of genesets encoding complex I (GO:0005747), complex
II (GO:0005749), complex III (GO:0005750), complex IV
(GO:0005751) and ATP synthase of the OXPHOS path-
way. We used genes in GO:0007049 for the analyses of cell
cycle regulation. For genes showing unique activation in
a particular cell cycle phase, we used previously defined
gene lists (27). To compare the relative expression of a
set of metabolism genes, we used the following paclitaxel-
activated genes in the GO:0055114: oxidation-reduction
process geneset for analysis, including TM7SF2, PHYHD1,
ACADSB, HMGCR, HSD17B14, ALDH1A1, MTHFD2,
TP53I3, PLOD1, NOS3, CCS, GPX8, HSD17B8, PTGR1,
PTGR2, DHRS12, SCD, FADS1, DECR2, PHYH, VAT1,
MSRB2, COQ6, BLVRA, SQLE, ALDH2, PHGDH,
ACAD11.

Calculation of the paclitaxel response index

We downloaded the RNA expression data measured by
Affymetrix microarray and the corresponding annotations
of 1037 cancer cell lines from the Cancer Cell Line Encyclo-
pedia (CCLE) (28). Based on the averaged E-values across
single cells, 177 genes were up-regulated (>1.5-fold) in the
control-like cell subpopulation after 48 h of paclitaxel treat-
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ment. As these genes are co-activated after paclitaxel treat-
ment, we next examined whether they form a coherent tran-
scriptional module and their baseline expression levels are
correlated across cancer cell lines. Using theCCLEdata and
an iterative computational approach, we identified 73 genes
with a significant positive correlation of expression. The ap-
proach is as follows.
We analyzed the RNA expression levels of the 177

paclitaxel-activated genes using CCLE data. First, we re-
quired that a gene included for further analysis should be
expressed in>50% of cancer cells and show variable expres-
sion levels across all 1037 cancer cells. We used the MAS5
algorithm to determine whether a gene is expressed in a cell.
The difference between the 90th percentile and the 10th per-
centile of the gene was required to be >3-fold. This step fil-
tered out genes showing lineage-specific or constitutive ex-
pression across cancer cells.
Second, for the geneset consisting of remaining genes

from the above step, we calculated its relative expression
across all 1037 cancer cells using a similar method as de-
scribed above for the pathway analyses. GivenG genes in the
geneset, for each gene j, we first normalized its log2-based
expression level in cell k to the median of all cancer cells as
Mjk, and the relative expression of the geneset in cell k was
calculated as Sk = median(Mjk)j = 1, 2. . . G.

Third, we calculated the Spearman correlation coeffi-
cients between the geneset expression Sk and the expres-
sion levels of each gene j across all 1037 cancer cells.
We removed genes with a coefficient value <0.1 from the
geneset. Using an iterative repetition of steps 2 and 3,
we obtained 73 genes showing a significant positive cor-
relation with each other. We then calculated the rela-
tive expression of the entire set of 73 genes as the pacli-
taxel response index across cancer cell lines. The 73 genes
include SLC25A21, PTGR2, SCD, ALDH1A1, PLTP,
ALDH2, FKBP1B, TP53I3, SERPING1, C6orf1, VAT1,
PLOD1, IFI27L2, ARMCX3, BLVRA, SPA17, EFHC1,
SBF2, RAB13, CDC42EP5, TNNC1, FBXO2, TLCD1,
PLEKHA1, SAT1, SEMA3E, USP32, ABI2, PHYHD1,
MYL5, DHRS12, OCEL1, HMGCL, CORO1B, GGPS1,
ITM2B, NOS3, DECR2, ECI1, C9orf16, NEK3, SU-
CLG2, CRYL1, TST, ACER3, SERPINB6, CD46, YIPF3,
SUMF2, SIL1, GRN, MSRB2, PHYH, TNFRSF10B,
ETV4, DUSP6, S100A4, IFITM1, IFITM2, IFITM3,
CA2, GJA1, IFI35, RAB32, LGALS1, HSPA1A,MYO1B,
GPX8, ANXA1, PTGR1, RRAS, TNFRSF1A, S100A11.

Cancer patient data analysis

We downloaded two clinical cohorts of breast cancer pa-
tient data from the NCBI Gene Expression Omnibus
(GEO) database, including GSE25066 (Hatzis dataset (29))
and GSE32646 (Miyake dataset (30)). We used the R pack-
age affxparser to read and analyze RNA expression lev-
els measured by the microarray data. Because the analy-
sis is for breast cancer patients and RNA expression rep-
resents the averaged signals across cancer cells and stro-
mal cells, we required that genes used to calculate the pacli-
taxel response index should be expressed in>50% of CCLE
breast cancer cell lines. We used the following 51 genes
to calculate the paclitaxel response index in breast can-

cer patients: S100A11, GRN, HSPA1A, PLOD1, ANXA1,
LGALS1, IFITM2, ALDH2, IFITM1, RAB13, GGPS1,
HMGCL, S100A4, PHYH, SAT1, BLVRA, RAB32,
C9orf16, DHRS12, MYL5, SPA17, OCEL1, FKBP1B,
ABI2, CD46, TNFRSF1A, VAT1, DUSP6, IFI35, TST,
ECI1, TP53I3, NEK3, SERPINB6, USP32, IFITM3,
MYO1B, SUCLG2, RRAS, YIPF3, ITM2B, ARMCX3,
SIL1, MSRB2, PLEKHA1, FBXO2, DECR2, EFHC1,
SLC25A21, CRYL1, CORO1B.

RESULTS

scRNA-seq of cancer cells at different time points after drug
treatments

We treated A2780 ovarian cancer cells with paclitaxel,
celecoxib and their combination (Figure 1A). Consistent
with previous reports, co-treatment of celecoxib increased
paclitaxel-induced apoptosis (Figure 1B and C). To char-
acterize intercellular transcriptional heterogeneity mediat-
ing the drug response, we performed full-length scRNA-seq
with Smart-seq2 using the FluidigmC1 system for a total of
372 live cells at different time points after drug treatment,
including control (57 cells), 16 h (58 cells) and 48 h (65 cells)
with paclitaxel, 2 h (66 cells) and 16 h (67 cells) with cele-
coxib, and 16 h with the two drugs (59 cells) (Figure 1A and
Supplementary Figure S1A). We used Smart-seq2 for the
experiment because it has the highest sensitivity to capture
expressed transcripts compared to other scRNA-seq tech-
niques (31). We picked the early time points because ini-
tial gene expression changes after drug treatment are cru-
cial for determining cell fates (32), and they are representa-
tive of the dynamic chromatin packing density revealed by
our PWS experiments. To examine the regulation of global
transcriptomic abundance in single cells and perform qual-
ity control of the scRNA-seq experiment, we used a pre-
designed spike-in set consisting of three polyA-tailed RNAs
with variable lengths and concentrations (Supplementary
Table S1). We added an equal volume of the spike-in set to
each well of the 384-well plate during the library prepara-
tion using the Fluidigm C1 system.
For each single-cell library, sequencing reads

were mapped to the hybrid reference transcriptome
(GENCODE-defined endogenous transcripts + spike-in
RNA sequences) to quantify the RNA expression. The fold
expression differences of spike-in RNAs are consistent with
the pre-designed conditions (Figure 1D and Supplemen-
tary Figure S2), indicating that our scRNA-seq experiment
quantitatively measures RNA expression levels. For each
endogenous gene, we normalized its ‘transcript per million’
(TPM) value to that of the highest expressed spike-in
RNA in the same cell and used the normalized value to
indicate its expression level. We removed 34 poor quality
cells with a low number of housekeeping genes detected
(Supplementary Table S2, Supplementary Figure S1B and
see Materials and Methods section for details) (21,22). We
retained 338 single cells for further analyses. In addition,
we required that a gene included in the analyses should be
detected in at least 30% of single cells from at least one
experimental condition. After these quality-control steps,
we were able to study the dynamic expression of ∼9600
genes.
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Figure 1. scRNA-seq to examine transcriptional heterogeneities after drug treatment. (A) We treated A2780 ovarian cancer cells with paclitaxel (PAC),
celecoxib (Cele) and the combination of the two drugs, and collected the cells at different time points for scRNA-seq using Smart-Seq2 on the Fluidigm C1
system. (B) The relative cell growth after 48 h drug treatments as compared to controls. (C) The fraction of apoptotic cells (caspase 3/7+) after 48 h drug
treatment. (D) The correlation between expected fold differences of spike-in molecules versus those calculated by scRNA-seq data across single cells. The
expression values were normalized to the median of spike-in 2. The Pearson correlation coefficient is indicated in the plot. (E) The relative transcriptomic
abundance across single cells is measured as the ratio between the number of reads mapped to endogenous mRNAs and the number mapped to the spike-in
molecules. The log2(ratio) values were normalized to the median of the control cells. Each dot in the plot represents a single cell. The Wilcoxon rank sum
test P-values comparing drug treatment groups versus the control are shown. (F) Principal component analysis of single cells treated with drugs at different
time points. We used expression profiles of genes showing differential expression in at least one drug treatment condition for this analysis. The percentage
of variance explained by the principal component is shown in parentheses.
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Dynamic regulation of global transcriptomic levels

To measure the relative transcriptomic amount in a single
cell, we calculated the ratio between the number of reads
mapped to endogenous mRNAs and the number mapped
to spike-in RNAs. In each experimental condition, the over-
all mRNA abundance varied >3-fold across single cells in-
dicating intercellular heterogeneity (Figure 1E) (33). If we
consider the median value across single cells in a condition,
the global transcriptomic level is repressed after paclitaxel
or celecoxib treatment alone. As compared to the control
cells, the overall mRNA amount decreases ∼2.1-fold at 16
h of paclitaxel treatment (P< 10−9), and reduces ∼2.4-fold
at 16 h with celecoxib (P < 10−15) (Figure 1E). Interest-
ingly, after 16 h co-treatment of paclitaxel and celecoxib,
the transcriptomic amount was up-regulated ∼1.5-fold (P
< 10−9) (Figure 1E). These results suggest that the combi-
nation of the two drugs switches the transcriptional repres-
sion induced by a single drug to the transcriptional amplifi-
cation state. The same result was produced when we used a
different computational approach to measure relative tran-
scriptomic levels, by calculating the ratio between the sum
of TPM values of the top 5000 expressed mRNAs vs. that
of the highest spike-in RNA (Supplementary Figure S3).
Considering averaged expression values across single

cells, spike-in normalization revealed that 2571 genes were
down-regulated >1.5-fold after 48 h of paclitaxel treat-
ment and 4241 genes were down-regulated with 16 h of
celecoxib, while very few (<90 genes) showed upregulation
(Supplementary Figure S4A). With the combination of two
drugs, 2936 genes were up-regulated>1.5-fold and only 170
genes were down-regulated (Supplementary Figure S4A).
If examining differential gene expression using TPM val-
ues without spike-in normalization, we obtained more bal-
anced numbers of up-regulated and down-regulated genes
(Supplementary Figure S4BC). The results confirmed that
spike-in normalization is essential for identifying the regu-
lation of global transcriptomic abundance.
Besides drug-induced expression changes, we examined

how intercellular variances of single cells within a treatment
group contribute to expression differences among the cells.
For each treatment condition, we identified genes whose
expression variance (measured as coefficient of variation)
greater than those expressed at similar levels (see Mate-
rials and Methods for detail). Only 68–100 genes within
each group showed high expression variance (Supplemen-
tary Figure S5A and Supplementary Table S3). These genes
tend to reoccur among treatment groups (Supplementary
Figure S5BC).Gene ontology analyses showed that they are
enriched in themitotic cell cycle pathway (P-value< 10−15).
This presumably reflects that single cells are in different cell
cycle phases (34,35). Compared to the drug-induced gene
expression changes, the intercellular expression heterogene-
ity within a treatment group is much smaller. We focused
on analyzing drug-induced gene regulation in the following
analyses.

A random forest model classifies single cells into transcrip-
tional repression, amplification and control-like states

Next, using the principal component analysis, we clustered
single cells based on their transcriptomic profiles. The unbi-

ased clustering showed that the single cells are likely in three
different states: the control-like state (e.g. untreated can-
cer cells), the transcriptional repression state (e.g. cells with
16 h celecoxib treatment) and the transcriptional amplifica-
tion state (e.g. cells co-treated with paclitaxel and celecoxib)
(Figure 1F). Cells from other conditions, especially with pa-
clitaxel treatment alone, consist of mixtures corresponding
to different states (Figure 1F).
Additionally, using out-of-bag estimates, we measured

the prediction power of random forest to classify single cells
from each drug treatment group versus those from other
groups (Supplementary Figure S6). We observed low clas-
sification error rates for untreated cancer cells, cells with 16
h celecoxib and those co-treated with two drugs, indicating
that cells from these treatment groups tend to have unique
gene signatures and exist in homogenous states. Paclitaxel-
treated cells have higher out-of-bag error rates, indicating
that they are likely to compose with cells from mixed states.
These results are consistent with the findings from the above
principal component analysis.
To further characterize the intercellular heterogeneity

among the 338 single cells, we developed a supervised learn-
ing model using the random forest method to classify sin-
gle cells into three states based on their transcriptomic pro-
files. We used gene expression profiles of cells treated with
celecoxib for 16 h, cells co-treated with the two drugs and
untreated cancer cells to represent transcriptional repres-
sion, amplification and control-like states, respectively, be-
cause the cells from these conditions tend to be homoge-
nous (Figure 1F and Supplementary Figure S6). We used
expression profiles from a randomly selected 2/3 of cells
in each group as the training set, and profiles of the re-
maining 1/3 as the testing set to evaluate the algorithm
performance. The random forest model performed the fea-
ture gene selection and classified cell states with high accu-
racy (area under the receiver operating characteristic [ROC]
curve [AUC]>0.95 for each of three states) (Figure 2A).We
then applied the random forest model and classified all sin-
gle cells based on their RNA expression profiles (Figure 2B
and C).
And our classification results were robust if we used an

alternative approach to pick training sets by randomly se-
lecting single cells located in the three angles based on our
principal component analysis (Figure 1F) without restrict-
ing the preexisting sample labels (see Materials and Meth-
ods section for detail). The new method resulted in ∼93.8%
consistent classified cell states compared to the method
described above (the 90% confidence interval is [90.5%,
95.9%]),
Our random forest classification process refined the dy-

namic compositions of cells from different states after pa-
clitaxel treatment. At 16 h with paclitaxel, 55% of cells
show transcriptional repression, 4% show transcriptional
amplification and 41% are control-like (Figure 2D). At
48 h, cells treated with paclitaxel remain in a mixture
of states, including 47% in the transcriptional repression
state and 53% in the control-like state. These results high-
light the intercellular transcriptional heterogeneity in re-
sponse to paclitaxel and are consistent with our PWS mi-
croscopy results showing changes in chromatin packing
density (14).
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Figure 2. A random forest model classifies single cells into three different states: transcriptional repression, amplification and control-like. (A) We used
transcriptomic profiles of cells with 16 h of celecoxib, 16 h of combination treatment and control cells to represent the transcriptional repression, ampli-
fication and control-like states, respectively. We used 2/3 of single cells for training and the remaining 1/3 of cells for testing. The algorithm performance
when classifying the three states based on the testing set was measured using ROC curves, and the area under the ROC curves (AUC) is shown in each plot.
(B) Classifying single cells into three states based on their gene expression profiles using the random forest model. For each single cell, the transcriptomic
abundance (as in Figure 1E), RNA expression profile (normalizedE-values bymean of control cells), predictedP-values of the three states, and the decision
state are shown. Each column in the plot represents a single cell. (C) The triangle plot showing the predicted P-values of the three states across single cells.
The pooled single cells are shown on the left, and cells with different treatment conditions are shown on the right. (D) Fraction of cells classified into the
three states under different drug treatment conditions.
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Regulation of OXPHOS and cell cycle genes is a major de-
terminant of transcriptomic state

In addition to the global regulation of transcriptomic abun-
dance, individual genes show variable expression changes
after drug treatment. We partitioned drug-responsive genes
into three co-regulatory clusters based on their relative ex-
pression across single cells (Figure 3A and Supplementary
Table S4). For each gene, we annotated its contribution to
the random forest model indicated by the mean decrease in
accuracy (MDA) value (Figure 3A and Supplementary Ta-
ble S5). A total of 2852 genes (cluster II in Figure 3A) were
down-regulated (>1.5-fold) in cells showing transcriptional
repression andwere not regulated in other conditions. These
genes are enriched in gene ontology pathways such as ‘cell
cycle’, ‘RNA processing’ and ‘protein ubiquitination’ (P <
10−24; Supplementary Figure S7; Figure 3A and B). The
down-regulation of cell cycle genes indicates that the single-
agent treatment inhibited cell proliferation. Especially, cele-
coxib treatment alone did not induce cell apoptosis, and the
inhibition of cancer cell growth resulted from homogeneous
inhibition of cell cycle genes across single cells (Figure 1B
and C). Next, we examined whether the drug treatment
modulated the expression of genes regulating a particular
cell cycle phase. To this end, we analyzed signature genes
uniquely expressed in the G1/S, S, G2 and G2/M phases,
respectively (27). These genesets showed a significant posi-
tive correlation of differential expression across single cells
upon drug treatment (Supplementary Figure S8). Although
paclitaxel-treated cells are arrested in the G2/M phase (7),
the inhibition of cell cycle genes is not limited to the partic-
ular phase.
A total of 1389 genes were down-regulated (>1.5-fold)

in cells showing transcriptional repression by single drugs
but were up-regulated (>1.5-fold) upon combination treat-
ment (cluster I in Figure 3A). These genes are enriched
with MDA values >0 in the random forest model (Figure
3A) and contribute most significantly to cell state classifi-
cation. Gene ontology analyses showed that they are en-
riched in pathways such as ‘OXPHOS’, ‘generation of pre-
cursor metabolites and energy’, and ‘RNA translation’ (P
< 10−22; Figure 3C and Supplementary Figure S7). Unex-
pectedly, co-treatment of paclitaxel and celecoxib activated
many genes regulating mitochondrial-related functions and
theOXPHOSpathway.We further analyzed the genesets en-
coding complex I, II, III, IV and ATP synthase of the elec-
tron transport chain. These genesets were synchronically
regulated across single cells, suggesting a coherent tran-
scriptional module regulates their expression during drug
response (Supplementary Figure S9). These results suggest
that co-treatment with paclitaxel and celecoxib triggers a
transcriptional amplification program activatingOXPHOS,
which can induce the generation of reactive oxygen species
in cancer cells and promote cell apoptosis (36).

Metabolism and inflammation genes are activated in a sub-
population of paclitaxel-treated cancer cells

At 48 h of paclitaxel treatment, 53% of cells showed global
transcriptomic abundance comparable to untreated cells
(Figure 2D). This subpopulation of cells did not fully mimic
untreated cells but showed unique gene signatures with 177

genes up-regulated by >1.5-fold (Figure 4A and Supple-
mentary Table S6). Among these, 20 genes show early ac-
tivation (>1.5-fold) at 16 h, such as the interferon-induced
transmembrane proteins IFITM1 and IFITM2, a driver of
p53-dependent cell cycle arrest p21 (CDKN1A), and the
growth differentiation factor-15 (GDF-15) (Figure 4B).
The 157 other genes showed late activation at 48 h. The

gene ontology analyses showed that they are enriched in
genes regulating cellular metabolism (P < 10−9 for the
pathway ‘oxidation-reduction [redox] process’) (Figure 4B
and C). These include enzymes regulating lipid metabolism
(e.g. ACACA, PTGR1 and SCD) and carboxylic acid
biosynthesis (e.g. PHGDH and ASNS). In addition, some
pro-inflammatory molecules, such as TNFRSF1A, IFI35,
SERPINF1, IFNAR2 and S100A4, were up-regulated (Fig-
ure 4B). These results suggest that a subpopulation of cells
rewired their intrinsic metabolic and inflammatory path-
ways after 48 h of paclitaxel treatment.

A paclitaxel response index predicts treatment efficacy across
several hundred cancer cell lines and in breast cancer patients

Next, we examined whether the activated inflammatory and
metabolic gene signature plays a regulatory role in pacli-
taxel efficacy. We reasoned that if these genes function as a
regulatorymodule, their co-activation should not be unique
to paclitaxel response but should be general across biologi-
cal conditions because genes regulating a biological process
tend to form a coexpression network (37,38). To this end, we
examined the co-expression of the 177 paclitaxel-activated
genes across 1037 cancer cell lines from 26 primary tissue
types using data from the Cancer Cell Line Encyclopedia
(CCLE) database (28). By developing an iterative compu-
tational method, we found that a gene module consisting
of 73 genes (41.2% of the total) showed a significant posi-
tive correlation of expression with each other (see Materi-
als and Methods section for details) (P < 10−50 compared
to expected distribution; Figure 5A and B). The metabolic
and inflammatory genes described above were present in
this gene module. The data also indicate that the paclitaxel-
induced gene module is intrinsically active in many cancer
cells.
As CCLE also measured the half-maximal inhibitory

concentration (IC50) values of paclitaxel in these cancer cell
lines, we examined whether there is a correlation between
the gene module expression and the IC50 values. Based on
the relative expression of the genes in the module, we devel-
oped a paclitaxel response index to quantify the geneset ex-
pression, which was calculated as themedian of the normal-
ized expression values of the 73 genes (Figure 5A). Next, we
grouped cell lines based on their paclitaxel response index.
Cancer cells with greater index values tended to show higher
paclitaxel IC50 values (P < 2 × 10−4, Wilcoxon rank-sum
test; AUC of the ROC curve = 0.653; Figure 5C, Supple-
mentary Figure S10A and Supplementary Table S7). These
data indicate that higher baseline expression of the gene
module is linked with decreased paclitaxel efficacy in cancer
cells.
Furthermore, we examined the impact of the gene mod-

ule on paclitaxel response across breast cancer patients. We
analyzed the RNA expression and clinical data from two
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Figure 3. OXPHOS and cell cycle genes are major classifiers to define the cell states. (A) The heatmap showing the differentially expressed gene clusters
based on their relative changes after drug treatment. The gene expression values were normalized to the mean of the control cells. Single cells in each
treatment condition were further grouped by their defined states. The classifier genes in the random forest model with MDA value >0 are indicated in the
heatmap. The enriched pathways in each cluster based on gene ontology analyses are shown. (B) The relative expression of cell cycle pathway genes across
single cells, which were grouped based on drug treatment conditions and defined states. Each dot in the plot represents a single cell. The Wilcoxon rank
sum test P-values comparing drug treatment groups versus the control are shown. (C) Similar to (B), the relative expression of OXPHOS pathway genes
across single cells, which were grouped based on drug treatment conditions and defined states.
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Figure 4. Genes activated in the control-like subpopulation of cells after 48 h of paclitaxel treatment. (A) Heatmap showing the expression changes of 177
genes activated in control-like cells after 48 h of paclitaxel treatment. Single cells were grouped based on drug treatment conditions and defined states. For
each group, the averaged expression values of a gene across single cells were used to indicate its expression level. The expression fold changes compared
to the control cells are shown in the heatmap. (B) Example paclitaxel-activated genes showing early activation at 16 h of paclitaxel treatment, and those
showing late activation at 48 h and in pathways regulating metabolism and inflammation. (C) The relative expression of the metabolism genes across single
cells grouped based on treatment conditions and defined states. The paclitaxel-activated genes in the GO:0055114: oxidation-reduction process were used
for the analyses. The Wilcoxon rank sum test P-values comparing drug treatment groups versus the control are shown.

published breast cancer patient cohorts (29,30). Indeed, re-
sponders to paclitaxel treatment showed lower paclitaxel re-
sponse index values compared to non-responders (P < 4 ×
10−3, Wilcoxon rank-sum test; AUC of the ROC curve =
0.66; Figure 5D and Supplementary Figure S10B–E, Sup-
plementary Table S8). The AUC values are comparable
to those obtained previously using other computationally
identified gene module markers (39). These results further
indicate that our paclitaxel response index can predict the
clinical outcome of paclitaxel treatment.

DISCUSSION

Using the Fluidigm C1 Single-Cell Auto Prep System, we
added a constant amount of the spike-in RNA set to each
well during library preparation. During the data analyses,
we calculated gene expression levels by aligning sequenc-
ing reads to a hybrid transcriptome combining genome-
encoded transcripts and spike-in RNAs. The fold differ-
ences of spike-in RNAs learned from the sequencing data
are in accordance with the pre-designed concentrations, in-

dicating that our scRNA-seq quantitatively measures RNA
levels. Furthermore, by normalizing endogenous gene ex-
pression to that of spike-in RNAs, we found that mRNA
abundance is drastically differentially regulated across sin-
gle cells after drug treatment. These differences would not
be observed in measurements using TPM or RPKM (reads
per kilobase of transcript per million reads mapped) values
for endogenous genes alone, as these calculations rely on the
presumption that global transcriptomic levels are compara-
ble across cells. Our results confirm the value of adding the
synthetic spike-in RNAs for scRNA-seq.
One of the major findings of this study is that drug treat-

ments induce variable changes in global mRNA abundance
in a cell. This level of regulation has been commonly over-
looked by previous studies due to the lack of gene expres-
sion normalization using spike-in RNAs for RNA-seq ex-
periments. Interestingly, paclitaxel treatment alone induces
transcriptional repression in a subpopulation of cells. The
down-regulation of cell cycle genes is consistent with themi-
totic arrest induced by paclitaxel. Here, we found that genes
expressed in the G1/S, S, G2 and G2/M phases are syn-
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Figure 5. A gene module consisting of paclitaxel-activated genes predicts paclitaxel efficacy across cancer cell lines and breast cancer patients. (A) 73
paclitaxel-activated genes showed a positive correlation of expression across 1037 cancer cell lines.We developed a paclitaxel response index to quantitatively
measure the relative expression of these genes in a sample (standard error values are shown in gray). (B) Distribution of the observed and expected Spearman
correlation coefficients of the expression levels between the gene pairs. The observed values were calculated based on gene pairs in (A). The expected
correlation values were calculated by randomly picked gene pairs expressed in the cancer cell lines. The Wilcoxon rank sum test P-value comparing the
observed versus expected correlation coefficients is shown. (C) Cancer cell lines were grouped based on the paclitaxel-response index values in (A). Then,
we compared their paclitaxel IC50 values. The Wilcoxon Rank-Sum test P-value comparing two indicated groups is shown in the plot. (D) Breast cancer
patients from two cohorts were grouped based on their clinical response to paclitaxel treatment. Then, we compared the paclitaxel response index between
the two groups of patients. The Wilcoxon Rank-Sum test P-values comparing two groups are shown in the plot.

chronically down-regulated at comparable levels, indicating
the inhibition of cell cycle genes is not specific to a partic-
ular phase. A coordinated transcriptional network is likely
to regulate the expression of cell cycle genes.
Interestingly, the combination of paclitaxel and celecoxib

induces transcriptional amplification, which is opposite to
the transcriptional repression caused by the single drug
treatments (Figure 6). The fact that the expression of cell cy-
cle genes is unchanged after co-treatmentwith the two drugs
suggests that another regulatory pathway promotes cell
apoptosis in this context.Unexpectedly, theOXPHOSpath-
way showed themost significant up-regulation. OXPHOS is
the major process to generate mitochondrial reactive oxy-

gen species (ROS). Hyperactivation of OXPHOS can cause
leakage of electrons from electron transport chains, leading
to a partial reduction of oxygen and the formation of super-
oxide in cells (40,41). The resulting ROS production could
be the mechanism by which the drug combination enhances
apoptosis and cell-killing efficiency. These results also indi-
cate that the interplay between two drugs can trigger a novel
transcriptional program, increasing the efficacy.
Dynamic global transcriptional activity can result from

the regulation of the cellular amount of RNApolymerase II
(Pol II), the efficiency of Pol II recruitment to promoters or
the rate of transcriptional elongation (20,42). These molec-
ular mechanisms have been characterized in a few biolog-
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Figure 6. The table shows the transcriptomic states and regulation of as-
sociated pathways after the various drug treatments.

ical processes. Cancer cells with overexpressed MYC show
higher transcriptomic abundance than normal cells because
MYC located in promoters and enhancers can directly re-
cruit the transcriptional elongation factor P-TEFb, result-
ing in transcriptional amplification (43). In B-cell acute
lymphoblastic leukemia, overexpression of the nucleosome
remodeling protein HMGN1 suppresses heterochromatin
marker H3K27me3 levels and promotes B cell transcrip-
tomic levels and proliferation (44). Future efforts are needed
to identify the molecular regulators mediating transcrip-
tional amplification or suppression after drug treatment.
The initial expression changes of cancer cells in response

to drugs are important in determining their fate. The prob-
ability of drug-induced apoptosis appears to be stochas-
tic from the perspective of a single cell but has a fixed ra-
tio in the larger cell population (45–47). The pre-existing
gene expression programs regulate the ratio of killed cells
(i.e. the IC50 value of a drug). At the single-cell level, cell
death is determined by whether pro-apoptotic signals have
accumulated to the threshold level. Here, we found that
transcriptomic abundance shows intercellular heterogene-
ity in response to paclitaxel treatment. This heterogeneity
is a new regulatory layer contributing to chemoresistance.
In about half of the treated cells, the global transcriptional
levels are comparable to the control state. Unexpectedly, a
coherent genemodule consisting of a small number of genes
(73 genes) was activated in a subpopulation of paclitaxel-
treated cells, and these genes were highly enriched in redox
and inflammatory pathways. We showed that the baseline
expression of this gene module predicts chemo-response
in vitro and in vivo. The metabolic switch in cancer cells
is known to play a major regulatory role during drug re-
sponse (48,49). For example, some genes in the module,
such as aldehyde dehydrogenase (ALDH2) and acetyl-CoA
carboxylase (ACACA), are known oncogenes, promoting
cancer stem cell formation and drug resistance (50,51). Fu-
ture experiments tracing the metabolic changes of cancer
cells after drug treatment will provide further functional in-
sights into this level of regulation. Notably, our analyses
were performed using the cultured cancer cells and the gene
signatures we obtained did not account for molecular inter-
actions between cancer cells and the immune microenviron-
ment. Further work using single-cell experiments tracing
paclitaxel efficacy in immune-competent models can reveal
additional regulatory layers of the resistance mechanisms.
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