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ABSTRACT

We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-
term photometric coverage during ~1998—2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up
monitoring with Blanco 4m/DECam. With on average ~200 nightly epochs per quasar per filter band, we improve the parameter
constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10—15 yr baselines and
< 100 epochs. We find that the average damping time-scale Tprw continues to rise with increased baseline, reaching a median
value of ~750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term
trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying
variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained 7 prw
(less than 20 per cent of the baseline), we confirm a weak wavelength dependence of Tprwod ! £020, We further quantify
optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density
(PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales
from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ~ a month for these
luminous quasars, and this second break point correlates with the longer DRW damping time-scale.

Key words: surveys—quasars: general —quasars: supermassive black holes.

1 INTRODUCTION

The optical photometric (continuum) variability of quasars encodes
critical information about physical processes within the accretion
disc of a rapidly accreting supermassive black hole (SMBH) that
primarily emits in the rest-frame UV through optical. There has
been significant progress in the past few decades in quantifying
the observed optical variability of quasars with increasing sample
sizes and light-curve quality (e.g. Giveon et al. 1999; Hawkins 2002;
Vanden Berk et al. 2004; de Vries et al. 2005; Sesar et al. 2006; Bauer
et al. 2009; MacLeod et al. 2010, 2012; Morganson et al. 2014; Sun
etal. 2014; Chen & Wang 2015; Kasliwal, Vogeley & Richards 2015;
Simm et al. 2016; Caplar, Lilly & Trakhtenbrot 2017; Li et al. 2018;
Séanchez-Séez et al. 2018; Smith et al. 2018; De Cicco et al. 2019;
Laurenti et al. 2020; Luo, Shen & Yang 2020; Tachibana et al. 2020;

* E-mail: stone28 @illinois.edu (ZS); shenyue @illinois.edu (YS)

Xin et al. 2020; Suberlak, Ivezi¢ & MacLeod 2021). However, the
nature of optical variability of quasars is still poorly understood (e.g.
Ulrich, Maraschi & Urry 1997; Padovani et al. 2017).

Quasars are observed to vary stochastically over a broad range of
time-scales and wavelengths. In the rest-frame UV-optical, quasar
variability amplitude increases with time-scales and decreases with
wavelength (e.g. Vanden Berk et al. 2004), and is observed to
anticorrelate with luminosity and the Eddington ratio of the quasar
(e.g. Ai et al. 2010; Rumbaugh et al. 2018). On months to years
time-scales, quasar optical variability typically saturates at the
~ 10-20 per cent level. Traditionally, the characterization of quasar
variability has been carried out with the structure function (SF) or
power spectrum density (PSD) measurements, which quantify the
variability level as a function of time-scale (or frequency).

It has become increasingly popular in recent years to model
quasar light curves in the time domain with stochastic processes
(e.g. Kelly, Bechtold & Siemiginowska 2009; Koztowski et al. 2010;
Kelly et al. 2014). This approach addresses concerns of sampling
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Figure 1. The number of nightly coadded epochs observed for the 190
quasars in our sample combining SDSS, PS1 and DES (+DECam) data. The
gri light curves have a median of [205, 209, 209] epochs for our quasars.

and windowing effects that come with time-series analyses in the
frequency domain, which are particularly relevant for ground-based
quasar light curves. The Damped Random Walk (DRW) model has
emerged as the simplest Gaussian random process model that can
fit the optical light curves of quasars reasonably well (e.g. Kelly
et al. 2009; Koztowski et al. 2010; MacLeod et al. 2010). Deviations
from the DRW model have been reported (e.g. Mushotzky et al.
2011; Zu et al. 2013; Kasliwal et al. 2015; Guo et al. 2017),
although some of these claims are likely impacted by the limited
duration of the light curve in the DRW fit (e.g. Koztowski 2017).
More complex stochastic process models, such as the continuous
autoregressive moving-average (CARMA; Kelly et al. 2014) models,
can accommodate a broader range of PSD shapes, and improve the fits
provided that the light-curve quality is sufficiently high. In general,
the CARMA models do not have to be solutions to the stochastic
differential equation driven by a Gaussian process (i.e. a Wiener
process). However, for CARMA processes that are Gaussian, the
model parameters can be estimated using efficient implementations
of Gaussian process regression (e.g. Foreman-Mackey et al. 2017;
Yu & Richards 2022). In this work, we focus on CARMA processes
that are Gaussian.

In the DRW model, the PSD is described by a f~> power law
at the high-frequency end, transitioning to a white noise at the
low-frequency end. The transition frequency f, corresponds to
the damping time-scale Tprw as fo = 1/(2mwtprw). The damping
time-scale thus describes a characteristic time-scale of the optical
variability. Earlier studies of quasar variability already hinted at such
a characteristic variability time-scale and its possible dependence
on the physical properties of quasars such as the black hole mass
(e.g. Collier & Peterson 2001; Kelly et al. 2009), but the exact form
of the dependence is debated (e.g. MacLeod et al. 2010; Simm
et al. 2016). Recently, Burke et al. (2021) measured the damping
time-scales using the DRW model for a sample of active galactic
nuclei (AGNs) with high-quality optical light curves over a large
dynamic range in black hole mass. They found a strong positive
correlation between tprw and black hole mass, which extends to the
stellar mass regime with optical variability measured for nova-like
accreting white dwarfs (Scaringi et al. 2015). Compared with higher
order Gaussian process models, the DRW model contains a single
characteristic time-scale, making it easier to interpret the variability
and to connect variability to the underlying physical processes (e.g.
Sun et al. 2020; Burke et al. 2021).
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However, as Koztowski (2017) pointed out, in order to constrain
the damping time-scale Tprw Wwhen fitting the light curve with a
DRW model, it is important that the duration of the light curve is
substantially longer than tpgw. For light curves shorter than a few
times Tprw, the measured Tprw can be systematically biased low
and saturated around 20—40 per cent of the light-curve duration, with
elevated scatter in the measurements. Many of the DRW fits to SDSS
Stripe 82 quasars in MacLeod et al. (2010) do not pass this duration
test, and their reported T prw values may be underestimated. Suberlak
et al. (2021) extended the Stripe 82 light curves by another 5 yr
using the PanSTARRS-1 (PS1) data (Chambers et al. 2016), which
alleviated this problem. But many of the updated 7 prw measurements
are still not short enough compared with the baseline. In addition,
the number of PS1 epochs is small compared with the SDSS data,
and the DRW fits are likely still dominated by the SDSS light curves.

The main purpose of this work is to study optical continuum
variability of a sample of quasars with a more extended 20-yr
baseline. This sample represents one of the best-quality light-curve
data sets to study quasar variability, with hundreds of epochs from
SDSS, PS1 and the high-cadence/high-S/N monitoring from the
Dark Energy Survey, as well as our dedicated follow-up photometric
monitoring with DECam on the CTIO-4m Blanco telescope. We will
improve the DRW measurements using these extended light curves
and quantify the general optical variability properties with SF and
PSD analyses.

This paper is organized as follows. In Section 2, we describe the
sample and the photometric light-curve data. In Section 3, we present
our variability measurements, with the technical details provided in
Appendix A. We discuss the implications of our results in Section 4
and conclude in Section 5. Throughout this paper we adopt a flat
Lambda cold dark matter (ACDM) cosmology with cosmological
parameters 70 = 0.3 (4.0 = 0.7) and Hy = 70kms~! Mpc~'.
By default all time-scales are in the rest-frame of the quasar unless
otherwise specified; in cases where ambiguity may arise in the
context, we use subscripts ‘s’ and ‘ops’ to explicitly refer to rest-
frame and observed-frame time-scales.

2 DATA

To study optical quasar variability with long-term light curves, we
utilize quasars identified in the SDSS Stripe 82 region (S82), a nearly
300 deg? stripe along the celestial equator, imaged by SDSS from
~1998 to 2007. S82 was repeatedly observed to find supernova,
being one of the most frequently observed areas in SDSS. Each
target within S82 was repeatedly observed for an average of 60
epochs, albeit aperiodically and with large time gaps, as the observing
window spanned 2-3 months each year. SDSS photometry has five
bandpasses ((ugriz)spss) available for each quasar, allowing for the
study of variability as a function of wavelength. The SDSS light
curves in S82 provide an initial 10-yr baseline for quasar variability
studies (e.g. MacLeod et al. 2010). To extend this baseline, we use
data from PS1 (Chambers et al. 2016) spanning nearly 5 yr during
2010-2014. PS1 imaged the sky in the (grizy)ps; bandpasses with ~2
epochs per year in its wide-area survey. The combined SDSS+PS1
light curves for S82 quasars have a baseline of ~15 yr, and were used
to study quasar variability in Suberlak et al. (2021) to improve the
DRW fits. However, there were only a handful of PS1 epochs, and
the DRW fits were potentially dominated by the SDSS data.

To extend our baseline further, we use data from the DES
survey during 2013-2019, which imaged the sky in the (grizy)pes
bandpasses. In particular, among the repeatedly observed DES
Transient Survey (Deep) Fields (Hartley et al. 2022), there were two
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Figure 2. The distribution of 190 SDSS S82 quasars in our sample in the
bolometric luminosity versus redshift plane. The individual targets are colour-
coded by their intrinsic rms variability in the g band (0, ¢), calculated using
a maximum-likelihood approach described in Shen et al. (2019). The grey
contours behind the data points represent the distribution of Ly, and z from
~100 000 SDSS DR7 quasars (Shen et al. 2011), which are on average
brighter than SDSS quasars selected in the S82 region.
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Figure 3. Histograms of the photometric offsets used for each target in
each survey. The top row represents offsets from PS1 bands to SDSS bands,
and the bottom row represents offsets from the combined PS1/SDSS bands
to DES bands. The three columns represent the gri bands in corresponding
order from left to right. The dashed lines represent 0.01 and 0.1 mag
corrections for each band.

in the S82 region (SN-S1 and SN-S2, centred at J2000 coordinates
02:51:16.8 4+ 00:00:00.0 and 02:44:46.7 — 00:59:18.2, respectively),
each with 2.7 deg? area, with >100 epochs in each band over 6
yr. The light curves in different bands have similar cadences, but
are not necessarily simultaneous (i.e. on the same nights). After
DES completed its wide-field survey in 2019, we continued to
monitor these two S82 DES-deep fields with a dedicated long-term
programme (2019-2024) using the DECam imager on the CTIO-4m
telescope (NOAO programme 2019B-0219; PI: X. Liu) to extend the
baseline further in three bands ((gri)pgs).

In this work, we use the combined light-curve data from SDSS,
PS1, DES, and DECam imaging for 190 spectroscopically confirmed
quasars in SDSS that are within the two DES-deep fields in S82
(Figs 1 and 2). These quasars are all within the SDSS DR7 quasar
catalogue, with derived physical properties such as bolometric
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Figure 4. Example light curves from our quasar sample. These light curves
are taken over a ~20 yr baseline, across different surveys. To adjust the
observed magnitudes in a common band, we apply empirical colour offsets
and additional small (~0.05 mag) offsets to merge the light curves. The data
for all light curves are provided in the FITS table described in Table 1.

luminosities and black hole masses from Shen et al. (2011). Our
combined baseline is ~20 yr, enabling a detailed quasar variability
study over decades-long time-scales. The inclusion of the DES and
DECam imaging is of critical importance: it not only extends the
baseline by another 6 yr to improve the constraints on the damping
time-scale, but also provides a large number of high-S/N epochs to
sample days to years time-scales and to ensure the DRW fits are not
dominated by the SDSS epochs.

All of these quasars have observations in the gri bands for all
surveys, so we focus on these three bands for multiwavelength
variability. Although z-band data are also available across most of
these surveys, the variability amplitude in this red band is lower and
host contamination would be more significant, thus complicating
the quasar variability measurements. We model the light curves in
each band separately, instead of fitting the multiband light curves
simultaneously as did in Hu & Tak (2020). The latter approach may be
useful to further constrain interband correlations of the light curves.

We obtain public SDSS light-curve data for each of these quasars
from the catalogue curated in MacLeod et al. (2012), which provides
light curves for nearly 9000 SDSS S82 quasars in all five ugriz
bandpasses. We obtain public PS1 photometry for each quasar using
the MAST data base (https://archive.stsci.edu/), querying for all gri
bands and excluding detections with low confidence. The proprietary
DES data and our dedicated DECam imaging data are processed
with the same DES pipeline (Morganson et al. 2018). We use PSF
magnitudes from all these surveys for our quasars.

The filter bandpasses differ slightly between SDSS, PS1, and DES,
and we apply photometric offsets to obtain merged light curves
in a common bandpass for each quasar. Photometric offsets are
typically constructed using colours of objects rather than magnitudes
themselves, as these colours are less variable. We choose to use the
mean colour-based offsets described in Liu et al. (2016) to offset
PS1 data into the corresponding SDSS bands, and then use the offsets
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Table 1. The format of the FITS table compiling the properties for our sample of 190 quasars in S82.

“Column Name Format Unit Description

DBID int64 Database ID for each quasar; same as in MacLeod et al. (2012)
RA float64 deg Right ascension of the target

DEC float64 deg Declination of the target

V4 float64 Redshift

log_M_BH float64 logi1o(Mg) logo of the black hole mass

log-M_BH_ERR float64 log1o(Mg) Error in logj of the black hole mass

log_LBOL float64 logjo(erg ) logo of the bolometric luminosity
log_LBOL_ERR float64 logio(ergs™")  Error in logyg of the bolometric luminosity
log_-TAU_OBS _x float64 logo(d) logio(tprw) in the observed frame
log_TAU_OBS _x_ERR_L float64 logio(d) Lower error of logjo(tprw) in the observed frame
log_-TAU_OBS_x_ERR_U float64 logjo(d) Upper error of logo(tprw) in the observed frame
log_TAU_REST x float64 logio(d) logio(Tprw) in the rest frame
log_-TAU_REST_x_ERR_L float64 logio(d) Lower error of logo(tprw) in the rest frame

log_ TAU_REST_x_ERR_U float64 logio(d) Upper error of logo(Tprw) in the rest frame
log_SIGMA _x float64 log;p(mag) logio(o prW)

log_SIGMA x_ERR_L float64 log;o(mag) Lower error of logo(o prw)

log_SIGMA x_ERR_U float64 logjp(mag) Upper error of 1og;o(0 prw)

log JITTER x float64 logjo(mag) logio(on)

log JITTER x_ERR_L float64 logjo(mag) Lower error of logjo(cy)

log JITTER x_ERR_U float64 log;o(mag) Upper error of logo(oy)

SIGO_x float64 mag Intrinsic RMS variability

SIGO_x_ERR float64 mag Error in intrinsic RMS variability

LAMBDA _REST x float64 A Rest-frame wavelength the target was observed in
bSURVEY _x strS Imaging survey used for the observation

"MID x float64 d MID of the observation

PMAG x float64 mag PSF magnitude of the observation

"MAG _ERR _x float64 mag Error in the observation

“OFFSET x float64 mag Manual offset applied to the PS1 magnitudes
DT_REST_x float64 d Rest-frame time lags used to construct the structure function
SF_x float64 mag Structure function measurements

SF_x_ERR_L float64 mag Lower error in the structure function
SF_x_ERR_U float64 mag Upper error in the structure function
CARMA_P_x int64 CARMA model p parameter

CARMA_Qx int64 CARMA model g parameter

REST_FREQ_x float64 d-! Rest-frame frequency

CARMA _PSD_x float64 (mag)2 (d) Median PSD constructed from the CARMA model
CARMA_PSD_x_ERR_L float64 (mag)? (d) Lower error in the CARMA PSD

CARMA _PSD_x_ERR_U float64 (mag)? (d) Upper error in the CARMA PSD

4CARMA _ARO_x float64 0th CARMA autoregressive parameter (o)
dCARMA _AR1 x float64 1st CARMA autoregressive parameter (o)
YCARMA_AR2 x float64 2nd CARMA autoregressive parameter (ctz)
dCARMA _AR3 x float64 3rd CARMA autoregressive parameter (o/3)
ICARMA _AR4 _x float64 4th CARMA autoregressive parameter (ct4)
dCARMA _ARS x float64 5th CARMA autoregressive parameter (os)
YCARMA _AR6_x float64 6th CARMA autoregressive parameter (o)
4CARMA _AR7 x float64 7th CARMA autoregressive parameter (c7)
4CARMA _MAO_x float64 0th CARMA moving-average parameter (8)
ICARMA MAI1 x float64 1st CARMA moving-average parameter ()
dCARMA _MA2 _x float64 2nd CARMA moving-average parameter (5;)
YCARMA MA3 x float64 3rd CARMA moving-average parameter (83)
dCARMA _MA4 x float64 4th CARMA moving-average parameter (84)
YCARMA MAS5 x float64 5th CARMA moving-average parameter (fs)
4CARMA _MAG6_x float64 6th CARMA moving-average parameter (f¢)

Notes.“Each column labeled with ‘x’ is three columns, with ‘X’ representing the value obtained from data in the g, r, or i bands.
FITS tables require that each entry in a column of data have the same length. However, each object has a different amount
of epochs, making their data arrays unequal. To circumvent this, we have made the arrays corresponding to properties of the
observations of the object (SURVEY, MID, MAG, MAG_ERR) the same length. This length is the number of observations for
the object with the maximum number of observations in the sample. For arrays with a length less than this maximum length, we
fill the arrays with NaNs or empty strings until they reach this length.

“This manual offset is used to bring the PS1 and DES magnitudes into agreement in the overlapping region. Offsets were only
applied to r-band and i-band light curves, so the ‘x’ here corresponds to r and i only.

4All of the entries for the CARMA parameters are given as three-entry arrays, consisting of the 1o errors (absolute values)
and median value of the parameter. This array is formatted as [lower error, value, upper error]. If the CARMA model fit to the
light-curve data is not a high enough order to have a certain parameter, it will have an array filled with zeros. For example, if the
CARMA p parameter is 3, all CARMA autoregressive parameters greater than 3 will be [0, 0, 0] in the FITS table.
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Figure 5. An example of fitting the g-band light curve with the DRW model using the fast Gaussian process solver Celerite (discussed further in A2). The
top panel displays the raw light curve of the object, and the predicted light curve from the DRW model using the best-fitting, maximum likelihood parameters.
The orange line represents the median value of the prediction, while the shaded orange region represents the area between the 1o uncertainty in the prediction.
The plot on the lower-left displays the probability distributions of the DRW parameters fit for by Celerite, with oprw representing the standard deviation
of long-term variability, Tprw here representing the observed-frame characteristic time-scale, and o, representing a noise term (also called jitter). The shaded
regions in the probability distributions correspond to where Tprw, obs is greater than 20 per cent of the baseline. The lower right plot shows the observed-frame
PSD of the light curve from both the raw data and drawing from the posterior distribution of the Celerite fit. The model PSD is shown in orange (with a
band spanning the 1o uncertainties), the Lomb—Scargle periodogram (Lomb 1976; Scargle 1982) is shown in blue, and the binned Lomb—Scargle periodogram
is shown in black. The binned Lomb-Scargle periodogram was also fit to a broken power law (shown as a red line), whose break frequency (and corresponding
1o errors) are shown with the red arrow and bar. The regions shaded red in the PSD plot correspond to regions of frequency space not sampled by the light curve
(i.e. larger than the minimum cadence) as well as regions with time-scales longer than 20 per cent of the baseline (i.e. # > fpaseline/5). The difference between the
Lomb-Scargle periodogram and the model PSD is caused by the difficulties of measuring the PSD accurately using the Fourier method and irregularly sampled
light curves, contributions from flux uncertainties in the periodogram measurement, as well as potential deviations from a DRW model.

described in Drlica-Wagner et al. (2018) to offset both SDSS and PS1
magnitudes into the corresponding DES bandpasses. Fig. 3 shows
that most of the corrections between surveys lie under 0.1 mag for
each band. PS1 7i magnitudes are sufficiently similar to SDSS i
magnitudes so that no correction is needed, but we opt to do so for a
similar processing of all bands. All other bandpasses for each survey
have small offsets, with only a handful of objects with offsets up to
0.3 mag. Therefore, the use of these mean colour photometric offsets
is justified for our sample.

After correcting for the zero-point offset in the same bandpass,
we find that the - and i-band light curves still display a small offset

MNRAS 514, 164-184 (2022)

between the overlapping PS1 and DES epochs for some quasars. This
additional offset is likely due to the usage of PSF magnitudes, ex-
tended host galaxy emission, seeing variations between PS1 and DES
observations, as well as any residual systematics between surveys.
We therefore apply an additional correction (~0.05 mag) to manually
bring the overlapping PS1 and DES epochs into agreement. We have
tested w/ and w/o this minor magnitude offset between PS1 and DES
and found that this detail has no effect on our variability analyses.
We show a few representative examples of the merged light
curves from SDSS+PS1+4+DES+DECam in Fig. 4. We summarize
the basic properties of our quasar sample in a FITS table along

220z aunp 2z uo Josn sioulj|| Jo Ausiaaun AQ LG08859/791/ 1L/t G/aI01E/SEIUW/WOd"dNO"D1WSPED.//:Sd)lY WO papeojumod


art/stac1259_f5.eps

Optical photometric variability of quasars 169

T
----- SDss
—-— SDSS+PS1
[ —— SDSS+PSI+DES

w
n

w
=)
T

[0910(TDRW, rest /days)
N N
=} wn
T T

,_.
)
T
Q

10g10(SF. /mag)

-1.5 -1.0 —(I).5 0.0 -1.5 -1.0
log10(SF. /mag)

—(I).5 0.0 -1.5 ’ —ZILO —(|).5 0.0
log10(SF. /mag)

Figure 6. Contour plots showing the distribution of SFy, and tprw fitted from our quasar light-curve sample. There are three contours for each band,

representing data fitted from light curves using only SDSS, SDSS and PS1, and all of the data. The contours for each data set enclose [33, 66, 100] per cent of
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Figure 7. Comparisons between Tprw, obs measurements from DRW fits with different baselines. The upper panels compare the Tprw, obs fitted from only
using SDSS data (a ~10 yr baseline) to the Tprw, obs fitted from the entire 20 yr data set for the three bands. The lower panels compare the Tprw, obs fitted
using data from SDSS and PS1 (a ~15 yr baseline) to those fitted using the full light curves. The red-shaded area indicates where Tprw, obs 1S greater than the
light-curve baseline on each respective axis. The red line running through the data shows the unity relation.

with the best-fitting DRW parameters, where we compile additional
properties of these quasars from the catalogue in Shen et al. (2011).
The columns of this FITS table are described in Table 1. We
also provide all light-curve data in the FITS table described in
Table 1.

3 RESULTS

3.1 DRW fits

We follow the standard practice in the literature to fit a DRW
model to the quasar light curve (e.g. Kelly et al. 2009; Koztowski
et al. 2010; MacLeod et al. 2010; Burke et al. 2021; Suberlak
et al. 2021). The details of the DRW modelling are provided in

Appendix A2. The best-fitting DRW parameters are compiled in the
FITS catalogue described in Table 1. An example DRW fit is shown in
Fig. 5.

In Fig. 6, we show the distribution of our sample in the Tprw
versus SFZ, = 202, plane, where o pry is the long-term variability
amplitude in the DRW model (see Appendix A2). With the SDSS-
only baselines, we reproduce the results in MacLeod et al. (2010),
with a median value for tprw, rest Of ~540 d in the r band. Using
SDSS+PS1-only baselines, however, we obtain a median value for
Tprw, rest Of ~680 d in the r band, while Suberlak et al. (2021)
quoted a value of ~550 d. We attribute this discrepancy to the
method of choosing the best-fitting value from the DRW fit (discussed
further in Appendix AS5). By extending the baseline further with the
DES+DECam data, the values of Tprw and SF,, continue to rise.
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Figure 8. Wavelength dependences of both 7prw and SF«,. The left-hand panels are for a subset of 27 quasars for which all measured T prw, obs Values are less
than 20 per cent of the final baseline. The right-hand panels are for the full sample of 190 quasars. The contours in blue, red, and orange represent the results
from g, r, and i light curves, respectively, shifted to the corresponding rest-frame wavelengths of each individual quasar. The contours for each band represent
30 and 70 per cent of the data. The best-fitting linear regression model and 1o uncertainties using the method described in Kelly (2007) are shown in the black
line and shaded area, with the best-fitting slopes marked in each panel.

Table 2. The format of the FITS table compiling ensemble SF and PSD measurements from subsets of our full quasar

sample.

“Column name Format Unit Description

bSubsample str9 Description of the ensemble

DBIDs_x float64 Data base IDs of the objects included in the ensemble

DT_REST x float64 d Rest-frame time lags used to construct the structure
function

SF_x float64 mag Ensemble structure function measurements

SF_x_ERR float64 mag Error in structure function measurements

REST_FREQ_x float64 d-! Rest-frame frequency

CARMA _PSD x float64 (mag)? (d) Ensemble of the median PSDs of the optimal CARMA

models for each object
Lower error in the ensemble PSD
Upper error in the ensemble PSD

CARMA PSD_x_ERR_L float64
float64

(mag)® (d)
(mag)” (d)
CARMA PSD_x_ERR_U

“Similar to Table 1, all columns with names containing an ‘x’ are three separate columns, where x is replaced with gri,
corresponding to values in each of the three bands.

bThere are four different types of ensembles described in this table in general: the total sample, the samples split by
TDRW, rest> and the samples split in a grid by bolometric luminosity and redshift. The total subsample is labelled ‘Total’,
the three samples split by Tprw, rest are labeled ‘Tau{i}’ (where i = 1, 2, 3), and the five samples split by luminosity and

redshift are labelled ‘Lz_grid{ij}" (where i, j = 1, 2, 3 represents their placement on the grid).

The median values of Tprw, rest and SFy, for S82 quasars with our
final baselines are ~750 d and 0.25 mag in g band.

Fig. 7 compares the 7prw, obs Values measured with different base-
lines. Similar to the results shown in Fig. 6, the best-fitting 7 prw, obs
continues to increase as the baseline increases. With longer baselines
and more epochs, the constraints on tprw are somewhat tighter, as
demonstrated by the lower scatter of points with the SDSS+PS1
and SDSS+PS1+DES+DECam data than with the SDSS-only data
in Fig. 7. However, the formal measurement uncertainties on Tprw
are only reduced by ~ 10 per cent on average from the SDSS-only
measurements to the SDSS+PS14+DES+DECam measurements. It
is possible that the formal measurement uncertainties underestimated
the true uncertainties on Tpgrw in these studies.

Koztowski (2017) emphasized the importance of the length of the
light curve in constraining the DRW damping time-scale. The best-

MNRAS 514, 164-184 (2022)

fitting Tprw could be significantly underestimated if the light curve
is not long enough, as independently confirmed in other studies with
simulated light curves (e.g. Burke et al. 2021; Suberlak et al. 2021).
The fact that the average tprw continues to rise as the baseline
increases indicates that even the 20-yr baseline is probably not long
enough to well constrain Tpgrw in some S82 quasars. On the other
hand, the increasing tTprw as the baseline increases may be due
to gradual, long-term trends in the quasar light curve (see further
discussion in Appendix A2), or it is possible that these quasar light
curves are more complex than a simple DRW process with only one
characteristic time-scale.

Nevertheless, simulations with mock light curves have shown that
the systematic bias in Tprw is not significant, albeit with elevated
scatter, when the measured Tprw is less than 20 per cent of the
baseline (e.g. Koztowski 2017; Burke et al. 2021; Suberlak et al.
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Figure 9. Ensemble structure functions for different ensembles of the 190 quasars in our sample, grouped by their fitted Tprw, rest- The objects are grouped
such that there are an equal number of quasars in each ensemble, resulting in uneven bin widths in TpRrw, rest. The ensemble structure function for the full sample
is overlayed in red, while the structure functions for the individual subsamples are plotted in black. The predicted structure functions using the fitted SF, and
Tprw are plotted in grey. To obtain this DRW prediction, we sample 500 predicted DRW structure functions from each target in the ensemble, drawn from a
Gaussian distribution using its best-fitting DRW parameters and their uncertainties. We then combine the samples for all targets and use the median value in
each At bin (shown as the grey line) as the DRW-predicted structure function, and the 16th and 84th in each At bin (coloured in a grey band around the median)

to construct the errors in the DRW prediction.

2021). For example, around the 20 per cent baseline mark, the bias
in the median of the measured tprw is only ~0.12—0.15 dex from
the simulations in the above studies, which is much smaller than the
scatter of individual tprw measurements. Indeed, when we compare
our best-fitting DRW model to the ensemble SF and PSD measure-
ments in Sections 3.2 and 3.3, we find that these DRW fits and the
associated damping time-scales are qualitatively correct on average.

Next, we investigate the wavelength dependence of Tprw using
our measurements. To reduce the impact of poorly constrained 7prw
values from insufficient baselines, we only use a subset of 27 quasars
with measured tprw less than 20 per cent of the baseline, for
which we consider the constraint on the damping time-scale is more
reliable. Using a more stringent cut on the baseline criterion would
be unnecessary, and would greatly reduce our sample statistics. Fig. 8
(left) displays the wavelength dependences of Tprw and SF.,. We
find a weak wavelength dependence of TpgyocA®!*020 which is
slightly steeper than (but formally consistent within 2¢') the one
reported in MacLeod et al. (2010) based on the much shorter SDSS-
only light curves TprwocA®!”. On the other hand, we recover a
weak anticorrelation between SF,, and wavelength, but our dynamic
range in wavelength is more limited than that in MacLeod et al.
(2012), given that we only use data in gri bands. These constraints
on wavelength dependences are weak given the small number of
quasars that pass the baseline criterion. If we use the full sample of
190 quasars instead, we find slightly different, but fully consistent
results (the right-hand panel of Fig. 8).

3.2 Structure function analysis

The structure function measures the magnitude difference for pairs
of epochs separated at different time-scales, and is a simple and
useful empirical tool to characterize the variability of quasars (e.g.
Collier & Peterson 2001; Koztowski 2016b). Unlike the DRW model,
the SF measurements are model-independent, and provide empirical
constraints on variability amplitude as a function of time-scales.
However, unlike the DRW and higher order CARMA modelling, the
SF approach does not rigorously deal with the flux uncertainties of
each epoch, and unequal flux uncertainties for long-term pairs from

different surveys may complicate the SF calculation. We therefore
only use these SF measurements to provide a qualitative comparison
with the more rigorous DRW and CARMA PSD fits.

For the SF analysis and the PSD analysis in Section 3.3, we will
focus the discussion on the results using g-band data as we did not
find significantly new information based on the - and i-band data.
However, all the individual and ensemble SF and PSD measurements
for the three bands are compiled in Tables 1 and 2.

We measure the SF for individual quasars in our sample as well as
for the ensemble average. We have followed Koztowski (2016b) to
calculate the SF after subtracting photometric uncertainties (e.g. from
flux uncertainties and additional systematics from host galaxy light
and seeing variations) using close pairs separated by less than ~10 d
in rest frame. Figs 9 and 10 display the ensemble SF for different
subsamples, where the full sample is divided into subsamples with
approximately the same number of objects in each division (either
by Tprw O by ngI/Z)~

Fig. 9 compares the ensemble SF with the median DRW model for
subsets of quasars binned by the measured tprw. The SF does show
a flattening roughly around the location of 7prw measured from the
DRW fits, indicating the presence of such a damping time-scale on
the order of hundreds of days.

We also recover the well-known dependences of variability am-
plitude on wavelength and luminosity of quasars using ensemble SF
measurements (data required to generate these plots are provided in
Table 2).

3.3 Power spectrum density analysis

We measure the optical variability PSD using our sample and light-
curve data set. Because our light curves are irregularly sampled
with large seasonal gaps, it is challenging to directly measure the
PSD using the Fourier method, which suffers from aliasing and
power leakage from windowing effects. Instead, we take advantage
of the recent development of fitting Gaussian random process models
to time-series data and recovering the PSD (Kelly et al. 2014).
Such an alternative approach is more robust in measuring the PSD
with sparsely and irregularly sampled light-curve data (e.g. Kelly
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Figure 10. Ensemble g-band structure functions for different subsets of the full sample, grouped by their bolometric luminosity and redshift. Similar to Fig. 9,
we group these objects such that there is nearly an equal amount of objects in each bin. The quasars with the highest luminosities are spread over a large redshift
range, which is split into three redshift bins to retain an equal number of quasars in each bin. This process was followed for the second and third luminosity bins,
leaving only one redshift bin for the lowest luminosity bin. As a result, the redshift ranges are different for different luminosity bins. Each subsample contains
~30 objects. The redshift ranges are listed above each subsample, and the Ly, ranges are shown on the leftmost axis, being [45.09,45.71], [45.71,46.18],
and [46.18, 47.04]. Each subsample in a given row has the same range of L. We have subtracted an ‘SF floor’ seen in time lags below ~10 d, to remove
contamination from PSF variations and host-galaxy flux (discussed further in Appendix Al). The ensemble SF for the full sample and the DRW-prediction for
each subsample are also shown for reference. We constructed the ensemble DRW-predicted structure functions in the same manner as those presented in Fig. 9.

et al. 2014; Simm et al. 2016), and properly deals with uneven
measurement uncertainties in the light curve.

Specifically, we use the CARMA _pack developed by Kelly et al.
(2014) to find the best-fitting CARMA(p,q) model to the light curve
and derive the PSD, where (p,q) are the numbers of autoregression
(AR) and moving average (MA) terms, respectively. The technical
details of CARMA fits are described in Appendix A3. We show
an example of PSD analysis in Fig. 11, and all the individual and
ensemble PSDs are provided in the FITS catalogues described in
Tables 1 and 2.

MNRAS 514, 164-184 (2022)

We show the distributions of the best-fitting values of p and ¢
in Fig. 12. There is a tendency of clustering near p &~ 4 and g ~
1—2, which may indicate the general similarity of quasar variability
PSDs. However, we found that a forced CARMA(2,1) model fit
produces very similar PSDs to the ones from the best-fitting higher
order CARMA models. Indeed, the preference based on the model
selection criterion described in Appendix A3 is not obvious among
the higher order CARMA models; but the preference of a higher
order CARMA model over the DRW model is often significant (e.g.
Kelly et al. 2014). In particular, the CARMA(2,1) model is also
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Figure 11. An example of CARMA model-fit PSDs for our quasar sample.
The CARMA-predicted PSD (discussed further in A3) is shown in blue,
where the median from the posterior is the solid line and the shaded region
encloses the lo uncertainty range. The median noise level derived from
the raw light-curve data (2 xmedian(Af) xmedian(a)%)) is shown as the red
horizontal line. The grey dashed line indicates a o¢f~> PSD. A DRW-fit PSD
for the same example light curve is shown as a black line for comparison,
with the 1o uncertainty range shaded in grey. The CARMA-predicted PSDs
for individual targets are compiled in the FITS catalogue described in Table 1.

known as the damped harmonic oscillator (DHO) model, which is
argued to be a superior statistical description for quasar variability
than the simpler DRW model (e.g. Kasliwal, Vogeley & Richards
2017; Moreno et al. 2019; Yu et al. 2022).

Fig. 13 displays all CARMA PSDs for our sample in the rest-
frame of the quasar (only showing the best-fitting model), colour-
coded by different properties. While these individual PSDs overlap

Optical photometric variability of quasars 173

considerably given their measurement uncertainties, there are trends
of the PSD amplitude and shape with luminosity and black hole
mass of the quasar. In addition, the CARMA PSD tends to flatten
out sooner at the low-frequency end for light curves with shorter
Tprw, suggesting that the DRW fits are reasonable in constraining
the long-term damping time-scale.

Fig. 14 shows the ensemble CARMA PSD for the full sample in the
three bands. The ensemble PSDs are tightly constrained over days to
decade time-scales, and show a clear wavelength dependence. Figs 15
and 16 display the ensemble PSDs for the same subsets of quasars
used in our SF analysis. When divided by the best-fitting Tprw, the
ensemble PSD agrees with the average DRW model in the subsample
reasonably well, suggesting the DRW model provides a reasonable
description of the underlying PSD. However, the more flexible
CARMA model reveals a sharper decline in the variability power
below time-scales of a few weeks than the f~> power-law, consistent
with earlier findings with other light-curve samples (e.g. Mushotzky
etal. 2011; Zu et al. 2013). In Appendix A5, we demonstrate that this
PSD steepening at the highest frequencies is not due to the usage of a
more flexible CARMA model or selection effects of our data, using
simulated light curves. Similar to the SF analysis, the ensemble PSD
shows dependences with wavelength and luminosity of the quasar,
as shown in Figs 14 and 16.

4 DISCUSSION

4.1 The wavelength dependence of Tprw

We find that the DRW damping time-scale only weakly depends
on wavelength, consistent with earlier studies with shorter light
curves. This weak wavelength dependence of the damping time-
scale is difficult to interpret: if Tprw tracks the local time-scale of
the accretion disc, e.g. the thermal time-scale, then we expect a
stronger wavelength dependence of this time-scale because the local
thermal time-scale scales with the emitting wavelength as T ocA? in the
standard «-disc model (Shakura & Sunyaev 1973). One possibility,
as suggested by Burke et al. (2021), is that the observed UV/optical
variability is driven by processes in the inner (UV-emitting) part of
the accretion disc, which rapidly propagates outwards at the Alfvén
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Figure 12. The distribution of best-fitting CARMA (p, ¢) parameters when fitting our quasar light curves to a generalized CARMA model (requiring g < p for
stationary processes). The best-fitting order for the CARMA model for a given quasar light curve was chosen as the fit with the minimum value for the AICc.
The AIC (Akaike Information Criterion, Akaike 1973) is a statistic measuring an estimate of information loss due to assuming a particular model generates a
certain set of data, which can be corrected for a finite sample size to give the AICc (Hurvich & Tsai 1989) (discussed further in A3). Darker colours indicate
higher incidence. There is a tendency of clustering of quasars around (p, ¢) ~ (4, 2).
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Figure 13. Rest-frame CARMA model PSDs (g band) of all quasars
in our parent sample, colour-coded by different attributes of the target:
1og10(TDRW, rest), 10210(Lbo1), and logjo(Mpn). In each panel, the black
horizontal line represents the median noise level of the individual light curves,
and the dashed grey line represents a ocf~> PSD. There are some general
trends visible, e.g. lower PSD amplitudes for higher luminosity quasars, and
faster flattening of the PSD at the low-frequency end for quasars with shorter
damping time-scales in the DRW fits.

speed, during which the characteristic variability time-scale is more
or less preserved. Alternatively, the observed damping time-scale
may be the thermal time-scale averaged over different radii, leading
to a shallower wavelength dependence (e.g. Sun et al. 2020). Further
development of these theoretical ideas, combined with dedicated
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Figure 14. Rest-frame ensemble PSDs for the full sample in gri bands. Each
quasar light curve was fit using CARMA_pack, a code designed to fit time-
series data to CARMA models using the method described in Kelly et al.
(2014), with optimized (p, g) parameters for the CARMA model. For each
PSD, the darker line shows the median value from the ensemble, and the
light-shaded area (nearly negligible at f > 10~ d~!) indicates the nominal
uncertainty of the ensemble PSD.

global radiation MHD simulations (e.g. Jiang et al. 2019) will shed
light on the nature of this long-term characteristic variability damping
time-scale.

4.2 Validity of the DRW prescription

Overall, we find that the DRW model, even though an empirical
prescription, describes the stochastic optical quasar light curves
reasonably well over rest-frame time-scales from a few months to
a few years. The qualitative agreement between the DRW model
and SF/PSD measurements suggests that the long-term characteristic
variability time-scale captured by the DRW model is reliable on
average. Indeed, Burke et al. (2021) tested DRW fits to non-DRW
light curves with a characteristic long-term turnover time-scale in
the PSD and found that the best-fitting tprw correctly recovers this
time-scale.

However, the length of the light curve will affect the constraints
on Tprw in a DRW fit (Koztowski 2017). With our 20-yr baseline,
we find that the median Tprw, rest for S82 quasars is ~ 750 d in the
g band, longer than the median g-band Tprw, rest Of 450 and 470 d
if we use the shorter SDSS-only or SDSS+PS1 light curves. For
comparison, MacLeod et al. (2010) and Suberlak et al. (2021) report
amedian 7-band Tprw, rest 0f 570 d using SDSS-only light curves. For
r band and using the SDSS-only light curves, we measure a median
TprW, rest Of ~540 d, consistent with these earlier studies. Details in
the adopted ‘best-fitting’” DRW parameters and the Markov chain
Monte Carlo (MCMC) convergence criterion in the fitting do not
seem to impact our results much (see Section A4). It is unclear if
this is because some quasars have much longer intrinsic Tprw than
what can be realistically constrained by our current light curves,
or because the light curve cannot be described by a single DRW
process. For example, if the quasar light curve contains a long-term
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Figure 15. Ensemble CARMA PSDs for subsamples divided by their best-fitting tprw from Section 3.1. The first three panels show these ensemble PSDs
corresponding to each subsample, whose Tprw ranges are shown above each panel. The DRW-predicted ensemble PSDs are shown in the purple-shaded area for
each ensemble. The ensemble DRW-predicted PSDs are constructed in the same manner as the ensemble DRW-predicted structure functions, shown in Fig. 9.
The rightmost panel shows the PSDs of all three ensembles superimposed on the ensemble PSD for the full sample (shown in black). The two grey dashed lines

in each panel correspond to £~ and f~* power laws.

gradual trend in addition to a DRW process, the best-fitting T prw will
increase as the baseline increases (Appendix A2). It is possible that
the accretion state of the quasar is gradually changing over multiyear
time-scales (e.g. Caplar et al. 2020), leading to long-term trends in
the light curve and biasing the DRW fit that assumes stationarity.
Continued monitoring of these quasars in our dedicated DECam
programme will address this question with even more extended light
curves.

On time-scales shorter than ~ a month, however, the slope of
the PSD is noticeably steeper than —2. In Appendix AS, we use
simulated DRW light curves matched to the observed cadences and
S/N of our sample to test if a more flexible CARMA fit would lead
to an artificially steeper high-frequency-end slope. We find that the
resulting CARMA PSD has a high-frequency-end slope of —2, which
confirms that the steeper PSD slope observed in our sample is real.
While the exact asymptotic slope of the PSD is likely impacted by the
CARMA model restrictions, the locations of the slope transitions are
largely determined by the data. There is evidence (e.g. Fig. 15) that
this short time-scale cut-off of power is positively correlated with the
long-term damping time-scale. To further illustrate this point, we fita
doubly-broken power-law model to the three ensemble PSDs divided
by the measured 7 prw, rest in Fig. 15: Pocl/[1 + (fify)* + (fIf1)*]. This
PSD model fits the three ensemble PSDs reasonably well over years
to days time-scales, as shown in Fig. 17. The two break time-scales,
79 = 1/2xfy) and v, = 1/(27f;), indeed vary in concordance in the
three ensembles.

While our sample is small and the dynamic range in black hole
mass or quasar luminosity is limited, there is also some tentative
evidence that this high-frequency-end break occurs at shorter time-
scales for lower-luminosity (and less massive) quasars (Fig. 16). This
point is further illustrated in Fig. 18, where we compare the ensemble
PSDs for subsamples divided by black hole mass. If we assume
both break time-scales with black hole mass as M3 (Burke et al.
2021), we expect much shorter high-frequency break time-scales
in low-redshift Seyferts (Mpy ~ 10’ M) than in SDSS quasars
(Mgy ~ 10° My). This may explain the much shorter (a few days)
cut-off time-scales found for low-redshift, low-luminosity AGNs that
are two orders of magnitude less massive than SDSS quasars (e.g.
Mushotzky et al. 2011).

The physical origin of the suppression of variability power on
time-scales shorter than ~1 month is unclear. It could be due to the
intrinsic shape of the variability PSD, e.g. resulting from the break in
the driving variability PSD and/or damping processes in the accretion
disc (e.g. Sun et al. 2020). An alternative explanation, as pointed out
by, e.g., Tachibana et al. (2020) is due to an averaging effect. Even
if the flux of the accretion disc varies coherently, emission from
different parts of the disc or from more spatially extended regions
(e.g. an extended diffuse continuum emission region or the broad-
line region) will arrive at different times. The observed variable flux
is then the convolution of the intrinsic variability pattern with the
transfer function describing the time delays from different locations.
Tachibana et al. (2020) showed that, with a likely transfer function
form (a semi-circle with a characteristic time-scale of a month),
the short-time variability power will be reduced due to averaging,
producing a PSD slope close to —4 beyond this characteristic
frequency. In general, such transfer functions would reduce the high-
frequency power, leading to a steeper high-frequency end slope in the
observed PSD. In both the intrinsic PSD scenario and the ‘smearing’
scenario, it is possible that the characteristic time-scale of this second
high-frequency-end break, which reflects some characteristic size of
the emission region, depends on the physical properties of the quasar,
such as the black hole mass (Sun et al. 2020; Tachibana et al. 2020),
in a similar way as the long-term damping time-scale Tprw.

5 CONCLUSIONS

Given the simplicity of the DRW model and its reasonable success
to fit quasar light curves, it has become increasingly popular to
use the DRW prescription to describe stochastic quasar variability.
However, the validity of the DRW prescription has to be tested with
high-quality light-curve data that are well sampled, have sufficient
baselines and adequate S/N. Some recent light-curve samples already
have sufficient quality to reveal evidence for deviations from the
DRW prescription either for individual objects or for large quasar
samples (e.g. Mushotzky et al. 2011; Zu et al. 2013; Kasliwal et al.
2015; Caplar et al. 2017; Yu et al. 2022).

In this work, we have measured the optical continuum variability of
a sample of 190 quasars from the SDSS Stripe 82 region. Our quasar
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Figure 16. Similar to Fig. 9, we group the full sample by Ly and redshift and create ensemble PSDs. For each panel, the ensemble PSD is shown in blue,
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luminosity range (this is not true for the same column with slightly different redshift ranges). The artificial turnover of power at the lowest frequencies is caused

by the limited number of objects (~10) with the proper temporal coverage.

sample has been photometrically monitored in the SDSS, PS1, DES
surveys, as well as our continued monitoring with DECam. The light
curves of our sample span a baseline of ~20 yr with ~200 epochs in
each of the gri bands. We fit these light curves with the DRW model,
and measured the structure function and power spectrum density
using the CARMA models. The main findings from our work are the
following:

(1) The best-fitting DRW parameters (tprw and SF,,) continue
to rise with our light-curve data, compared with earlier studies with
shorter (e.g. 10-yr and 15-yr) baselines from SDSS-only (MacLeod
etal. 2010) and SDSS+PS1 (Suberlak et al. 2021). The average rest-

MNRAS 514, 164-184 (2022)

frame tprw ~ 750d in g band for S82 quasars with our 20-yr light
curves.

(i1) While the tprw measurements for many S82 quasars are
still not well constrained with the 20-yr light curves, we believe
that the bias from insufficient baselines is reduced compared with
earlier studies based on shorter baselines, if the underlying variability
process is indeed a single DRW. However, we caution that realistic
quasar light curves may be more complicated than a single DRW
process, e.g. multiple variability processes with different character-
istic time-scales and/or non-stationary variability processes could be
at work. In such cases, the results from a single DRW fit will depend
on the baseline. More extended light curves are required to test this
possibility.
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Figure 18. Ensemble PSDs for subsamples divided by the median virial
black hole mass in the parent sample. While the dynamic range in black hole
mass is limited in our sample, there is some evidence that the short-term break
time-scale is longer for the high-mass subsample. The mass dependence for
the long-term (DRW) break time-scale is less obvious, which would require
a larger dynamic range in black hole mass (e.g. Burke et al. 2021).

(ii1) Using a subset of 27 quasars for which we have relatively
better constrained tprw in the g, r, and i bands, we confirm a weak
wavelength dependence of Tpryo\ 3! 020 (7ppw o034+ 010 for
the full sample). This wavelength dependence is slightly stronger than
previous results Tprw A% based on 10-yr light curves (MacLeod
etal. 2010), although these results are formally consistent within 2.

(iv) We also measured the optical SF and PSD of our quasar
sample. The baseline and sampling of our light curves enabled
reliable constraints of the ensemble PSD over days to decades
time-scales. Comparisons between the ensemble SF and PSD with
predictions from the best-fitting DRW models suggest that the
DRW prescription provides a reasonably good description of the
variability properties of quasars over months to years time-scales.

But the average PSD slope on time-scales shorter than ~ a month
is noticeably steeper than the DRW model, consistent with earlier
findings (e.g. Mushotzky etal. 2011; Zu et al. 2013). There is tentative
evidence that this high-frequency cut-off time-scale correlates with
the low-frequency damping time-scale 7 prw; hence, both time-scales
may have similar dependences on physical properties of the quasar
(e.g. Burke et al. 2021).

We continue to monitor our quasar sample during 2020-2024
as part of our ongoing effort to photometrically monitor deep ex-
tragalactic fields with ample multiwavelength and time-domain data.
With another ~5 yr extension of the baseline and seamlessly merging
with light curves from the Vera C. Rubin Observatory Legacy Survey
of Space and Time (Ivezi¢ et al. 2019), this quasar sample will
become a prime sample to study quasar optical continuum variability.
Such studies will further test the applicability of the DRW model and
the stationarity of the stochastic variability process, as well as provide
insights on the physical origin of quasar variability.
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APPENDIX A: LIGHT-CURVE ANALYSIS

A1 Structure function

One of the more traditional ways of modelling the variability of
quasars is through structure function analysis. This method describes
the change in magnitude as a function of time lag Ar between
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two observations. Since the SF calculation is model independent, it
provides an empirical view of quasar variability with no underlying
assumptions. The most basic way to define the structure function is
the root-mean-square magnitude difference for a given grid of time
lags.

However, without accounting for the flux measurement uncer-
tainties, structure function measurements at small A¢ will level
off to a certain ‘SF floor’. Therefore, using the method described
by Koztowski (2017), we subtract the measurement errors of both
observations in the pair in quadrature:

1

SEAN = |
At

S (Gi—yp—ot—0?). (A1)

i<j

where o; and o; are the measurement errors in observations y; and
yj» respectively.

The structure function is related to the autocorrelation function
(ACF) of the light curve. Assuming that the variability of the source
is stationary, we can use the covariance of two signals to compute
the structure function:

SF(Af) = 1/262(1 — ACF(AD)) | (A2)

where o is the variability amplitude intrinsic to the source. Taking
the limit as At — oo, we obtain

SF(At) = SF..y/1 — ACF(A7) , (A3)

where SF2, = 202 is the value of the structure function as At —
oo. Assuming the variability is stationary (meaning the mean value
of the light curve does not change), the difference between signals
at large time lags will approach a constant value proportional to the
intrinsic variability amplitude (white noise). The structure function
will also flatten to white noise at very short time lags, where the
change in magnitude is on the order of the measurement uncertainty.

We utilize equation (A1) to make all of our structure function
measurements, where time lags are shifted to the rest-frame of the
quasar. We also make ensemble structure function measurements for
various subsamples of our 190 quasar data set. To derive ensemble
structure functions from individual objects, we bin the structure
functions of each individual object into the same Ar grid. We then
take the median of each bin to be the ensemble measurement for
that time lag, and use the uncertainty on the median (the standard
deviation of the samples in each bin, divided by /N the number of
samples in the bin) to represent the uncertainty in that measurement.
We create these ensemble structure functions for the total sample,
three subsamples grouped by their fitted Tprw, and six subsamples
grouped by their bolometric luminosity and redshift.

For g-band measurements, through visual inspection, we observed
that the structure function began to rise near time lags of 10 d.
However, when measuring these ensemble structure functions, we
noticed that they started to flatten at time lags less than days to
weeks in the quasar rest frame. This proved to be more prevalent for
structure functions in the r and i bands, where the structure function
would be almost constant until Aty ~5-10 d and then jump. We
attribute this flattening to PSF seeing variations on short time-scales,
measurement uncertainties, as well as host galaxy contamination. To
minimize the effect of this flattening, we perform linear regression (in
log-space) on this floor using the method of Kelly (2007) and subtract
the best-fitting line from the full ensemble structure function. This
floor stopped at different time lags for each band, [5, 20, 40] d for gri
measurements respectively, which we use to set the linear regression
range.
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For each ensemble structure function, excluding for the total
sample, we also overlay the DRW model prediction for comparison.
The DRW-predicted structure functions are also ensembles, using
the predicted tTprw and oprw and equation (A6). These ensemble
DRW-predicted structure functions are obtained in a similar manner
to the ensemble structure functions themselves: we create structure
functions for each target in the ensemble using the best-fitting DRW
parameters, then we bin the structure functions on to a common
At grid. We then take the median of each bin to get an ensemble
DRW-predicted structure function.

A2 The DRW model

The DRW model, also known as the Ornstein-Uhlenbleck process,
is a statistical model used to describe the stochastic variability
from the accretion disc emission of quasars. This Gaussian process
is the simplest model of a family of Gaussian processes known
as continuous autoregressive moving-average (CARMA) models.
General CARMA models, discussed in Section A3, specify that the
output of the model is linear in the current and past terms in the time-
series. This is seen in the DRW model (a CARMA(1,0) model), as
it has a term that pushes large deviations from the mean of the time-
series back towards the mean. It is useful to model light curves with
the DRW model as it has parameters that can potentially connect to
physical parameters of the quasar, and it can be modelled directly in
the time domain instead of the frequency domain. Quasar variability
studies in the frequency domain are subject to windowing effects, as
large gaps in the data can lead to power leakage and aliases. Using
a DRW model (or any CARMA model) can mediate these adverse
effects.

All Gaussian processes require a covariance matrix (also known
as a kernel), governing the relationship between two points in a time
series. In the case of a DRW process, the covariance matrix is

k(tum) = Opray EXP(—tum /TORW) » (A4)

where t,,, = |t, — t,| and t,, t,, are times within the time series.
o is the long-term standard deviation of variability, and t defines a
characteristic time-scale where the PSD of this process breaks. We
can relate this model to the structure function and the PSD in the
following way:

SF?(Af) = 2075y (1 — e !411/mrv) (AS)

403 Rw TORW
14 Qmrfrprw)?

where P(f) is the PSD as a function of frequency f. By comparing
equations (A5) and (A1), we have SF~ = 202,y and ACF(Af) =
exp (— | At|/Tprw). This PSD follows white noise at low frequencies
(o¢f%), and transitions to a f~2 PSD at higher frequencies below the
characteristic time-scale Tprw.

In this study, we model our quasar light curves using the fast
Gaussian process solver Celerite (Foreman-Mackey et al. 2017),
which uses Gaussian process regression to fit the time series to a
specified kernel. Given a number of terms in the kernel, and a method
to maximize, Celerite can fitatime series to derive the best-fitting
parameters to said kernel. In our case, we utilize a DRW kernel
(specified in equation A4), as well as a term to characterize the effect
of a white noise floor from unknown systematic flux errors (o ,,), also
called jitter. We use uniform priors on all parameters within the input
Celeritekernel (inlog-space), and allow Celerite to minimize
the log-likelihood in parameter-space to obtain a set of parameters to

P(f)= (A6)
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Figure Al. Recovered damping time-scales for simulated non-stationary
DRW light curves with input tprw = 100 d plus a linear trend of 0.0365 mag
yr~! at varying baselines.

fitthe light curve. We then use the MCMC sampler emcee (Foreman-
Mackey et al. 2013) implemented in Python to draw from the joint
posterior probability distribution output from Celerite. The final
parameters compiled in the FITS table described in Table 1 are
the median samples from these MCMC samples. The upper and
lower errors for these parameters are obtained from the 16" and 84"
percentiles of the samples. One example Celerite fit is shown in
Fig. 5.

However, there are potentially additional features in the light curve
that can skew the results of the DRW fit. Here, we investigate the
effects of a long-term trend in the light curve on the recovery of
TDRW, obs USiNg Celerite and simulated data. We input simulated
DRW light curves with input Tprw,obs = 100 d, but add a long-
term linear trend (non-stationarity) to the light curve, in this case
of 1 x 107" mag per day. We generate mock light curves using
this hybrid model with different baselines, and use Celerite to
extract a Tprw, obs from the simulated light curve. The results (shown
in Fig. Al), show that as the baseline of the non-stationary light
curve increases, the extracted Tprw, obs increases as well. In this test,
the input Tprw, obs 1S 100 d, and is reasonably recovered for short
baselines (less than ~10 yr). However, as the baseline increases, the
linear long-term trend starts to skew the recovery of Tprw, obs towards
longer and longer damping time-scales.

A3 PSD analysis with CARMA models

While many studies have shown that the DRW model can describe
quasar light-curve variability to a reasonable degree, we understand
that it is not the only model available. It has been shown that stochasic
processes generated from non-DRW models can be modelled with
DRW (Koztowski 2016a), albeit with biased DRW parameters.
Therefore, to get a true sense of the PSD of quasar light curves and the
stochastic processes occurring within their accretion discs, we utilize
the more general CARMA model to obtain PSD measurements.
Whereas DRW-modelled PSDs are restricted to having a white noise
at low frequencies and a f~> PSD at higher frequencies (with a
characteristic break time-scale in between them), CARMA-predicted
PSDs are not restricted to such a shape.
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The PSD of a CARMA model is described in the following
manner:

L1 2200 BiRmif)
| 32k o Qi f)f >

where o is the variance of the modelled white noise process, «; are
the autoregressive parameters of the model, and S, are the moving-
average parameters of the model. The order of the CARMA model
is defined by the p and ¢ parameters, which define the number of
autoregressive and moving-average components, respectively. The
requirement that CARMA processes are stationary also requires that
q < p. By convention, we set 8¢ = 1 and o, = 1. When setting p =
1 and ¢ = 0, we recover the DRW PSD, as well as the covariance
matrix, where Tprw = 1/a¢ and oprw = 0 /Tprw/2.

While we have used Celerite to fit the quasar light curves to the
DRW model, we now opt to utilize the widely used CARMA pack
code (Kelly et al. 2014) to fit our light curves to a generalized
CARMA(p.q) model. While the covariance matrix for the DRW
model is somewhat simple, it becomes increasingly complex as the
order of the CARMA model is increased, and therefore increasingly
more complex to implement into Celerite. The generality of
the kernel terms available in Celerite allows the implementation
of a large variety in the kernels that can be used, but formulat-
ing the CARMA PSD in terms of Celerite’s kernel terms is
highly involved. CARMA pack also includes the functionality of
choosing an optimal (p, ¢) of the model used to fit the time
series.

We perform the CARMA modelling using time series in the rest-
frame of each quasar. To model our light cures to a generalized
CARMA model with CARMA pack, we obtain the optimal (p, g)
of the model. CARMA pack does this by finding the maximum
likelihood estimate of the CARMA models produced from a user-
input grid of (p, g) values. We choose to search a parameter space
where 1 < p <7 and all ¢ < p. After using 100 different optimizers
initialized to random values for the CARMA parameters for a given
model, the maximum likelihood estimate is chosen as the best-
fitting parameters for that model. This is process is performed for a
specified region in parameter space of p and g, after which the code
picks the (p, g) combination which minimizes the corrected Akaike
Information Criterion (AICc; Akaike 1973) provided by Hurvich &
Tsai (1989). After choosing the optimal CARMA model for a given
object, we use CARMA pack to derive the maximum likelihood
posterior distribution for all of the CARMA parameters. We then
use CARMA _pack’s MCMC implementation to sample the CARMA
parameters, given the order of the model. After testing the effect
of the number of iterations of the MCMC on the convergence of
fitted parameters (discussed in Section A4), we found the results are
well convergent for 60 000 iterations and 30 000 burn-in samples.
After running the MCMC sampler, CARMA _pack will then output
samples for all of the CARMA parameters using the posterior
distribution of the object’s fitted CARMA model. We can then use
CARMA _pack to sample the PSD of the light curve given the fitted
CARMA model, where we opt to use 10 000 samples. Similar to
our structure function analysis, we use the median value of the
CARMA parameters and PSD as the best-fitting value, and the 16th
and 84th percentiles of the samples to obtain the uncertainties in
the values.

In a similar manner to Simm et al. (2016), we define a median
noise level, 2 x median(Af) x median(crvz), for each PSD to define
where the PSD is credible. In this expression, At is a list of time lags
in a given time-series, and o, is the measurement uncertainty in the
light-curve fluxes.

P(f)=o (A7)
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Figure A2. Convergence of fitted DRW parameters for an example quasar
light curve, using a CARMA(1,0) model in CARMA_pack, as a function of
the number of samples generated by the MCMC sampler. In this study, we opt
to use Ngamp = 60, 000, well within the range where both of these parameters
cease to vary significantly.

A4 Sampling methods

One significant step in generating DRW and CARMA parameters
for each light curve is the generation of samples from the posterior
probability distribution through the use of MCMC sampling. In
Celerite, this is done using the popular PYTHON-based MCMC
sampler EMCEE, while the sampling in CARMA _pack is done through
a custom, C++ MCMC sampler. One important parameter of
sampling is the number of burn-in samples and actual samples to
use for a given data set. The burn-in samples for an MCMC sampler
help to initialize the sampler to the data and allow it to converge
properly. The number of actual samples for an MCMC sampler
affects how well the posterior probability distribution for a parameter
is sampled. For Celerite DRW fits, we opt to use 500 burn-in
samples and 2000 actual samples, which we found to be the optimal
values through trial and error. For the CARMA _pack fits, we adjust
the number of burn-in samples relative to the total samples as well as
the number of total samples to see where the results from the sample
would converge and have low fluctuations. In Fig. A2, we show the
evolution of the two DRW parameters over iterations of the sampler
when fitting one of our quasar light curves to a CARMA(1,0) model
in CARMA _pack. We can see that there are large fluctuations in the
sampled value in the early iterations, but the value converges to a
set value after ~50 000 iterations of the sampler. In Fig. A3, we
show the evolution of the sampled parameter values for these DRW
parameters, for the same quasar, as the number of burn-in samples
increases for a fixed total number of samples of 100 000 (which we
have seen has a converged parameter value). This shows that the
uncertainty of the value produced with a relatively low number of
burn-in samples is high, but decreases to a nearly constant value at
~2,000 burn-in samples (.02 Nyyrm in/ Nsamp)- The default value for the
number of burn-in samples is half the total number of samples, which
adequately allows for the initialization of the sampler. Therefore, we
opt to use 60 000 samples and 30 000 burn-in samples for each
CARMA _pack fit.
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Figure A3. DRW parameters recovered from a DRW fit to an example quasar
light curve, using a CARMA(1,0) model in CARMA _pack, as the number of
burn-in samples for the MCMC sampler increases. We choose Nyamp = 10°,
as Fig. A2 showed that for this number of iterations, both parameters have
already converged. We opt to use the default number of burn-in samples
that CARMA _pack chooses (0.5Ngamp) for which the output parameters have
already converged.
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Figure A4. The ensemble PSD from mock DRW light curves generated
using the best-fitting DRW parameters from the real quasar light curves in
Section 3.1. The expected DRW ensemble (median) PSD is shown in the black
solid line with 1o uncertainties highlighted in grey. The blue line shows the
ensemble (median) PSD from generalized CARMA fits with CARMA_pack.
The generalized CARMA fits correctly recover the DRW PSD, with no
evidence for slope steepening at the highest frequencies sampled here.

AS Fitting simulated DRW light curves

Here, we test if simulated DRW light curves with the same sampling
and S/N as our real data would produce a steep high-frequency slope
in the CARMA PSD. First, we generate mock g-band DRW light
curves for all quasars in our sample using the best-fitting 7prw;, obs

MNRAS 514, 164-184 (2022)

and oprw in Section 3.1. These mock light curves are sampled at
the same times and with the same S/N as the real light curves in our
sample.

Next, we use CARMA _pack to fit these mock DRW light curves
with a generalized CARMA model following the same procedures
described in Appendix A3. We then extract a PSD from each mock
light curve from the best-fitting CARMA model, and construct
an ensemble PSD. The results are shown in Fig. A4, where we
compare the PSDs from the expected DRW model and recovered by
CARMA _pack. We find that CARMA _pack successfully recovers a
DRW PSD for these simulated light curves, as expected. This test
confirms that the steep high-frequency-end PSD slope seen in real
data is not due to effects of light-curve cadence and S/N or the use
of a more flexible CARMA model to fit the light curves.

We also use these simulated DRW light curves to investigate
different choices of the best-fitting parameters in Celerite or
CARMA _pack. In this work, we opt to use the median of the posterior
distribution of samples as the fiducial best-fitting parameters for all
DRW and general CARMA model fits. Other works may use different
choices for their best-fitting parameters [such as the maximum-a-
posteriori (MAP; MacLeod et al. 2010) or the expectation value of
the marginalized posterior (Suberlak et al. 2021)]. Here, we discuss
the differences in these choices of the best-fitting parameters.

When modelling our quasar light curves with Celerite or
CARMA _pack, we are given a number of samples for each parameter,
output by a certain MCMC algorithm. The posterior probability
distribution is simply the normalized distribution of the output
parameters themselves. Using the median of the posterior is less
susceptible to large fluctuations in the probability due to insufficient
sampling of the distribution. The MAP, however, can prove to be
unreliable, as it can be easily influenced by these fluctuations.
The marginalized posterior utilizes the joint-posterior distribution of
multiple parameters, giving a more robust look into the relationships
between parameters, and taking that into account to choose the best
possible value. The expectation value of this distribution (as opposed
to the MAP or median) can aid if the posterior distribution has
multiple peaks.

We compare different choices, including median posterior, MAP,
and expectation value. Both the MAP and the expectation value of
a parameter’s distribution are obtained by using the marginalized
distribution of each parameter. This is done through the use of the
likelihoods output from the Celerite fitting, for each quasar. One
of the functions implemented in Celerite allows one to obtain a
likelihood for a given set of parameters and data, given the model fit
to a certain set of data. Therefore, for each sample from a given quasar
light-curve fit, we can construct a grid in parameter space, performing
this likelihood calculation for an arbitrary number of points to obtain
an n-dimensional posterior distribution, where n is the number of
parameters. In this case, Celerite fits for both DRW parameters
and a noise term, making this posterior three dimensional. We can
then marginalize over this distribution for each of the parameters,
and obtain a best-fitting parameter for each light curve.

We compare these different choices of best-fitting parameters
in Fig. A5. We obtained these values from fitting our simulated
DRW light curves with a DRW model with Celerite, as well as
CARMA pack (in the latter case, a DRW or CARMA(1,0) model is
enforced). We find that all these choices perform similarly for both
DRW parameters with a similar amount of scatter, when compared
with the input DRW parameters used to construct the simulated
light curves. Overall, oprw is better recovered than Tprw, obs- FOr
long input Tprw, the recovered Tprw is generally biased low due
to an insufficient baseline of the light curve (e.g. Koztowski 2017).
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Figure AS. Comparison of the recovered and input DRW parameters (Tprw, obs» 0 DRW) from our test using simulated DRW light curves. The best-fitting
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TDRW, obs and o prw values are determined using the same sets of posterior samples. The method used to obtain these MAP values and expectation values uses
the marginalized posterior distribution of the samples. The red line in each panel indicates the unity relation.
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Interestingly, the median posterior from the Celerite fit produces
the least overall bias in Tprw for our sample, justifying our choice
of this particular definition of best-fitting DRW parameters in this
work.

Fig. A6 shows the comparison of the three different choices of
the best-fitting DRW parameters, using Celerite for the same
simulated DRW light curves described above. While there are
correlations among these different choices, there are also systematic
offsets among them. For this study, we have chosen the median
posterior as our fiducial best-fitting parameters, given its performance
in recovering the input DRW parameters as demonstrated in Fig. AS.
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