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ABSTRACT. We establish basic geometric and topological properties of Thurston’s Master
Teapot and the Thurston set for superattracting unimodal continuous self-maps of intervals.
In particular, the Master Teapot is connected, contains the unit cylinder, and its intersection
with a set D ⇥ {c} grows monotonically with c. We show that the Thurston set described
above is not equal to the Thurston set for postcritically finite tent maps, and we provide an
arithmetic explanation for why certain gaps appear in plots of finite approximations of the
Thurston set.

1. INTRODUCTION

In his last paper, unfinished at the time of his death, William Thurston studied piecewise-
linear maps of the unit interval [Thu14]. One concept mentioned in this paper is an object
that Thurston, in his 2012 course at Cornell University, affectionately called the Master

Teapot, and which can be defined as follows. A unimodal endomorphism f of a real in-
terval is said to be critically periodic if the critical point is a fixed point of some forward
iterate of f , and is said to be postcritically finite if the forward orbit of the critical point is
a finite set. If f is postcritically finite, it is easy to see that the orbit of the critical point
determines a Markov partition of the interval. The Perron-Frobenius theorem then implies
that the exponential of the topological entropy of f , ehtop(f), is a weak Perron number - i.e.
a real, positive algebraic integer that is not less than the absolute value of any of its Galois
conjugates - which we call the the growth rate of f and denote by �(f). Denote by Fcp the
family of critically periodic unimodal continuous self-maps of compact real intervals. Then
Thurston’s Master Teapot is the set

⌥cp
2 := {(z,�) 2 C⇥ R | � = �(f) for some f 2 Fcp, z is a Galois conjugate of �}.

An application of ⌥cp
2 is that it can be used as a necessary condition for a weak Perron

number to be the growth rate of a critically periodic unimodal map: � being such a number
would imply that for each of its Galois conjugates z, (z,�) 2 ⌥cp

2 . Studying the Master
Teapot may also inform the open question of completely classifying the set of dilatations
of pseudo-Anosov surface diffeomorphisms, which may be thought of as two-dimensional
analogues of uniformly expanding interval self-maps. We call the image of the projection of
the Master Teapot to C the Thurston set; this set, which we discuss later, has been the subject
of several recent works (e.g. [CKW17, Tio20, Tho17]). Another motivation for studying
these sets is that the part of the Thurston set inside the unit disk may be viewed as an
analogue of the Mandelbrot set – while the Mandelbrot set may be defined as the set of
parameters c 2 C such that 0 belongs to the filled Julia set of the polynomial z 7! z2 + c,
the part of the Thurston set inside the unit disk coincides with the set of parameters z 2 D
for which 0 belongs to the limit set of the iterated function system generated by the maps
x 7! zx + 1, x 7! zx � 1. Furthermore, a forthcoming article by the last two authors will
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show that each horizontal slice of the Master Teapot is an analogue of the Mandelbrot set.
This topic is also connected to the theory of “core entropy,” which has been the subject of
numerous recent works (see, e.g. [Tio15, Tio16, GT17, TBG+19]), as the restriction of a real
quadratic polynomial to its Hubbard tree is a unimodal interval self-map.

FIGURE 1. A plot of a finite approximation of the Thurston Master Teapot,
showing all points coming from maps in Fcp with critical period at most
23. The “spout” of the Teapot in the upper right corner is the line {(x, 0, x) :
x 2 [1, 2] ⇢ R3 ' C ⇥ R, although the bottom of the spout is not visible
in this finite approximation. The “handle” of the Teapot in the lower left
corner lies above the negative real axis. The fact that the plot fades out
towards the bottom of the Teapot is due to the finiteness of the approxi-
mation; considering maps with longer critical periods would give rise to
more points near the bottom of the Teapot. The two black circles are the
sets S1 ⇥ {1} and S1 ⇥ {2}, and the color gradients is according to the
height of the points.

Thurston describes the part of the Master Teapot ⌥cp
2 outside the unit cylinder as “a net-

work of very frizzy hairs, . . . sometimes joining and splitting, but always transverse to the
horizontal planes," [Thu14, Figure 7.7] and the part inside the unit cylinder as “confined
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to (and dense in) closed sets that include the unit circle and increases [sic] monotonically
with �" [Thu14, Figure 7.8]. The first phenomenon is well-known (see e.g. proof by Tiozzo
[Tio20, proof of Theorem 1.3]), but Thurston did not provide any further explanation for
the second. A main contribution in our paper is a proof of the second phenomenon, which
is that a point in the unit disc D which is on a horizontal slice of the Master Teapot persists
as the height of the slice increases. 1

Theorem 1 (Persistence). For any point z 2 C in the open unit disk D, if (z,�) is in the Master

Teapot, then every point above it up to height 2 is also in the Master Teapot. In other words,

(z,�) 2 ⌥cp
2 implies {z}⇥ [�, 2] ⇢ ⌥cp

2 .

Two corollaries of this main theorem are the following:

Theorem 2 (Unit Cylinder). The Master Teapot ⌥cp
2 contains the unit cylinder S1 ⇥ [1, 2].

Another equivalent way to state the Unit Cylinder Theorem 2 is that S1⇥{1} is contained
in the Master Teapot, and the Persistence Theorem 1 holds on the closed unit cylinder.

Theorem 3 (Connectedness). The Master Teapot ⌥cp
2 is connected. Furthermore, ⌥cp

2 \ (D⇥ [1, 2])
is path-connected.

We also proved a number of results that are not logically dependent on the main theorem
above and concern other sets related to the Master Teapot. Let the Thurston set, which we
denote ⌦cp

2 , be the projection of Thurston’s Master Teapot onto C:

⌦cp
2 := {z 2 C | � = �(f) for some f 2 Fcp, z is a Galois conjugate of �}.

In other words, the Thurston set ⌦cp
2 is the closure of the set containing all Galois conjugates

of growth rates of unimodal maps which are critically periodic.
A heretofore mysterious feature of plots of finite approximations of the Thurston set,

formed by bounding the length of the postcritical orbits, was the appearance of visible
“gaps” or holes at fourth roots of unity, sixth roots of unity, and certain other algebraic
numbers.

The gaps on the unit circle get filled in as the length of the postcritical orbits approaches
infinity [Tio20, Proposition 6.1]. It is known, however, that ⌦cp

2 \ D does have a hole other
than the large central hole around the origin [CKW17]. The Gap Theorem 4 provides an
arithmetic explanation for these visible gaps in finite approximations of ⌦cp

2 .

Theorem 4 (Gaps). For n 2 N, let !n denote the set of Galois conjugates of growth rates of

unimodal critically periodic maps with postcritical length at most n. Let R be one of the rings

Z[
p
�D] or Z[ 1+

p
�3

2 ] for D = 1, 2, or 5, and set c = inf{|z| : z 2 R, z 6= 0}. Then for any x 2 R,

Br(x)(x) \ !n ⇢ {x},

where

r(x) =

8
<

:
min

n
c

(2n2+3n+1)|x|ne ,
1

n+1

o
if |x| � 1,

min
n

c
(2n2+3n+1)e ,

1
n+1

o
if |x|  1.

1To see this phenomenon in action – that roots inside the unit cylinder persist, and also that roots outside the
unit cylinder move continuously – see our video https://vimeo.com/259921275.

https://vimeo.com/259921275
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Let Fpcf be the family of unimodal postcritically finite self-maps of real intervals. We
define the postcritically finite Thurston set, ⌦pcf

2 , as

⌦pcf
2 := {z 2 C | � = �(f) for some f 2 Fpcf , z is a Galois conjugate of �}.

In other words, the postcritically finite Thurston set ⌦pcf
2 is the closure of the set containing

all Galois conjugates of growth rates of unimodal maps which are postcritically finite.
We proved that:

Theorem 5 (Two Thurston Sets). The Thurston set ⌦cp
2 and the postcritically finite Thurston set

⌦pcf
2 are not equal.

The caption of Thurston’s image [Thu14, Figure 1.1] states that the image shows the roots
of the defining polynomials for "a sample of about 107 postcritically finite quadratic maps

FIGURE 2. An approximation of the Thurston set, ⌦cp
2 , consisting of the

roots of all minimal polynomials associated to postcritically finite tent
maps for which the post-critical period is at most 25
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FIGURE 3. Here is an overlay of finite approximations of the two Thurston
sets: the black image contains points in ⌦cp

2 corresponding to period length
up to 25, and the red image contains points in ⌦pcf

2 corresponding to
preperiod plus period up to 22. The set ⌦pcf

2 is shown on its own in Figure
5.

of the interval with postcritical orbit of length  80." We suspect, based on visual compar-
ison of plots, that Thurston’s image shows only roots of critically periodic tent maps, i.e.
shows ⌦cp

2 and not ⌦pcf
2 (c.f. Figure 3).

At the moment, we do not have a good understanding of the shape of the postcritically
finite Thurston set ⌦pcf

2 and the analogously defined “teapot” ⌥pcf
2 ; for example, we do not

know if they exhibit persistence (as in the Persistence Theorem 1) or connectivity (as in the
Connectedness Theorem 3).

1.1. Perspectives on the Thurston set. Our main tool for the study of ⌦cp
2 , and unimodal

maps on intervals in general, is the Milnor-Thurston kneading theory. The Milnor-Thurston
kneading theory [MT88] (also cf. [Guc79]) provides the connection between general uni-
modal maps, real quadratic maps and subshifts in certain symbolic dynamical systems
via entropy-preserving semi-conjugacies, and connect them to the study of infinite power
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series with prescribed coefficients called kneading determinants. As a result, there are
numerous characterizations of ⌦cp

2 from different points of view, and our results build (di-
rectly or indirectly) on a long history of research in each of these areas.

1. Polynomials and power series with prescribed coefficients An alternative way to describe
the kneading determinant and kneading polynomials, which predates Milnor-Thurston
kneading theory, is �-expansions and Parry polynomials, which were first introduced in
[Par60] for maps of the form x 7! �x mod 1 and later extended to a larger class of piece-
wise linear interval self-maps (e.g. [G0́7, IS09, DMP11, Ste13, LSS16]). Solomyak [Sol94]
used Parry polynomial to study the closure of the Galois conjugates of � such that x 7! �x
mod 1 has finite critical orbit, Thompson [Tho17] used it to study a set that contains the
Thurston set, and the distribution of roots of Parry polynomials was studied in [VG08a,
VG08b]. More generally, there is a large body of literature that investigating the roots of
polynomials and power series with all coefficients in a prescribed set (see, for example,
[OP93, BBBP98, BEK99, Kon99, SS06, BEL08]). The polynomials most closely related to
the Thurston set are perhaps Littlewood, Newman and Borwein polynomials, polynomials
whose coefficients belong to the sets {±1}, {0, 1} and {�1, 0,+1} respectively.

2. Complex dynamics. Since the study of unimodal maps can be reduced to the study
of real quadratic maps, the study of entropies of critically periodic unimodal maps is re-
duced to the study of core entropy on superattracting parameters on the real slice of the
Mandelbrot set. The study of the core entropy on the Mandelbrot set is a rich subject, cf.
[DHL84, Poi09, Li07, MS13, Thu16, Tio16, Tio15].

3. Symbolic dynamics and Iterated function systems (IFS). The kind of symbolic dynamical
systems semiconjugate to a real quadratic map was described in [MT88] via a combinato-
rial “admissibility criteria”. Using this, Tiozzo [Tio20] proved that the Thurston set ⌦cp

2 is
connected, locally connected, and contains a uniform neighborhood of the unit circle. In
particular, [Tio20] shows that a point z with absolute value less than 1 is in the Thuston
set ⌦cp

2 if and only if 0 is in the limit set of the iterated function system generated by the
two maps x 7! zx + 1 and x 7! zx � 1. This and some other related IFS are the focus of
numerous works, including [BH85, Bou88, Bou93, Ban02, SX03, Sol04, Sol05]. In [CKW17],
Calegari, Koch and Walker used this and a related IFS to prove that the Thurston set has a
hole, in addition to the obvious, large hole of radius 1/2 centered at 0.

1.2. Structure of the paper. A major consequence of the Milnor-Thurston theory is that
unimodal maps on intervals are semiconjugate to tent maps with the same entropy. This
tool is essential in our method of proof.

§2: Preliminaries We define the �-itinerary of a point under a tent map, Parry polynomials,
and give the admissibility criterion for itineraries, which are key tools in our arguments.

§3: Quadractic maps, iterated function systems, and renormalization provides back-
ground on Milnor-Thurston kneading theory and reviews the concept of renormalization.

§4: Dominant words reviews the definition and properties of dominant words from
Tiozzo’s work [Tio15].

§5: Persistence proves the main theorem, Persistence Theorem 1.
§6: The unit cylinder and connectivity shows that the Master Teapot is connected inside

the unit cylinder, and uses this structure to prove the Unit Cylinder Theorem 2 and the
Connectedness Theorem 3.

§7: Gaps in the Thurston set explains why there appear to be “holes” near primitive
roots of unity in the finite approximations of the Thurston set. We show that these holes
are associated to discrete subgroups, proving the Gap Theorem 4.
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§8: ⌦cp
2 and ⌦pcf

2 are not equal shows that the periodic and preperiodic Thurston sets
are not equal, proving the Two Thurston Sets Theorem 5.

1.3. Acknowledgements. The authors gratefully acknowledge Giulio Tiozzo, Daniel Thomp-
son, Sarah Koch, and Dylan Thurston for helpful conversations. This work began at the
AMS Mathematics Research Communities program in June 2017. The authors are im-
mensely grateful to the MRC program for stimulating this collaboration, and to Daniel
Thompson introducing us to this subject while at the MRC. This material is based upon
work supported by the National Science Foundation under Grant Number DMS 1641020.
The first author was supported in part by NSF RTG grant 1045119. The third author was
supported in part by NSF DMS grants 1901247 and 1401133.

2. PRELIMINARIES

Theorem 2.1. [MT88, Theorem 7.4] Every continuous self-map g of an interval with finitely

many turning points and with htop(g) > 0 is semi-conjugate to a uniform �-expander PL(g) with

the same topological entropy htop(g) = log �. If g is postcritically finite, so is PL(g).

Thus, to understand Thurston’s Master Teapot, it will suffice to study these more rigid
dynamical system.

2.1. Tent maps. Denote the unit interval by I = [0, 1]. For fixed � 2 (1, 2], the tent map of
slope � is the continuous, piecewise linear map f� of the unit interval I defined by:

f� =

(
�x x  1

�

2� �x x > 1
�

.

For a continuous self-map f of an interval with finitely many turning points, the topo-
logical entropy h(f) is equal to the following limit:

(1) h(f) = lim
n!1

1

n
log(Var(fn)),

where Var(f) denotes the total variation of f [MS80]. Then a straightfoward calculation
confirms that for a tent map f� , the growth rate, which is the exponential of the topological
entropy, is equal to �. In other words, eh(f�) = �.

Via Milnor-Thurston’s entropy-preserving semi-conjugacy [MT88], the critical point of
a unimodal map is sent to the unique preimage of 1 under the associated tent map. Then a
tent map f� is said to be postcritically finite if the f�-orbit of 1 is finite, and f� is said to be
critically periodic if 1 is a periodic point for f� . Now we have alternative interpretations of
Thurston’s Master Teapot, the Thurston set, and the postcritically finite Thurston set:

• The Master Teapot ⌥cp
2 is the closure of the set of all pairs (z,�) in C⇥R for which z

is a Galois conjugate of �, and � is the growth rate of a critically periodic tent map;
• the Thurston set ⌦cp

2 is the closure of the set of all Galois conjugates of growth rates
of critically periodic tent maps;

• the postcritically finite Thurston set ⌦pcf
2 is the closure of the set of all Galois con-

jugates of growth rates of postcritically finite tent maps.
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2.2. Combinatorial itineraries. The dynamics of the tent map f� can be represented by
a relatively simple Markov coding: there is a Markov partition of the unit interval into
two subintervals labeled 0 and 1, and we represent the f�-orbit of any point x with an
itinerary sequence whose n-th term is 0 or 1 depending on which subinterval contains the
nth iterate of x. We will make this representation more precise later in this section, since
we will extensively use the Markov coding of a tent map in this work. First, we will define
essential abstract data of sequences and words in the alphabet {0, 1}.

Definition 2.2. We will use the term string to refer to an ordered list of letters in some
alphabet, and this list may be either finite or infinite. We adopt the convention that a word

is always a finite string, and a sequence is always an infinite string. An itinerary is also
assumed to be an infinite string. We often concatenate a word w with the notation wn,
which is the word created from repeating w exactly n times. Similarly, w1 is the sequence
created by repeating w infinitely many times.

Definition 2.3. The sequence of signs associated to a sequence w = (w1w2 . . . ) 2 {0, 1}N is
the sequence ew : N ! {�1,+1} defined by

ew(j) =

⇢
+1 if wj = 0,
�1 if wj = 1.

The sequence of cumulative signs associated to a sequence w = (w1w2 . . . ) 2 {0, 1}N is the
sequence sw : N ! {+1,�1} defined by sw(1) = 1 and

(2) sw(j + 1) =
jY

k=1

ew(k)

for j � 1. In other words, the (k + 1)st sign sw(k + 1) is equal to 1 if and only if the sum
of the first k entries of the sequence w is even. If w is a finite string, the cumulative sign of
w is defined as

Q
k ew(k). The sequence of digits associated to a sequence w = (w1w2 . . . ) 2

{0, 1}N is the sequence dw : N ! {0, 2} defined by dw(i) = 2wi.

2.3. Ordering on the set of strings.

Definition 2.4 (Twisted lexicographic ordering). for formatting only
(1) Define the ordering E on the set of sequences in {0, 1}N as follows. Given two

distinct sequences w = (w1w2 . . . ) and v = (v1v2 . . . ) in {0, 1}N, define w <E v if
and only if at the first integer n such that wn 6= vn,

⇢
wn < vn if sw(n) = +1,
wn > vn if sw(n) = �1.

Note that sw(n) = sv(n) by definition since n is the first index at which the se-
quences w and v differ.

(2) Define the ordering E on the set of words in the alphabet {0, 1} as follows. Given
two words w and v, write w <E v if and only if w1 <E v1.

Remark 2.5. It is straightforward to check from the definition of twisted lexicographic
ordering that if a word a has positive cumulative sign, then for any strings v, w, we have
w <E v if and only if aw <E av. Similarly, if a has negative cumulative sign, then w <E v
if and only if aw >E av.

Now we can define the concept of �-itinerary as below:
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Definition 2.6 (�-itinerary). Let I�0 = [0, 1/�], I�1 = [1/�, 1]. The �-itinerary of the tent map
f� is the sequence w = (w1w2 . . . ) satisfying the following two conditions:

(1) fn(1) 2 I�wn+1
.

(2) Among all the sequences satisfying the preceding condition (1), w is the minimal
such sequence under the twisted lexicographical ordering.

It is obvious that if f� is not critically periodic, there is a unique sequence satisfying
condition (1) which has to be the �-itinerary. If f� is critically periodic, one can easily
check that the �-itinerary can be equivalently defined explicitly as follows: if fk

� (1) = 1
and k is minimal, then this is the itinerary w1 where w has length k and the last digit of w
is chosen such that w has positive cumulative sign. From this observation one can see that
this definition is consistent with the standard kneading theory definition of the itinerary of
1 under f� , which is the limit of the itineraries of xi under f� , where xi 2 [0, 1], limi xi = 1,
and the forward orbit of xi never hits any critical point.

2.4. Parry polynomials. The definition below for a Parry polynomial is motivated by the
concept of �-expansion.

Definition 2.7. Let w be a word in the alphabet {0, 1}. Set fz
0 (x) = zx and fz

1 (x) = 2� zx.
Then the Parry polynomial for w is

Pw(z) := sw(p+ 1)(fz
wp

� fz
wp�1

� · · · � fz
w1

(1)� 1)

= zp � sw(1)dw(1)z
p�1 � · · ·� sw(p)dw(p)� sw(p+ 1)

= (z � 1)(zp�1 + sw(2)z
p�2 + · · ·+ sw(p)).

(3)

When f� is critically periodic, the first line of equation (3) confirms that for any word w
for which w1 is a �-itinerary, we have that � is a root of the Parry polynomial Pw. Thus,
the minimal polynomial for � is a factor of Pw for any word w such that w1 is a �-itinerary.
As a final observation, Pw is also never irreducible over the integers, as it always has a
factor of (z � 1). At times it will be important for our arguments to ensure that the Parry
polynomial has only this one extra factor of (z � 1), i.e. has exactly two irreducible factors.

2.5. Admissible itineraries. Let � : {0, 1}N ! {0, 1}N be the standard shift map, defined by
�(w1w2w3 . . . ) = (w2w3 . . . ).

Milnor-Thurston developed a combinatorial criterion for a sequence in {0, 1}N to be re-
alized as an itinerary of the critical value under a quadratic map from the family gc : x 7!
x2 + c, where c is real. A quadratic map is given an itinerary in the same procedure as
for a tent map; partition the domain of the map into two intervals whose intersection is
the critical point, and the left interval receives a coding value of 1 while the right interval
receives a coding value of 0.

Theorem 2.8. [MT88, Theorem 12.1] A sequence a = (an) in {0, 1}N is an itinerary of the

critical value of a quadratic map if and only if �j(a) E a for all j 2 N.

As a corollary of Milnor-Thurston’s semi-conjugacy from Theorem 2.1, a sequence in
{0, 1}N which is realizable as an itinerary of of 1 under a tent map is also realizable as
an itinerary of the critical value of a quadratic map, as 1 is the image of the critical value
under semi-conjugacy. Thus, Theorem 2.8 introduces a necessary combinatorial condition
on �-itineraries which we call admissibility:
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Definition 2.9 (Admissibility). A sequence a = (a1a2 . . .) in the alphabet {0, 1} is admissible

in the Milnor-Thurston sense if for all positive integers j, the shifted sequence satisfies the
inequality

�j(a) E a.

Then a word w is admissible if and only if the sequence w1 is admissible.

On the other hand, the converse is more subtle because the Milnor-Thurston semi-
conjugacy is not a true conjugacy, the reason being that a critically periodic tent map is
semi-conjugate to infinitely many quadratic maps with different post-critical itineraries.
However we do have the partial converse which will be sufficient for our purposes:

Proposition 2.10. Let w be a word in the alphabet {0, 1} with positive cumulative sign. If w
is admissible and the Parry polynomial associated with w can be factored into z � 1 and another

irreducible factor, then w1
is the �-itinerary for some � 2 (1, 2].

Proof. Theorem 12.1 of [MT88] tells us that if w1 is admissible, it must be the itinerary of c
under some quadratic map gc : x 7! x2+c (here we let I1 = (�1, 0], I0 = [0,1)). Because a
quadratic map is unimodal, we can find some tent map f� semi-conjugate to the quadratic
map gc. Suppose (w0)1 is the �-itinerary, and w0 has minimal length. The proof of Lemma
12.2 in [MT88] implies (which can also be checked by bookkeeping) that the itinerary of the
critical value c under any quadratic map gc which is semi-conjugate to f� must lie between
(w0)1 and (w00)1, where w00 has the same length as w0 and agrees with w0 except for the
last letter. Hence, (w0)1 E w1 E (w00)1, which implies that the length of w must be a
multiple of the length of w0. Because � is a root of the Parry polynomial associated with w,
w0 and w00, the fact that the Parry polynomial of w has only two irreducible factors implies
that w and w0 have the same length. Hence w = w0 or w = w00. The condition that w has
positive cumulative sign precludes w = w00, so w = w0. ⇤

Note that the converse of Proposition 2.10 is false; if we write the �-itinerary as w1, this
string is admissible in the Milnor-Thurston sense, but the Parry polynomial Pw may have
more than two irreducible factors, even if w is minimal length and has positive cumulative
sign.

For a critically periodic tent map f� , we call the Parry polynomial associated with the
�-itinerary the Parry polynomial of f� and denote it by P� . In the case that f� is postcrit-
ically finite, a similar procedure using the sum of a power series produces a polynomial
associated to a preperiodic word, and hence to the preperiodic �-itinerary.

2.6. Irreducibility. To check that a Parry polynomial has only two irreducible factors, we
will use two lemmas from [Tio20], which are derived from Eisenstein’s criterion.

Lemma 2.11. [Tio20, Lemma 4.1] Let d = 2n�1 with n � 1, and choose a sequence ✏0, ✏1, . . . , ✏n
with each ✏k 2 {±1} such that

Pd
k=0 ✏k ⌘ 2 mod 4. Then the polynomial

f(x) := ✏0 + ✏1x+ · · ·+ ✏dx
d

is irreducible in Z[x].

Lemma 2.12. [Tio20, Lemma 4.2] Let f(x) = 1 +
Pd

k=1 ✏kx
k

be a polynomial with ✏k 2 {±1}
for all 1  k  d and ✏k = �1 for some k. If f(x) is irreducible in Z[x], then for all n � 1, the

polynomial f(x2n) is irreducible in Z[x].
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3. QUADRACTIC MAPS, ITERATED FUNCTION SYSTEMS, AND RENORMALIZATION

In this section we elaborate on the connections to quadratic maps and iterated function
systems, including consequences of kneading theory for the combinatorial itineraries we
will study in this work. We close the section with Proposition 3.10, which is a sufficient
criterion for the Persistence Theorem 1.

3.1. Iterated function system description of the Thurston set. Here we associate a limit
set ⇤z to a nonzero complex parameter z in the open unit disk D. A point z 2 D \ {0}
defines a contracting iterated function system (IFS) generated by the two maps

fz
0 : x 7! zx+ 1, fz

1 : x 7! zx� 1.

The attractor or limit set ⇤z of this IFS is defined to be the unique fixed, nonempty, compact
set S ⇢ C such that S = fz

0 (S) [ gz1(S). The existence and uniqueness of this attractor
and statements of some of its fundamental properties are due to Hutchinson [Hut81]. It is
straightforward to see that:

Lemma 3.1. [CKW17, Lemma 3.1.1] The limit set ⇤z associated to z 2 D \ {0} is contained in

the open ball of radius
1

1�|z| around the origin in the compex plane.

Our work is motivated by Tiozzo’s description of ⌦cp
2 \D in [Tio20], which is as follows:

Theorem 3.2. [Tio20] The Thurston set ⌦cp
2 intersected with D is equal to the set of all compex

numbers z whose associated limit set ⇤z contains the origin.

Milnor and Thurston showed that any tent map f� is semiconjugate to a quadratic map
gc : x 7! x2 + c for c 2 [�2, 1/4], and this semiconjugacy preserves the data of the Markov
coding and hence the entropy [MT88]. The kneading series of a quadratic map gc and a
number x is a power series

K(x, t) = 1 +
1X

n=1

⌘nt
n,

where ⌘n(1) is the cumulative sign ⌘n(x) =
Qn�1

i=0 sign(gic(x)).
The kneading determinant is

Kc(t) =

(
K(c, t) if the critical point is not periodic under fc,
limC!c+ K(C, t) if the critical point is periodic under fc

.

When gc has periodic critical orbit, Kc(t) =
Pc,knead(t)

1�tn , where Pc,knead is called the kneading

polynomial.

Remark 3.3. The semiconjugacy between f� and gc sends the critical value 1 to c, and
intervals I�o and I�1 to [0,1) and (�1, 0] respectively. Hence, ⌘n(c) = sw(n), which implies
that:

(t� 1)tn�1Pc,knead(t
�1) = P�(t).

The following are classical from kneading theory; see [MT88]:

Proposition 3.4. Fix a parameter c in [�2, 1/4] with associated quadratic map gc : x 7! x2 + c
with entropy h, and let s = eh be the growth rate of this map.

(1) [MT88, Theorem 13.1, Corollary 13.2] The growth rate s is a continuous function of c.
(2) [MT88, Theorem 13.1, Corollary 13.2] s >

p
2 if and only if c < �1.
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(3) [MT88, Theorem 6.3] If s > 1, 1/s is the smallest positive root of the kneading polynomial

Pc,knead.

⇤
Furthermore, Milnor and Thurston introduce an ordering on the additive group Z[[t]] of

formal power series with integer coefficients is defined by setting ↵ = a0 + a1t + · · · > 0
whenever a0 = · · · = an�1 = 0 but an > 0 for some n � 0 [MT88]. This induces an
ordering on formal power series as follows: if a, b are distinct formal power series with
integer coefficients, then a > b if and only if a� b > 0.

The following is an immediate consequence of [MT88, Section 13]. We include proofs
for completeness.

Lemma 3.5. For tent maps, the kneading determinant is a monotonically decreasing function of

the growth rate.

Proof. For the real one-parameter family of maps fa(x) = (x2 � a)/2, [MT88, Theorem
13.1] asserts that the kneading determinant D(fa) 2 Z[[t]] is monotonically decreasing as
a function of the parameter a; and Corollary 13.2 asserts the growth rate is monotonically
increasing as a function of a. The family of maps {fa} takes on all possible growth rates;
this can be seen from the fact that fa is conjugate to the map g(�a/4)(z) = z2+(�a/4) via the
conjugation map h(z) = z/2, growth rate is a continuous function of c (Proposition 3.4(1)),
and the Intermediate Value Theorem. ⇤
Lemma 3.6. Let f� be a tent map with kneading determinant a and let w be the �-itinerary; let f�0

be a tent map with kneading determinant b and let w0
be the �0

-itinerary. If a > b, then w <E w0
.

Proof. From Remark 3.3, a = 1 +
P1

i=1 sw(i)t
i, b = 1 +

P1
i=1 sw0(i)ti. Let n be the smallest

natural number such that sw(n) 6= sw0(n). We must have sw(1) = sw0(1), so we may
assume n � 2. By definition, a > b implies sw(k) = sw0(k) for all k = 1, . . . , n � 1, and
sw(k) = (�1)wk�1sw(k � 1), so we must have wj = w0

j for 1  j  n� 2 and wn�1 6= w0
n�1.

Since sw(n) > sw0(n), the two possibilities are:

sw(n� 1) = sw0(n� 1) = +1, wn�1 = 0, w0
n�1 = 1, or

sw(1, n� 1) = sw0(n� 1) = �1, wn�1 = 1, w0
n�1 = 0.

In both cases, we have w <E w0. ⇤
Combining Lemma 3.5 and Lemma 3.6, we have:

Corollary 3.7. If 1 < � < �0  2, the �-itinerary w and �0
-itinerary w0

satisfy the inequality

w <E w0
.

3.2. Renormalization. We will develop the proof of the Persistence Theorem 1 using a
combinatorial approach of Tiozzo [Tio20]. Certain tent maps f� admit itineraries with
strong combinatorial properties. Due to the renormalization phenomenon, if the slope � is
at most

p
2 then it is impossible for any associated itinerary to satisfy this strong combina-

torial property. Renormalization is how we and Tiozzo compensate for this obstruction.
One of the renormalization or “tuning” procedures on the Mandelbrot set (see e.g. [Tio20,

§ 7.2]) implies the following:

Lemma 3.8 (Renormalization Lemma). If � 2 (1,
p
2], then f� has periodic critical orbit of

length 2k if and only if f�2 has periodic critical orbit of length k.

This is a well-known fact and we give a short proof below for completeness.
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Proof. Consider the intervals J�
1 =

h
2� �, 2

1+�

i
, J�

2 =
h

2
1+� , 1

i
. Then it is straightforward

to check that f(J1) ⇢ J2, f(J2) ⇢ J1, and f2 : J2 ! J2 is a unimodal piecewise linear map
with constant slope �2 and critical value equal to 1, and is clearly conjugate to the tent map
of slope f�2 . Hence, fn

� , the nth iterate of f� , fixes 1 if and only if (f2
�

��
J2
)n/2, the n/2-iterate

of the restriction, also fixes 1. ⇤
The Renormalization Lemma 3.8 motivates the following definition:

Definition 3.9. A tent map f� with growth rate � in the interval (1, 2] is defined to be
renormalizable if � 

p
2, and is otherwise nonrenormalizable.

With the Renormalization Lemma 3.8, we reduce the Persistence Theorem 1 to the fol-
lowing proposition, which is essentially persistence restricted to growth rates of nonrenor-
malizable tent maps:

Proposition 3.10. Let � 2 (1, 2] be the growth rate of a critically periodic tent map and let z 2 D
be a root of the Parry polynomial of �. Then for any real number y satisfying 2 > y > max{�,

p
2}

and any real number ✏ > 0, there exist a real number �0
within ✏ of y such that

(1) one of the Galois conjugates of �0
is within distance ✏ of z, and

(2) a Parry polynomial of �0
is of the form (x� 1)f(x), where f(x2n) is irreducible in Z[x] for

all natural numbers n.

The proof of Proposition 3.10 will appear at the end of Section 5. We confirm here that
this proposition is indeed sufficient to prove the Persistence Theorem 1.

Proof of the Persistence Theorem 1 from Proposition 3.10. Suppose (z,�) is a pair in the Master
Teapot ⌥cp

2 . We want to show that if y 2 [�, 2], then (z, y) 2 ⌥cp
2 . Note that it suffices to

consider y > �.
Let ✏ > 0. By definition of the Master Teapot, there exists a �0 that is the growth rate

of some tent map f�0 with periodic critical orbit, z0 a Galois conjugate of �, such that
|z0 � z| < ✏ and |�0 � �| < ✏. Then we may choose ✏ small enough that y > �0 as well.

If y >
p
2 then Proposition 3.10 along with the triangle inequality directly implies exis-

tence of �0 within ✏ of y, such that one of the Galois conjugates of �0 is within 2✏ distance
from z, as desired.

It remains to consider y <
p
2. Fix an integer n such that y 2

⇣
2

1
2n+1 , 2

1
2n

i
. By the

Renormalization Lemma 3.8, �2n
0 is the growth rate of some tent map with periodic critical

orbit, is clearly less than y2
n

, and z2
n

0 is a Galois conjugate of �2n
0 because the Galois group

consists of field automorphisms. Since
p
2 < y2

n  2, again by Proposition 3.10, we can
find some �0 within ✏ of y2

n

, such that one of the Galois conjugates z0 of �0 is within 2✏ of
z2

n

. The second condition in Proposition 3.10 implies that all the 2n-th roots of z0 are Galois
conjugates of (�0)

1
2n . The conclusion follows. ⇤

4. DOMINANT WORDS

In this section we will review Tiozzo’s definition of dominant words in [Tio15] and the
properties of dominant words proved in [Tio15].

Let f2 denote the tent map with growth rate 2. For any point x in the unit interval, let
wx 2 {0, 1}N be the coding of the itinerary of x with respect to the to subintervals I0 =
[0, 1/2] and I1 = [1/2, 0]. The tent map f2 is semiconjugate to the shift map � under this
correspondence, and that x < y implies wx <E wy , where <E is the twisted lexicographical
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order defined earlier. For any finite word v, define the cylinder set Cv to be the closure of
the set of all points x in the unit interval such that the associated sequence wx 2 {0, 1}N
begins with v · v1, where v1 is the first letter of v.

Definition 4.1. [Tio15, Definition 10.4] A finite word w in the alphabet {0, 1} is called dom-

inant if and only if it satisfies the following two conditions:
(1) w has positive cumulative sign.
(2) For any 1  k  |w|� 1, fk

2 (Cw) lies to the left of Cw and their interiors are disjoint.

Because x < y implies wx <E wy , and fk
2 (Cx) is the closure of points whose itineraries

start with a suffix of w followed by the first letter of w, the following more explicit definition
of dominance is immediate:

Lemma 4.2. Let w be a word in the alphabet {0, 1} that starts with 10 and has positive cumulative

sign. Then w is dominant if and only if for any proper suffix b of w, the word (b1) is (strictly)

smaller than the prefix of w of length |b|+ 1 in the twisted lexicographical ordering <E . ⇤
Definition 4.3. A word w in the alphabet {0, 1} is irreducible if there exists no shorter word
w0 in the alphabet {0, 1} and integer n � 2 such that w = (w0)n.

The main result we will cite from Tiozzo’s work is the following, which can be read from
the proof of [Tio15, Theorem 10.5] in [Tio15, Section 10.1]. One can read it from the first
paragraph of the proof of Lemma 10.6 on page 689, and the third paragraph of the proof of
Proposition 10.5 on page 692.

Proposition 4.4 ([Tio15, Section 11.2]). If � 2 (
p
2, 2] and w is a word in the alphabet {0, 1}

such that w1
is a �-itinerary, then for any positive integer n there exists a word w0

in the alphabet

{0, 1} that is a power of some dominant word such that wnw0
is also a dominant word.

Tiozzo uses this observation to prove that the growth rates associated to dominant
words are dense in the interval [

p
2, 2].

The following lemma is straightforward to show from calculation:

Lemma 4.5. Any �-itineraries for � 2 (1, 2] start with 10. ⇤
Because of Lemma 4.5, the dominant itineraries obtained in Proposition 4.4 must satisfy

the assumptions of Lemma 4.2.

5. PERSISTENCE

The goal of this section is to prove Proposition 3.10, which is a version of persistence
restricted to growth rates of nonrenormalizable tent maps; that is, growth rates that are
larger than

p
2. As discussed in Section 3 following the statement of the proposition, the

Persistence Theorem 1 follows by renormalization.

5.1. Constructing dominant extensions. The development of persistence for growth rates
of nonrenormalizable tent maps hinges on a series of technical combinatorial lemmas. The
goal of this subsection is the proof of the Extension Lemma 5.3.

Proposition 5.1. Assume w1 is dominant, w2 is admissible and irreducible, n is a positive integer

such that

2n|w2| > |w1| > n|w2|,
w1

1 >E w1
2 , and wn

2 has positive cumulative sign. Then (w1wn
2 )

1
is admissible.
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Proof. It suffices to show that

�k(w1w
n
2 )

1 E (w1w
n
2 )

1

for all k < |w1| + n|w2|. If 1 < k < |w1|, denote by b the proper suffix of w1 of length
|w1|� k. Then (b1) is a prefix of �k(w1wn

2 ) because the first letter of w2 is 1 by admissibility
and Lemma 4.5. By dominance of w1 and Lemma 4.2, (b1) is smaller than the prefix of w1

of length |b|+ 1 in the twisted lexicographical ordering, which proves

�k(w1w
n
2 ) = bwn

2 <E w1

and provides the desired inequality.
If k = |w1|, for contradiction, see that existence of n such that wn

2 �E w1 implies

w1
2 <E w1

1 E (wn
2 )

1 = w1
2 ,

which is impossible given the assumption that w1
2 is smaller than w1

1 in the twisted lexi-
cographical ordering. Thus,

�|w1|(w1w
n
2 )

1 = wn
2 (w1w

n
2 )

1 <E (w1w
n
2 )

1.

Lastly, we consider the shift by k where |w1| < k < |w1|+n|w2|. Let r = k� |w1|, so that
1 < r < n|w2|. See that �rwn

2 >E w1 is impossible, because �rwn
2 >E w1 and admissibility

of w2 implies
w1

1 <E �r(w2)
1 E w1

2 ,

a contradiction. We conclude that �rwn
2 E w1. If this inequality is strict, we are done: we

would have
�k(w1w

n
2 ) = �|w1|+r(w1w

n
2 ) = �rwn

2 <E w1

as desired.
We must now consider when this inequality is not strict; in other words, �rwn

2 is a prefix
of w1. We will need to prove that such a string must always have cumulative negative sign.
If it does, then |w1|� r < |w1| implies

�|w1|�r(w1w
n
2 )

1 E (w1w
n
2 )

1

by dominance of w1 discussed above. Then by Remark 2.5 and the fact that �rwn
2 has

negative cumulative sign,

(w1w2)
1 = �rwn

2 �
|w1|�rw1w

n
2 (w1w

n
2 )

1 �E �rwn
2 (w1w

n
2 )

1

= �k�|w1|wn
2 (w1w

n
2 )

1

= �k(w1w
n
2 )

1.

It remains to prove that if �rwn
2 is a prefix of w1, then it cannot have cumulative positive

sign. Consider the suffix b = �rwn
2 of wn

2 . Since wn
2 is admissible, b E a, where a is the

prefix of wn
2 of the same length. Since w1

2 <E w1
1 , moreover a is smaller than or equal to

the prefix of w1 of the same length, which is assumed to be equal to b. Then b E a E b
implies equality, and we conclude wn

2 = ac = db = da.
Now

w1
2 = (ac)1 = (da)1 �E a · (da)1,

implying
(ca)1 �E (da)1 = w1

2 �E (ca)1



16 HARRISON BRAY, DIANA DAVIS, KATHRYN LINDSEY AND CHENXI WU

because we assumed that a has positive cumulative sign (see Remark 2.5) and w2 is admis-
sible, hence (ca)1 = (ac)1. Then

w1
2 = (ac)1 = a · (ca)1 = a · (ac)1 = a2(ca)1 = · · · = a1

implies a = wm
2 for some m because w2 is irreducible. Then w1 = af = wm

2 f for some
suffix f , and again by dominance of w1 and Lemma 4.2,

w1
1 = (wm

2 f)1 = wm
2 (fwm

2 )1 E (wm
2 w1)

1 = w2m
2 (fwm

2 )1 E · · · E w1
2 ,

which contradicts the assumption that w1
1 >E w1

2 . ⇤
Now we want to further make sure that (w1wn

2 )
1 is a �-itinerary and has a Parry polyno-

mial with a large irreducible factor. However, this would require some slight modification
of the construction as below:

Definition 5.2. We say that a string v is an extension of a word w if w is a proper prefix of
v. If v is finite then such a v is a finite extension of w.

Lemma 5.3 (Extension). Let w1 be dominant such that w1 >E 10 · 1|w1|�2
and w2 be admissible

and irreducible, w1
1 >E w1

2 , and assume there exists an m such that

2m|w2| > |w1| > m|w2|.

Then there exists a finite extension w0
1 of w1 and an integer m0 � m such that (w0

1w
m0

2 )1 is

admissible, |w0
1| > m0|w2|, and P (z2

k

)/(z2
k � 1) is an irreducible polynomial for any k � 0,

where P is the Parry polynomial of (w0
1w

m0

2 ).

The following Lemma will give us a recipe for extending w1, as needed for the Extension
Lemma.

Lemma 5.4. Let w be a dominant word, such that w1 >E 10 · 1|w1|�2
. Then the words

w · 10 · 1 · 10 · 1|w| ·01 · 1|w|
and w · 10 · 1 · 10 · 1|w| ·10 · 1|w|

for any odd natural number  > |w|, and

w · 1 · 10 · 1|w| ·01 · 1|w|
and w · 1 · 10 · 1|w| ·10 · 1|w|

for any even natural number  > |w|, are all dominant extensions of w.

Moreover, for each , the sums of the coefficients of the kneading polynomials for the two exten-

sions differ by 2.

Proof. The parity condition on  is to guarantee that the new word has an even number of
1s, which is part of the definition of dominance.

We apply the alternate definition of dominance from Lemma 4.2. Let w0 be one of the
possible extensions in the statement of the Lemma. Let b be any suffix of w0. If a prefix of
b is a suffix of w, then (b1) is smaller than the prefix of w0 of the same length in the twisted
lexicographical ordering by dominance of w and the construction of w0. If not, then if b
starts with 0 or 11, and the desired inequality is immediate, so the interesting case is if b
starts with 10 and no prefix of b is a suffix of w. By construction, including our choice of
 > |w| in the  odd case, we are comparing 10 · 1|w|�1 with w · 1, and the former must be
smaller by assumption.

For any natural number , odd or even, there are now two choices to extend w to a
dominant word. The two choices only differ by an exchange of 01 with 10 in one position.
This exchange will change the sum of the coefficients of the kneading polynomials by a
factor of 2. ⇤
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5.1.1. Proof of extension lemma.

Proof the Extension Lemma 5.3. We need to choose for w0
1 one of the extensions of w1 from

Lemma 5.4, and select n, , and m0 so that |w0
1| has length 2n � 1�m0|w2| and

2m0|w2| > |w0
1| > m0|w2|.

To do so, first define constants C1 = 1 + |w1| + m|w2| and C2 = |w2|. Then choose n for
which

2n > max{C2(10m+ 3) + C1, 18C2 + C1}
and define

(4) kn =

⇠
2n � C1

2C2

⇡
� 2, k0n =

⇠
2n � C1

2C2

⇡
� 3.

The two options kn and k0n are needed for parity reasons. Choosing 2n > C2(10m+3)+C1

ensures that

(5) kn > k0n > 10m,

which becomes useful later in the proof when we define the length of the extension. The
choice of 2n > 18C2 + C1 and the definition of kn, k0n ensures (respectively) that

(6) 3kn > 3k0n >
2n � C1

C2
> 2kn > 2k0n.

Let m0 = kn + m if this is even, and else, replace kn with k0n. We will proceed with the
notational choice m0 = kn+m and assume m0 is even, but note that the needed inequalities
hold for both kn and k0n.

Now, replacing C1, C2 with their definitions, applying Equation (6), and invoking the
assumed relationship between |w1| and |w2|, we see that

3m0|w2| > 3kn|w2|+m|w2|+ |w1| > 2n � 1 > 2kn|w2|+m|w2|+ |w1| > 2m0|w2|,
which implies

(7) 2m0|w2| > 2n � 1�m0|w2| > m0|w2|.

We now adjust the extension w0
1 of w1 to have length |w0

1| = 2n�1�m0|w2|, so that (w0
1w

m0

2 )
has total length 2n � 1.

If |w1| is odd, then  = (2n � 1�m0|w2|)� 6� 3|w1| is even, as needed for

w · 1 · 10 · 1|w| ·01 · 1|w| and w · 1 · 10 · 1|w| ·10 · 1|w|

to both be dominant extensions of w1 by Lemma 5.4, each of length 2n � 1�m0|w2|.
If |w1| is even, then  = (2n � 1�m0|w2|)� 4� 3|w1| is odd, as needed for

w1 · 1 · 10 · 1|w1| ·01 · 1|w1| and w1 · 1 · 10 · 1|w1| ·10 · 1|w1|

to both be dominant extensions of w1 by Lemma 5.4, each of length 2n � 1�m0|w2|. In all
the above cases,  > |w1| follows from Equation (5).

For each choice, w1
1 >E w1

2 implies w01
1 >E w1

2 , and wm0

2 has positive cumulative
sign because we ensured that m0 is even. Combined with Equation (7), we have all the
necessary hypotheses to apply Proposition 5.1 and conclude that (w0

1w
m0

2 )1 is admissible.
We also designed w0

1 so that |w0
1| > m0|w2|.

The sum of the coefficients of the kneading polynomial of w0
1w

m0

2 is even, because it has
2n coefficients, each of which is either �1 or +1. By the final observation in Lemma 5.4,
we can choose the extension so that the sum of the coefficients of the kneading polynomial
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for w0
1w

m0

2 is equivalent to 2 mod 4. Since the kneading polynomial has degree 2n � 1, we
apply Lemma 2.12 to conclude irreducibility. ⇤

5.2. Controlling Galois conjugates and entropies of concatenations.

Lemma 5.5 (Nearby roots). Let w2 be a word whose Parry polynomial has a root at z0 2 D. Then

for any ✏ > 0, there exists an integer N = N(✏, w2) 2 N such that n > N implies that for every

word w1 for which w1wn
2 is admissible, the Parry polynomial associated to (w1wn

2 ) has a root within

distance ✏ of z0.

Proof. First, for any word w, denote the Parry polynomial associated to w by Pw. Let D be
the closed disk of radius ✏ centered at z0, and let C be the boundary of D. Without loss of
generality, assume that ✏ is small enough that D ⇢ D, and that D contains no root of Pw2

except z0.
For any n 2 N, it is straightforward to see that

Pw1wn
2
(z) = zn|w2|Pw1(z) +

⇣
z(n�1)|w2| + z(n�2)|w2| + · · ·+ 1

⌘
Pw2(z).

Set ↵ = minz2C |Pw2(z)|, which exists and is positive by compactness and the assumption
that D contains no root of Pw2 except z0. Set

0 < � := min
z2C

⇣
1� |z||w2|

⌘
/
⇣
1 + |z||w2|

⌘
.

Then for all z 2 C, we have
���
⇣
z(n�1)|w2| + z(n�2)|w2| + · · ·+ 1

⌘
Pw2(z)

��� �
����
1� (z|w2|)n

1� z|w2|

����↵ � 1� |z|w2||
1 + |z|w2||

↵ � �↵ > 0,

where the middle nonstrict inequality follows the triangle inequality and that
��z|w2|

�� < 1.
Set 1 > m := maxz2D |z|. Also for all z 2 C, since all coefficients of Pw1 have absolute

value at most 3,
���zn|w2|Pw1(z)

���  |z|n|w2|

 
1 + 3

1X

i=0

|z|i
!

 mn|w2|

 
1 + 3

1X

i=0

mi

!
.

Therefore, for sufficiently large n 2 N depending only on w2, we have
���z(n�1)|w2|Pw1(z)

��� <
�↵

2
.

Consequently, the winding number around 0 of the image of C under Pw1wn
2

equals the
winding number around 0 of the image of C under the map

z 7!
⇣
z(n�1)|w2| + z(n�2)|w2| + · · ·+ 1

⌘
Pw2(z).

The winding number of the image around 0 is related to number of zeros via the Argument
Principle; for a holomorphic function f and a simple closed contour �, the number N of
zeros of f inside � is given by

(8) N =
1

2⇡i

Z

�

f 0(z)

f(z)
dz =

1

2⇡i

Z

f(�)

dw

w
,

where w = f(z). Since Pw2 has a root in D, this implies Pw1wn
2

also has a root in D for
sufficiently large n. ⇤
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5.3. Dominant approximations of growth rates. Finally, we prove that we can approxi-
mate y 2 (

p
2, 2) with growth rates corresponding to extensions of dominant strings.

Lemma 5.6. Let w1 be an admissible word such that w1
1 is a �-itinerary for some � > 1. For any

✏ > 0, there exists an integer N = N(✏, w1) such n > N implies that for every word w2 for which

(wn
1w2)1 is a �0

-itinerary, �0
is within distance ✏ of �.

Proof. Let w0 be the (� � ✏)-itinerary, and let w00 be the (� + ✏)-itinerary. Let N be large
enough that the N |w1|-prefix of w0, w1

1 and w00 are all distinct. Then we must have w0 <E

(wn
1w2)1 <E w00 so �0 2 (� � ✏,� + ✏). ⇤

Combining Lemma 5.6, Proposition 4.4, and the fact that slopes of tent maps with peri-
odic critical orbits are dense, the following result is evident:

Lemma 5.7 (Dominant approximations). For all y 2 (
p
2, 2) and all ✏ > 0, there exists a

sequence of dominant words (wn)1i=1 such that for any admissible extension w0
n of wn, including

the empty extension, if (w0
n)

1
is a �-itinerary, then � is within ✏ of y.

Remark 5.8. Because wn is constructed using Proposition 4.4, and y >
p
2, together with

Lemma 3.6 and the fact that itp2 = 10 · 11, we can further assume that wn >E 10 · 1|wn|�2.

5.4. Proof of Proposition 3.10. Now we prove Proposition 3.10, which will finish the proof
of the Persistence Theorem 1.

Proof of Proposition 3.10. Let w be an irreducible word in the alphabet {0, 1} such that w1

is the �-itinerary. Then z is a root of the Parry polynomial of w, since this is equal to the
Parry polynomial of �. If y = � the statement is trivial, so assume y > �. Fix

0 < ✏ <
y � �

2
.

Construct the sequence of dominant words (wn) as in the Dominant Approximations Lemma 5.7
and Remark 5.8; the words wn satisfy that for any admissible extension w0

n of wn, if (w0
n)

1

is some �0-itinerary, then �0 is within ✏ of y. We will show there is a subsequence of (wn)
with corresponding extensions (w0

n) which meet this criteria and whose corresponding
growth rates have controlled Galois conjugates.

Passing to subsequences as needed, we may assume that |wn| ! 1 as n ! 1, since
there are only finitely many words of bounded length.

For each n, let Mn =
l
|wn|
|w|

m
� 2. Then

(9) 2Mn|w| � 2

✓
|wn|
|w| � 2

◆
|w| = 2|wn|� 4|w|.

Since 2|wn|� 4|w| > |wn| if and only if |wn| > 4|w|, we have from equation (9) that

(10) |wn| > 4|w| =) 2Mn|w| > |wn|.

Observe that

|wn| =
|wn|
|w| |w| >

✓⇠
|wn|
|w|

⇡
� 2

◆
|w| = Mn|w| for all n

and |wn| ! 1. Therefore, for all n large enough that |wn| > 4|w|, there exists a positive
integer Mn such that

2Mn|w| > |wn| > Mn|w|.
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Note also that Mn ! 1 as n ! 1. Thus, for sufficiently large n, the hypotheses of the
Extension Lemma 5.3 hold, using wn in place of w1 and w in place of w2. Then we conclude
there exists an integer m0

n > Mn and a dominant extension w0
n of wn so that (w0

nw
m0

n)1 is
admissible and the polynomial

Pw0
nw

m0
n
(x2k)

1� x2k

is irreducible for all k � 0, where Pw0
nw

m0
n

is the Parry polynomial of the admissible word
w0

nw
m0

n . Hence, by Proposition 2.10, (w0
nw

m0
n)1 is a �0-itinerary, and we have the criteria

needed to apply the final conclusion of the Dominant Approximations Lemma 5.7); that is,
�0 2 [y � ✏, y + ✏]. Since Mn ! 1 as n ! 1 and m0

n > Mn, we have m0
n ! 1 as n ! 1.

We know z is a root of Pw so by the Nearby Roots Lemma 5.5), for sufficiently large
n 2 N, we conclude Pw0

nw
M0

n
has a root within ✏ of z. ⇤

6. THE UNIT CYLINDER AND CONNECTIVITY

Proposition 6.1. The bottom level of the Master Teapot is the unit circle, i.e.

⌥cp
2 \ (C⇥ {1}) = S1 ⇥ {1}.

Proof. We will first show S1 ⇥ {1} ⇢ ⌥cp
2 . By Proposition 3.10, there exists some growth

rate � 2 (1, 2) of a critically periodic tent map such that � has a Galois conjugate z 2 D
satisfying the condition that, for all k 2 N, every 2k-th root of z is a Galois conjugate of
�

1
2k . Repeatedly applying renormalization to (z,�) 2 ⌥cp

2 - by which we mean considering
the set of 2k points of the form (z1/2

k

,�1/2k), all of which are in ⌥cp
2 , as k ! 1 - and then

taking the set of limit points, we get that S1 ⇥ {1} ⇢ ⌥cp
2 .

To show ⌥cp
2 \ (C⇥ {1}) ⇢ S1 ⇥ {1}, suppose there exists a point (y, 1) 2 ⌥cp

2 such that
|y| 6= 1. Since 1 has no nontrivial Galois conjugates, (y, 1) 2 C⇥ R must be the the limit of
a sequence of points (↵n,�n) 2 C ⇥ R such that �n is the growth rate of a superattracting
tent map and ↵n is a Galois conjugate of �. Thus, reindexing the sequence as necessary, we
have that for any k > 0, there exists �k with 1 < �k < 1 + 1

k with Galois conjugate ↵k, so
that |↵k � y| < ✏. Now by renormalization, �2nk

k  2 is the slope of a critically periodic tent
map, where nk is the maximal value of N for which �2N

k  2. The fact that ↵2nk

k is a Galois
conjugate of �2nk

k follows immediately from the definition of a Galois automorphism. Thus
(↵2nk

k ,�2nk

k ) ⇢ ⌥cp
2 .

Now, |↵k| is bounded away from 1 for k sufficiently large (because ↵k ! y), and nk ! 1
as k ! 1, since �k ! 1 as k ! 1. Consequently, either ↵2nk

k ! 0 or ↵2nk

k ! 1 as k ! 1.
This is a contradiction because

⌦cp
2 ⇢ {z 2 C : 1/2  z  2}

by [Tio20, Lemma 2.4] and that the projection of ⌥cp
2 onto the first coordinate is ⌦cp

2 . ⇤
Proof of the Unit Cylinder Theorem 2. As in the proof of Proposition 6.1, let � be the slope of
a critically periodic tent map such that � has a Galois conjugate z 2 D and for all k 2 N,
and every 2k-th root of z is a Galois conjugate of �

1
2k . Then we have

n
(z0,�0) 2 C⇥ R+ : (z0)2

k

= z and �0 = �
1
2k for some k 2 N

o
⇢ ⌥cp

2 .

The Persistence Theorem 1 then implies that
n
(z0, y) 2 C⇥ R+ : (z0)2

k

= z, y � �
1
2k for some k 2 N

o
⇢ ⌥cp

2 ,
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Taking the closure of the above set, we obtain that the unit cylinder S1 ⇥ [1, 2] is a subset of
⌥cp

2 . ⇤
Proof of the Connectedness Theorem 3. Connectivity of the part of the Master Teapot outside
of the unit cylinder is due to Tiozzo [Tio20]. More specifically, by [Tio20, Lemma 7.3], for
any point (z,�) 2 C ⇥ R such that � is the growth rate of a critically periodic tent map,
z is a Galois of �, and |z| > 1, there exists a continuous path (�(x), x) in ⌥cp

2 connecting
(z,�) to a point (w, 1) with w 2 S1. Consequently, since the unit cylinder is a subset
of ⌥cp

2 by the Unit Cylinder Theorem 2, and since ⌥cp
2 is closed, this implies ⌥cp

2 \ ({z :
|z| � 1}⇥ R) is connected. By [Tio20], the Thurston Set is connected and contains an open
annulus containing S1. By the Persistence Theorem 1, the projection to C of part of the
top level of the Master Teapot that is inside the unit cylinder agrees with the Thurston Set,
i.e. ⌥cp

2 \ (D ⇥ {2}) = (⌦2 \ D) ⇥ {2}. Also by the Persistence Theorem 1, the part of the
Master Teapot inside the unit cylinder is connected. Thus, the entire Master Teapot, ⌥cp

2 , is
connected. ⇤

7. GAPS IN THE THURSTON SET

Plots of finite approximations of the Thurston set consisting of the roots of all defining
polynomials associated to superattracting tent maps of critical orbit length at most n, for
fixed n 2 N, have “gaps" at certain algebraic integers, some of which are on the unit circle.
The Thurston set contains a neighborhood of the unit circle [Tio20], but these gaps get
filled in more slowly with n than some other regions. See Figure 2 for a picture of a finite
approximation of the Thurston set, and Figure 1 for a closeup of one such gap. In this
section, we prove an arithmetic justification for gaps:

FIGURE 4. A closeup of the how the “gap” around the point i fills in as
postcritical length increases, for an approximation of the Thurston set. The
points are color-coded by the length of the associated post-critical orbit.
Blue is the shortest, followed by green, yellow, orange, and finally red
with the longest orbit, of length 23.

Theorem 7.1. Let ↵ be an algebraic integer such that Z[↵] is a discrete subgroup of C and let

x 2 Z[↵]. Set c = min{|z| : z 2 Z[↵], z 6= 0}. Suppose there exists a superattracting tent map
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with postcritical length n whose growth rate has a Galois conjugate of the form x+ ✏ for some ✏ 2 C
with |✏|  1

n+1 . Then

(1) if |x| � 1, then
c

(2n2 + 3n+ 1)|x|ne  ✏.

(2) if |x|  1, then
c

(2n2 + 3n+ 1)e
 ✏.

Proof. Fix x 2 Z[↵] and suppose there exists a real number � associated to a generalized
PCF �-map with m intervals and postcritical length n that has a Galois conjugate of the
form x+ ✏ for some ✏ 2 C with |✏|  1.

Then � is the root of the associated Parry polynomial P�,E ;

0 = zn+1 � (a0z
n + a1z

n�1 + · · ·+ an)� 1,

where ai 2 {�2, 0, 2}. Hence (x+ ✏) is also a root of P�,E :

0 = (x+ ✏)n+1 � (a0(x+ ✏)n + a1(x+ ✏)n�1 + · · ·+ an)� 1.

Therefore

1� xn+1 + a0x
n + · · ·+ an = (x+ ✏)n+1 � xn+1 �

�
a0((x+ ✏)n � xn)

+ a1((x+ ✏)n�1 � xn�1) + · · ·+ an�1((x+ ✏)� x)
�
.

We have 1� xn+1 + a0xn + · · ·+ an 2 Z[↵], so c  |1� xn+1 + a0xn + · · ·+ an|. Then by the
triangle inequality,

c  |1� xn+1 + a0x
n + · · ·+ an|

 |(x+ ✏)n+1 � xn+1|+ |a0||(x+ ✏)n � xn|+ |a1||(x+ ✏)n�1 � xn�1| . . . |an�1||(x+ ✏)� x|.

(11)

We now restrict to the case |x| � 1. For any k  n + 1, by the binomial theorem, the
triangle inequality, and |✏|  1

n+1 ,

|(x+ ✏)k � xk| =

�����

kX

i=1

✓
k
i

◆
xk�i✏i

����� 
kX

i=1

����

✓
k
i

◆
xk�i✏i

����


kX

i=1

����
ki

(k � i)!
xk�i 1

(n+ 1)i�1
✏

���� =
kX

i=1

�����

✓
k

n+ 1

◆i�1 k

(k � i)!
✏ xk�i

�����

 ✏k|x|k�1
kX

i=1

1

(k � i)!
= ✏k|x|k�1

k�1X

i=0

1

i!

 ✏k|x|k�1
1X

i=0

1

i!
= ✏k|x|k�1e.

(12)

Combining equations (11) and (12) yields

c  ✏(n+ 1)e|x|n + |a0|✏ne|x|n�1 + · · ·+ |an�1|✏1|x|0e|
 ✏(n+ 1)e|x|n (1 + |a0|+ · · ·+ |an�1|)
 ✏(n+ 1)e|x|n (1 + 2n) .
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Thus for |x| � 1,
c

e(1 + 2n)(n+ 1)|x|n  ✏.

We now restrict to the case |x|  1. In this case, the estimate (12) becomes

(13)
��(x+ ✏)k � xk

��  ✏ke.

Combining equations (11) and (13) yields

c  ✏(n+ 1)e(1 + |a0|+ |a1|+ · · ·+ |an�1|)  ✏(n+ 1)e(1 + 2n).

Hence, for |x|  1,
c

(n+ 1)(1 + 2n)e
 ✏.

⇤

Proof of the Gap Theorem 4. In view of Theorem 7.1, it suffices to classify the discrete sub-
groups of C. The classification of discrete subrings of C is well-known, and we include it
for completeness: firstly, because it is a discrete additive subgroup, it is either Z or a lattice
of rank 2. If it is the latter case, let {1, a} be a basis of the lattice, then a must be an algebraic
integer of degree 2, in other words, the discrete subring must be of the form Z[a] where
a is an algebraic integer of degree 2, hence it must be contained in the ring of integers of
an algebraic field of degree 2. There are only 4 such rings of integers that contains some
element not on the real line and has absolute value less than 2, which are Z[

p
�1], Z[

p
�2],

Z[
p
�5], or Z[ 1+

p
�3

2 ]. ⇤

8. ⌦cp
2 AND ⌦pcf

2 ARE NOT EQUAL

In this section we prove the Two Thurston Sets Theorem 5, that ⌦cp
2 and ⌦pcf

2 are not
equal. A finite approximation of ⌦cp

2 is shown in Figure 2, and a finite approximation of
⌦pcf

2 is shown in Figure 5.
As outlined in section §3.1, a point z 2 D is in ⌦cp

2 if and only if 0 is in the limit set of the
iterated function system generated by fz, gz , where

fz : x 7! zx+ 1, gz : x 7! zx� 1.

Denote the alphabet {fz, gz} by Fz and denote the alphabet of inverses {f�1
z , g�1

z } by F�1
z .

For a word w = w1, . . . , wn in the alphabet Fz or in the alphabet F�1
z , define the action of

w on C by
w(x) = wn � · · · � w1(x).

Lemma 8.1. Fix z 2 D \ {0}. If there exists n 2 N such that

min
�
|v(0)| : v 2 (F�1

z )n
 
>

1

1� |z| ,

then z 62 ⌦cp
2 .

Proof. Suppose z 2 D \ ⌦cp
2 . Then 0 is in the limit set ⇤z . Since ⇤z = fz(⇤z) [ gz(⇤z), it

follows that ⇤z is fixed by taking the union of the images of ⇤z under all words of length
n, for any n 2 N:

⇤z =
[

w2(Fz)n

w(⇤z).
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Hence, for any n 2 N, each point in ⇤z is the image of a point ⇤z under some word in Fz of
length n. In particular, 0 is the the image of a point in ⇤z under some word in Fz of length
n. Since ⇤z ⇢ B 1

1�|z|
(0) by Lemma 3.1, this implies that for any n 2 N,

0

@
[

v2(F�1
z )n

v(0)

1

A \B 1
1�|z|

(0) 6= ;.

⇤

Proof of the Two Thurston Sets Theorem 5. Let � be the leading root of the polynomial

P (x) = x12 � 2x11 + x10 � 2x9 + x8 � 2x7 + 2x6 � 2x5 + 4x4 � 2x3 + 4x2 � 4x+ 2.

FIGURE 5. An approximation of the preperiodic Thurston set, ⌦pcf
2 , con-

sisting of the roots of all minimal polynomials associated to postcritically
finite tent maps for which the sum of the pre-critical length and the period
is at most 22. This set is shown in red in Figure 3. Compare this with the
Thurston set ⌦cp

2 in Figure 2, and note in particular the difference in a large
neighborhood of the point 1.
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(The value of � is approximately 1.94848.) By computation, the minimal �-itinerary is

w = 1000011100(101000)1.

Because P is irreducible, any roots of P must be in ⌦pcf . Let p be the root of P with
approximate value

p ⇡ 0.5393738531461442 + 0.4050155839374199i.

Since |p| is approximately 0.674509, p 2 D \ ⌦pcf
2 .

Let F�1
p be the alphabet consisting of the two maps f�1

p and g�1
p , where

f�1
p : x 7! x� 1

p
, g�1

p : x 7! x+ 1

p
.

Computation shows that

min
�
|v(0)| : v 2 (F�1

p )5
 
⇡ 4.3792,

which is much bigger than 1
1�|p| ⇡ 3.07228. Consequently, Lemma 8.1 implies that p 62 ⌦cp

2 .
⇤
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