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Summary
Bacterial communities can be key in protecting hosts against pathogens, but that protection

depends on which bacteria make up resident communities during pathogen invasion.

Abstract

The commensal microbes inhabiting a host tissue can interact with invading pathogens and host
physiology in ways that alter pathogen growth and disease manifestation. Prior work in house
finches (Haemorhous mexicanus) found that resident ocular microbiomes were protective against
conjunctival infection and disease caused by a relatively high dose of Mycoplasma gallisepticum
(MGQG). Here, we used wild-caught house finches to experimentally examine whether protective
effects of the resident ocular microbiome vary with the dose of invading pathogen. We
hypothesized that commensal protection would be strongest at low MG inoculation doses
because the resident microbiome would be less disrupted by invading pathogen. Our five MG
dose treatments were fully factorial with an antibiotic treatment to perturb resident microbes just
prior to MG inoculation. Unexpectedly, we found no indication of protective effects of the
resident microbiome at any pathogen inoculation dose, which was inconsistent with prior work.
The ocular bacterial communities at the beginning of our experiment differed significantly from
those previously reported in local wild-caught house finches, likely causing this discrepancy.
These variable results underscore that microbiome-based protection in natural systems can be
context dependent, and natural variation in community composition may alter the function of

resident microbiomes in free-living animals.

Introduction
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Understanding the varied roles of microbial communities in mediating host—pathogen
interactions across ecological contexts has become increasingly important. Bacterial community
members can interact with invading pathogens along the spectrum from facilitative to
antagonistic interactions (Daskin and Alford 2012; Boon et al. 2014; Oliver, Smith and Russell
2014; Becker et al. 2015b). Evidence of antagonistic interactions, whereby bacterial taxa inhibit
pathogens in or on a host, has been found across multiple host-pathogen systems. In some cases,
the structure of the microbial community at the site of pathogen invasion is predictive of disease
severity (Lauer et al. 2008; Becker et al. 2015a; Holden et al. 2015; Harris, Roode and Gerardo
2019). Further, studies using antibiotics to perturb resident microbiomes have found increases in
host morbidity and mortality when challenged with a pathogen, including higher pathogen loads
and greater sickness behaviors (Sekirov et al. 2008; Becker and Harris 2010; Weyrich et al.
2014; Holden et al. 2015; Kugadas et al. 2016; Thomason et al. 2017b). These results indicate
that intact microbiomes, i.e. resident microbiomes unmanipulated by antibiotics, often act in a
protective role for hosts.

Indeed, microbiomes play an important part in a host's innate immune system. Where
they interact directly with invading pathogens, microbial communities may act as the first line of
defense against invasion. Bacterial communities can inhibit invading pathogens through direct
and indirect interactions (Sassone-Corsi and Raffatellu 2015; McLaren and Callahan 2020). For
example, some cutaneous bacteria produce metabolites that inhibit growth of an invading fungal
pathogen on frogs and salamanders (Brucker et al. 2008a, 2008b; Becker et al. 2009; Harris et al.
2009). In other instances, commensal bacteria may outcompete pathogens for space or nutrients
(Sassone-Corsi and Raffatellu 2015; Wei ef al. 2015; McLaren and Callahan 2020). Microbes

also help to maintain and trigger immune responses against pathogen invasion and disease, both
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locally and elsewhere in the body (Ichinohe ef al. 2011; McDermott and Huffnagle 2014; Thaiss
et al. 2016; Shukla et al. 2017). When resident microbiomes are experimentally disrupted,
pathogens can even exhibit distinct virulence phenotypes (Thomason et al. 2017b). Thus,
microbes can inhibit infection and disease severity in hosts via a range of potential mechanisms.
Overall, intact microbiomes appear to provide protection from infection and disease
across a variety of hosts and pathogens, but the extent of protection that the microbiome provides
is likely to depend on the dose of invading pathogen. Pathogen exposure dose predicts the degree
of resulting host morbidity and mortality in diverse disease systems (e.g. Ebert, Zschokke-
Rohringer and Carius 2000; Brunner, Richards and Collins 2005; Leon and Hawley 2017);
however, potential interactions between the host microbiome and pathogen dose on infection
outcomes have rarely been examined. In one study, the presence of an intact microbiome
increased the infective dose of Bordetella pertussis in mice by three orders of magnitude
compared with infective doses in mice given antibiotics to knock down the native microbiome
(Weyrich et al. 2014), consistent with the hypothesis that microbiome-mediated protection may
vary with pathogen dose. In natural systems, pathogen exposures commonly occur at low doses,
which may not, in single exposure events, cause disease (Dhondt ez al. 2007; Regoes 2012;
Aiello et al. 2016). Heterogeneity of disease and pathogen load in animal populations could
result, in part, from the interplay between exposure dose and host protection by the microbiome.
In this study, we experimentally assessed the hypothesis that the degree of protection
provided by intact microbiomes varies with the dose of invading pathogen. House finches
(Haemorhous mexicanus) develop mycoplasmal conjunctivitis after infection by the bacterial
pathogen Mycoplasma gallisepticum (MG) (Kollias et al. 2004). Previous experimental work in

this system using ocular antibiotics found protective effects of the ocular microbiome against



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

MG conjunctival infection loads and disease severity (Thomason ef al. 2017b). Treatment with
antibiotics prior to inoculation was also associated with increased activity of known virulence-
associated phenotypes (sialidase activity and cytadherence) in output MG isolates. Thus, while
the exact causal mechanisms remain unclear, intact ocular microbiomes appear to provide
protection against both MG infection and disease when inoculation doses are relatively high, as
was the case in Thomason et al. (2017b). MG also interacts with the resident microbiome to
cause shifts in the ocular bacterial community composition after MG invasion (Thomason ef al.
2017a).

To assess potential interactions between pathogen invasion dose and the resident ocular
microbiome, here we compared infection and disease severity in control and antibiotic-perturbed
microbiome treatments for each of five MG inoculation dose concentrations. We perturbed the
ocular microbiome with cefazolin, a B-lactam antibiotic to which MG is intrinsically resistant
due to absence of a cell wall. After microbiome treatment (antibiotics or control), birds were
conjunctivally inoculated with a given MG dose. We monitored pathology and MG loads in the
conjunctiva throughout infection, and measured sialidase activity in output MG isolates at peak
infection. We predicted that the protective effects of intact ocular microbiomes would be
strongest at lower infective pathogen doses, because the microbiome would be less disrupted by

invading pathogen.

Methods
Bird capture
Hatch-year house finches (n = 107) were captured from June—August 2019 in

Montgomery County, Giles County, and Radford, Virginia. Birds were housed singly or in pairs
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in cages (76 x 46 x 46 cm) and were provided a constant 12:12 photoperiod and food and water
ad libitum. We monitored birds for signs of disease every 3—5 days post-capture for two weeks
and then collected blood samples to assess MG-specific antibody concentrations. The
combination of age (hatch-year) and serological status allowed us to ensure that birds included in
our MG inoculation treatments did not have prior exposure to MG in the wild. No experimental
birds had conjunctivitis pathology at any point prior to inoculation, and only birds negative for
anti-MG antibodies (Hawley et al. 2011) were included in treatment groups inoculated with MG
(see Experimental Design). Birds were single-housed starting 13 days before experimental MG
inoculation (i.e. post-inoculation day (“PID”) -13). Birds were captured under VDGIF (061440)
and USFWS (MB158404-0) permits. Experimental procedures were approved by Virginia

Tech’s Institutional Animal Care and Use Committee.

Experimental Design

Experimental birds were divided among ten treatment groups in a fully factorial design
(Table 1), with the highest MG concentration similar to that used by Thomason et al. (2017b).
Treatment groups had as close to 50:50 sex ratios as possible. For logistical purposes, birds were
split between two temporal groups, with all treatments present in each group and a four-week lag
between the first and second group. Because birds given the lowest dose in the first temporal
group did not develop any pathology, we reallocated birds in the second temporal group to focus
on higher dose treatments.

We used ocular administration of the -lactam antibiotic cefazolin to disrupt the resident
microbiome, as previously described (Thomason et al. 2017b). Cefazolin was rehydrated in PBS

and diluted to 33 mg/mL in artificial tears (Bausch + Lomb Advanced Eye Relief Dry Eye). We



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

administered the antibiotic by droplet instillation of 15 pL into each conjunctiva three times per
day (8:00, 12:30, 17:00) for five days (Figure 1). Because saline administration as a control may
have disrupted the resident microbiome, control catch-only birds were caught at the same times
as those given the antibiotic, held briefly, and released. We used culture techniques to confirm
the effectiveness of the antibiotic in reducing resident conjunctival bacterial populations
(Supplemental Materials).

We inoculated house finches with the VA1994 MG isolate (7994-1 6 P 9/17/2018)
because the ocular microbiome provided protection against this isolate in prior work (Thomason
et al. 2017b). MG was diluted in antibiotic-free Frey’s broth medium on the day of inoculation.
Experimental birds were inoculated by droplet instillation with 70 uL of MG diluted to a given
concentration (depending on their dose treatment), split between the two conjunctiva (i.e.
approximately 35 pL per eye). Infection controls ("MG controls", Table 1) were given 70 pL of

antibiotic-free Frey’s media.

Pathology, Swabbing, and MG Quantification

We collected pathology data and conjunctival swab samples from birds at multiple
timepoints from PID -13 to PID 27 (Figure 1). Pathology was scored for each conjunctivia on a
0-3 scale, with scores made while blind to a given bird's treatment. Briefly, no clinical signs of
conjunctivitis is scored as 0, a score of 1 represents minor swelling around the eye or minor
conjunctival eversion, moderate swelling and eversion is scored as 2, and severe swelling,
eversion, and exudate is scored as 3 (Sydenstricker ez al. 2005). We summed the scores between
the two sides within each time point, resulting in a value from 0—6 per bird per time point

(Hawley ef al. 2011). No experimental birds had signs of disease before inoculation. After
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measuring pathology, we swabbed the conjunctiva with flocked swabs (Copan FLOQSwabs,
Copan Diagnostics Inc., Murrieta, CA) lubricated with artificial tears, combining the two swabs
from each bird into 300 uL Zymo DNA/RNA Shield (Zymo Research, Irvine, CA). On PID -1, a
subset of birds’ conjunctival swabs were cultured to confirm the antibiotic effectiveness
(Supplemental Materials). On PID 8, after the DNA/RNA-preserved swab, we swabbed the
conjunctivae a second time for MG culture and phenotyping of sialidase activity. On the day of
collection, MG phenotype swabs from MG treatment groups were shipped on ice to the
University of New England in 3.0 mL Remel M5 media, where they were subjected to a sialidase
activity assay after growth as previously described (Thomason et al. 2017b) (Supplemental
Materials).

DNA was extracted from conjunctival swab samples from PID -1, 3, and 13 with the
Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, CA) protocol for Gram-positive
bacteria (see Supplemental Materials for modifications). To quantify MG in swab samples, we
conducted quantitative PCR (qPCR) on the MGC2 gene as previously described (Hawley et al.
2013), with pathogen load analyzed as logio(load+1). Data from PID -1 was used to verify that

the birds did not have MG prior to experimental inoculation.

Statistical Analyses

We used R v4.0.2 in RStudio v1.3.1093 to conduct all statistical analyses (R
Development Core Team 2015; RStudio Team 2020). First, we tested the effectiveness of the
antibiotic in knocking down the resident ocular microbiomes, comparing optical density (OD)
values of cultured swab samples between antibiotic and catch-only (microbiome control) birds

using ANOVA. We then analyzed pathology, pathogen load, probability of infection (defined
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below), and MG sialidase phenotype data to detect how the interaction between microbiome
treatment and MG dose affected infection and disease severity. We used these analyses
specifically to test the prediction that ocular microbiomes have stronger protective effects at
lower pathogen infective doses. We ran analyses on data from all experimental birds, as well as a
dataset including only birds inoculated with MG. These two datasets provided similar results, so
below we present analyses of just MG-inoculated birds (see Supplemental Materials for full data
set results).

To determine the effects of MG dose and microbiome treatments on disease severity over
time, we modelled pathology data after inoculation using negative binomial generalized linear
mixed effects models (GLMM) in the glmmTMB package (Brooks et al. 2017), with bird ID as a
random variable. We used model simplification to arrive at a minimal model addressing our
question, sequentially removing interaction terms and covariates with p < 0.1 from Wald’s chi-
squared tests using the car package (Fox and Weisberg 2019). The full model included
interactions between MG dose (logio(MG concentration + 1)) and PID, MG dose and
microbiome treatment, and microbiome treatment and PID, along with sex and temporal group as
covariates. Regardless of p-value, MG dose and microbiome treatment were kept in the final
model, though we removed their interaction from the model where applicable. We used Akaike
information criterion (AIC) to determine if a better model fit was provided if MG dose or PID
were analyzed as quadratic variables (logio(MG concentration + 1)? and PID?, respectively).

To determine if pathogen load (our metric of infection severity) differed among the
treatment groups, we analyzed load data from PID 3 and 13 using linear mixed effects models in
the Ime4 package (Bates et al. 2015). We conducted model simplification as above, except PID

was only included as an ordinal variable because we had fewer time points available.
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Pathogen load data were also used to assess successful infection in experimental birds,
conservatively defined as any post-inoculation MG load (logio(load + 1)) greater than 3.1 logio
copies as per prior work (Adelman et al. 2015; Leon and Hawley 2017). We analyzed whether
microbiome treatment affected the probability of infection using binomial GLM with a probit
link. The main predictor variables of interest included the interaction between microbiome and
MG dose treatments, with host sex and temporal group as covariates.

When sialidase activity was present in the cultured MG isolates from PID 8, sialidase
activity (mU/mg total protein) was analyzed using ANOVA, with the same predictor variables as

in the probability of infection analyses.

Describing Starting Ocular Microbiomes

A subset of ocular swab samples were used to compare the resident ocular microbiomes
in birds at the beginning of this experiment with those in a previous study assessing the effect of
antibiotics on responses to MG (Thomason ef al. 2017b). In order to describe the resident
microbial community without confounding effects of experimental perturbation, samples used
here were collected either prior to ocular antibiotic treatment at PID -13 (n =7) or on PID -1
from catch-only birds (n = 4 microbiome controls). We used the Zymo Quick DNA/RNA
Microprep extraction kit (Zymo Research, Irvine, CA) to extract samples, eluting in 15 L
DNase/RNase-free water. We conducted library prep for I[llumina MiSeq sequencing as
previously described, amplifying a portion of the V4 region of 16S bacterial rRNA using 515F
and barcoded 806R primers (Caporaso et al. 2012; Thomason et al. 2017a). Single-end sequence
reads were demultiplexed using QIIME?2, and reads were trimmed and quality-filtered with a

maximum of two expected errors using the DADA?2 package (Callahan et al. 2016; Bolyen et al.
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2019). We similarly filtered and trimmed reads from 14 microbiome control PID -1 samples
from Thomason et al. (2017b), and combined those reads from 2016 with our 2019 data set to
denoise reads to detect amplicon sequence variants (ASVs) with DADA2. Sample collection
protocols differed for the 2016 dataset (which used sterile cotton swabs, storage in tryptose
phosphate broth, and DNA extraction with Qiagen DNeasy Blood and Tissue Kit), but PCR and
sequencing protocols were identical; thus, the datasets should be broadly comparable (Fouhy et
al. 2016; Panek et al. 2018; Bjerre et al. 2019). We assigned taxonomy to our combined read file
with the Silva v132 database and filtered out non-bacterial, chloroplast, and mitochondrial reads.
Sequences are openly available on figshare (DOI: 10.6084/m9.figshare.14541390; temporary

link: https://figshare.com/s/ce3aea67c701bb061b48).

We used analysis of composition of microbiomes (ANCOM) on unrarefied data in
QIIME2 to assess differential abundance of bacterial genera between the two study years. After
inspecting rarefaction curves, we rarefied the data to 7,500 reads per sample, removing three
samples from the 2016 data. We used QIIME2 to calculate ASV richness, alpha diversity metrics
(Pielou’s evenness, Shannon’s diversity metric, and Faith’s phylogenetic diversity) and beta
diversity (weighted and unweighted UniFrac distances). Analyses of these metrics focused on
detecting differences between the study years in starting microbial communities in absence of
antibiotic perturbation and prior to pathogen inoculation. We compared ASV richness and alpha
diversity metrics between the sampling years with Kruskal-Wallis tests. With the vegan package
(Oksanen et al. 2018), we compared beta diversities between sampling years with
PERMANOVA and further tested for differences in multivariate dispersion with permutational

multivariate analysis of beta-dispersion.
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Results

Culture-based assays indicated that the topical ocular antibiotic significantly suppressed
the overall abundance of viable resident bacteria (Figure S1), consistent with prior work
(Thomason et al. 2017b) and indicating that our microbiome antibiotic treatment successfully
perturbed the resident ocular microbiome. Following antibiotic treatment, but just prior to MG

inoculation (PID -1), none of the experimental birds had pathology or detectable MG by qPCR.

Disease Severity

Overall, we found no support for our primary hypothesis that MG dose and microbiome
antibiotic treatment would interact to influence disease severity. Both MG dose and PID were
significant predictors of disease severity in our simplified model (Table 2), with pathology score
increasing with MG dose, consistent with prior work (Leon and Hawley 2017). However,
microbiome perturbation with antibiotics was not significantly predictive of disease severity
(Table 2), either alone or in interaction with MG dose, such that the interaction was removed
during model simplification. Antibiotic treated birds generally had lower pathology scores, in the
opposite direction of prior work (Thomason ef al. 2017b), although this was not statistically
significant (p = 0.055; Figure 2a, Figure S2). Because a single house finch in the catch-only
(microbiome control), 3x10° CCU/mL MG dose treatment had abnormally high pathology scores
from PID 8 onward, we also evaluated the simplified model without this individual. This analysis
suggested that this one individual was important in driving the marginal effects of microbiome

treatment on pathology (Table 2).

Pathogen Load and Probability of Infection

12
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We used linear mixed effects models to detect effects of microbiome treatment and MG
dose on infection loads quantified on post-inoculation days 3 and 13. Similar to the results for
disease severity, we found no support for interactions between MG dose and microbiome
treatment on infection load. In the simplified model, MG load was significantly predicted by MG
dose, PID, and their interaction, but not microbiome treatment (Table 2, Figure 2b).

We further used pathogen load to determine if the birds were successfully infected and
whether probability of infection differed with microbiome and MG dose treatments. Consistent
with MG load results, probability of infection differed based on MG dose, but not microbiome

antibiotic treatment, with birds given higher MG doses more likely to become infected (Table 2).

MG Sialidase Phenotype

Of the 85 birds inoculated with MG, 48 cultured swab samples from PID 8 grew and
exhibited sialidase activity (MG doses: 3x10' n = 1; 3x10% n = 4; 3x10° n = 20; 3x10* n = 23).
From linear models, only temporal group was a significant predictor of sialidase activity (Table
2, Figure S3), with MG isolated from birds in temporal group 2 exhibiting lower sialidase

activity. Neither microbiome treatment, nor MG dose, was significant.

Resident Ocular Microbiomes

Prior to MG inoculation, resident ocular microbiomes from the present experiment were
dominated by Proteobacteria and Actinobacteria, with Sphingomonas, Pseudomonas,
Comamonas, Mycobacterium and other genera in greater abundance in the 2019 samples based
on ANCOM compared with house finch conjunctival samples collected for a previous

experiment from birds captured and housed at the same localities and conditions (Thomason et

13
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al. 2017b) (Figure 3, Table S4). In contrast, resident ocular microbiomes sampled in 2016 were
dominated by Firmicutes, with greater abundance of Lactococcus and Enterococcus in 2016
compared with our 2019 samples (Figure 3, Table S4). Though the genus Lactococcus was the
dominant taxon in finch ocular microbiomes in 2016, this genus accounted for less than 0.5% of
the reads in the three (of 11) 2019 samples where it was detected. All samples were collected
from ocular microbiomes that were not perturbed with antibiotics.

There were also quantifiable differences between study years with respect to alpha and
beta diversity of resident bacterial communities. Using Kruskal-Wallis tests, the 2016 and 2019
samples significantly differed in ASV richness and the three alpha diversity metrics (p < 0.0001
each; Table S2, Figure S4). Similarly, samples from the two study years significantly differed in
beta diversity (weighted and unweighted UniFrac p = 0.001; Table S3, Figure S5). Analysis of
dispersion detected significant differences in dispersion between the years (p < 0.01 each). Thus,
we found strong support for differences in microbiome composition and structure between

studies.

Discussion

This experiment assessed dose-dependent protective effects of the house finch ocular
microbiome against the conjunctival pathogen Mycoplasma gallisepticum. Although disease and
infection severity both increased with MG inoculation dose as expected based on previous work
in this and other systems (Timms ez al. 2001; Regoes, Ebert and Bonhoeffer 2002; Spekreijse et
al. 2011; Leon and Hawley 2017), we did not detect the presence of protective effects of the
intact microbiome at any inoculation dose, including the dose used in prior work that found

significant protective effects of intact ocular microbiomes (Thomason et al. 2017b). Thus, we
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were unable to adequately test whether protective effects of the ocular microbiome are dose-
dependent. Instead, we show that variation in the resident microbiome present in the conjunctiva
at the time of pathogen inoculation likely explains the discrepancies between ours and the
previous study. This and other studies finding that microbiome variation at the time of pathogen
invasion predict variation in disease (e.g. Becker et al. 2015a; Walke et al. 2015; Nava-Gonzélez
et al. 2021) underscore the potential for microbiome function to be highly variable and context-
dependent in natural systems.

We found that the ocular microbiomes at the start of this experiment differed notably
from those in previous experiments (Thomason et al. 2017a, 2017b), such that the bacteria
contributing to the microbiome’s protective effects in Thomason et al. (2017b) were likely not
present or were very rare in our study. Specifically, the ocular communities in birds in 2016,
where protective effects of the ocular microbiome were detected, were largely comprised of the
bacterial genus Lactococcus, with over 70% of the relative abundance representing this genus. A
high relative abundance of Lactoccocus was also documented in another prior study describing
ocular bacterial microbiomes and their shifts after MG inoculation (Thomason et al. 2017a).
Lactococcus can inhibit growth of other bacteria through lactic acid production and other
antimicrobial metabolites, and lactic-acid-producing bacteria can provide important protection
when they dominate a microbiome (Rassland ef al. 2005; Vasquez et al. 2012; O’Hanlon,
Moench and Cone 2013). In birds from the present experiment, which were captured from the
same areas of Virginia as finches in past studies, we found that Lactococcus comprised less than
1% of the ocular communities. Importantly, the two groups of microbiome samples were
collected and processed under slightly different protocols, which may explain some of the

variation between sampling years, given that microbiome studies often find differences in
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community composition and diversity across extraction protocols (Fouhy et al. 2016; Bjerre et
al. 2019). However, distinct extraction protocols are unlikely to cause the degree of divergence
between predominant taxa detected between the two studies here (Figure 3). Overall, the low
abundance of Lactococcus and large shift in the resident microbiome compared to previous
descriptions could have resulted in its lack of protective function against mycoplasmal
conjunctivitis in this study. Further, the dominant ocular community members in this experiment
may not have responded to experimental antibiotic treatment in the same way as the prior
Lactococcus-dominated communities, potentially limiting our ability to adequately disrupt the
ocular microbial community and thus test its protective function. Though we used culture-based
methods to verify that administering cefazolin reduced ocular bacterial growth in this study, we
also detected abundant genera in the sequenced ocular samples that may not be susceptible to
this antibiotic, such as Pseudomonas and Sphingomonas (Reller et al. 1973; Mustata, Maulud
and Hamad 2018). Thus, it is challenging to compare the role of these distinct ocular
communities in ocular health and disease.

Past work also found that perturbing the ocular microbiome increased activity of sialidase
enzymes associated with MG virulence (Thomason et al. 2017b), and that activity was correlated
with variation in disease severity among individuals. Here, we did not detect any influence of
ocular microbiome disruption on the sialidase activity of output MG isolates, consistent with the
absence of significant effects of antibiotics on disease severity. Modulation of sialidase activity,
and often its functional balance with host cell cytadherence, are important mechanisms for fine-
scale rheostasis (i.e. regulation in a changing environment) during infection for many pathogens.
Overall, the differences between these results and those of past work suggest that prior protective

effects, including the potential modulation of sialidase activity in MG, were likely driven by
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Lactoccocus and other resident community members that were largely absent in the resident
ocular microbiomes in this experiment.

The limited data on avian ocular microbiomes restricts our ability to discern the
microbiome composition that should be considered “normal” or expected in house finches.
Though no other studies beyond those discussed above have described ocular communities in
birds with high throughput sequencing, samples from non-human mammals have found
Proteobacteria, Actinobacteria, and Firmicutes on ocular surfaces, with the predominant phylum
differing among and within host species (Alfano et al. 2015; Leis and Costa 2019; Leis, Madruga
and Costa 2021). The abundant genera within those mammals, however, do not overlap with the
principal genera in house finches. As with other microbiomes with such high exposure to the
environment (e.g. skin, respiratory tract), the bacteria in ocular samples are likely affected by
transient taxa that are detected in the eye, but are not true commensals (Lauer ef al. 2007; Kong
and Segre 2012; Hammer, Sanders and Fierer 2019). Further, the house finch ocular
microbiomes that have been described have all derived from captive birds, and studies from
other systems show that captivity can strongly affect microbiomes (e.g. Cheng et al. 2015; Kohl
et al. 2017). The birds in this experiment and in the first study characterizing house finch ocular
microbiomes (Thomason et al. 2017a), which found Lactococcus predominating in the
microbiome, were housed in captivity for approximately two to four months prior to MG
inoculation. Thus, time in captivity is unlikely to explain the large differences in abundance of
Lactococcus between studies. The two studies directly compared here (Figure 3) both included
hatch-year males and females captured from the same population in SW Virginia during summer
and housed under identical captive conditions in the same laboratory space, though other

unrecognized differences in housing and care among the years could have affected the ocular
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communities at the beginning of the experiments. Overall, the microbial differences between
study years represent, at least in some capacity, differences across years between the
microbiomes at the time of capture. Further study should quantify temporal variation in the
ocular microbiome of free-living house finches, as well as effects of captivity on such variation,
to begin to unravel the mechanisms that determine ocular microbial composition in house finches
and potentially other songbird taxa.

Large differences in microbial communities within a host species are common (e.g. Tung
et al. 2015; Escallon et al. 2017; Springer et al. 2017; Kueneman et al. 2019; Hernandez et al.
2020) and likely play a large role in the variation of other aspects of host ecology. Much of what
we know about patterns of microbiomes in and on wild organisms, particularly outside of the
gut, and their interactions with pathogens comes from research on amphibian skin microbiomes,
which can vary significantly with respect to spatial, temporal, and environmental factors (Walke
and Belden 2016; Familiar Lopez et al. 2017; Christian et al. 2018; Kueneman et al. 2019;
Loudon et al. 2020; Douglas, Hug and Katzenback 2021). Although studies of amphibian skin
microbiomes focus on interactions with invading fungal and viral pathogens, studies in other
natural systems are increasingly focusing on bacterial microbiome patterns and their functional
roles in and on wild animals (e.g. Kohl 2012; Ainsworth ef al. 2015; Colston and Jackson 2016;
Thomason et al. 2017a; Allender et al. 2018; Weitzman, Sandmeier and Tracy 2018). While
most studies seek patterns among individuals, microbial communities are labile even within
single hosts, with microbial community shifts affected by factors such as horizontal transmission
from social interactions, season and food availability (particularly for the gut microbiome), and
infection (Jani and Briggs 2014; Bradley et al. 2016; Springer et al. 2017; Thomason et al.

2017a; Zhu et al. 2020). Much like the skin, ocular surfaces are constantly exposed to the outside
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world. In humans, ocular microbiomes not only vary among individuals (Ozkan et al. 2018;
Delbeke ef al. 2021), but also fluctuate across time within healthy individuals (Ozkan et al.
2017). Considering the many factors that could lead to temporal changes in microbial
communities, it is reasonable to expect that house finch ocular microbiomes differ among
generations and years. In this and other systems, changes in community composition across time
could affect the microbiome’s protective role, because members of the community influence the
microbiome’s effectiveness as protective. Thus, understanding the factors that drive changes in
microbial community composition and function in this and other natural systems is critical.

This experiment attempted to conceptually expand upon results generated four years ago,
by asking whether microbiome-mediated protection is dose dependent. Instead, we found that
intact microbiomes that provided significant protection from infection and disease in an earlier
experiment provided no detectable protection here, despite use of the same pathogen and free-
living host. While this lack of protection meant that we were unable to adequately test our
motivating hypothesis with respect to dose, the broader pattern of variable microbiome-mediated
protection against infection is likely a common occurrence in ecological studies, as many abiotic
and biotic changes occur across spatial and temporal scales that could affect ecological patterns.
The publication bias in ecological literature implies that many fields may be lacking the true
range of results needed to fully assess ecological hypotheses and their generalizability (Jennions
and Moller 2002; Fidler et al. 2017). Importantly, our study contributes to our understanding of
how and when the host microbiome is protective, and the context-dependency of interactions
between complex microbial communities and invading pathogens. With these considerations,
investigations should examine microbial variation, and associated potential inconsistencies of

results, when exploring functions of resident microbiomes in free-living animals.
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Tables

Table 1. Sample sizes for house finches in each of ten treatment groups in a fully factorial design

among five Mycoplasma gallisepticum (MG) doses and two ocular microbiome treatments (n =

107 total).

Microbiome treatment

Pathogen Dose Concentrations (color-changing units/mL)

0 (MG control) | 3x 10! 3x 10° 3x 10° 3x10*
Catch-only 11 8 11 12 12
(microbiome control)
Antibiotics 11 8 11 12 11
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Table 2. Final models of pathology, pathogen load, probability of infection, and sialidase

activity for experimental house finches that either had microbiomes left intact or perturbed with

antibiotics prior to inoculation with Mycoplasma gallisepticum (MG; n = 85 inoculated birds).

Bold denotes significant p-values (< 0.05). PID = post-inoculation day. Italicized p-values

indicate where trends were greatly influenced by an outlier. Outlier in pathology data was a bird

with severe pathology in the microbiome control, 3x10°* CCU/mL MG dose group.

Response Predictors Estimate + SEM  ChiSq P P no outlier
Pathology
MG dose 1.311 +£0.179 53.43 <0.0001 <0.0001
Microbiome treatment —0.523 £0.272 3.69 0.055 0.11
PID? —0.002 +
0.0004 29.05 <0.0001 <0.0001
Pathogen Load
MG dose x PID -0.605 +0.136 19.93 <0.0001
MG dose 1.962 +0.130 227.53  <0.0001
Microbiome treatment —0.360 £ 0.278 1.68 0.19
PID 0.975 + 0.446 4.78 0.029
Probability of Infection
MG dose 2.993 +£0.629 91.17 <0.0001
Microbiome treatment —0.652 + 0.596 1.29 0.26
MG Sialidase Phenotype F-value
(n=48) MG dose -13.48 £12.32 0.014 0.91
Microbiome treatment  —5.62 £ 17.83 0.048 0.83
Temporal group —41.59+17.47 8.30 0.006
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Figure Legends

Figure 1. Experimental timeline based on post-inoculation day (PID) with respect to inoculation
with Mycoplasma gallisepticum (MG). To detect whether the protective effects of an intact
ocular microbiome vary with the inoculation dose of MG in house finches, we collected: P =
pathology scores and nucleic acid swab samples, C = conjunctival culture swab samples from a
subset of birds to confirm antibiotic efficacy (Supplemental Materials), M = MG sialidase

phenotype swabs, and B = blood samples to determine antibody levels (Supplemental Materials).

Figure 2. Intact ocular microbiomes were not protective against Mycoplasma gallisepticum
(MQG) disease or infection severity in house finches. (a) Pathology scores for the two highest MG
dose concentrations (only two doses shown for ease of visualization, but see Figure S2 for lower
dose results) across post-inoculation days (PID). Squares indicate 3x103 CCU/mL MG dose.
Triangles indicate 3x10* CCU/mL MG dose. (b) MG load on days 3 and 13 post-inoculation
were predicted by MG dose, PID, and their interaction, but not antibiotic treatment. Only birds in
the four treatment groups with MG dose > 0 are shown for visual clarity. In both panels, open
symbols signify birds given antibiotic to perturb the resident microbiome, and closed symbols

signify control birds not given antibiotic. Points and bars signify mean and standard error.

Figure 3. Abundant genera in the resident ocular microbiomes sampled in 2019 (this
experiment) compared with those sampled in 2016 (far right; Thomason et al. 2017b). All
microbiomes were sampled either 13 days or 1 day prior to inoculation with M. gallisepticum
and thus represent resident microbiome communities (birds given ocular antibiotics were

excluded for clarity). Proportions based on relative abundance of rarefied reads. Samples
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