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Abstract
We analyze the macroscale behavior of random lower (and therefore upper) triangular
matrices with entries drawn i.i.d. from a distribution with nonzero mean and finite
variance. We show that such a matrix behaves like a probabilistic version of a Rie-
mann sum and therefore in the limit behaves like the Volterra operator. Specifically,
we analyze certain SOT-like and WOT-like modes of convergence for random lower
triangular matrices to a scaled Volterra operator. We close with a brief discussion of
moments.
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1 Introduction

The Wigner semicircle law states that a class of self adjoint random matrices called
Wigner matrices go to semicircular element a.s. and in distribution asymptotically.
Specifically, if one considers a large randomHermitian matrix with entries drawn i.i.d.
from a suitably nice distribution, when we look at the histogram of the eigenvalues we
see a semicircular shape, with perhaps one large exceptional eigenvalue. The theory
of free probability and randommatrix theory give various ways in which we can make
this convergence formal [6].

In their breakthrough paper, [2], Dykema and Haagerup studied distribution limits
of upper triangular randommatrices with i.i.d. complex Gaussian entries having mean
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Fig. 1 A histogram of 5000 by 5000 Gaussian self adjoint (real) randommatrix (GOE) with non zero mean.
Each entry has mean 4/N and standard deviation 1√

N
, N = 5000. Note that there is one exceptional large

eigenvalue, while the rest follow a semi-circular distribution

zero and variance c2/n in the strictly upper triangular part, and i.i.d. random variables
distributed according to a compactly supported measure μ on the main diagonal. For
these matrices, a limiting non-commuting random variable exists and is called a DT-
element or DT-operator. The DT-operators include Voiculescu’s circular operator and
elliptic deformations of it, as well as the circular free Poisson operators. Star moments
of these operators show interesting combinatorial properties, as is explored in [7] by
Sniady. Dykema andHaagerup [3] later proved that everyDT-operator has a nontrivial,
closed, hyperinvariant subspace. Furthermore, every DT-operator generates the von
Neumann algebra L(F2) of the free group on two generators. Some properties of such
matrices, including some properties of the distribution of the singular values, were
also independently investigated by Chelotis [1].

Let XN = 1
N (XN

i, j )
N
i, j=1 denote an N × N random lower triangular matrix where

XN
i, j ’s are i.i.d. random variables with finite mean μN and finite variance σ 2

N . Let TN
be the deterministic lower triangular matrix with each entry being 1/N , i.e.

XN = 1

N

⎡
⎢⎢⎢⎣

XN
1,1 0 . . . 0

XN
2,1 XN

2,2 . . . 0

. . . . . .
. . . . . .

XN
N ,1 XN

N ,2 . . . XN
N ,N

⎤
⎥⎥⎥⎦ , TN = 1

N

⎡
⎢⎢⎢⎣

1 0 . . . 0
1 1 . . . 0

. . . . . .
. . . . . .

1 1 . . . 1

⎤
⎥⎥⎥⎦

Numerical experiments give useful information about the singular value distribution
for large random matrices. For example, Fig. 2 shows the singular value distribution
of XN = π

N (XN
i, j )

N
i, j=1 for N = 5000, where XN

i, j are i.i.d. Bernoulli (0,1) random
variables for 1 ≤ j ≤ i ≤ N and 0 otherwise. Singular values of XN for large
N behave like the singular value distribution for DT-operators near 0 and like the
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Fig. 2 singular value distribution of XN = π
N (XN

i, j )
N
i, j=1 for N = 5000, where XN

i, j is i.i.d. Bernoulli(0,1)
random variable for all 1 ≤ j ≤ i ≤ N and 0 otherwise

Volterra operator away from 0. Our current investigation only concerns the asymptotic
description of large singular values.

Let V be the Volterra operator on L2[0, 1] defined by

V ( f )(x) =
∫ x

0
f (t)dt

for all f ∈ L2[0, 1]. Let WN : CN → L2[0, 1] be the isometry taking a vector to a
piecewise constant function, as formally defined in Eq. (1).

Theorem 1.1 (SOT-like convergence) Let {aN }∞N=0 ⊂ Z
+ be a non-negative increas-

ing sequence. Let {k(N )} be a sequence of non-negative real numbers such that
k(N )σN√

aN
→ 0 and

∑∞
N=1

1
k(N )2

< ∞. Let μaN → μ.

Then, for all u ∈ L2[0, 1],

WaN XaN W
∗
aN (u) → μV (u) a.s..

(Here, W ∗
aN denotes the adjoint of WaN ).

For instance, we have that W2N X2N W
∗
2N

( f ) → μV ( f ) a.s. for f ∈ L2[0, 1]
whenever μN → μ and the standard deviations are uniformly bounded. We discuss
important properties of SOT-like convergence and prove Theorem 1.1 in Sect. 2. The
idea is that the TN act on vector in C

N consisting of function values taken from
equally distanced points in the interval [0, 1] and output the partial sums for that
function, which converge to integral of the function as in a Riemann sum. The matrix
TN has singular values similar to Volterra operator, which are 2

π(2n+1) (see e.g. [4,5]).
We also have a WOT version of this theorem, which requires considerably weaker

conditions for convergence.

Theorem 1.2 (WOT-like convergence) Let {aN }∞N=0 ⊂ Z
+ be a non-negative increas-

ing sequence. Let {k(N )} be a sequence of non-negative real numbers such that
k(N )σN

aN
→ 0 and

∑∞
N=1

1
k(N )2

< ∞. Let μaN → μ.
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Then, for all u, v ∈ L2[0, 1],

〈WaN XaN W
∗
aN (u), v〉 → μ〈V (u), v〉 a.s.

For instance, we can conclude WOT-like convergence along the sequence XN when-
ever μN → μ and the standard deviations are uniformly bounded (specifically, when
there is not enough variance to neccesitate taking a subsequence as in Theorem 1.1).
We discuss WOT-like convergence and prove Theorem 1.1 in Sect. 2.

Also, one can remove the ‘like’ from the above results to get WOT and SOT con-
vergence if the random matrices XN under consideration are uniformly bounded in
operator norm a.s.. For example, the XN will be uniformly bounded for Bernoulli 0−1
random variables with fixed mean and variance.

In the last section, we give moment results for X∗
N XN for any random matrix with

finite moments for each entry and of N X∗
N XN in the case of non-zero mean. The zero

mean case was studied by Dykema and Haagerup [2] where each entry of XN was
Gaussian. We do not see any direct way to generalize their method to matrices XN

with non-Gaussian random variables. Also, in non-zero mean case, as Fig. 2 suggests,
we do not get a mean zero spectrum with an exceptional eigenvalue, as is the case in
non-zero mean Wigner matrices. Our empirical observations show a superimposition
of singular values from the Volterra operator and DT operator.

2 SOT-like convergence

Let

BN = span{eN1 , . . . , eNN } ⊆ L2[0, 1],

where for 1 ≤ i ≤ N , the function eNi = √
N1[(i−1)/N ,i/N ] and 1[(i−1)/N ,i/N ] is

the indicator function of the interval [(i − 1)/N , i/N ]. Note that {eNi }Ni=1 form an
orthonormal basis for BN . We define WN : CN → L2[0, 1] by

WN (a1, . . . , aN ) =
n∑

i=1

ai e
N
i . (1)

The map WN takes CN onto BN isometrically. Note that W ∗
N is a partial isometry

which sends f to (〈 f , eN1 〉, . . . , 〈 f , eNN 〉).
Let us begin with the following useful lemma.

Lemma 2.1 Let V be the Volterra operator on L2[0, 1]. Then, WNTNW ∗
N → V in

SOT.

Proof Let

gN (x) = WNTNW
∗
N ( f )(x).
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We first show gN → V ( f ) pointwise for each f ∈ C([0, 1]). Without loss of
generality, consider a non-negative continuous function f ∈ C([0, 1]). There exists
xNi ∈ [(i − 1)/N , i/N ] such that f (xNi ) = √

N 〈 f , eNi 〉 by the intermediate value
theorem. Define aN (x) = min{i ∈ N : x ≤ i/N }. For fixed x ∈ [0, 1],

(1/
√
N )

aN (x)∑
i=1

〈 f , eNi 〉 →
∫ x

0
f (t)dt

as N → ∞. Thus gN (x) → ∫ x
0 f = V ( f )(x) pointwise. Therefore

gN (x) →
∫ x

0
f (t)dt

in L2[0, 1] by the bounded convergence theorem (every function gN is bounded by
the sup norm of f ). Hence,

lim
N→∞ ||(WNTNW

∗
N − V )( f )|| → 0.

Since we obtain convergence for all continuous functions on [0, 1], which are dense
in L2[0, 1], and the norms of {WNTNW ∗

N } and V are uniformly bounded by 2, (the

Fröbenius norm of TN , which dominates the operator norm, is given by
√

n(n+1)
2n2

,

which is less than 2.), we conclude that

||(WNTNW
∗
N − V )( f )|| → 0

for all f ∈ L2[0, 1]. �

For u = (u1, u2, . . . , uN ) ∈ C

N , let u2 denote the vector

u2 = (|u1|2, |u2|2, . . . , |uN |2) ∈ C
N .

Lemma 2.2 Let u be a unit vector in CN . Then

E((μN TN − XN )u) = 0,

and

E((‖(μN TN − XN )u‖)2) ≤ ‖σ 2
N

N
TNu

2‖1.

Proof The first equality is direct. For the second inequality, observe that

E((‖(μN TN − XN )u‖)2) = 1

N 2 E

⎛
⎝

N∑
i=1

|
i∑

j=1

(Xi, j − μ)u j |2
⎞
⎠
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≤ 1

N 2 E

⎛
⎝

N∑
i=1

i∑
j=1

|(Xi, j − μ)u j |2
⎞
⎠

= 1

N 2

N∑
i=1

i∑
j=1

E(|Xi, j − μ|2)|u j |2

= 1

N 2

N∑
i=1

i∑
j=1

σ 2
N |u j |2

= ||σ
2
N

N
TNu

2||1

�

For a non-negative sequence k(N ), Chebychev’s inequality implies that

P

⎛
⎝‖(μN TN − XN )u‖ ≥ k(N )

√√√√
∥∥∥∥∥
σ 2
N

N
TNu2

∥∥∥∥∥
1

⎞
⎠ ≤ 1

k(N )2
. (2)

Therefore, we can finesse our estimate for the standard deviation into a statement about
almost sure convergence.

Lemma 2.3 Let {aN }∞N=0 ⊂ Z
+ be a non-negative increasing sequence. If there

exists positive sequence {k(N )} such that k(N )σN√
aN

→ 0 and
∑∞

N=1
1

k(N )2
< ∞. Then

‖WaN (μaN TaN − XaN )W ∗
aN u‖ → 0 a.s. for all u ∈ L2[0, 1].

Proof From Eq. (2), we get that,

P

⎛
⎝∥∥(μaN TaN − XaN )u

∥∥ ≥ k(N )

√√√√
∥∥∥∥∥
σ 2
N

aN
TaN u

2

∥∥∥∥∥
1

⎞
⎠ ≤ 1

k(N )2
.

The right hand side is summable. So, by the first Borel–Cantelli lemma, the probability

that the events {‖(μaN TaN − XaN )u‖ ≥ k(N )

√
‖σ 2

N
aN

TaN u
2‖1}, occur infinitely often

is 0. Observe that for a unit vector u, if uaN denotes W ∗
aN u, then uaN has norm less

than or equal to 1 (as W ∗ is projection). Then ||TaN u2aN ||1 ≤ 1 and hence

k(N )

√
‖σ 2

N

aN
TaN u

2‖1 ≤ k(N )σN√
aN

.

So,

‖(μaN TaN − XaN )uaN ‖ ≤ k(N )σN√
aN

eventually a.s..



Macroscale behavior of random lower triangular matrices Page 7 of 11 12

This gives that

‖(μaN TaN − XaN )uaN ‖ → 0 a.s.

�⇒ ‖(μaN TaN − XaN )W ∗
aN u‖ → 0 a.s.

�⇒ ‖WaN (μaN TaN − XaN )W ∗
aN u‖ → 0 a.s..

This is true for any unit vector u, and hence for any vector in general. �

Proof of Theorem 1.1 Lemma 2.1 along with triangle inequality gives that ‖(μV −
μaN WaN TaN W

∗
aN )u‖ → 0 for all u ∈ L2[0, 1]. Hence,

‖(μV − WaN XaN W
∗
aN )u‖

≤ ‖(μV − μaN WaN TaN W
∗
aN )u‖ + ‖WaN (μaN TaN − XaN )W ∗

aN u‖
→ 0 a.s..

�


2.1 Remarks on SOT convergence

(1) The above theorem is rather powerful. For example, if the variance goes to 0 at a
rate faster than 1

N ε for some ε > 0, then we have guaranteed convergence for any
sequence aN . In particular, for aN = N which gives WN XNW ∗

N (u) → μV (u)

a.s. (choose k(N ) = N
1+ε
2 . ).

(2) The sequence {k(N )} may not exist in some cases. For example, let σN = σ be
constant. Then if aN = N , we do not have any sequence which achieves the goal.
This implies that if all the random variables come from the same distribution inde-
pendent of size of matrix N, then the above theorem cannot guarantee convergence
to the Volterra operator for the random matrices.

(3) If norm of the random matrices XN can be bounded uniformly a.s., then we can
conclude true SOT convergence.

An important case for convergence (for aN = 2N ) can be seen in the corollary
below.

Corollary 2.4 ∀u ∈ L2[0, 1] ‖(μV − W2N X2N W
∗
2N

)u‖ → 0 a.s. whenever for j ≤
i ≤ N, XN

i, j are i.i.d. random variables (independent of N) with mean μ and finite
variance σ .

Proof Choose k(N ) = 2N/4. �


3 WOT-like convergence

Let XN be as earlier. We have the following variance bound.
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Lemma 3.1 Let u, v be vectors in CN , then

E(〈(XN − μN TN )u, v〉) = 0

and

E(|〈(XN − μN TN )u, v〉|2) ≤ σ 2
N

N 2

N∑
i=1

i∑
j=1

|vi |2|u j |2 ≤ σ 2
N

N 2 ‖u‖2‖v‖2.

Proof The first equality is direct. The second inequality is also direct after expanding
and using triangle inequality. �


As

P

(
|〈(XN − μN TN )u, v〉| > k(N )

σN

N
‖u‖‖v‖

)
≤ 1

k(N )2
, (3)

we obtain Theorem 1.2 via a similar argument to the proof of Theorem 1.1.
Equation (3) gives us that unlike the SOT-like case, whenever μN → μ, we do

have 〈WN XNW ∗
Nu, v〉 → 〈μVu, v〉 a.s. whenever {σN } is uniformly bounded.

Let XN be a random lower triangular matrix such that an entry is 1
δ(N )N with

probability δ(N ) and 0 otherwise. This givesmeanμN = 1 and varianceσ 2
N = 1−δ(N )

δ(N )
.

Then,

P

(
|〈(XN − TN )u, v〉| > k(N )

√
1 − δ(N )

δ(N )N 2 ‖u‖‖v‖
)

≤ 1

k(N )2
. (4)

3.1 Remarks onWOT convergence

(1) If δ(N ) is bounded below uniformly, then 〈WN XNW ∗
Nu, v〉 → 〈Vu, v〉 a.s.

(Choose k(N ) = N 1/2+ε).
(2) If δ(N ) = N−d , and d < 1, we can show that we still haveWOT-like convergence

(choose k(N ) = N
(3−d)

4 ). If d ≥ 1, Theorem 1.2 cannot guarantee WOT-like
convergence.

4 Asymptotic distribution of X∗
NXN and NX∗

NXN

We will begin with the following observation about the deterministic matrix TN . For
fixed 1 ≤ k ≤ N , let 1N

k be N by N deterministic matrix with entry (1N
k )i j = 1 if
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i, j ≤ k and 0 otherwise.

1N
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

...

1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lemma 4.1

�N/2�2n ≤ Tr((N 2T ∗
N TN )n) ≤ N 2n

for all n ≥ 1.

Proof Basic computations show that

N 2(T ∗
N TN ) =

N∑
k=1

1N
k . (5)

It follows that

Tr(N 2(T ∗
N TN ))n = Tr(

N∑
k=1

1N
k )n

=
N∑

i1,...,in=1

Tr(1N
i11

N
i2 . . .1N

in )

≤
N∑

i1,...,in=1

Tr(1N
N )n

=
N∑

i1,...,in=1

Nn

= Nn(

N∑
i1,...,in=1

1)

= NnNn = N 2n .

This gives the upper bound. For lower bound, we observe that we can restrict indices
�N/2� ≤ il ≤ N for all l = 1, . . . , n. Under this restriction,

Tr(1N
i11

N
i2 . . .1N

in ) ≥ Tr(1N
�N/2�)

n = (�N/2�)n .
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Then

N∑
i1,...,in=1

Tr(1N
i11

N
i2 . . .1N

in ) ≥
N∑

i1,...,in=�N/2�
Tr(1N

i11
N
i2 . . .1N

in )

≥ (�N/2�)n(
N∑

i1,...,in=�N/2�
1)

≥ (�N/2�)n(�N/2�)n
= (�N/2�)2n .

This proves the lower bound. �

Lemma 4.2 Let {XN

i j }beuniformlyboundedby constantKa.s.. Then, tr((X∗
N XN )n) →

0 a.s as N → ∞ for all n ≥ 1. (Here, tr denotes the normalized trace. That is,
tr(A) = 1

N Tr(A) where N is the size of the matrix A.)

Proof We observe that,

tr((X∗
N XN )n) ≤ tr(K 2T ∗

N TN )n a.s..

By Lemma 4.1, we have that

Tr(K 2T ∗
N TN )n ≤ K 2n

�⇒ tr(K 2T ∗
N TN )n ≤ (K 2n)/N

�⇒ tr((X∗
N XN )n) ≤ (K 2n)/N → 0 a.s as N → ∞.

�

Lemma 4.3 Let {XN

i j } be i.i.d. random variables with finite moments. Then, E[tr((X∗
N

XN )n)] → 0 as N → ∞ for all n ≥ 1.

Proof Weobserve that, after expanding Tr((N 2X∗
N XN )n), there are atmost N 2n terms

of the form XN
j1i1

XN
j1i2

. . . XN
jni1

for il , jk ∈ 1, . . . , N and l, k ∈ {1, . . . , n}. Since the
Xi j are i.i.d., we get that, for fixed n, the expectation of each term can take values from
a finite set of numbers independent of N . For example, it can be E[X11]2n , if the pairs
(il , jl) and (il+1, jl) are all distinct, i.e., every random variable is independent of each
other in the term. It can be E[X2n

11 ], if (il , jl) = (il+1, jl+1) for all l = 1, . . . , n − 1,
i.e., we have the same random variable multiplied 2n times. This gives that there
are finitely many values that each term in the trace expansion can take. Let Mn be
the maximum absolute value in this set. Each term E |XN

j1i1
XN

j1i2
. . . XN

jni1
| ≤ Mn for

all il , jk ∈ {1, . . . , N } and l, k ∈ {1, . . . , n}, independent of N . Since there are at
most N 2n such terms, we have that E[Tr((N 2X∗

N XN )n)] ≤ MnN 2n , which gives
E[tr(X∗

N XN )n] ≤ Mn/N → 0. Hence the claim. �
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Lemma 4.4 Let {XN
i j } be collection of i.i.d. random variables with mean,μ �= 0. Then,

E[tr((N X∗
N XN )n)] → ∞ as N → ∞ for all n ≥ 2. For n = 1, E[tr(N X∗

N XN )] →
(σ 2 + μ2)/2 as N → ∞.

Proof If we expand Tr((N X∗
N XN )n), we get that each term is of the form,

N−n(XN
j1i1

XN
j1i2

. . . XN
jni1

) for il , jk ∈ 1, . . . , N and l, k ∈ 1, . . . , n. Note that a term
equals 0 if il < jl or il+1 < jl . While il is free to take any value from {1, . . . , N }
and jl , jl−1 are restricted due to that, we can restrict il ≥ �N/2� for all l = 1, .., n.
Total such possibilities are at least (N/2)n . Moreover, each jl is free to take values
till �N/2�. The number of terms following this constraint are of order O(N 2n). Also,
the number of paths i1 → j1 → i2 → j2... → jn → i1, under the restriction that
at least a pair of numbers il , jk is same, is of order O(N 2n−1). Hence, terms with
all distinct random variables XN

j1i1
XN

j1i2
. . . XN

jni1
grow as O(N 2n), while the remain-

ing terms grow at O(N 2n−1) . If all of the random variables are distinct, we get that
E[XN

j1i1
XN

j1i2
. . . XN

jni1
] = μ2n . Summing over each such term (the number of such

terms is bigger that KnN 2n for some positive Kn) gives that E[tr((N X∗
N XN )n)] → ∞

as N → ∞.
For n = 1, we know that for any matrix A, Tr(A∗A) is equal to the square sum of

its entries. So, E[tr(N X∗
N XN )] = 1

N2

∑N
i=1

∑i
j=1 E[X2

i j ] = N (N+1)/2
N2 (σ 2 +μ2) →

(σ 2+μ2)
2 as N → ∞.

�
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