Analysis and Mathematical Physics (2022) 12:12
https://doi.org/10.1007/s13324-021-00621-1

®

Check for
updates

Macroscale behavior of random lower triangular matrices

J. E. Pascoe' - Tapesh Yadav'

Received: 15 April 2021 / Revised: 14 August 2021 / Accepted: 5 November 2021/
Published online: 28 November 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

We analyze the macroscale behavior of random lower (and therefore upper) triangular
matrices with entries drawn i.i.d. from a distribution with nonzero mean and finite
variance. We show that such a matrix behaves like a probabilistic version of a Rie-
mann sum and therefore in the limit behaves like the Volterra operator. Specifically,
we analyze certain SOT-like and WOT-like modes of convergence for random lower
triangular matrices to a scaled Volterra operator. We close with a brief discussion of
moments.
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1 Introduction

The Wigner semicircle law states that a class of self adjoint random matrices called
Wigner matrices go to semicircular element a.s. and in distribution asymptotically.
Specifically, if one considers a large random Hermitian matrix with entries drawn i.i.d.
from a suitably nice distribution, when we look at the histogram of the eigenvalues we
see a semicircular shape, with perhaps one large exceptional eigenvalue. The theory
of free probability and random matrix theory give various ways in which we can make
this convergence formal [6].

In their breakthrough paper, [2], Dykema and Haagerup studied distribution limits
of upper triangular random matrices with i.i.d. complex Gaussian entries having mean
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Fig.1 A histogram of 5000 by 5000 Gaussian self adjomt (real) random matrix (GOE) with non zero mean.
Each entry has mean 4/N and standard deviation f N = 5000. Note that there is one exceptional large

eigenvalue, while the rest follow a semi-circular distribution

zero and variance ¢ /n in the strictly upper triangular part, and i.i.d. random variables
distributed according to a compactly supported measure p on the main diagonal. For
these matrices, a limiting non-commuting random variable exists and is called a DT-
element or DT-operator. The DT-operators include Voiculescu’s circular operator and
elliptic deformations of it, as well as the circular free Poisson operators. Star moments
of these operators show interesting combinatorial properties, as is explored in [7] by
Sniady. Dykema and Haagerup [3] later proved that every DT-operator has a nontrivial,
closed, hyperinvariant subspace. Furthermore, every DT-operator generates the von
Neumann algebra L (F;) of the free group on two generators. Some properties of such
matrices, including some properties of the distribution of the singular values, were
also independently investigated by Chelotis [1].

Let Xy = ¥ L(x! denote an N x N random lower triangular matrix where

X; N i ’s are i.i.d. random variables with finite mean .y and finite variance aN Let Ty
be the deterministic lower triangular matrix with each entry being 1/N, i.e.

lj)ljl

XY, 0 0 1 0 0
1| X3 X3 0 ot 0
Xy=—| = : Ty = —
YN U DR T
N N N
XN] XN,2 XN,N 1 1 1

Numerical experiments give useful information about the singular value distribution
for large random matrices. For example, Fig. 2 shows the singular value distribution
of Xy = N(Xl J)l =1 for N = 5000, where XNJ are i.i.d. Bernoulli (0,1) random
variables for 1 < j < i < N and O otherwise. Singular values of X for large
N behave like the singular value distribution for DT-operators near 0 and like the
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Fig.2 singular value distribution of X y = % (Xle)lezl for N = 5000, where XiNj isi.i.d. Bernoulli(0,1)

random variable for all 1 < j <i < N and 0 otherwise

Volterra operator away from 0. Our current investigation only concerns the asymptotic
description of large singular values.
Let V be the Volterra operator on L2[0, 1] defined by

V(f)(x)=/0 f)de

forall f € L?[0,1]. Let Wy : CN¥ — L?[0, 1] be the isometry taking a vector to a
piecewise constant function, as formally defined in Eq. (1).

Theorem 1.1 (SOT-like convergence) Let {ay}3_, C 77 be a non-negative increas-
ing sequence. Let {k(N)} be a sequence of non-negative real numbers such that
k(N

% — Oand ) §_, W < o0o. Let pugy — 1

Then, for all u € L2[0, 1],

Way Xay W (u) — 1V () as..

N
(Here, W, denotes the adjoint of Wq,).

For instance, we have that Wonv X,n W2*N (f) = uV(f) as. for f € L?[0,1]
whenever iy — w1 and the standard deviations are uniformly bounded. We discuss
important properties of SOT-like convergence and prove Theorem 1.1 in Sect. 2. The
idea is that the Ty act on vector in CV consisting of function values taken from
equally distanced points in the interval [0, 1] and output the partial sums for that
function, which converge to integral of the function as in a Riemann sum. The matrix
Tx has singular values similar to Volterra operator, which are m (seee.g. [4,5]).

We also have a WOT version of this theorem, which requires considerably weaker
conditions for convergence.

Theorem 1.2 (WOT-like convergence) Let {ay }3_, C 7 be a non-negative increas-
ing sequence. Let {k(N)} be a sequence of non-negative real numbers such that
% — Oand Y)_3_, W < o0o. Let pgy — p



12 Page4of11 J.E.Pascoe, T. Yadav

Then, for all u, v € L2[0, 1],
<WaNXaN W;N (u), v) —» w(V(u), v) a.s.

For instance, we can conclude WOT-like convergence along the sequence Xy when-
ever uy — w and the standard deviations are uniformly bounded (specifically, when
there is not enough variance to neccesitate taking a subsequence as in Theorem 1.1).
We discuss WOT-like convergence and prove Theorem 1.1 in Sect. 2.

Also, one can remove the ‘like’ from the above results to get WOT and SOT con-
vergence if the random matrices X under consideration are uniformly bounded in
operator norm a.s.. For example, the X y will be uniformly bounded for Bernoulli 0 — 1
random variables with fixed mean and variance.

In the last section, we give moment results for X%, Xy for any random matrix with
finite moments for each entry and of N X7}, Xy in the case of non-zero mean. The zero
mean case was studied by Dykema and Haagerup [2] where each entry of Xy was
Gaussian. We do not see any direct way to generalize their method to matrices Xy
with non-Gaussian random variables. Also, in non-zero mean case, as Fig. 2 suggests,
we do not get a mean zero spectrum with an exceptional eigenvalue, as is the case in
non-zero mean Wigner matrices. Our empirical observations show a superimposition
of singular values from the Volterra operator and DT operator.

2 SOT-like convergence
Let
By = span{e{v, R e,l\\,’} - L2[0, 1],

where for 1 < i < N, the function elN = Wl[(i—l)/N,i/N] and 1[(,'_1)/1\/’1'/1\/] is
the indicator function of the interval [(i — 1)/N,i/N]. Note that {efV },N: | form an
orthonormal basis for By. We define Wy : C¥ — L?[0, 1] by

n
Wy(ar.....an) = ) aie}’. e
i=l1

The map Wy takes CV onto By isometrically. Note that Wy, is a partial isometry
which sends f to ((f,el), ..., (f,eM).
Let us begin with the following useful lemma.

Lemma 2.1 Let V be the Volterra operator on L2[0, 1]. Then, Wy Ty W;\‘, — Vin
SOT.

Proof Let

gn(x) = Wy Iy Wy (f)(x).
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We first show gy — V/(f) pointwise for each f € C([0, 1]). Without loss of
generality, consider a non-negative continuous function f € C([0, 1]). There exists
xN e (G- 1)/N,i/N] such that f(xiN) = \/_(f e; ) by the intermediate value

1

theorem. Define ay (x) = min{i € N: x <i/N}. For ﬁxedx e [0, 1],
a (x)
(1/¥N) Z (f. ey — f fat

as N — oo. Thus gy (x) — [y f = V(f)(x) pointwise. Therefore

gN(X)—>/0 f@)de

in L2[0, 1] by the bounded convergence theorem (every function gy is bounded by
the sup norm of f). Hence,

lim [[((WyTNWy — V)(DIl — 0.
N—o00

Since we obtain convergence for all continuous functions on [0, 1], which are dense
in L2[0, 1], and the norms of {WnTyWy} and V are uniformly bounded by 2, (the

Frobenius norm of T, which dominates the operator norm, is given by ,/%,
which is less than 2.), we conclude that

HWNTNWy = V(DI — 0

forall f € L?[0, 1]. O

Foru = (ui,uz,...,un) € CN, let u? denote the vector
w* = (ui lusl?, .. Jun)?) e CV.
Lemma 2.2 Let u be a unit vector in CN. Then
E((unTn — Xn)u) =0,
and
2 ‘71%/ 2
E((l(unTy — Xp)ulD)?) < ||WTN“ ll1.

Proof The first equality is direct. For the second inequality, observe that

E((n(uNTN—XN)un))——E DZ(X,, |

i=1 j=1
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N i
1
=< WE ZZKXi,j —M)uj|2

i=1 j=1

N i
1
=3 2 D EXij = wlul?

i=1 j=1

1 N i
2 2
=3 2.2 onlujl
i=1 j=1
2

ON 7 2
= —T
= Tvurll
O
For a non-negative sequence k(N ), Chebychev’s inequality implies that
P l(unTn — XN)ull = k(N) —UZ%T B ! 2)
— u u
UNIN N = NN 1 e

Therefore, we can finesse our estimate for the standard deviation into a statement about
almost sure convergence.

Lemma23 Let {an}}_, C 7% be a non-negative increasing sequence. If there
exists positive sequence {k(N)} such that % — 0and Y 5_, k(lTﬂ < 00. Then
1Way (ay Tay — XaN)W;“NuH — O a.s. forallu € L2[0, 1].

Proof From Eq. (2), we get that,

P ”('uﬂNTdN - XaN)MH > k(N)

The right hand side is summable. So, by the first Borel-Cantelli lemma, the probability

2
that the events {||(tay Tay — Xap)ull = k(N),/ || Z—xTaNMZHI}, occur infinitely often

is 0. Observe that for a unit vector u, if uq, denotes W, u, then ug, has norm less
than or equal to 1 (as W* is projection). Then ||, M§N||1 < 1 and hence

o2 k(N)oxn
k(N),/ Nrou?) < —==.
(N) ||aN ayu?lh < _aN

k(N)oy
an

So,

”(liaN TaN - XaN)uaN I < eventually a.s..
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This gives that

”(/‘LaNT(lN - XaN)uaN” — 0 a.s.
- ”(H’uNTaN - XuN)W:NM” — Oa.s.
- ”WaN (/-’LaN TaN - XaN)W:NM” — O a.s..

This is true for any unit vector u, and hence for any vector in general. O

Proof of Theorem 1.1 Lemma 2.1 along with triangle inequality gives that ||[(uV —
ay Way Tay Wi Jull = Oforall u € L2[0, 1]. Hence,

N

12V = Way Xay W2l
S ”(/’LV - MaN WaNT(lN W; )u” + ||WaN(MaNTaN - XaN)W;NM”

N
— O as..

2.1 Remarks on SOT convergence

(1) The above theorem is rather powerful. For example, if the variance goes to 0 at a
rate faster than % for some € > 0, then we have guaranteed convergence for any
sequence ay. In particular, for ay = N which gives Wy Xy W;{,(u) — uV(un)
a.s. (choose k(N) = N%. ).

(2) The sequence {k(N)} may not exist in some cases. For example, let oy = o be
constant. Then if ay = N, we do not have any sequence which achieves the goal.
This implies that if all the random variables come from the same distribution inde-
pendent of size of matrix N, then the above theorem cannot guarantee convergence
to the Volterra operator for the random matrices.

(3) If norm of the random matrices Xy can be bounded uniformly a.s., then we can
conclude true SOT convergence.

An important case for convergence (for ay = 2N can be seen in the corollary
below.

Corollary 2.4 Yu € L?[0, 1] ||(nV — Wyn Xpn Wiul — 0 a.s. whenever for j <

i <N X IN j are i.i.d. random variables (independent of N) with mean | and finite
variance o.

Proof Choose k(N) = 2N/4. o

3 WOT-like convergence

Let X be as earlier. We have the following variance bound.
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Lemma 3.1 Ler u, v be vectors in CV, then
E({((XN — unTy)u,v)) =0

and
N 02
E{Xn = un Ty, v)2) < <53 3 luilPlujl? < Sl vl

Proof The first equality is direct. The second inequality is also direct after expanding
and using triangle inequality. O

As

P<|((XN — punTN)u, v)| > k(N)UWNIIMIIIIUII) 3

<

we obtain Theorem 1.2 via a similar argument to the proof of Theorem 1.1.
Equation (3) gives us that unlike the SOT-like case, whenever uy — w, we do
have (Wy Xy Wyu, v) — (uVu,v) as. whenever {oy} is uniformly bounded.
Let X be a random lower triangular matrix such that an entry is m with

probability § (N) and O otherwise. This gives mean ;. y = 1 and variance a,%, = %15,1;])

Then,
P |<(X — l )” U)| > k(N) &””””U” < (4)

3.1 Remarks on WOT convergence

(1) If §(N) is bounded below uniformly, then (Wy Xy W;f,u, v) — (Vu,v) as.
(Choose k(N) = N1/2+¢),
(2) If8(N) = N~4,andd < 1, we can show that we still have WOT-like convergence

(choose k(N) = N @). If d > 1, Theorem 1.2 cannot guarantee WOT-like
convergence.

4 Asymptotic distribution of X3 Xy and NX3 Xy

We will begin with the following observation about the deterministic matrix 7. For
fixedl <k < N, let 1]1{\/ be N by N deterministic matrix with entry (11,'{\/ )ij = 1if



Macroscale behavior of random lower triangular matrices Page9of11 12
i, j <k and O otherwise.
1 1 0 0]
1V — 1 1 0 0
k 0 0 0
0 00 . of
Lemma 4.1
IN/2)*" < Tr(N*TRTy)") < N*"
foralln > 1.
Proof Basic computations show that
N
NX(TiTy) = Zﬂ,’j. 5)
k=1

It follows that

N
Tr(N*(TNTN))" = Tr(Q_ 1"
k=1

N

IA
ﬂ
=N

—_
=

==
=

I
Z

doorralip ..

1Y)

in

This gives the upper bound. For lower bound, we observe that we can restrict indices

IN/2] <ij < Nforalll =1,...,n. Under this restriction,

TraN1y ... 1)) > Tr(IlILVN/zj)” = (IN/2])".
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Then
N N
Z Trayiy .. 1)) = Z TraN1y ... 1))
I1yeny in= I yeens in=|N/2]
N
> (IN2D"C Y D
i1seenin=|N /2]
> (ILN/2D" (LN /2"
= (LN/2))*".
This proves the lower bound. O

Lemma4.2 Let {Xg} be uniformly bounded by constantK a.s.. Then, tr (X3, X n)") —
0asas N — oo forall n > 1. (Here, tr denotes the normalized trace. That is,
tr(A) = %Tr(A) where N is the size of the matrix A.)

Proof We observe that,

tr(XgXn)") < tr(K*THTn)" as..

By Lemma 4.1, we have that

TF(KZT;TN)" < K2
= 1r(K*T}Ty)" < (K™)/N
= r(XyXn" < (K*)/N — 0a.sas N — oo.

O

Lemma4.3 Let {Xf\/.’} be i.i.d. random variables with finite moments. Then, E[tr (X}
XN)™M] — 0as N — coforalln > 1.

Proof We observe that, after expanding Tr (N 20 }“V X )", there are at most N2 terms
of the form X, X%, ... XY, fori, jx €1,...,Nandl,k € {1,...,n}. Since the
X arei.i.d., we get that, for fixed n, the expectation of each term can take values from
a finite set of numbers independent of N. For example, it can be E[X 1117, if the pairs
(i1, ji) and (i;41, jr) are all distinct, i.e., every random variable is independent of each
other in the term. It can be E[X%’f], if (i7, ji) = (41, ji41) foralll =1,...,n— 1,
i.e., we have the same random variable multiplied 2n times. This gives that there
are finitely many values that each term in the trace expansion can take. Let M,, be
the maximum absolute value in this set. Each term E|X j\{ 0 X j\{ oo X Z i | < M, for
all ij, jr € {1,....,N}and [,k € {1,...,n}, independent of N. Since there are at
most N such terms, we have that E[Tr((N*X%Xn)")] < M,N?", which gives

E[tr(XyXn)"]l < My/N — 0. Hence the claim. O
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Lemma4.4 Let{X f)’ } be collection of i.i.d. random variables with mean, i # 0. Then,
E[tr(NXyXN)")] — ocas N — oo foralln > 2. Forn =1, E[tr(NX} Xy)] —
(02 + uz)/2 as N — oc.

Proof If we expand Tr((NXjXn)"), we get that each term is of the form,

X j\llllxj\lllz J“)fOI‘l[ jeel,...,Nandl, k € 1,...,n. Note that a term
equals 0 if i < jj orij41 < j;. While i; is free to take any value from {1, ..., N}

and jj, ji—1 are restricted due to that, we can restrict i; > |[N/2] foralll =1, ..,n
Total such possibilities are at least (N /2)". Moreover, each j; is free to take values
till [N /2]. The number of terms following this constraint are of order O (N 2ny Also,
the number of paths iy — ji — i» — j2... = j, — i1, under the restriction that
at least a pair of numbers i;, ji is same, is of order O(N?"~1). Hence, terms with

all distinct random variables X ;\1/ i X ;\1/ i , ;) grow as O(N?"), while the remain-

ing terms grow at O (N?"~1) . If all of the random variables are distinct, we get that

E[X j\]’ ”X j\]/ i - ¢ j: 11] = /,LG. Summing over each such term (the number of such

terms is blgger that K,, N2 for some positive K;,) gives that E[tr((NX*NXN)")] — 00
as N — oo.

For n = 1, we know that for any matrix A, Tr(A*A) is equal to the square sum of
its entries. So, E[tr(NX3 Xn)] = N2 21—12 1 ElX:]= M(o +u?) —
@ as N — oo.

O
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