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Abstract: We study a toy model of linear-quadratic mean field game with delay. We “lift" the delayed
dynamic into an infinite dimensional space, and recast the mean field game system which is made of
a forward Kolmogorov equation and a backward Hamilton-Jacobi-Bellman equation. We identify the
corresponding master equation. A solution to this master equation is computed, and we show that it
provides an approximation to a Nash equilibrium of the finite player game.

Keywords: inter-bank borrowing and lending, stochastic game with delay, Nash equilibrium, Master
equation
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1. Introduction

A linear quadratic stochastic game model of inter-bank borrowing and lending was proposed in
[1]. In this model, each individual bank tries to minimize its costs by controlling its rate of borrowing
or lending to a central bank with no obligation to pay back its loan. The finding is that, in equilibrium,
the central bank acts as a clearing house providing liquidity, and hence stability is enhanced. This
model was extended in [2], where a delay in the controls was introduced. The financial motivation
is that banks are responsible for the past borrowing or lending, and need to make a repayment after
a fixed time (the delay). In this model, the dynamics of the log-monetary reserves of the banks are
described by stochastic delayed differential equations (SDDE). A closed-loop Nash equilibrium is
identified by formulating the original SDDE in an infinite dimensional space formed by the state and
the past of the control, and by solving the corresponding infinite dimensional Hamilton-Jacobi-Bellman
(HJB) equation. For general stochastic equations and control theory in infinite dimension, we refer to
[3], [4], and [5].

In this paper, we study the mean field game (MFG) corresponding to the model proposed in [2]
as the number of banks goes to infinity. We identify the mean field game system, which is a system
of coupled partial differential equations (PDEs). The forward Kolmogorov equation describes the
dynamics of the joint law of current state and past control, and the backward HJB equation describes
the evolution of the value function. Recently, ].-M. Lasry and P.-L. Lions introduced the concept of
“master equation" which contains all the information about the MFG. The well-posedness of this master
equation in presence of a common noise and convergence of the N-player system is analyzed in [6] by
a PDE approach. A probabilistic approach is proposed in [7] and [8]. See also the two-volume book [9]
for a complete account of this approach.

In this paper, the master equation for our delayed mean field game is derived, a solution is given
explicitly, and we show that it is the limit of the closed-loop Nash equilibrium of the N-player game
system as N — oo.
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The paper is organized as follows. In Section 2, we briefly review the stochastic game model with
delay presented in [2]. Then, in Section 3, we construct the corresponding mean field game system. In
Section 4, we define derivatives with respect to probability measures in the space P (H) where H is
the Hilbert space defined at the beginning of Section 2.2. In addition, we derive the master equation,
and exhibit an explicit solution. Furthermore, in Section 5, we show that this solution of the master
equation is an approximation of order 1/ N to the solution of the finite-player Nash system. Lastly, in
Section 6, we compare the solution of the Nash system, the solution of the mean field game system,
and the solution to the master equation.

2. A differential game with delay

2.1. The model

Let (Xi,i=1,---,N) represents the log-monetary reserves of the N banks at time t. At each time

t, bank i controls its rate of borrowing or lending &}, and it also needs to make a repayment after a

fixed time T such that 0 < T < T, at a rate denoted by ai__. The dynamic of log-monetary reserves for
each bank is given by

dXi = (al —al_)dt + cdW, (1)

with deterministic initial conditions
X =&, andal = ¢i(s)fors € [-1,0], (2)

where Wti, i = 1,...,N are independent standard Brownian motions, and banks have the same
volatility o > 0.

Bank i interacts with other banks by choosing its own strategy in order to minimize its cost
functional | i (rxi, zx_i), which involves the average of log-monetary reserves of all the other banks. The
notation a " is a (N — 1) tuple of the o/ with j # iand j € {1,---, N}, which represents all other
banks’ control except bank i. The cost functional for bank i € {1, ..., N} is given by:

. . T .
I, a) = E [ | At + gi(xn)| )
where the running and terminal cost functions f and g are:
‘ 1, ,, € o 1 &,
filx,a') = = (a')"+ = (x —x")°, with¥:= — ) x, ande >0,
2 2 N = @)

2.2. Construction of a Nash equilibrium

In order to apply the dynamic programming principle to identify a closed-loop Nash equilibrium,
we have to enlarge the state space by including the path of past controls, which lie in H :=
L%([-7,0];R), the Hilbert space of square integrable real functions defined on [—7,0], and write
an infinite dimensional representation for our system. This evolution equation approach was initiated
in [10] under a deterministic control setting, and later was generalized in [11] to a stochastic control
problem.

Givenz € R x H, zp € R, and z; € H will denote the two components of the product space R x H.
The inner product on R x H will be denoted by (-, -), and it is defined by

0
(z,2) = zpZy + LT z1(s)Z1(s)ds. (5)



Version August 23, 2018 submitted to Journal Not Specified 30f18

ss  Therefore, the new state is denoted by Zi = (Zé,t' Zit(s)), s € [—7,0], which corresponds to
s« (XLal__ ) in the notation of the original system (1).
Bank i tries to minimize its cost functional J*(a’, a %) defined by

. . . T .
Il(t,Z, al,a—l) =K |:/1L fi(ZO,S/ zx;)ds +gi(ZO,T)|Zt =z|. 6)

After all other players j # i have chosen their optimal strategies which minimize their cost functionals,
player i’s value function V'(t,z) is defined by

Vi(t,z) = infJ'(t,z, o', a7").
0(1

By dynamic programming principle, the value function V'(t,z) must satisfy the following infinite
dimensional HJB equation (see [4] Chapter 2 for details):

. . N .
Vit z) + %Tr(G*Gaszl(t,z) )+ Y (AZF, 9, Vit 2))
k=1

N .
+1nf Z (Ba* 04 Vit z)) + fi(zo,a) | =0, (7)

with terminal condition V/(T,z) = §(Z — z)?, where the operator A : D(A) C Rx H — R x His
defined as
dzy (s)

A (z9,21(8)) — (21(0),—ds> ae. s € [—1,0],

s and its domainis D(A) = {(z0,z1(-)) € R x H: z1(-) € W'2([—7,0];R), z1(—7) = 0}.
The adjoint of Ais A* : D(A*) C R x H — R x H and is defined by

A" (zg,21(5)) — <0, dz;s(s)) ae., s €[—1,0],

ss with domain D(A*) = {(z9,21(-)) € R x H: z;(-) € W'2([-7,0];R), 29 = 2z1(0)}.
The operator B : R —+ R x H is defined by

B:u— (u,—6_<(s)u), s € [-7,0],

sz where J_+(-) is the Dirac measure at —
The adjoint of Bis B* : R x H — R given by

B : (z0,21(s)) = zo — z1(—7).
The operator G : RN — RN x HN is defined by
G :zy— (020,0).
The infinite dimensional representation of the original system (1) is given by

dZ; = (AZ; + Baj)dt + GdW;, 0 <t < T,
=(C.¢'(s) €M

By minimizing the Hamiltonian in (7), the infimum can be computed, so that the optimal control
is attained at

®)

—(B,a V') = — (3, V' = [0, VI)(-7)). ©)



Version August 23, 2018 submitted to Journal Not Specified 40f18

ss Assuming that each player follows its own optimal strategy (&'); <<y, which forms a Nash equilibrium,
ss the corresponding value function follows the HJB equation

0V +1Tr(G*Ga V) + L, (A2, 9,V)
= D (B0 V) - (B0V¥) = 3B,V 4 520 — )7 = (10

After applying the definitions of the operators A, B and Q, the HJB equation for player i becomes:
atV’+2 aakal+2/ kV'd
. . ,
- z (0V* — 4 v¥I(-1)) (V7 ~ [0 v7)(-T))
Lo Vil v 2 € iy
-5 ( LV Z;V](—T)) +5E -z =0. (1)
As shown in [2], a solution of the system (11) can be found in the form
. ) . 0 ;
Vit 2) = Eo(t)(20 — )% — 2(20 — 2}) / Ex(t,—7 —5)(21 —2,)ds
=T
0 /0 . .
+ [ [ Ealt—t—s =)@ - 2) (5 - A)dsdr + Es(t), (12)
-tJ-1

for some deterministic functions Eo(t), E1(t,s), Ez(t,s,r), and E3(t) satisfying the following PDEs

o) 2 (55 —1) (Bot) + Ea(1,0)2 + 5 =0,

ohalts) oEi(Ls) (1 - 1) (Eo(t) + Ex(£,0))(E1 (1,5) + Ea(t,5,0)) =0,

ot 0s N2
OEy(t,s,r)  OEx(ts,r) OEx(ts, 1) (13)
ot 5 r

Z‘)—\

G

+(1— %)aon(t) =0,

1) (E1(t,s) + Ex(t,5,0))(E1(f,7) + Eo(t,7,0)) =0,

dE3(t)
dt

with boundary conditions: Vt € [0, T] and Vs, r € [—7,0],

EO(T):%, Ei(T,s) =0, Ex(T,s,r)=0, Ea(tsr)=Ex(tr,s),

El(t, —T) = —Eg(t), E2(t,S, —T) = —El(t,s), Eg(T) =0.

(14)

This set of PDEs (13) with boundary conditions (14) admits a unique solution as shown in [10], and the
optimal strategies take the integral form

=2 (1 — 11]) [(E1(f/0) +Eo(t)) (20 — 2))

—/0 (Ea(t,—T —5,0) + Ey(t, =T —s)) (21 — 2})ds|. (15)

—T
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3. The mean field game system

The mean field game theory describes the structure of a game with infinite many indistinguishable
players. All players are rational, i.e., each player tries to minimize their cost against the mass of other
players. This assumption implies that the running cost and terminal cost in (4) only depend on i-th
player’s state 26 and the empirical distribution of (z{)) j#i- Denoting this empirical distribution by

1 . 1\2 . N\ 2 S
=302+ 5 (1= ) (foodbtuo) ==h) = £(eh 0, 16
2

st =5 (1= %) (Lvodrbton) —24) o= sty

As the number N of players goes to oo, the joint empirical distribution of the states and past
controls Z, = (Z},,,Z} ,)

. 1
fi=———NY 6. i
TN ; (Zy7,)

with marginals
; 1 ; 1
Mop =7 20, M =7 20y
N—lj#l. Zos Nflj#i 21

converges to a deterministic limit denoted by v(¢) (with marginals denoted by p(t) and py(t)). Here,
we assume that, at time 0, v/ satisfies the LLN (for instance with i.i.d. Z}), and that the propagation
of chaos property holds. A full justification of this property would involve generalizing the result in
Section 2.1 of [7] to an infinite dimensional setting in order to take into account the past of the controls.
This is highly technical but intuitively sound. A complete proof is beyond the scope of this paper.

In the limit, a single representative player tries to minimize his cost functional, and, dropping the
index i, his value function is defined as

T
V(t,2) = inf EM F(5, Zos, po(s), ws)ds + g(Zor, 1o(T))|Ze = 2|, (17)

(&s)t<s<T

subject to
dzZ; = (AZt + let)dt + GdW;. (18)

The HJB equation for the value function V (¢, z) reads
1
oV + ETr(G*GaZZV) + (AZ,0,V)
. 1, € 2
+infQ (Bu,0:V) + 5+ 2 /Ryodyo(yo) “z) Y=0, (9

with terminal condition V(T,z) = §( [z Yodpo(vo) — z0)*. Then, we minimize in « to get

Rt = — (35,V — [9,V](—=1)). (20)
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After plugging it into (19), our backward HJB equation reads:
1 0 d 1
AV + 5070202,V + /_ 213 (05 V)ds = 5 (0, = [0, VI(=T))?
2
€
+5 (/R Yoduo(yo) — Zo) =0, (21

V(T z) = % (/Ryodﬂo(yo) —Zo)z-

Next, since we “lift" the original non-Markovian optimization problem into a infinite dimensional
Markovian control problem, we are able to characterize the corresponding generator for (18), which is
denoted by £,

1
Lip(z) = ((AZ + Biy),02¢) + ETr(G*Gazz(p), (22)

where ¢ is a smooth function and the time dependency comes from &; given by (20). The derivation of
the adjoint £} of L; is given in Appendix A. Consequently, the forward Kolmogorov equation for the
distribution v(t) reads

ow=[ o, (jl) 85— [ 3ey (1) @0(5) — 6 <(5))ds + 9y {02V — [0, VI(~T))v)

=T —T

[ 0 {0V~ B VI () 2R, )

v(0) =P(¢, ¢(s)se[-7,0)-

Combining (21) with (23), we obtain the mean field game system. To solve this, We make the
following ansatz for the value function

0

V(t,z) = Eo(t)(mg — z0)* — 2(mo — zo) / i Ei(t, =T —s)(my — z1)ds

+/j /70 Ex(t, =T —s,—T —r)(my — z1)(my — z)dsdr + E3(t). (24)

where we denote the mean of state my := fR zodpo(zp), and the mean of past control m; :=
S z1dp(z1). Plugging (24) into (23), multiplying both sides of (23) by zg, and integrating over
R x H, we have

/RXHzoatvdz = /RXHZO /_iazl <;szll/> deZ_/]Rx]HIZO /_OT 9z, (z1v) (0(s) — 07 (s))dsdz
+/Rtzoazo{<azov— [E)ZlV](—T))v}dz—/RXHzO /iazl{(azov— [02,V])(—7))v}0_(s)dsdz

Lo
+ /RXH 2050 029z, Vdz.
(25)
After integration by parts, we obtain

ey = /]R A0V [0 VI(-T)}vdz =, (26)

e as can be seen directly using (24).
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Similarly, plugging (24) to (23), multiplying both sides of (23) by z;, and integrating over R x H,
we get

/RX zlatvdz—/XHzl/ 21< zlv) dsdz—/RXHzl/ 21 (21v) (60(s) — 0—<(s))dsdz

+ / 21020 {92,V — [02,V](—7))v}dz — /R e /_ 3:,{(85,V = 2, VI(— 7))V} (s)dsdz

1 o
+ Jorm 2UaZOZO vdz.
(27)
By integration by parts, we deduce
0
opmy = / —zlvdsdz —+ / z1v(0o(s) — 6—(s))dsdz
RxH J—-t1 RxH J—-7
+ / {823V — [0, V](—7)} vdz (28)
Now we are ready to verify the ansatz (24). We first compute the derivative of the ansatz,
dEo(t 0 0Eqi(t,—T —s
v = 0 iy 20 —2(mg —z0) [ T 0y
T
0 — —
+/ / Halhmr s mT 1) (my — z1)(my — z1)dsdr + dE;( )
. t
(29)

0
92,V = —2Eo(t) (o — 20) + 2/ Ex(t,—7 —s)(my — 21)ds,
-7

0
9.,V = 2E(t, —1 — ) (my — z0) — 2/ Ea(t,—T — 8, —T — r)(my — 2 )dr,
—T

0292V = 2Ep(t).

Then, we plug the ansatz (24) into (7), and by collecting (mg — zg)? terms, (mg — zo)(m1 — z1) terms,
(my — z1)? terms, and constant terms, we obtain the following system of PDEs:

dE;t(t) —2(Eo(t) + Eq1(t, 0))2 + % —0

aEl(t,S) . aEl (t,S)

— 2(Eo(t) + E1(£,0))(E1 (£,5) + Ea(t,5,0)) =0,

ot ds
oEx(t,s,7) B dE;(t,s,7) _ oEx(t,s,1) (30)
ot s r
—2(Eq1(t,s) + Ex(t,5,0))(E1(t,7) + Ex(t,7,0)) =0,
dE;(t)

T, +0’2E0(t) =0,

with boundary conditions

Eo(T) ==, Ei(T,s)=0, Ex(T,s,¥r)=0, Ey(ts,r)=Ex(tr,s), 61)
El(t, —T) = —Eg(t), E2(t,S, —T) = —El(t,s), E3(T) =0.

oz As for (13-14), the system (30-31) admits a unique solution.
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4. The master equation

4.1. Derivatives

The master equation for this delayed game lies in an infinite dimensional space, and it requires a
notion of derivatives in the space of measures in P (H).
The set P (H) of probability measure on H is endowed with Monge-Kantorovich distance

duk (u1, py) = sup {H/Hf(Z)d(m —11)(2)

: f € Lipy (H)} , (32)
H
where Lip(H) is the collection of real-valued Lipschitz functions on H with Lipschitz constant 1.

Definition 1. We say that F : P(H) — His C! if there exists an operator 5 : P(H) x H — H such that for
any py and py € P(H)

lim
e—0t €

F(u1 +e(py — 1)) — F(u1) _/H;; (e, y1)A (i, — 1) (1) (33)

Definition 2. If %(ﬂl,yl) is of class C* with respect to yy, the marginal derivative Dy, F : P(H) x H — H
is defined in the sense of Fréchet derivative:

oF
Dy, F(p1,y1) = Dylm(ﬂlr%)- (34)

Remark 1. Usually we will encounter a map U : P(H) — R. In this case, U can be expressed in a form of
composition U o F, where U : H — R, and F : P(H) — H, ie, U= (UoF)(u1).

If fTF] is C! with respect to y1, and U is Fréchet differentiable, then “% : P(H) x H — H, and
D, U : P(H) x H — H are defined by

ou - OF
E(M,yl) := (DrU) <5y1> , and Dy, U(p1,y1) := (Dpl) (D, F) . (35)

Example 1. Suppose U (1) f s Ju8gxi(s d],tl(xl)ds, where g : H — H is Fréchet diﬂferentiable. Then
U(p1) can be written as U[F(u1)](s), where U[F] = fETF( ds, and F(u1) = [ 8(x1(s))dpu1(x1). Then

F(un+e(iy =) = /Hg< 1()dm + et — 1))

So
(F’ll +€(F’l e}’”)) (;’ll) _ /Hg(xl(s))d(]/lll _,ul)
Then SF
m(ﬂb.‘/l) =g(y1), and Dy, F(p1,y1) = Dy, 8(v1)-

Since DpU[F] = 1, we have

su
a(uwl) = g(y1) and Dy, U(p1,y1) = Dy, 8(y1)-

4.2. The master equation

Theorem 1. For any (to,vp) € [0, T] x P(R x H), we define

U(to, '/VO) = V(to,'), (36)
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where (V,v) is a classical solution to the system of forward -backward equations (21) and (23), with initial
condition v(to) = vy, and terminal condition V(T,z) = 5([g voduo(yo) — z0)?, respectively. Then U must
satisfy the following master equation

1 1
atU(t,Zo,Zl,V) + EO'ZaZOZOU<t,Zo,Zl, U) + 50'2 ‘/RayODVOU(t,ZQ,Z1,1/,}/0)d]/£0(yo)
U 0 d
+ zld—BZIU(t,zo,zl,v)ds—l—/ /yld— [DmU(t,zO,zl,v,yl)] (s)duq(y1)ds
—T S —7JH S
- /R 9y U(t, yo,y1,v) — [0y, U(t,y0, y1,v)](—T)) DU (t, 20,21, v, Yo )dv (y)

+ / (9o Ut yo,y1,v) = [0y, U (8, 0, y1,v)) (=) [Dyy Ut 20,21, v, y1) (= T)dv (y)
2
€
- E (aZOU(tr 20, Z],V) - [821 u(t/ 20, 21,1/)] (71‘))2 + E (A yodyO(yO) - ZO) - 0/ (37)
76 where o and pq are the marginal law for Zy and Z1 respectively.

Proof. Forany h € [0, T — to], V(to+h,-) = U(tg+ h,-,v(to + h)). Then

0:V(to,z)
=a:U(ty, z, Vo +/ to,z v, )0 (to, y)dy
0 d 0
—a:U(to, 2, v +/ to,z v, y) (/_ 3y, <y1v> ds—/ By, (y1v) (00 (s) — 0_(s))ds
+0y, { @y, U — [0y, U] (—7))v} — / Ay, { By U — [0y, U](—7))v} 6+ ds+ 57 20yoyoV )dy
0
=0:U(to,z,10) —/7T - DHIU(tO,Z,v,y)%ylvdyds (38)

+ /_ OT /R L DUy (Bo(s) — - (s))dyds /R . DyOU(ayOU— By, U] (—7))vdy
+/_OT/BW Dy U@yl — [y, U)(— 00 c(s)eyds + [ 20%0,,Dy, Uy
—a:U(to, 2, 10) + /0 /R XHW%Dmquyds— /R DUy, U = [0, U] (=) vdly

+ [ DU (@l — B U7y + 30 [ 3y,DyUvdy.
On the other hand, V satisfies the HJB (7) equation.

0:V

0 4 2
50202520 U — Tzl%(azl )ds+ 5 (9zU — [0z, U] (~7))? *% (/Ryodﬂo(yo) ZO> :

1 0 4 € 2

= E 28zozoV_ —TZld (821V)ds—|— (a V- [az1V](_T))2_§ (/Ryodﬂo(l/o)—zo> (39)
1
2

7z Therefore, subtracting (39) from (38), we have shown that U satisfies the master equation (37). O
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4.3. Explicit solution of the master equation

It turns out that this master equation (37) can be solved explicitly by making the following ansatz,
and we also define mg := [ yodio(yo) and my := [ y1duq(y1) for convenience.

U(t,z0,21,v) = Eo(t)(mg — z0)* — 2(mo — zo) /i Ei(t, =T —s)(my — z1)ds

+ /_0 _0 Ex(t,—Tt—s,—7T —r)(my —z1)(my — z1)dsdr + E3(t). (40)

Then, we compute the partial derivatives needed in (37) explicitly, we have

dEy(t 0 9E1(t,—T —s
o = TEo! )<mo—zO>2—2<mo—zO>/ OB T2y — 24)ds
dt -7 ot
0 _ _
+/ / Ot T s~ ) (my —z1)(my — z1)dsdr + dE;t(t)’
-1

0
92U = —2Eq(t) (o — 20) +2/ Ex(t,—7 —s)(my — 21)ds,
-7

° (41)
9, U = 2E(t, —7 —s)(my — z9) — 2/ Ex(t,—t—s,—T —r)(my — zq)dr,
-7
0
Dy, U = 2Ey(t)(mo — z9) — 2/ Ei(t,—T —s)(mq — z1)ds,
=T
Dy, U = —2E(t,—1 —s)(mo — z0) +2 Ez( —5,—T —r)(my — z1)dr,
azozou - ZEO(t),
and plug those into our master equation (37). We have
dEy(t 0 9E{(t,—T—5s
;t( )(mo —20)* = 2(mo — zo) / It —T =) o5 )(m1 —z1)ds
T
0 9Ex( t—T—s—T—r dE 1
o[ Yy~ 21) (m — zn)asar + P 1 120k (1)
0 T — —T —
—/ my —zq) < aEl( 5 S)(mo —20) —2/ IE;(t, Tass' T-7) (m —zl)dr> ds
T

2
) ((Eo(t) + E1(t,0))(mg — z9) — /_OT(El(t, —T—38)+ Ex(t,—T—5,0))(m; — zl)ds>

+ —(my — Zo)z =0.

N ™

Collecting (mg — z9)? terms, (mg — zg) (my — z1) terms, (m; — z1)? terms, and constant terms, we
obtain that the function E;,i = 0, - - - , 3, satisfy the system of PDEs (30) with boundary conditions (31).

5. Convergence of the Nash system

From the previous section, we have seen that our master equation is well posed, and we obtained
an explicit solution. Furthermore, it also describes the limit of Nash equilibria of the N-player games
as N — oo. In this section, generalizing to the case with delay the results of [6] (see also [12]), we
show that the solution of the Nash system (11) converges to the solution of the master equation (37) as
number of players N — +oco, with a 1/N Cesaro convergence rate.

In Section 4, we find that (40) is a solution to the master equation (37). We set ui(t,zg,z1) :=
uf(t, zé,za,yi), where Vi = ﬁ Yooti 5(216"2]{)’ denotes the joint empirical measure of zy and z;. The



88

89

920

91

Version August 23, 2018 submitted to Journal Not Specified 110f18

empirical measure of z is given by ;46 = ﬁ Yk+i 0.k, and the empirical measure of z; is given by
0

ya = ﬁ Yokt (521{. Note that, by direct computation, for k # i, and any N > 2,

, 1 o
azgul(t,zo,zl) =N 1 1D%U(t,26,z’1,v’,zo),
, 1 S
azzful(t,zo,zl) = mDuau(t,zb,zﬁ,vl,z’{), (42)
/ 1 k 1 i ii ok k
azgzgul(t,zo,zl) = mazo [D U}(t Zo,Zl,V Zo) + WDFBHZ)u(t,Zé,le,VlIZO,Z())-
Proposition 1. Foranyi € {1,---,N}, u'(t,zo,z1) satisfies
il i [0 kd i - k k i i
o' + ) 57 O ptt’ + Z/ zl£(az,{u )ds — Y (821614 - [az;{u ](—T)) (azgu - [E)Z;l(u ](—T))
k=1 k=17"T ki
1 . . 2 €, . .
—5 (826u1 - [azaul](—r)) + E(ZO —zb)2+el(t,z) =0, (43)

where ||e(t,z)|| < <, with terminal condition u'(T,z) = §(Z9 — z})>.
This shows that (ui)ie{l,...,N} is “almost” a solution to the Nash system (11).

Proof. We compute each term in the above equation in terms of U using the relationship (42), and we
use the fact that U is a solution to the master equation.

[ )

% 1(728 et (t,20,21)

L 27 %4 20,21

1

2 26 11/1 (i’ 20,21 + Z ~0%9 2k ku (i’ 20,21)

k;éz
1 . S
=3 28 u(t,zé,zl, )+ UZZjBZkD U (4, zh, 2,07, 26)
ek
azlg o2 Dy i U(t, 20,24,V 2, 20)
:EUZBZiin(t,zb,zll,vl)+f¢72/ ayO[D iU}(t,zé,zﬁ,v’,yo)dyb(yo)
1
+ 202N_ 1 / D],l ’,[1 u(t ZO’Zl’ /yOIyO)dVO(yO)

[ ]

0 .4 0 1
— 1 . _ .
_/ 217 (9 U)ds + Z/ 22 {N—lDﬂiua zbh, 2, v, zl)] ds

= {Dyiu(t,zaza,vl,w)} dui (y1)ds.

Il
|\o
~
:?\;

63

E

=

+
\
\

S
by
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o From the solution (40) of the master equation, d,U is Lipschitz with respect to the measures.

Namely,
; C
19y U (8, 25, v1) = 92, U (8, 25, v¥) | < Cu(daak (s, 1§) + ik (i, 1)) < 57
(44)
. . 4 C
02, (8,24, ) — 0, (8,25, %) 2 < Calya (b 5) + a4 15)) < <2
Thus,
L 040 ~ 04— 040~ o))
1
1 ; ; 1
_];8 Ut 2k, 25, %) (I\HD%U(t,zb,z’{,vl,z’{)) N—l[D Ut zh, 20, v, 25)) (- T))
1 . . 1 S
k . ) i ko0 kY ) i 0 kN1
;[8 U, zo,zl, )(—1) (N_lD%U(t,zo,zl,v,zo) 7N_l[Dy,lu(t,zO,zl,v,zl)]( T))
. . 1 S
—];8 AU (t 26, 25,07 (NlDV U(t,zh, 25,07, 2f) — M[Duau(t,zb,zll,vl,z’{)}(T))
—ZakUtz 25, v)](~1) LDiU(tzi 250,25 — ! <7Dy U(tz zi, v, 2K (1)
= 0r 1’ N—-1 Ho 7407417 Y 740 N-1 07 <1 1
+O(ﬁ)
0 , S
= [ 0wl =0y, U) (b 0,y1,v) - (DU =Dy U) (426,24, v', o,y ) (w0, )6 <)
1
+O(ﬁ)'
Then,
opu'! +Z aakku +Z/ Zld aku ds
=Y O — () @ g0 — o) () — & (B — ) (—)) + (20— 2
% 7 2 \"% 74 2\ 0%

k;ét
:atu+*0— ai iu(trzélzllrvl +50’2/RayO[D%u](tlzbrzalvl/yo)dﬂb(yO)
+ zd(a Uds+/ /yi[Dlu(tzi z} viy)}dyi(y)ds
1d 1dS ”ll 740741,V 1 Y1 1\Y1
- / (3wl = [0y, U] (=) (90, y1,v") - (D U = (D, UN(=7) ) (82, 21,V yo, y1)ev (o, y1)
2
€ . .
- 50U~ Byul(-02+ 5 ( [ odibtvn) = )
—I—O(l)—Q—EUZL/D--U(tzi z v Vi (yo)
N’ T 20 N1 Jgmw P E0r 21V Yoo Yo)E oo
1
=0()-
O



Version August 23, 2018 submitted to Journal Not Specified 13 0f 18

Theorem 2. Let V' be the solution to the HJB equation (11) of the N-player system, where N > 1 fixed, and U
be the solution to the master equation (37). Fix any (to,vo) € [0, T] x P(R x H). Then for any z € RN, let

= N T Zﬁél ), we have

1

N |vf(t0,z) — U(ty,2',v')| < CN7L. (45)

] N gk

Proof. We first apply Ito’s formula to (V*),. (1,..,N}, and use the fact that V' satisfies the HJB equation
(11) for the Nash system.
dvi(t, zy)
=3;Vidt +9,VidZ; + %Tr(azzvid[z, Z)y)
=0, Vidt + <Az,azvi>dt + (B&',0,V')dt + (3,V!, G)dW; + %Tr(G*GHZZVi)dt
N

_atthJrZ / kL d OV )dsdt — Y (4 V! — [0V (—1) (04 VE — PV (—)dt (46)
k=1

-I-Z Uakadt—l— Z(Taleth
kf

. . _ . N .
— {—2(326V' — [0, VI(=1))2 = 2(Zo— Zp)*| dt+ ) aaz;évldwtk.
k=1

N ™

Then, we apply Ito’s formula to ut (t,Zt), and use the fact that u satisfies (43)
du'(t,Z)
=du'dt + 9,u'dZ; + %Tr(azzuid[Z, Z)s)

=duuldt + (AZ,d,u')dt + (B&',0,u')dt + (0,u', G)dt + %Tr(G*GE)ZZui)dt
N

| | . .
—auidt + 2/ zld (301 dsdt—k;(azgu’—[aZ;{ul](—T))(ang ~ [P VA (~1))dt
| o
+ Z Eazazzzéuldt + kzzlaazguldwt (47)

i (a il kuk](—r)) (azgui - [az,{ui](_r)) dt

1 ) )
— 5 (00 — [azgul](—r))zdt

Mz

(951’ = [0,50] (=) (@6 VF — [0 V] (—7))dt —

»
Il

1

(Zo — Zb)*dt — e'dt + 2 00 ku dWE.
k=1

NHT)
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Substracting (46) from (47), taking the square and applying Ito’s formula again, we obtain

dul(t, Zs) — Vi(t, Z1))?
=2[ul(t, Z;) — VI(t, Z)|(du'(t, Z;) — dV'(t,

t,Z
—2(ut — V) <1(az,-ui—[az,-u"]( 7))? — %(a Vi [azavi}(—r)ﬁ) dt —2(u' — Vi)eldt

u—Vl (%(aku aku
P} 21

D) +dluf — Vi, — Vi),

( (94 VF =0 cub) — ([azévk](—T) - [azéuk](—r)))> dt

+ kz (72|8216ui — azgvilzdt + kz o <8Z;6ui - E)ZSV’) thk
=1 =1
(48)
Recall that azgui(t,zo,zl) = ﬁDﬂéu(t,zé,zé,vi,zg) is bounded by % for k # i, and ¢ is
bounded by % Let (2);c {1,.,N} be a family of independent random variable with common law
vp. By integrating (48) from t to T, and taking expectation conditional on &, we have

EE[|ul — Vi|? —l-(TZZE“ |:/ |aku akVZ|2dsj|

= T i i i

B2 | [~ Vil 1ol (—) ~ g Vi (o)l s
N
1,

[

E
k#i

- ) - T . : ) )
<B®{lufe — VR + CBR | [ ud = VI fogud — Vi as

C N
ty Z E~[/ jul — V2 9,4t akvk}ds
1,k#

+ N/t E2[Jul, — Vi[]ds.

By the fact that u}. = Vi, and using Young's inequality, we have

[ = Vil i) - Byl as

Z\O

k= (49)

B2} — Vi) + B | [ fogad — Vi
C T o , Cep = [ /T c & __[/T . ,
< &~ mE i ysi2 1 a/ cub— i2 a/ i ysi2
<0+ 5 B [/t i Vs|ds}+ = L 05ul —a., Vds]+2N ZE [t lul — Vi[2ds
C€2 5 k12 C = / i /
Z]E [/ 0,41 BkV|ds} NeE { lul — Vi|2ds 1ds

i vipas| + Sy mE [ ot — o, vERds
¢ S S 2Nk_l P zlé S zlé S *

[

[x1

C
< N2 + CE
(50)
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Taking average on both sides, we have
1Y s
< LER(lu — ViR + Zﬂ«:~ U ~a, Vl|2ds]
C = i2 Tk kp2
<5+ L CE® [/ ul — V| ds} ZE~ [/t 0¢1k — 24 V| ds} 51)

/ — Vifds| .

By Gronwall’s inequality and taking supremum over [0, T], we have

sup [ Z EE|ul — V}|? %, (52)
te(0,1) N
which implies
1§ it 8) = Vit 5)| < <. (53)
N 0s 0s =N

i=1

Choosing Z uniformly distributed in (R x H)N, then by continuity of u' and V', and the fact that
ui(t, Z) is defined by U(t, Z(i), Zi,vi), we have, for any z € (R x H)V,

(54)

z| 0

1 Y o .
5 L U, 2, v) = Vilto, 2)| <

i=1
O

6. Conclusion

The mean field game system acts as a characteristic of the master equation. The master equation
contains all the information in the mean field game system, and it turns the forward-backward PDE
into a single equation. The solution to the mean field game system is a pair (V,v), that is the value
function and the joint law of current state and past law. The solution to the master equation is a
function of (,z,v).

Since our model is linear quadratic, we are able to solve both the mean field game system and
the master equation as shown in Section 3 and Section 4, however, the techniques are not the same.
The technique for solving the mean field game is that we first make an ansatz for the solution of the
HJB equation. Then plugging this ansatz into the Fokker-Planck equation (23), we find that the means
of state and past control are constant. Hence, the ansatz (24) can be verified. On the other hand, a
notion of derivative with respect to measure is needed in order to solve the master equation. Again,
we make an ansatz (40), which has a similar form as (24) but is a function of (¢, z, v), and we verify that
it satisfies the master equation.

The sets of PDEs (30) with boundary conditions (31) are the same for the two problems. This
is due to the fact that our model is linear-quadratic and the means of states and past controls are
constants.

Last but not the least, the Nash equilibrium of the corresponding N-player game is presented
in Section 2. The value function (12) looks similar to the value function (24) in the mean field game
system and the solution (40) to the master equation. As N — oo, the set of PDEs (13) becomes the
same as (30). This implies that the solution to the mean filed game appears to be the limit of the Nash
system, but generally, the convergence has been known in very few specific situations. Additionally,
the solution to the master equation is also a limit to the Nash system, as shown in Section 5.
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To summarize, we have extended the notion of master equation in the context of our toy model
with delay, and we have shown that, as in the case without delay, this master equation provides an
approximation to the corresponding finite-player game with delay. A general form of such a result,
not necessarily for linear-quadratic games, is part of our ongoing research.
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Abbreviations

The following abbreviations are used in this manuscript:

SDDE  Stochastic Delayed Differential Equation
HJB Hamilton-Jacobi-Bellman

MFG  Mean Field Game

PDE Partial Differential Equation

LLN Law of Large Numbers

NSF National Science Foundation

Appendix A Adjoint operator

Let ¢ be a smooth test function defined on R x H. In the following computation, we use the
notation

(9, v(D)) :/ o(2)dv(t, z).

RxH

If the test function ¢ is of the form ¢(z) = [ 0 + ¥(z0,21(s))ds for a smooth function ¢ defined on R?,
then

o) = [ [ e za(6))vlt,20,21(5) e (),

where v(t,z,z1(s)) is understood as a two-dimensional density. By abuse of notation, we also use

) = [ pewat= [ [ gl z)deds.

RxH
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Then, we have

(Lrg,v(t))

.

0 ddz, ¢(z)
/ ds
/ /M (82 V — (32, V](~1))2=, 9(2)0 < (s)u(t, 2)dzds

n— vtz dZdS+/ —(02)V — [0, V](—7))0z, ¢(2)v(t, 2)dz
28202090( Jv(t, z)dz
/_T /]RX]R C;Z; 9z, ¢(z)v (t,z)dzds+/_0T /RXR218214)(Z)V(t,Z>(5O(S) — 6_(s))dzds
+ aZo {02V — [0, V](=71))v(t,2)} p(2)dz
/fT/M 21 {92V = [0, VI(=1)v(£,2)} 0-(s) p(2)dzds

+ - 20 SZOZO (t,z)@(z)dz

_/4 /RXR (dzslv(t z)) ¢(z)dzds — /70T /RXRazl (z1v(t,2)) @(2) (80(s) — 6—<(s))dzds
# [0 {05V = BVI0)0(6,2) ol

- /i [ 3 {3V = 02 VI(=0)v(t,2)} 0 () p(2)dzds

+ . Eazazozov(t,z)q)(z)dz

— (g, Liv(t)).
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