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Abstract

For M a simple surface, the nonlinear statistical inverse problem of recovering a
matrix field ® : M — so(n) from discrete, noisy measurements of the SO (n)-
valued scattering data Cg of a solution of a matrix ODE is considered (n > 2).
Injectivity of the map ® — Cg was established by Paternain, Salo, and Uhlmann
in 2012.

A statistical algorithm for the solution of this inverse problem based on Gauss-
ian process priors is proposed, and it is shown how it can be implemented by
infinite-dimensional MCMC methods. It is further shown that as the number
N of measurements of point evaluations of Cg increases, the statistical error in
the recovery of ® converges to 0 in L2(M)-distance at a rate that is algebraic
in 1/N and approaches 1/+/N for smooth matrix fields ®. The proof relies,
among other things, on a new stability estimate for the inverse map Cp — ©.

Key applications of our results are discussed in the case n = 3 to polarimet-
ric neutron tomography. © 2020 The Authors. Communications on Pure and
Applied Mathematics published by Wiley Periodicals LLC.
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1 Introduction

1.1 Non-Abelian X-Ray Transforms

Our object of study is the non-Abelian X-ray transform, a mapping from a
matrix-valued field @ defined on a Riemannian surface with boundary (M, g, dM),
to its scattering data Cg, defined at the influx boundary d4+ SM of M, given by

0+SM ={(x.v) e TM, x € IM, gx(v,v) =1, (v,vx)g <0},

where TM is the tangent bundle of M, and v, denotes the outward unit normal at
x e dM.

We will assume that the surface M is simple in the sense that it is (topologically)
a disk, it has no conjugate points, and a strictly convex boundary. Strictly convex
domains in the plane (and small perturbations of them) are examples of simple
surfaces. In this context, all unit-speed geodesic{]in M exit M in finite time. This
fact allows us to identify d+ S M with the space of geodesics on M, by associating
to any (x,v) € d4+SM the unique geodesic y passing through (x, v).

Let® : M — C™*" be a smooth map. Given a unit-speed geodesic y : [0, T] —
M with endpoints y(0), y(T) € 0M, we may define the scattering data of ® on y
to be Ce(y) := U(0), where U : [0,T] — C™*" satisfies the linear system of
ODEs

U+ ®(y)HU =0, U(T) =id.

This problem, backward in time for convention here, is well-posed and leads to
a unique definition of U(0), containing cumulated information about & along the
geodesic y. Note that when & is scalar, we obtain log U(0) = fOT O(y(t))dt,
which is the classical X-ray/Radon transform of ¢ along the curve y. Considering
the collection of all such data makes up the scattering data (or non-Abelian X-ray
transform) of ®, viewed here as a map

Cq;: 8+SM — (Can’

and we are concerned with the problem of recovering @ from Cg. Inverting
Abelian and non-Abelian X-ray transforms are examples of inverse problems in
integral geometry, an active field permeating several tomographic imaging meth-
ods; see, e.g., the recent topical review [23]].

The problem of inverting the nonlinear mapping ® — Cg in this generality has
been recently solved in [35]. Previous injectivity results were obtained, either by
adding curvature conditions on the manifold or by fixing a Lie group G (realised
as matrices, for simplicity) and its Lie algebra g, in turn asking whether a g-valued
field @ can be recovered from its G-valued scattering data Cp. In this paper, we
will mainly use the Lie groups SO(n) = {U € R™"* UTU = id,detU = 1},
Un) =4{U € CP" U*U = id}, and SU(n) = U(n) N {det = 1}, and their Lie

1Unit-speed geodesics are locally defined dynamically through the equation V,y = 0 with V
the Levi-Civita connection and satisfying g,,¢)(7(¢), y(¢)) = 1 for all 1 where y(¢) is defined.
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algebras so(n) = {4 € R™" AT + A = 0}, u(n) = {A € C™" A* + A = 0},
and su(n) = u(n) N {tr = 0}. Above, T, *, det, and tr refer to matrix ‘transpose’,
‘conjugate transpose’, ‘determinant’, and ‘trace’, respectively. Note the inclusions

(1.n SO(n) Cc SUn) C Un).
The state of the art on this question can be written as follows:

THEOREM 1.1. Let (M, g) be a simple surface. The map ® — Cg is injective in
the following cases:

(@) G =Un) [34],

(b) G = GL(n,C) [35].

The proof of (b) consists of a reduction to the unitary case in (a) via a factor-
ization theorem in loop groups. Earlier injectivity results have been obtained by
several authors; cf. [[14},32,33]] and references therein, particularly when (M, g) is
a domain in the Euclidean plane.

The absence of concrete reconstruction formulas for the inverse map Cy — @
when n > 2, and the challenge of dealing with physical experiments such as those
arising in polarimetric neutron tomography, where N discrete and noisy measure-
ments Dy ~ Pg of Ce € SO(3) are made (see Section and Sectionm for
details), motivate the main contribution of this article, which is to present a statis-
tical algorithm ® (D) that allows to recover ®. The implementation of ®(Dy)
is detailed in Section {f] and our main theoretical result is the statistical analogue
of the injectivity result Theorem [I.1] namely the frequentist consistency of recon-
struction in the large sample limit, which somewhat informally can be stated as
follows:

THEOREM 1.2. Suppose the data D y is generated from the probability distribution
Pé\; where ©g : M — so(n) is any smooth matrix field ©g. Then we have that, as

sample size N — oo, and in Pg) -probability,

H‘T’(DN)—CDOHLz(M) — 0.

See Theorem [3.2)in Section [3]for a fully rigorous statement of this result, which
in fact requires significantly weaker hypotheses on ®g, and also specifies an ex-
plicit ‘algebraic’ rate of convergence N ~7 in the last limit.

The proof of the previous theorem relies on ideas from Bayesian nonparamet-
ric statistics [[16,43]] and on new ‘quantitative versions’ of the injectivity result in
Theorem 1.1} which are of independent interest and stated in Section

1.2 Polarimetric Neutron Tomography (PNT)

The basic problem in PNT consists in finding a magnetic field from spin mea-
surements of neutrons [[11,22125//37]. In this case the explicit relation is

0 Bs —B;
o =|—B; 0 By
B, —B; 0
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where B = (B1, B2, B3) is the magnetic field. In the case of PNT one assumes
that the underlying surface M is just the disc in the plane (by slicing with 2D discs
one can solve the 3D problem).

The details of the experiment of polarimetric neutron tomography may be found,
e.g., in [37]]. Here we give a description that is suitable for our purposes. The data
produced by the experiment is the orthogonal matrix Cg Lx,v) = C;(x, v) €
SO(3), where Cq(x, v) is the scattering data described above. The significance of
this in terms of spin, is as follows: if a neutron traveling along the ray determined
by (x, v) enters the magnetic field with a spin s;, € S? (S? denotes the Euclidean
unit sphere in R3), it exits the field with spin sour = Cg L(x,v)sin € S? (for an
ensemble of polarized neutrons in a magnetic field it can be shown that they be-
have like a particle with a classical magnetic moment). The magnetic field B is
defined in 3D space, but the experiment makes measurements on a 2D plane and
produces a global reconstruction by slicing. The geometry of the experiment is
thus a 2D parallel beam geometry that is easily converted into fan-beam geometry
as considered above. The question is then how to manipulate the spin to produce
the orthogonal matrix. This is done with an ingenious sequence of spin flippers
and rotators placed before and after the magnetic field being measured. The ma-
terial containing the magnetic field can also be rotated so as to produce parallel
beams from different angles. After the spin has been manipulated it goes through
an analyser; this device is essentially a spin filter that only lets those neutrons with
vertically aligned spin go through. The neutron count is then measured with a de-
tector that produces an intensity reading. The spin of the entering beam is perfectly
aligned with the spin of the analyser, so that the intensity measurement is actually
a measurement of the angle of rotation of the spin due to the magnetic field. The
key relation is given by [25} eq. 1]

1
(1.2) I = 1IpA 5(1 + cos ),

where A is the attenuation of the medium, /g is the intensity of the incoming beam,
and g is the angle by which the spin has rotated.
The use of the spin flipper allows the measurement of

1
' = IOAE(I — Cos @),

and from this one deduces that

I-1

I+1"

which then becomes an entry of our matrix Cg, (x,v). By rotating by 7/2 and
flipping (rotation by 1) one can thus produce the entire orthogonal matrix as data.
In other words, if {e1, e, e3} is the canonical basis of 3-space, cos ¢ gives, for all
i,J, Cg, (x,v)e;-ej and hence all the matrix entries. In some situations, where the
attenuation of the medium is known, the use of spin flippers is not necessary and
can be calibrated out. Assuming an additive Gaussian noise in the intensities 7,

cosp =
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equation (I.2)) approximately produces an additive Gaussian noise in the entries of
the matrix Cg, which is precisely the noise model we adopt below.

As in the articles [[12}[37]], our approach reconstructs 3D magnetic fields of arbi-
trary direction and distribution. This provides a method able to investigate samples
without imposing any a priori knowledge of the magnetic field orientation and re-
quires understanding of the full nonlinear inverse problem. The recent preprint [[12]]
introduces a modified Newton-Kantorovich type algorithm for the solution of the
nonlinear problem, a Newton-type algorithm where the inversion of the Jacobian
at each iteration only uses the differential of the map ¢ — Cg at the base point
CD() = 0.

As pointed out in [12], the algorithm appears to work well for small enough
fields (or large enough velocities of neutrons), but may fail due to ‘phase wrapping’
when the field is large enough. Our approach does not exhibit this problem.

1.3 The Statistical Observation Scheme

Consider a simple surface M as above with influx boundary d4+SM, and a

matrix-valued map
O: M —g
and scattering data
Cop:0+5M — G.

Here we take G = SO(n) for some n > 2, with corresponding Lie algebra g =
s0(n), the set of skew-symmetric matrices. Recall that in the key application to
PNT from the previous subsection, M is the flat disk and n = 3. We could take
G = SU(n) and g = su(n) just as well, but for the sake of conciseness prefer to
avoid a complex-valued statistical noise model in what follows.

To describe the statistical observation setting, let A be the uniform distribution
(volume element) on d+SM (see (1.5) below for a precise definition), and consider
‘design’ random variables

(Xi, Vl)lNzl e A on 8+SM

These draws represent a randomised choice of the geodesics for which experiments
are performed—they have to be equally spaced in a statistical sense throughout
geodesic space d+ SM. For each resulting measurement of Ce ((X;, V;)) the sta-
tistical observational error arising in the experiment is modeled by independent
Gaussian matrix noise. More precisely, let

. : N
(8i,j,k 1< j.k <n)l,
beii.d. N(0,0%), 6 > 0, random variables that are independent of the (X;, V;)’s,
and let & = (&; j ) be the random n x n noise matrix that adds a Gaussian noise
variable in each matrix entry to Ce ((X;, V;)). Our observations then consist of the
sequence of N random n X 1 matrices
Yi =i 0, Yije=Col(Xi,Vi))jk + & jk

1.3
(1.3) i=1,...,N, 1 <jk<n.
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The variables Y; ; x are all independent, and even i.i.d. for j, k fixed. Conditionally
on (X;i, V;) = (x;, v;) they are multivariate normal random variables with diagonal
covariance and (vectorised) mean Cy(x;,v;); . Note that while Co(x, y) takes
values in SO(n), the Y; are not in SO(n) as we have not constrained &; at all—this
is in line with the physical experiments for PNT described in Section [I.2] where
statistical errors arise from noisy measurements of each matrix entry of Ce(x, v).
For the theory we will assume that the noise variance 6 > 0 is fixed and known—
in practice it can be replaced by the estimated sample variance of the Y; ; ’s.

To fix notation: The joint law of the random variables (Y, (X;, Vi)),N: L in (L3)
on (R™" x 34+ SM)N will be denoted by PY = XzN=1P<li>’ where we note Pé, =
P} for all i. We also write P for the law of the (&)XY ’s, AV for the law of the
(X;. Vi)N |, and

(1.4) Dy ={Y1,.... YN, (X1, V1),...,(XN.VN)}

for the full data vector. The corresponding expectation operators are obtained by
replacing ‘P’ by ‘E’ in the preceding expressions. The dependence on o2 will be
suppressed in the notation.

1.4 Some Geometric Background and Basic Notation

We conclude this section by introducing some more basic notation that will be
used throughout.

Our background geometry is a simple surface with boundary (M, g, dM). By
‘simple’, we mean (i) M is nontrapping (in the sense that every maximal geodesic
in M has finite length), (i) M has no conjugate points, and (iii) dIM is strictly
convex (i.e., 3M has positive definite second fundamental form). We denote by
SM the unit tangent bundle of M, namely

SM = {(x,v) e TM, gx(v,v) = 1}.

Its boundary dSM := {(x,v) € SM : x € dM} can be split into ‘influx’
and ‘outflux’ boundary, depending on whether the tangent vector points inside or
outside, namely we define, for vy is the outer unit normal at x € IM,

0+SM = {(x,v) € 0SM : (v, vyx)g < 0}.

The manifolds M, dM, SM, and 0+ SM all carry natural volume elements,
allowing us to define L? spaces below. Specifically, the Riemannian metric g
induces an area form dx on M and restricts to a metric on M. The unit sphere
bundle SM carries the volume element d X3 = dx dv where dv is the length
element in the unit circle Sy C 7y M. Finally, the boundary dSM of SM carries
the area form d £2 = ds dv where dv is as above and ds is the arclength (w.r.t.
the metric g) along the boundary. Its restriction to d+ S M will be denoted by

1

1.5 A=—0 432 .
(1.5) Area(d1 SM) o.M
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The spaces C”" and C"*" will be equipped with the canonical Hermitian inner
product (-, -} and induced norm | - |. For elements in C"*”, this corresponds to the
Frobenius norm |A|% := tr(A*4) = Z?,]:l |A;,j|, which is U(n)-invariant in
the sense that for any U € U(n) and A arbitrary, |[AU | = |UA|p = |A|F.

Given (N, h) a d -dimensional Riemannian manifold (either M, M, SM,90SM,
or d4+ SM as explained above), one may adapt the usual function spaces to C”- or
C™ " _yalued functions as follows: L2(N, C™"™), L (N, C™ ™) with norms

2 . 2 .
01, 1= [ UG Vol Ul = sup UG-
N yeEN
One may differentiate functions using partial derivatives {dy; };1=1 in coordinate

charts, or equivalently, using {Tj};":1 a global basis of smooth vector fields on
N that pairwise commutes (it will be useful to adopt the latter viewpoint in later
sections). Given a d-index & = («y,...,®y), one may define |o| = a1 +---+ ay
and T% = Tla L. T;d . The metric & equips N with a distance function dj(x, y),

and for B > 0, we can thus define Holder spaces C# (N, C™*") with norm
IT*U(x) —T*U)|F
dp(x, y)B—L8] ’

WUlles = Y. swp|T*UM |+ Y. sup

e <[B] YN la|=8] ¥7YEN

with the second term removed when B is an integer. We will also use L?-based
Sobolev spaces H* (N, C™*") with norm

WUIGs = Y IT*UI»

loe|<s

for s € N, and defined by interpolation otherwise (see, e.g., [41} chap. 4]).

As above, when clear from the context, the domain and/or codomain will be
dropped from the notation. In the following sections, spaces of functions with
codomain SO(n), SU(n), or their Lie algebras will make use of the same topology
of the corresponding spaces of C"*"-valued functions. The c-subscript attached
to a space of maps defined on M denotes the linear subspace of those maps that
vanish identically outside of a compact subset of the interior M ™ of M.

2 Theoretical Results for the Deterministic Inverse Problem

When discrete measurements of the forward data Cg are corrupted by statistical
noise, the injectivity result Theorem [I.1]is not useful for reconstructing & from
the observations, and we will discuss in the next section how to develop statistical
methods that consistently solve this statistical inverse problem. The proofs that
substantiate these methods are based on quantitative versions of Theorem [[.T}—
stability estimates—as well as continuity properties of the forward map, and we
describe in this section the analytical results we obtain.
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The results to follow hold when the codomain of the matrix fields is the largest of
the three compact Lie groups introduced before Theorem namely U(n) (with
Lie algebra u(n)); see equation (I.1).

THEOREM 2.1. Let (M, g) be a simple surface. Given two matrix fields ® and W
in CY(M,u(n)), there exists a constant c¢(®, W) such that

1D — Wl 207 < (P, ¥)|CaCy — id”Hl(a+SM)’

where c(®, V) is a continuous function of |®||c1 Vv ||V || o1, explicitly
@D (@9 =i+ (@1 v [Pl edFlerI¥ien,
and where the constants C1, C» only depend on (M, g).

The proof of Theoreminitially follows the approach for obtaining L2 — H'!
stability estimates for the geodesic X-ray transform / as presented in 39, theorem
3.4.3]. Our starting point is the pseudo-linearisation formula

CoCy' =id + Ig(@.u)(® — ¥)

where Ig(o,w) is a geodesic X-ray transform with suitable weights; see Lemma
[5.5] To prove Theorem [2.1]it suffices to show that

[P — W2y < (P W) Llo@,w) (Y — Pl g1, sm)-

To this end, we use the energy identity (Pestov identity) developed in [34] for ma-
trix weights arising for connections and matrix fields. The presence of the weights
produces additional terms in the identity that need to be controlled to obtain the es-
timate above, and this is where most of the work lies. The main idea for controlling
them comes from [34]], where a connection with the right curvature is artificially in-
troduced to control these terms. The connection is later removed by using (scalar)
holomorphic integrating factors whose existence is guaranteed by the microlocal
properties of the normal operator associated to the geodesic X-ray transform act-
ing on functions. Taming these integrating factors has a cost that is reflected in the
constant ¢(®, W) given in 2.1).

For the proof of Theorem [3.2] below, we also require ‘forward’ estimates in
Sobolev and Holder scales. These are less sophisticated in nature than the stability
estimate above, and hold under less restrictive assumptions. Recall that (M, g)
is said to be nontrapping if there is no geodesic with infinite length (any simple
manifold is nontrapping).

THEOREM 2.2. Let (M, g) be a nontrapping surface with strictly convex boundary.
For any integer k > 0 and for every ®, ¥ € C*(M,u(n)), the following continuity
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estimates hold:

(22) ”C(I) - C\IJHH/\ (3+SM,(C”X")
S A+ ®lex + W) NP — Ul gr ag.cnmn).

(2.3) I1Co — Cwllck ., sm,cnxny
S A+ [@llex + W) 1P — Wller ag.cnnys

where by < we mean that the inequality holds with some constant that only depends
on (M, g)and k.

In fact, in the proof of Theorem [3.2] we shall use instead of Theorem [2.1] the
following corollary of the previous two results:

COROLLARY 2.3. Under the same hypotheses as in Theorem 2.1 and ¢(®, V) as
in (2.0), then
24 P = V2nn = Ce(@ W)+ [[W][c)ICo — Cullgi o, sm)

where C' is independent of ® or W.

3 Bayesian Inversion of Non-Abelian X-Ray Transforms

3.1 Main Results

The main goal of this section is to introduce a method to infer the matrix field
® € C(M,so(n)) from discrete observations Dy of the scattering data Cg de-
scribed in Section [I.3] We follow the general paradigm of Bayesian inverse prob-
lems advocated by A. Stuart [10,40], which is also related to the paradigm of
Bayesian numerical analysis [4,/13] in the noiseless case (¢ = 0). The idea is
to start from a Gaussian process prior Il for the parameter ¢ and to use Bayes’
theorem to infer the best posterior guess for ® given data Dy .

Below we will state a theorem to the effect that the posterior mean fields ®y =
EN[®|Dy] corresponding to a flexible class of Lie-algebra-valued Gaussian pro-
cess priors I1 for ® consistently recover the ‘true’ ®g in the frequentist large sam-
ple limit as N — oc, when noisy experiments have been performed under Pg) in
the model (I.3). In fact, we will provide a stochastic convergence rate to 0 of the
recovery error that is algebraic in inverse sample size 1/N.

The proof of Theorem [3.2] below provides a template to establish rigorous sta-
tistical guarantees for the Bayesian approach to other nonlinear inverse problems
as well. See Section[5.4]and Remark [3.6]for more discussion.

We emphasise that obtaining probabilistic consistency under Pg) entails ap-
proximate uniformity of the design (X;, Vi) and rules out ‘adversarial’ designs.
Fixed (nonrandom) design (x;, v;) that is sufficiently ‘equally spaced’ throughout
d+SM could be considered as well in the theory that follows, either via appealing
to asymptotic statistical equivalence results in nonparametric regression [36] or by



1054 F. MONARD, R. NICKL, AND G. P. PATERNAIN

tracking the numerical discretisation error explicitly through all the proofs that fol-
low. For the purposes of the present paper we opt for the random design setting, as
it allows for a cleaner, unified probabilistic treatment of the measurement process.

To introduce the Bayesian approach more concisely, consider a prior I1 for a

vector field (By, ..., Bp) by prescribing a Borel probability measure on the space
x_, C(M) where
J =
nn-—1
n= % = dim(so(n)).
The natural isomorphism between X?:l C (M) and the space C(M, so(n)) of con-

tinuous functions from M to so(n) in turn generates a prior I1 for ® by forming a
so(n)-valued field from the B;. For instance, in the case n = 3 so that also 7 = 3,
relevant in PNT, we construct I1 from
0 B3(x) —Bal(x)
3.D ®d(x) = | —B3(x) 0 Bi(x) |, xeM.
B>(x)  —Bi(x) 0

Then we make the Bayesian model assumption that

(Yi, (Xi, ViDL, |® ~ Py on (R x 3. SM)Y,

which by Bayes’ rule generates on C(M, so(n)) a conditional posterior distribution
of ®|(Y;, (Xi, Vi)V —it will be denoted by IT(-|(Y;, (X;, V;)V. ) = T1(-|Dy).

i=1 i=1/ =
The posterior distribution arises from a dominated family of probability measures
(see (5.43) below) and is hence given by

H(A|Dy) = TI(A| Y1, ..., YN, (X1, V1), ..., (XN, VN))
(3.2) [ €V DaTI(D)
[etN@dTI(D)
for any Borel set 4 in C(M, so(n)). Here

En(®) = £;(P), where
i<N
1
G(@) =55 > [ape—ColXi V)]

1<jk<n

3.3)

is, up to additive constants, the log-likelihood function of the observations.

While what precedes was not specific to the choice of a particular prior, the main
theorem to follow will hold for priors arising from certain so(#n)-valued Gaussian
processes. These will be constructed from a Gaussian base prior IT” from which
the coordinates B; of x]ﬁle (M) will be drawn independently. In fact, we will
require draws from IT’ to have S-Holder-continuous sample paths on M almost
surely. We refer, e.g., to [18], secs. 2.1 and 2.6] for the basic definitions of Gaussian
measures and processes and their reproducing kernel Hilbert spaces (RKHS).
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Condition 3.1. For 8 > 0 and o > B + 1, let [T’ be a centred Gaussian Borel
probability measure on the Banach space C(M) that is supported in a separable
(measurable) linear subspace of C# (M), and assume its RKHS (, ||-||7;) is con-
tinuously imbedded into the Sobolev space H*(M).

See Remark [3.4] for concrete examples and constructions of such Gaussian process
priors with ‘maximal choice’ H = H*(M) and arbitrary o > 8 + 1.
Now given a random draw f’ ~ T1’ we define a new random function

f(x)
JNUG@rD

and denote its law in C(M) by IIp = Ilp ny. Then let By,..., By be random

functions on M drawn as i.i.d. copies from Ilg, and let the prior I1 = x;?:l Mg
for @ be the resulting centred Gaussian product probability measure in the space
C(M,so0(n)) ~ xJﬁ:1C(M) (see (3.1) for n = 3). Shrinking the prior towards the
origin in a N-dependent way as in is crucial in our proofs; see Remark [3.3]
for discussion.

The following theorem gives a bound for the convergence rate of the posterior

mean:

(3.4) B(x) = By(x) = xeM, f'~ 11,

(3.5) Oy = (Y. (Xi. Vi)iLy) = EM[®|(Y:. (Xi. ViDL, ]

towards the true field ®¢ in L2(M )-loss, under the law Pé\; of the observations.
Note that this mean (expected value) is understood in the usual sense of Bochner in-
tegrals, and hence ® takes values in C (M, so(n)). For fixed data vector Y;, (X;, V;)
and since for Cp € SO(n) the norms ||Ce||z~ are bounded by a fixed constant,
this expected value exists almost surely by (3.2)) and a basic application of Fer-
nique’s theorem (see [ 18, exer. 2.1.5]). Let us say @ € H if all matrix entries of @
are contained in H.

THEOREM 3.2. Suppose the Gaussian prior I1 for ® arises as after (3.4) with
base prior I1' satisfying Condition for(x > B+ 1, B> 2. Let Oy be the mean
(3.5) of the posterior distribution TI1(-|(Y;, (X;, V,))lN: |) arising from observations
(L.3). Assume ®9 € C*(M,s0(n)) NH. Then we have, for some 1 > 0,

Pd]::)(H&)N _(DOHLz(M) > N_n) —0 as N — oo.

The proof is given in Section We note that the constraint 8 > 2 (and
hence o > 3) could be relaxed to § > 1 (and hence o > 2) at the expense of
more technical proofs (see Remark [5.20). We further remark that in the proof we
establish in particular that the random posterior measure [1(-|(Y;, (X;, Vi)),N: 1
on C(M,so(n)) concentrates with probability approaching 1 in a N ~"-diameter
L?(M)-ball centred at ®q; see Theorem
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3.2 Remarks and Discussion
Remark 3.3 (The exponent 1). In the proof (see (5.66)) we show that

o B—1

<—— " ° foranyinteger Bs.t.1 < B < ,
a+2) § y integer 8 B <8

n

is permitted in the previous theorem. If @9 € C®(M) = (>0 H“(M) and if
we take priors IT that verify Condition[3.1]for large enough «, 8 and H = H*(M)
(possible by Remark [3.4)), then we can make 7 as close to 1/2 as desired, and it is
easy to show that = 1/2 cannot be improved upon by any algorithm. So at least
for smooth @ the recovery guarantee from Theorem [3.2]is (near-)optimal. In the
‘low regularity case’ where « is not large, our bound for 7 may not be optimal. A
conjecture for the optimal value for 7 can be obtained from the much simpler linear
and Abelian case (n = 1) corresponding to the classical Radon transform, which is
treated in [31, exam. 2.5], where the exponent = /(2 + 3) is attained, which
can be shown to be optimal in this special case.

Remark 3.4 (Construction of Gaussian priors). We describe here some Gaussian
process priors verifying Condition 3.1 with H = H*(M).

As a first basic example consider the case where M equals the unit disk D =
{(x1,x2) € R?: x% + x% < 1} in R? with “flat’ (Euclidean) geometry, relevant in
PNT. For arbitrary « > 0 we can then take for I’ the restriction to D of a stationary
Gaussian process on R? with appropriate (Whittle-)Matérn covariance function kq
(see [16] p. 313] and Section 4] below). This gives a Gaussian prior on C(D) with
RKHS # equal to the space of restrictions to D of elements of H%(R?) (using
exercise 2.6.5 in [[18]]). This space is well-known (e.g., [41}, chap. 4]) to coincide
with H%(D), and the sample paths of this process lie in the separable subspace
CPo(D) of CB(D) forany B < Bo < a — 1; see [16, p. 575f] for a proof.

The preceding construction works for any smooth bounded domain D in R?. In
particular, a simple surface M is diffeomorphic to a disc and the Sobolev spaces
HY(D)and H* (M) coincide with equivalent norms—the Matérn prior can thus be
used even when M equals D equipped with a different Riemannian metric. Alter-
natively, one can embed M isometrically into a larger closed compact (boundary-
less) manifold S and use the orthonormal basis of eigenfunctions {e;} of the
Laplace-Beltrami operator on S to generate Gaussian random series fs(x) =
>k Ok8ker(x), gk ~id N(0,1), x € S, which after restriction to M and for
suitable choice of o3 > 0, generate Gaussian priors IT with any prescribed Sobolev
space H*(M) as RKHS.

Remark 3.5 (Rescaled Gaussian Priors). While the use of Gaussian process tech-
niques [3}[15,[26] in the proof of Theorem [3.2] is inspired by previous work in
[421/43]] and also [[17] for ‘direct’ problems, the inverse setting poses several chal-
lenges, particularly in the nonlinear case. In our proofs we show how these chal-
lenges can be overcome by shrinking common Gaussian process priors towards the
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origin as in (3.4)—the shrinkage enforces the necessary additional ‘a priori’ regu-
larisation of the posterior distribution to permit the use of our stability estimates.
While similar rescaled priors have been shown to work in some ‘direct’ settings
before (they appear as special cases of the rescaled priors studied in [42]], see their
theorem 3.2), in our setting they play a crucial role: Without rescaling the exponen-
tial growth in the C!-norms of @ of the constant (2.1)) would render our stability
estimate useless in the proofs.

Remark 3.6 (Related literature on Bayesian nonlinear inverse problems). The study
of statistical guarantees for the Bayesian approach to nonlinear inverse problems
has seen a recent surge of interest. In the references [29,/30}/44] nonlinear inverse
problems of elliptic and parabolic type are studied. The results therein however
only hold for specific ‘uniformly bounded wavelet’ type priors—while these are
useful to develop a first theoretical understanding of Bayesian inversion algorithms,
they posit very strong a priori assumptions on the parameter of interest and the
efficient computability of the resulting posterior distribution is also unclear.

The recent reference [31]] obtains convergence rate results for optimisation based
MAP estimates (see Section 4.2] for a brief discussion of those) in a general class
of nonlinear inverse problems. For nonlinear forward maps as the ones relevant
here, these MAP estimates can be difficult to compute, and at any rate may behave
quite differently from the posterior mean: The algorithm ETU[®|(Y;, (X;, V,—))IN= n
studied here is a Bochner integral with respect to an infinite-dimensional and non-
Gaussian posterior distribution, and variational ideas from optimisation cannot be
used directly in its analysis. In the proof of Theorem [3.2) we develop new tech-
niques that allow to prove convergence rates for such algorithms—see Section [5.4]
for a discussion of the key ideas that are relevant in other settings, too. Indeed,
the very recent references [1,|19]] have already succeeded in adapting our proof
template to other nonlinear inverse problems. For instance, [1]] studies statistical
versions of a conceptually related boundary value problem arising with electrical
impedance tomography (‘Calder6én problems’). Our results imply that statistical
inversion of non-Abelian X-ray transforms (for ‘smooth parameters’ ®) admits
better (i.e., polynomial) convergence rates than the necessarily logarithmic (in in-
verse noise level) recovery guarantees derived in [[1]] for the Calderén problem (with
smooth conductivities).

Remark 3.7 (Towards uncertainty quantification). Theorem [3.2] also serves as a
starting point to prove more refined Bernstein—von Mises theorems entailing that
the posterior distribution is approximated in a suitable infinite-dimensional space
by a canonical Gaussian measure (cf. [5,|6]]). For a nonlinear elliptic inverse prob-
lem a first result of this kind was recently proved in [29], and for the linearisation
of the nonlinear problem considered here, such results were obtained in [28]]. In
principle, joining the ideas of [28][29]] with the techniques of the present paper, one
can conjecture that Bernstein—von Mises theorems should also hold true for the
case of non-Abelian X-ray transforms—this is the subject of ongoing research.
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FIGURE 4.1. Left to right: An example of mesh with N, = 886 ver-

tices. Some geodesics for the metric we use in the examples that follow.

A

A contour plot of the ‘sound speed’ ¢ = e~ is superimposed.

4 Implementation of the Algorithm

In this section, we present some numerical reconstructions of an su(2)-valued
matrix field @ from its noisy scattering data Ce € SU(2). In this case, ® is
generated by three real-valued components By, B>, B3 through the relation & =
Bio1 + B20» + B3o3, where we have used the basis of su(2):

R Y I o [0 1 N N
=510 =i | 2752 -1 0| 37oli o0

with structure equations [0, 02] = 03, [02,03] = 01, and [03,01] = 02. The
approach presented easily adapts to any so(n)-, su(n)-, or u(n)-valued field (in-
cluding the so(3)-valued case of polarimetric neutron tomography, a close cousin
of the present case), with some minor Lie-group-specific modifications to be made
for an accurate computation of forward data.

4.1 Numerical Domain and Forward Operator

The computational domain is an unstructured triangular mesh discretising the
unit disk M = {x2 4+ y? < 1} made of N, vertices, and functions on it are
piecewise linear, uniquely determined by their values at the vertices; see Figure[d.1]
In particular, ® is regarded as an element of R3Vv,

2A(x,y)

The metric is isotropic, written as g = e id, with scalar function A given

by

)_L(x, y) = 0.3(6—((x+0.3)2+y2)/2t2 _ e—((x—0.3)2+y2)/2r2)’ =025

Such an example can be seen to be nontrapping and have no conjugate points and
a strictly convex boundary; i.e., (M, g) is simple. The case of Euclidean geometry
would correspond to A = 0. Geodesic (data) space, modeled as 4+ SM, is param-
eterised in fan-beam coordinates (8,«) € (0,27) x (—x/2, x/2) (with uniform
probability measure dA = df da/(27?)).

Below we will draw N geodesics uniformly at random, characterised by N ini-
tial conditions (¢;, B;) € 0+SM, 1 < i < N, and our statistical algorithm will
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require numerical evaluation of the forward data Cg (¢, fi), which we now de-
scribe: Out of each data point («;, B;), we first compute a geodesic using a forward
scheme with step size / to solve a discretisation of the system

i) =eFcosh. j(t)=eFsinb, O(1) = e (—sinBdxA + cos 00y 0),

with initial condition x(0) = cos B;, y(0) = sin ;, and 6(0) = B; + 7 + «;, until
the geodesic exits the domain. This produces a discretised geodesic

Yi ={xi@t). yitj)), tj = jh, 0<j < Ji}.

Once such a geodesic is computed, we must then discretise the matrix ODE

U (yi (0), 7 (1) + @i ())U(yi (1), 73 (1) =0, U(y:(0)) = id.

(The problem here is forward in time unlike that given in the introduction, though
since @ is u(n)-valued, this amounts to computing the conjugate transpose of Co,
which leads to the same problem.)

To discretise the above ODE, we denote U @+/) := U(y; (tj), yi(tj)) and imple-
ment the scheme

@.1) UGS = exp(—h@@/—Dy. y@i-D 1 < < J;,

where we have defined ®0/~D = ®(x; (tj—1). yi(tj—1)). In fact, the code im-
plements a predictor-corrector variant of this scheme for improved accuracy on the
computation of the exponentials.

The use of matrix exponentials in (compared to standard forward-marching
schemes) ensures that the matrix solution U numerically remains in S U(2), and the
computation of these exponentials can be done via an explicit formula; namely, for
A = ao1 + boy + cos and denoting |a| := v/a? + b% + ¢2, we have for [ € R

) )
exp(lA) = cos(%)id + sinc (%)IA (sinc x := (sinx)/x).

(Note that the formula above would need to be adapted if a Lie algebra g dif-
ferent from su(2) is of interest.) The evaluation of ®@/~1 is done by barycen-
tric combination of the values of @ at the three vertices of the triangle containing
(xi (5 —1), yi (tj-1))-

After implementing (@.1), the scattering data Cg(y;) is nothing but U @71 (in
fact, the other values U Y/) for j < J; are not kept in memory after computation).
The magnetic field ® we will use in the experiments below as well as its noiseless
scattering data Cg are visualised in Figure @

As we will use Monte Carlo Markov chains (MCMC:s) in the following section,
let us mention that once the mesh is fixed, some computations are done prior to
the MCMC, namely, all geodesics as well as the triangle indices and barycentric
weights along them.
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FIGURE 4.2. Top: the three components (Bj, Bz, B3) of the magnetic
field realised as ®y = By0; + B0, + B303. Bottom: real (left 2 x 2
block) and imaginary (right 2 x 2 block) parts of the scattering data Cg,, :
0+SM — SU(2) for the magnetic field ¢ visualised on top.

4.2 Statistical Estimation through MCMC

Given data as in (I.3), a common approach to inverse problems would be to
compute a Tikhonov regulariser that minimises a penalised least squares fit func-
tional (with, e.g., Sobolev-norm penalty)

N
1 1
4.2) ON(®) = 55 > | — ColXs Vi) 7 + 5| @llFe
i=1

over the space of all matrix fields ® : M — g where g is the Lie algebra describing
the constraint on the codomain of @. The map Qy is not convex, and efficient
computation of the global minimiser may be challenging. One approach would be
to use a gradient-based iterative scheme [24]], but the algorithmic stability of these
(or other variational) methods is unclear in the setting considered here.

The optimiser of the functional (@.2)) can be shown to correspond to a posterior
mode, or ‘maximum a posteriori estimate (MAP)’, of a Gaussian process prior I1
on C(M, g) with RKHS equal to H* (see [9] for a general result of this kind). In-
stead of computing that maximiser, one may compute other posterior characteris-
tics such as the posterior mean (average) £ [®|Dy] = ED[®|(Y;, (X;, V,-))lNzl],
which in our nonlinear setting is different from the MAP estimate.
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For Gaussian priors, MCMC algorithms such as the preconditioned Crank-Nicol-
son (pCN) method (see [[7]) are available to sample from the posterior distribution.
To introduce the algorithm, note that as in (3.3)), the log-likelihood function given
the data (Y;, (X;, V,))IN: , €quals, up to additive constants,

N

1 2
UP) =5 Z}'Y — Co(Xi, V)7
One then approximates the posterior mean E[®|(Y;, (X;. V,-))IN= 1] by a Monte
Carlo average D = NLS ij;o @, of a Markov chain () of length N as follows:
Let IT be a Gaussian prior for ®; initialise &, = 0 for n = 0, then repeat:

(1) Draw W ~ II and for § > O define the proposal pe, := v1 —26P, +

V28w,
(2) Set

po, With probability 1 A exp(£(pe, ) — £(Pr)),

Dpy1 = .
" @, otherwise.

The algorithm is terminated at # = N, and requires evaluation of £(®,) and
thus of the scattering data Cg,, (X;. V;) for every ®, and (X;, V;). For g = su(2)
relevant in the simulations that follow, this can be done as described in Section 4. 1]

The invariant measure of the Markov chain {®,} equals the posterior distri-
bution I1(-|Dp), and under certain conditions that are compatible with our set-
ting, [21] derived dimension-free spectral gaps that imply that the distribution
of ®, mixes rapidly towards I1(-|Dy). The approximation of EI[®|Dy] by
o = NLS Zivio @, can thus be expected to compare to the one of the standard
central limit theorem, with corresponding nonasymptotic error guarantees; see sec-
tion 4 in [21]].

To perform numerical simulations, we discretise ® = Z?:l Bio; : M — su(2)
as in Section {f.T|and for each B; choose an independent Matérn prior (cf. Remark
with parameters (v, £), which on functions on the mesh (i.e., vectors in RN v)
uses the covariance matrix C; ; = k,, ¢(|x; — x;|) for 1 <i, j < Ny, with positive

definite kernel
21—V 2vr ’ 2vr
k =—1—1] K
v,é (r) F(U) ﬁ v g ’

with K, the modified Bessel function of the second kind. The constant v con-
trols the Sobolev regularity while £ controls the characteristic length scale of the
samples; see Figure [4.3]for an illustration.

We draw N geodesics at random according to the uniform law for (&, 8) (some
samples on 91 SM of size N = 200, 400, 800 are visualised in Figur, and

then generate synthetic data (Y3, (X;, V,))lN: , as explained in Section for the
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FIGURE 4.3. Left to right: two Matérn prior samples with £ = 0.1, 0.2
and 0.3, respectively. In all samples, v = 3.

FIGURE 4.4. Left to right: Examples of sample draws on d1SM for
N = 200, 400, 800.

magnetic field ®q displayed in Figure adding Gaussian noise N (0, 02) to each
matrix entry of Cg,,.

We then implement the pCN algorithm to approximately compute the posterior
mean @y = EN[®|(Y;, (X;, Vi))zN=1] from Theorem The step size § is ad-
justed so that after ‘burn-in’, the acceptance rate of proposals stabilises around
25%. Once the chain is computed we visualise D = NLS ij;o ®,,—examples of
outcomes corresponding to increasing data set are given in Figure 4.3 illustrat-
ing the improvement in ‘reconstructions’ as the number N of measurement points
increases.

5 Proofs

5.1 Geometric Preliminaries

Let (M, g) be a compact, oriented, two-dimensional Riemannian manifold with
smooth boundary dM . As before, SM will denote the unit circle bundle that is a
compact 3-manifold with boundary given by

ISM)={(x,v) e SM: x e IM}.

We let X be the geodesic vector field, i.e., the infinitesimal generator of the geo-
desic flow of M. Since M is assumed to be oriented, there is a circle action on
the fibers of SM with infinitesimal generator V' called the vertical vector field. 1t
is possible to complete the pair X, V' to a global frame of 7'(SM) by considering
the vector field X | := [X, V]. There are two additional structure equations given
by X = [V, X ] and [X, X ] = —«V where « is the Gaussian curvature of the
surface. Using this frame, we can define a Riemannian metric on SM by declaring
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1 1

-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1

FIGURE 4.5. Top to bottom: The posterior mean field ® for sample
sizes N = 200, 400, 800, to be compared with the true field ¢y from
Figure[4.2] The number of Monte-Carlo iterations equals Ny = 100000.
Other parameters: 0 = 0.05, v = 3, £ = 0.2, § = 0.000025, N,, = 886.

{X, X1, V} to be an orthonormal basis, and the volume form of this metric will
be denoted by d X3, The fact that {X, X, V} are orthonormal together with the
commutator formulas implies that the Lie derivative of d 3 along the three vector
fields vanishes.

Given functions u, v : SM — C”", we consider the inner product

6D (u,v) =/ (u,v)cn d 3.
SM

Upon defining p(x,v) := —gx(v, vy) for (x,v) € dSM, the following formula
(known as Santald’s formula) holds for any f € L1(SM):

(x,v)
3 _ 2
(5.2) /S fras?t = /8 o [O Flpr(x. v)de p(x, v)d 2,

where ¢; is the geodesic flow.
We now discuss the manifold d4+ S M and its geometry. One may define a natural
frame on 31 SM, given by

(53) V:=V]g,sm- T:=(uoX +pX)lg,sm  where g :=Vu
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(T represents horizontal differentiation along the tangent direction). It is easily
seen that [V, T] = 0 and that these two vector fields are orthonormal for the met-
ric on dSM induced by the metric defined on SM. In particular, (7, V) is an
orthonormal frame for 04+ SM, and we may define H*(d+SM;-) with respect to
that frame. We now prove a useful lemma that will simplify later calculations.

LEMMA 5.1. Let (M, g) be a nontrapping surface with strictly convex boundary.
Then the vector field X can be completed into a global, pairwise commuting frame
{X, Pr., Py} of T(SM). This frame is smooth on SM\SOM and continuous on
SM, and satisfies Pr|y, s = T and Pyly, spu = V.

PROOF OF LEMMA.Tl For (x,v) € d4+SM \ SOM and ¢ € (0,7(x,v)), we
define two vector fields on S M ™,
(PT) g, (x,0) = APt | (x,0) T (x,0)» (PV)g, (x,0) = APl (x,0) Vix0)-

Since for (x,v) € 04+ SM \ SOM the map (x,v,f) — ¢;(x,v) is smooth and
injective and ¢ € (0, 7(x, v)), this defines global, smooth sections of 7'(SM™) so
that X, Py, Py pairwise commute. Via direct computation of the differential of the
flow (see, e.g., [27, sec. 4.2]), one may obtain the following expressions on M ™

Pr=(p)yX +py@Xy —(Xa)V), Py =-bX, +(Xb)V,
where a,b: SM — R satisfy

X?a+ka=X?b+xb=0 (SM). [2 &1l su =id
and where for 4 : 04+ SM — C, one defines iy : SM — C through the relation

hy (@ (x,v)) = h(x,v), (x,v) € 904+SM, t € [0, 7(x, v)].

One further notices that the definition of Py, Py extends by continuity to d(SM),
with the appropriate restrictions claimed in the statement of the lemma. O
5.2 Forward Estimates and Proof of Theorem 2.2]

In this section, we derive various continuity estimates for the forward map @
Co. Recall that if the boundary M is strictly convex, by [38} lemma 4.1.2, p. 113]
there is a constant Co(M, g) > 0 such that

5.4) t(x,v) < Cou(x,v) V(x,v)€dSM.
We start with the following basic estimates.

LEMMA 5.2 (Workhorse lemma). Let (M, g) be a nontrapping surface with strictly
convex boundary and ® € C(M,u(n)). Suppose F € C(SM,C"*™) and consider
the unique continuous solution G : SM — C"*" 1o XG + ®G = F on SM with
Gly_sym = 0. Then there exists a constant C1(M, g) such that

(5.5) 1G o, sm L@y sm,crny < Gllpoosm,cnxny < CillF || Loo(sp,crxmys
(56) ”G ||L2(SM,(C11></1) S Cl ” F ||L2(SM’CHXII),

5.7 NGlaysmllLz@ysm,crny < CrllFllL2(sm,cmeny.-
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The constant Cy can be chosen as C; = max(tso, v/ Co), With T the diameter
of M and Cy the constant given in (5.4).

PROOF. It is easy to check that
(x,v)
Ger.v) = ~Uar.v) [ (W F)wi (o dr. (x.v) € SM.
0
where Ug is the unique solution U to XU + ®U = 0on SM with Uy, gy = id.

Taking the Frobenius norm, using U(n)-invariance and the fact that Ug is unitary,
we get

(x,v)
|Glp(x,v) = ‘fo (Ug ' F)(gi(x.v))dt

F
T(x,v)

T(x,v)
< [ s porteondi < [Pt o,

Upon bounding the right-hand side crudely by oo || F ||o0, this immediately im-
plies (5.5). On to the L? estimates, applying Cauchy-Schwarz yields for all (x, v) €
SM , we obtain

(x,v)
68 [Glpo? <t [ PRGN < [ 1P
0 Vx.v
where yy , is the maximal geodesic passing through (x,v). Now fix (x,v) €
d4+SM and integrate the inequality above along the geodesic flow ¢, (x, v) to arrive
at

T(x,v) 7(x,v)
/O IGIF(%(x,v))zdzfrfo/O |F|p(pe(x,0))?dt,  (x,v) €9.SM.

Multiplying both sides by u, integrating w.r.t. d ©2 and using Santalé’s formula

yields (5.6).
For the estimate on L2(d4+SM), looking at (5.8) for (x, v) € 31 SM and using

(5.4), we arrive at
(x,v) )
Gleteo? <Co [ 1P ou(r. o)t (v, (rv) € 04 5M.
0

Integrating w.r.t. d £? and using Santalé’s formula (5.2) on the right-hand side
immediately gives (5.7). Lemma[5.2]is proved. O

We now prove the main result on forward estimates, Theorem [2.2] We shall
follow the model proof of [38] theorem 4.2.1], which shows that the standard X-
ray transform / maps H® to H®. We do this in two stages: first we explain in
Section [5.2] the proof in the simpler case in which the matrix fields have support
contained in the interior of M, and then we explain in Section [5.2] how to derive
the general case.
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Proof of Theorem [2.2] Assuming ¢ and ¥ with Support in the Interior of M

As a preliminary identity, given ® and W two skew Hermitian matrix fields,
consider the two U(n)-valued solutions Ug, Uy such that X Ugp + ®Usp = 0 with
boundary condition Ug|5_gas = id. It is immediate to find that the relation

X(Us — Ug) + ®(Up — Uy) = —(® — W)Uy
holds pointwise on SM, and that (Up — Uw)|g_sy = 0. Using the fact that
(Up — Ug)|y, sm = Co — Cy with estimate (5.5)) yields
[Co — CullLoe = C1|[(® —W)Ug|[Lee = C1]| @ — V]| Loo.

Similarly, combining the observation with (5.7) yields (2.2)), and we can also ob-
tain, using (3.06)),
(5.9) [Ue — Uyl = Cof|® — W2

To prove the C ! continuity estimate, consider the function W := Py (Ups—Uy),

such that Wy, spr = V(Ce — Cy) and for brevity set P = Py . The following
identity is immediate:

XW + oW = —(PP(Up — Uy) + (P(® —¥)Uy + (® — W) PUy).
In addition, since ® and W are compactly supported in M'™, the functions Usg,
Uy equal the identity matrix in a neighbourhood of d_SM and in particular,
Wlo_sm = 0.

Using estimates (5.5)—(5.7) and U(n)-invariance of Frobenius norms gives
IV(Co — Cu)l 12

<Ci[|[POUsp — Uy) + (P(® - V)Uy + (- V) PUy|| >

= Ci(lPPlloollUs — UgliL2 + 1P(® = W)l L2 + |0 — W] 2] P Uy | Leo).
We also have X(PUy)+ VP Uy = —(PV)Uy with PUg|y_sp = 0, so by (5.3),
we get || PUg || < Ci1]| PW||1. Combining this fact with (3.9)), we arrive at

[V(Co — Co) |12
< C1{C1(IP @l + [P W[ Loo) | @ = Wl 2 + | P(P — W)]|2),
and a similar bound for ||Py(Ugp — Uy)| ;2. Obtaining a similar estimate for
T(Ce — Cy), we arrive at
ICo = Cullgr < A+ [[Plict + WP — ¥llgr.

Similar arguments using sup norms everywhere yield

ICo = Cullcr (1 + [Pllcr + [WIeD® =Wt

To proceed to higher-order derivatives, if P* = P! P;? is a derivative of
order ||, setting W = P*(Up — Uy), we have W3, sy = V¥ T*(Co — Cy),
Wls_sm =0, and

XW 4+ ®W = —[P%, ®](Up — Uy),
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where the right-hand side involves derivatives of ® of order at most |e|, and
derivatives of Up — Uy of order at most |e| — 1. Combining the estimates of
Lemma and an induction on k (whose formulation also involves control on
IPy! P?(Up — Ug)llp2(sary for all @y + ap < k, and where the commuting
frame {X, Py, Pr} avoids the proliferation of terms due to nontrivial commuta-
tors) proves the theorem for higher-order derivatives. U

Proof of Theorem 2.2 ® and ¥ Supported Up to M

Consider a compact nontrapping surface (M, g) with strictly convex bound-
ary, and let ® € C(M,C™ ") be a matrix-valued field. We shall call R €
C(SM,GL(n,C)) an integrating factor for ® if Rg is differentiable along the
geodesic vector field X and XRg + PRe = 0. Let Ugp denote the unique integrat-
ing factor with Us|y_gp = id. Recall that Ce = Usly, s~ First note that the

work of the previous section also proves for every k > 0 that if ® and W are C k
matrix fields compactly supported inside of M™, we also have

U~ Uslickisary S L+ [1@lcr + 1%lco)I1© = Yllerany.

1Us = Usllgxsary S (0 + [ @llcx + 1W1co)11® = Wl -

Let  : dSM — 0SM denote the scattering relation of the metric (i.e., the
map that takes initial conditions of a geodesic at the moment of entry to final con-
ditions at the moment of exit). If Rg denotes any other integrating factor for P,
then it must have the form Ug F¥, where F¥ is the first integral (i.e., XF =0

determined by F € C(d;SM, GL(n,C)). Thus Ry = U F*, and from this we
deduce

(5.11) Co = Ro(Rg' o).

In particular, given two continuous matrix fields ®, W, Equation (3.11]) and
X(R3'Ry) = R3' (@ — ¥)Ry

imply the identity on d; S M :

(5.12) Co —Cy = (Rp — Ry)Rg' o + Ry(Rg' — Rg') ow

(5.13) = Ro[I(R3' (® — W)Ry](RG' o @),

where [ is the standard X-ray transform acting on functions in SM. To complete
the proof of Theorem [2.2]for @, W supported up to the boundary, we then need to
construct integrating factors with good regularity on SM (i.e, at dg.SM included)
and which behave continuously in terms of ® and W. To this end, we consider
(M, g) isometrically embedded in a closed manifold (S, g). The Seeley extension
theorem asserts that for any & > 0 there is a continuous extension map

Ep : CE(M)y = CK(S),  Ep: HF(M) — HF(S).

(It also works for C®°.) We consider a shghtly larger compact manifold with
boundary McsS engulfing M so that (M g) stays nontrapping and with strictly

(5.10)
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convex boundary. We fix once and for all a smooth cutoff function y so that it has
compact support in M ™ and it equals 1 near M. Thus given ® € CK (M, u(n)),

@ := yEx () € CH(M ,u(n)),
and since £} is continuous,
(5.14) 1Bllcr S I®@lck,  N1®lgx < 1P g

Now by virtue of the work in Section applied to ® on M, we can deduce
estimates of the form

(5.15) Uz —idllce S 1®9lge, U5 —idler S 1PN

We then take as smooth integrating factors Rg := U3>|S M and Ry = U@|S M-
Combining (5.14) and[5.15| we derive

(5.16) IRe —idllck S [Pllge, 1R —idlcr < [PlEs-

Combining and (5.10) applied to Ug and Ug, we obtain
[Re — Ryllcx < 1Ug — Ugllcx
(5.17) <A+ Blex + 1Pl 19— Tllexan
< U+ [@lcx + 19l 19 = Wllcxary.
and similarly for || Rq_>1 — Rg,l |cx and for H k norms. Then the proof for Theorem
[2.2)for ®, W supported up to the boundary consists in applying the product rule to
(.12) (for C* norms) and (5.13) (for H* norms) and using estimates (5.16) and

(5.17) together with the boundedness of the standard X-ray / between Sobolev
spaces [38l theorem 4.2.1].

5.3 Stability Estimate—Proof of Theorem 2.1]

Setting, Main Results, and Proofs of Theorem 2.1/ and Corollary 2.3]

Before considering the nonlinear inverse problem, we must establish a stabil-
ity estimate for a linear inverse problem, that of reconstructing a function f €
C°(M,C") from its attenuated X-ray transform, where the attenuation is matrix-
valued. Namely, given ® a smooth skew-Hermitian matrix in M, we define I f :=
u’ ‘8+SM, where u = u/ : SM — C" is the unique solution to the problem

Xu+ du=—f (SM), uly_sm = 0.

The injectivity of such a transform was proved in [34]], and we now provide a
stability estimate for it.

THEOREM 5.3. Let (M, g) be a simple Riemannian surface with boundary and ®
a smooth, skew-Hermitian matrix field in M. Then for any f € C°°(M), we have
the following stability estimate:

G18) I flzarem < Cid+ 1 @len)eI®let 1o f g, sar.cny.
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Remark 5.4 (Dependence of Cy, C;). The constants C1, C, only depend on the
geometry of (M, g). The constant C; blows up like (8 — 1)™!, where B is the
terminator constant of (M, g). This is one of the ways that this stability estimate
ceases to hold as one approaches nonsimplicity. The main other quantity appear-
ing in C1, Cy is W, the sup norm of the integrating factor defined below. The
behavior of such a quantity, while finite on any simple surface, remains to be better
understood.

On to the nonlinear stability estimate, injectivity of the operator ® — Cg re-
stricted to u(n)-valued fields was initially proved in [34], and Theorem up-
grades this result with a stability estimate. While the remaining sections will focus
on the proof of Theorem[5.3] we now explain how this result implies Theorem [2.1]
The main additional ingredient needed is a pseudo-linearization identity, relating
scattering data to attenuated X-ray transforms:

LEMMA 5.5 (Pseudo-linearization). Let (M, g) be a nontrapping surface with
strictly convex boundary. For any ®,W € C(M,C"™™"), the following relation
holds:

(5.19) CoCy' =id + lg(ou)(P — V),

where 1g(o,w): L*(M,C"™™) — L%2(3SM, C™") is an attenuated X-ray trans-
form with matrix field ©(®, V), an endomorphism of C"*" with pointwise action

O, W)U =0U -U¥, UeC™™.

PROOF OF LEMMA 3.3l With Ug, Uy the fundamental solutions of XUg +
Uy = 0 with Ugly_sy = id and Ug|y, s = Co (similarly for W), denote
W :=UsUy 1 _id. A direct computation shows that

XW 4+ OW —WW¥ = —(® — W) (SM), Wis_sm =0;
and thus by the definition of the attenuated X-ray transform,
Wls,sm = lo@,u) (P —W).

Since we also have by construction Wy, spr = CoCy' — id, identity
follows. O

PROOF OF THEOREM 2.1l Appealing to the pseudo-linearization (5.19), one
may notice that if ®, ¥ are skew-Hermitian, then the field ®(®, V) is skew-
Hermitian when viewed as an endomorphism of C”*", Moreover, since the entries
of ®(®, W) are linear in the entries of ® and W, we directly have that

10(2. W)ct = C[®llcr V¥l
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with C a universal constant. Then relation (5.19), together with Theorem [5.3]im-
mediately implies
”q) - \II”LZ(M,CHXH)
< Ci(1+ [0(@, W) cr) NPt 60,0y (@ — W) 1115, s51)

< C{+ @1 v [Wlen) eCIeVI¥Ie) |co gt —id| 41 o, sa)-

This shows Theorem[2.1jwhen ®, ¥ € C°°(M, u(n)). Since all quantities involved
above do not depend on derivatives of ®, ¥ of order higher than 1, and C;, C;
are independent of ®, W, approximating ®, ¥ e C'(M,u(n)) by sequences in
C®(M,u(n)) (and using Theorem will yield the same stability estimate for
C! matrix fields. O

We also cover the proof of Corollary [2.3] based on the previous result and the
forward estimate Theorem

PROOF OF COROLLARY 2.3] It is enough to show that
(5.20) [CoCyt —id| 1 S (1 + W) Co — Cullgr
To show this, we write at the pointwise level

CoCy' —id|, = |(Co — Cy)Cy?| = |Co — Culp.

hence |Co —Cyll;2 = ||C<1>qu1 —1id|| ;2. To control first derivatives, take P = V
or T'; we have

|P(CoCy' —id)|p = |P(Co— Cy) + (id — CoCy ') PCy|
< |P(Co — Co)|p + |PCy|r|id—CoCy' |

using triangle inequality and submultiplicativity. Squaring, taking the sup norm of

|PCy|F, and integrating on d+ SM, we obtain

1 a2
|P(CoCq' —id)|,>» < 2(IP(Co — Co)|22 + [ PCyl%]ICo — Cull2,).
Combining the estimates for P = V and P = T we arrive at
ICoCy" —idl7 = (1 +2]VCyli + 21 TCyll7)ICo — Cull7
+2[V(Co — Co)I7, + 2| T(Cop — Cy) |72

Now using the forward estimate (2.3) with k = 1 and ® = 0 (thus Cp = id), we
deduce that

1 +2|VCyll7ee + 2I1TCyll7e ST+ W[Z.

This yields the estimate ||C<1>C\;1 — id||§1,1 < (1 + ||\D||é1)||Cq> — C\p||12111, and

taking square roots yields (5.20) (using that +/1 + x2 /(14 x) is uniformly bounded
for x € [0, 00)). a
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Proof of Theorem [5.3—Main Outline

As in [34]], the main method of proof involves an energy identity (or Pestov
identity), based on integrations by parts on SM . To do this, let us recall that with
the inner product (u, v) defined in (5.1), and upon also denoting

(U, v)ysm = / uv d2?,
aSM

the following integrations-by-parts formulas holds for u, v € C*®(SM,C"):
(VM, v) = _(u’ VU), (VM, U)BSM = (M, VU)BSM,
(Xu,v) = —(u, Xv) + (nu, v)gspm. H(x,v) :=—(v, vx).

We will also use extensively the harmonic decomposition on the fibers of SM.
Namely, the space L?(SM, C™) decomposes orthogonally as a direct sum

L*(SM.C") = @D Hy
keZ

where Hj, is the eigenspace of —i V' corresponding to the eigenvalue k. A function
u € L2(SM, C") has a Fourier series expansion

o0
U= Z Uk,

k=—00
where u; € Hp. Let Qp = C*®(SM,C") N H. Of special interest are the
operators

5.21)

1
(5.22) Nt 1= E(X +iX1),

with the property that n(Q2;) C Qg4+, for all k& € Z. For more details on the
operators 1+ and the Fourier expansion, we refer the reader to [20] where these
tools were first introduced.

DEFINITION 5.6. A function u : SM — C” is said to be holomorphic if u, = 0
for all k& < 0. Similarly, u is said to be antiholomorphic if u; = 0 for all k > 0.

To control the terms involving the matrix field, one must introduce an artificial
connection as we will see below. This first requires that we derive a Pestov identity
for X-ray transforms with connection A and matrix field CDEI Namely, given a skew
Hermitian pair (4, ®) on the bundle M x C" and f € C*°(M,C"), we define
I4,0 f = uly, sm, where u is the unique solution to the problem

Gu=—f (SM), ulpg sy =0, (G:=X+ A+ ).

While previous Pestov identities have been derived in [|34]], the present one ac-
counts for nonzero boundary terms, and in particular reflects more precisely how
the stability constant degrades as (M, g) approaches nonsimplicity. This is cap-
tured by the concept of terminator constant Bre: given a simple surface (M, g),

2 The matrix field ® is also referred to as a ‘Higgs’ field in the literature.
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there exists a number Bre, > 1 such that for any B € (1, Bre], there exists a
smooth function r = rg : SM — R, solution to the Riccati-type equation
Xr+7r?+Bc=0.

THEOREM 5.7. Let (M, g) a simple surface with boundary, with terminator con-
stant Brer > 1 and (A, ®) a skew-Hermitian pair on the bundle M x C". Then for
anyu € C®(SM,C")and B € (1, Bre], the following identity holds:

1 —1

BHGVu —rgVul* + 'BTHGVMIIZ + |Gul> — | VGul?

— (*Fqu, Vu) — N(Du, Gu) — R((*xdaD)u, Vu)
(5.23)
= R(Vrau, Vu)ysy + Eﬁ((vl, v)OVu, u)gsy
1
p

In the identity above,
(5.24) *ds® = X1 D + [, V(A)], Vrau = Tu + A(x, vhu,

(nrgVu, Vu)ssm-

and r is a smooth function on SM that only depends on the surface. The quantity
* F4 is the curvature of the connection A, which upon a judicious choice of con-
nection, can have a controlled sign. To achieve this, consider the scalar Hermitian
connection a := i¢id, where ¢ is a smooth 1-form such that d¢p = wg (the area
form of the metric g). We choose a specific ¢ of the form ¢ = xdh for h a real-
valued function satisfying »d * dh = 1 with Neumann condition d2(v) = 0 at the
boundary. The latter condition implies that V7 s,u = T'u for any real s. Then we
have

a = l(XJ_h)ld, alp = 7}+h, a_1 = —n_h — _a’

with ng defined in (5.22) and i » F, = —1.

By [34]], we can construct a holomorphic scalar function w € C*°(SM) sat-
isfying Xw = —iX 1 h. Without loss of generality, w can be chosen even. The
condition on wq reads n—(wo — h) = 0, for which it is sufficient to use wo = .
With this choice of ¢ and s € R, in what follows, we will denote G5 := X +sa+ &
and G = Gg. With w as above, we have G u = ¢*¥ G(e 5" u). Moreover, w (the
complex conjugate of w) is antiholomorphic and solves Xw = +i XA, so also
Gsu = eSWG (e Py).

Lastly, we will denote by IT+ the projection onto positive and negative harmon-
ics. Namely, IT4u = ) ;.o ux. We have the following commutator formulas
forany u € C®°(SM):

(M-, X +sa + ®lu = (n— + sa—uo — (n+ + sa)u—i,
M4, X +sa + ®lu = (n+ + sar)uo — (N— + sa—1)u;.
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The following lemma will help us control # by versions of u that are conjugated
by special integrating factors.

LEMMA 5.8. With the holomorphic function e and antiholomorphic function
o
e 5% and any s,s’ € R, we have

Nou =T_(e¥YH_(e*"u))). Hyu = 4" Py u));
in particular, we get the equality
(5.25) u = ug + M_(e*PII_(*Pu)) + Mo (e* PTL4(e* Pu)).

PROOF. We only prove TT_u = TI_(¢*¥T1_(¢*"u))), and the rest is similar.
It is enough to notice that for any holomorphic function f', the equality I[1_( fu) =
[M_(f I1—u) holds, as this amounts to saying that the negative harmonics of fu
do not depend on the nonnegative harmonics of u. This is immediate since

(S =, folk—p-

p=0
Then we compute immediately
H_(eYT_(e*"u))) = I_TI_(e *"e*%u) = M _u,

hence the result. U

OUTLINE OF PROOF OF THEOREM[3.3] At first we are going to assume that
the solution u to the transport problem Xu + ®u = — f, u|s_spy = 0is C*. If
f is supported all the way to the boundary, this may not be the case, as ¥ may fail
to be smooth at the glancing doS M because 7 is not smooth at dgSM. However,
there is a standard way to fix this issue and we shall do this at the very end. For
now we will proceed as if ¥ were smooth in SM.

The initial transport equation, projected onto the harmonic term of degree 0O,
reads

—f = n4u—1 + n-ur + Puo = (Nyu—1 + Puo/2) + (n-u1 + Puo/2),
so that, in particular,
5260 117 < 2(Insu—1 + Duo/20? + lIn—u1 + Duo/2]|?).

The crux is then to find how to bound the quantities on the right by the boundary
values of u. Using a Pestov identity with a special connection sa defined as above
(and its holomorphic integrating factor ¢*¥), we show how to control the first term
using control over I[1_(e’%u)) for s > 0. Similar work can be done to control the
second term using control over TT4 (e Vy) for s’ < 0.
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We first derive in Section [5.3]the following identity:

1
n+u—1 + E(DMO

(5.27) = ((*Pu)(n4 —sa)(e))o + %e_swocb(eswu)g

+ ’E(e—sw GV (e u))o + %e‘st(GsVH_(eswu))o.

Since (n4+ — sa1)(e™*¥) only has strictly positive harmonic terms, the first term
in the right-hand side of (5.27)) only depends on TT1_(e*"u). Upon defining vs :=
IT_(e*™u), the identity (5.27) reads

1 1
Nu—1 + ECDMO = (vs(ng —sa)(e™**))o + ECD(eS(w_wO)u)O
(5.28) ; ;
+ E(e_sw Gs VUS)O + Ee_st(Gs Vvs)()

Denoting weo = supgys |w|, we straightforwardly obtain the estimate

(5.29) < Co(lw|2 1 se>7>||v, |12

2

1
n+u—1+ Eq’uo

+ D20 (5T 0u)g |2 + €25 || G Vg |2).

and control on ||npyu—_1 + %CDM() |2 will be obtained after controlling each term in

the last right-hand side. We first control [|(e*®~=%0)y)o |12 by [|vs||? + |GV vs||?
via the estimate

5:30) 1@ u)o 2y
= C/ezswco(”Gs VUS||1%2(M) + |(D|é0||vs||i2(M) + ||I<I>f||L2(BSM))'

We then control ||vs||? and ||GsVvs||?> by boundary terms via the Pestov identity
and setting up an appropriate threshold on s. To do this, we consider the transport
problem for vy, written as

Gsvs = Gs(TI—(e*"'u)) = [Gs, TI-](e™u)
= (N4 +sap)(EPu)_1 — (- + sa_1)((e*"u)o)
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We then use the Pestov identity (5.23) for vy, with xFy, = isid and xds, @ =
XJ_CDZ
1 2 :B —1 2 Sw 2
E”Gs Vus —rVug||” + T”Gs Vus|l® + |+ + sar)(e” u)—1 ||
+ 5(vs, i Vvg) — R(DPus, Gsvs) — R((XLP)vs, Vvg)
(5.31)
= N(Tvs. Vogasm + R({(v", v) @V v)asm

1
- B(/’L rVugs, Vug)asm -

Before choosing s appropriately, we need additional work (tedious as in [34]]) on
the term M (Pvy, Gsvs). Taking into account boundary terms, and upon defining
B4 := n+®, we prove in Section[5.3| that

(532) (@5 Gsvg) = Z(—l)k(|<b(vs)—k|2 —N(B-1(vs)—k. (Vs)—k—1)
k=1 + N(ex (V) P(vs) k- (Vs)—k—1)as M)

with ey (v) defined in (5.40). The last term in the sum will move to the right-hand
side of (5.31)), while the other two need to be controlled with a large s. To achieve
this, we prove in Section [5.3|the following:

LEMMA 5.9. There exists a universal constant C > 0 such that for all s > C|®|c1

oo
s (s iVVg) = > (DX (12 (s)—|* = R(B-1(v5)—. (v5)—k—1))
k=1
— R((*dsaP)vs, Vvs) = 0.
In particular, for s = C|®|c1 + 1, identity (5.31)) becomes
B—1

1
B”GSVUS - ”Vvs”2 + T”GSVUSHZ

(5.33)

[o,0)
+ g + san)EPw) ]2 + ) klv_g?
k=1

(5.34) < R(Tvs, Vs)asy + R PVug, vs)osm

1
- E(/’L rVug, Vug)osm

=) (DR (ex ) P(v5) k. (v5)—k—1)asM

k=1
We now explain how to bound the right-hand side in terms of ||/ f ||1211 104 SM)"
Recall that vy = IT_ (e u). The first claim is that [I1_, V] = [I1_, T] = 0. The
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first one is obvious because both operators are diagonal of the fiberwise Fourier
decomposition C*®(dSM) = @z ker(id —ikV). That T is also diagonal on
this decomposition follows from the fact that [T, V] = 0. With this in mind, we
have, on dSM :

Vug = I_V(e*™Pu) = N_e* (s(Vw)u + Vu),

Tvs = _e® (s(Tw)u + Tu),

and since u[y_sp = 0, Vu and T'u will be controlled by 1o f |15, sar)- The
right-hand side of (5.34) is thus bounded by

C'(s* + s|®|co + 1)e23w°0||1¢f||12111(3+SM)’

where the constant C” does not depend on ®.
Using this bound and throwing out the first and third terms of the left-hand side

of (5.34), we obtain

p-1 .-
TnGvasn2 + ) klv_gl?
k=1
rel2 28 Woo 2
<C'(s +S|CD|C0+1)6 ||I<I’f||H1(8+SM)‘
The second term in the left-hand side controls | vs||; 2 directly, and we can write

(B - l)”GsVUs”2 + ||Us||2

(5.35)
< C'(s® + 5P| co + Do “1‘1’f”%1‘(3+SM)’

with C’ some constant independent of ®. Recalling that s = C|®|c1 + | and

combining estimates (5.26)), (5.29), (5.30), and (5.33)), we arrive at estimate (5.18),
completing the proof of Theorem|[5.3] O

Pestov Identity with Boundary Term for Ray Transforms
with Skew-Hermitian Pairs
Let A and @ be a skew-Hermitian pair, and define
G =X+A+ D, G1:= X] — Ay where Ay = V(A).
We have the following structure equations:
G, V]=G6G, V,G1] =G — 9,
(5.36) (G. V] [ ]
[G,G1] = —«V — xF4q — %d4q®,

where xdg4® = X | ®+ PAy — Ay P, or when the connection A is scalar, xdq4 d =
X ®, where x(x) is the Gaussian curvature. In what follows, we will need to
integrate by parts with boundary terms, and using (5.21)), we obtain for G:

(Gu,v) = —(u,Gv) + (LU, v)asm-



CONSISTENT INVERSION OF NOISY NON-ABELIAN X-RAY TRANSFORMS 1077

PROOF OF THEOREM We first write a differential identity using the struc-
ture equations (5.36):

GVVG—-VGGV =GVIV,G] +[G, V]GV
=-GVGL + G, VG
=—G[V,G1] + [GL,GV
=G24+ G+ kV? + *F4V + (xdq @)V,
where G®f := G(Of). We record this here as
(5.37) [GV,VG] = —G? + GO + «kV? + xF4V + (xdqD)V.
Now, considering u smooth and supported up the boundary, we write
IVGul*> - |GVu|?
= (VGu,VGu) — (GVu,GVu) =

= —(VVGu,Gu) + (GGVu,Vu) — (GVu,  Vu)ysmu
= ([GV.VGlu,u) — (VVGu, p w)gsy — (GVu, u Vu)asy
= [Gull® = (Gu. p w)ysp — (Pu, Gu) + (uPu, u)ysp
+ ((KV2u,u) + (xFaVu,u) + (xda®)Vu, u)
—(VVGu, pu)aspy — (GVu, pu Vu)ysm

We now arrange the four boundary terms using integration by parts in V' and the
formulas

V= (vt vy =pr.  Vu=VuL=-—pu

First notice that

VVGu, pu)gspu = —(VGu, Viu)gsm — (VGu, u Vu)assm
= —(VGu,p1u)ygsm — (VGu, u Vu)ysm
= —(Gu, pu)ysy + (Gu, p1Vu)gsy — (VGu, n Vu)ysy -

We then obtain

(Gu, pw)gsy + (VVGu, pu)asy + (GVu, pn Vu)asy — (1 Pu,u)asy
= (Gu, p1 Vu)gspy — (VGu, pn Vu)asm
+ (GVu, pn Vu)gsy — (1 Pu,u)asy
= (UL Gu + u Gru, Vu)gsy — (1 Pu, u)gsp -

We now simplify, using that V(A4)(x,v) = A(x,vt)and uo X + puX, =T,

prL GuA4p Giu=Tu+ A(x,vhu + py du =: V1 au + p du.
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The boundary terms then simplify into
(ne Gu+ p Gru, Vu)gsy — (uPu, u)asy
= (Vrau, Vu)gsm + (nL Qu, Vu)gsy — (1 Pu.u)ysm
= (Vrau, Vu)gsy + (nL®Vu, u)asn -
With this notation, the full Pestov identity takes the form
IGVul|?> — (Vu,kVu) + ||Gu|® — |VGu|* — (Pu, Gu)
(5.38) + (xFqaVu,u) + (xdg®)Vu,u)
= (Vr,au, Vi)gsy + (nL®Vu, u).

To recover [34} eq. (8)], we take the real part of the equality above and notice that
(xFaVu,u) = —(xFqu, Vu) because V(xF4) = 0; then

(xda®)Vu,u) = (V((xdg®)u), u) — (V(>dsaD)u, u)
= —((*«dqg®)u, Vu) — (daD)u, u).
Since the last term is purely imaginary, the real parts of the other terms agree, and
upon taking the real part of (5.38), we obtain
IGVull?> — (Vu,kVu) + |Gu||*> — | VGu||*> — Rh(Pu, Gu)
(5.39) — (xFqu, Vu) — R({(xd4D)u, Vu)
= R(Vrau, Vu)gsy + R(ur ®Vu, u)asy -

(Note that the second boundary term is purely real so the i is just ornamental.)

We finally explain how the index form term |G Vu||?>—(Vu, V) can be rewrit-
ten as the sum of a nonnegative term and a boundary term. With B, as in the
statement, and the function r = rg: SM — R solving Xr + r? + B = 0, we
now compute, for any ¢ € C*°(SM,C")

IGY —rylI> = |Gy II> — (Gy.ry) — (Y. GY) + [lryr |

We simplify
Gy r i) + (. GY) = (X 1) + (r X))
- / XY)rf + rp (XT)
SM
- / X(rd) — (XNyT
SM
= (v V)asu + / 2 + BOYT.
SM
We arrive at

IGY —rylI> = IGY 1> — (ury. ¥)asm — Bl ¥),

and we may rearrange this as

BUGYI? — (. ¥) = |Gy —ry | + (B — DIGYII* + (1 r. v)osm-
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Plugging this last relation into (5.39) with ¥ = Vu yields (5.23). O
Remaining Estimates and Lemmata
PROOF OF EQUALITY (5.27). We write, using Lemma/[5.§|
Nu—1 = n(e " I-(eu))—1
= 04| D€k (e ™ )1k |

k=0

=Y (4 —san) €)™ u) 121
k=

€)1 + 5a1) €V U) -1 k)

= (€™ w)(ny —sa)(e ™o+ Y (€™t + sar) (€™ u)_1_ak.
k=0

To rewrite the last term, from the equation Gs(e*%u) = —e*¥ f', note the relation
(+ + san) (€™ u) ok + (n— + sa—1)(e**u) ;o + D(e**u) o = 0.
Then we have, for k > 0,
(Gs V(" u))—pk = V(GsT1—(e""u)) ok +([Gs. VIII_(e**u)) 2
=0

= —i(n4 + sar) (€ u) 1ok +i(n- + sa—1)(e*"u); ok

= —2i(n4 + sar)(e*u) 1 o — i (™ u) o,
where we used the transport equation in the last line. For k = 0,
(GsVIT_(eu))o = —i(n+ + sar)(e**u)-1.
Plugging this back into the equation for nyu_;, we get
nu—1 = (("u) (4 —sar)(e))o + (7*)oi (GsVII_(e*u))o

i 1
+ Z(e_sw)zk(E(Gs VI_(e*u)) ok — E@(eswu)—zk)-
k>0
We now write

o0
Z(e_sw)zk¢(€swu)—zk = Z(é’_sw)qu’(eswu)—zk —e 0D u)g
k>0 k=0
= Qug — e "o o(e*Pu)y,

and similarly
D (€ ) ak (G VI (€5 u)) oz

k>0
= (e VGV TI_(e*Vu))o — e P (Gs VII_ (e u))p.
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Using the last two computations, we arrive at (5.27). O

PROOF OF ESTIMATE (5.30). The transport equation for e**u projected onto
the harmonic term of degree —1 reads

(n— +sa—1)(e u)o = —(n+ + sa1)(vs)—2 — P(vs)-1.
For our choice of connection, a_; = —n_wy, so the left side can be rewritten as
(- + sa_1) (e u)o = e 5_(e 70 (e Vu)g) = e On_( T Vu)o;

hence we obtain

N-(e*®@7H0u)g = —e 0> + say)(vs) -2 — €O D(vs)-1.
We then rewrite the latter right-hand side in terms of G4V vs. Notice that

(GsVvs)-1 = (n+ +sa1)(Vvs)—2 + ®(Vvg)—1
= =2i(n+ + sa1)(vs)—2 — i P(vs)-1,

SO

i 1
—(+ +5a1)(v5)—2 = =2 (GsVvg)—1 + S P(vs)-1,

and thus

e—s wo
2

Upon deriving an estimate of the form

s(w—wg)

n—(e U)o = — ((GsVvs)—1 + P(vs)-1).

1 l2eary = CUIn=S L2y + 11/ lom | L2om))

we can write

1@ u)o I L2ary < 1= @7 D u)ollL2ar) + 1@ ™uYolaar 22y
1
< §||e_sw0((iGvas)_1 + @(s)-1llL2(m)
+ 1P ) 0) aar | L2 aary
and (5.30) follows. O

PROOF OF (5.32)). We first need to write an integration by parts for 4 defined
in (5.22)). Using integrations by parts (5.21)) we first derive an integration by parts
for X = XV — VX: for any u, w smooth on SM,

(Xiu,w)+ (u, X w) = XVu,w)— (VXu,w)+ (u, XVw) — (u, VXw)

= XVu,w)+ Vu, Xw) + (Xu,w) + (u, XVw)
= (uVu, w)gsm + (nu, Vw)ysy
= —((Viu, w)gsy = —(Hou, w)ysm-
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We now compute, using that % = —u—

(u,n+w) + (N—u,w) = %((u, (X +iXDw)+ (X —iXiu,w))

= %((M +ipnu, wgsy = (ex(W)u, w)ysm

where we define

1 .
(5.40) ex(v) 1= S (u(x.v) + ipL(x.v)).
Similarly, for the skew-Hermitian connection considered,

(u, (N+ + sa)w) + ((n= + sa_)u, w) = (ex(V)u, W)aspm-

Now, using the fact that

(Gsvs)—1 = (= + sa—1)(e*u)o = —(n+ + sa1)(vg)—2 — P(vs)-1,
we compute

R(Qvg, Gsvs) = R(P(vs)-1, (Gsvs)—1)
= N(P(vg)—1. — (N4 + sa1)(vs)—2) — |P(vs)-1]?
= R((n- + sa—1)(P(vs)-1), (vs)-2)
— R(ex (V) P(vs)—1. (Vs)—2)gsm — |P(vs)—1]?
= —|®P(ve)—1* + R(b-1(vs)-1. (vs)—2)
— R(ex(v)P(vs)-1, (vs)-2)asm + P1,

where p; 1= R(P(n= + sa—1)(vs)—1, (vs)—2). Upon defining
(5.41) pn = R(PM- + sa—1)(Vs)—n, (Vs)—n—-1), n =1,
we now prove by induction the following claim:

R(Dug, Gsvg)

(542 =3 DH(10(ws)kl* — RO-1(v) k. (V5)—p—1)

k=1
+ Rex () Ps) -k, (Ws)—r—1asn) + (=" py.
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The case n = 1 is proved above, and the induction step (n = n + 1) follows
from the calculation

Pn = N(P(n— + sa—1)(vg)—n, (Vs)—n—1)
= —R(P(vs)—n—1, (M- + sa—1)(vs)—n)
= WP (Vs)—n—1, N+ + 5a1)(Vs)—n—2 + P(vs)—n—1)
= |®(vs)—n—1] + M(P(s)—n—1, N+ + sa1)(Vs)-n—2)3sM
= |®Ws)—n—1| — R((= + sa—1)(P(Vs)—n—1), (Vs)—n—2)
+ R(ex (V) P(vs)—n—1, (Vs)—n—2)asm
= [®(vs)—n—1| = R(D-1(P(Vs)=n—1), (Vs)—n—2)
+ Rex (V) P(Vs)—n—1, (Vs)-n—2)asM — Pn+1-
Putting this equality back into (5.42) proves the induction. Since vy € H'(SM),
we have that limy,—, o0 pn = 0, and thus (5.32)) follows. O

PROOF OF LEMMA The term that ultimately controls everything is

s(Us, 1Vs) = 5 ) [k|l(vs)x |,

k<0
The infinite sum in (5.33) can then be controlled by

3 DRk 2~ R(Bo1 (ve)—k. (v ——1)) < C1l@lc1 D (ws)e .

k=1 k<0

with Cy a universal constant. As for the last term of the left-hand side of (5.33),
we write

((Xlé)v.f’ VUS) = ((_lBl + iB—l)vS’ VUS)
= (B1vs — B_1vg,iVy)
=Y k(B1(vs)k—1 — B1(ek+1. (v5)k)

k<0
[(XL®)vs. Vg)| < Col®@lc1 Y kll(s)e |
k<0
where C5 is a universal constant. Lemma [5.9] follows upon taking C = C; +
Cs. 0

Conclusion: Dealing with the Glancing

Consider a function p € C°(M) such that it coincides with M > x +—
d(x,dM) in a neighbourhood of M and such that p > 0 and IM = p~1(0).
Clearly Vp(x) = —v(x) for x € dM. Using p, we extend v to the interior of M
asv(x) = —Vp(x) forx € M. We let u(x,v) := (v, v(x)) and

T:=V(wX +puX,.
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Note that 7" is now defined on all SM and agrees with the vector field 7" defined
previously on dSM. In fact, T and V are tangent to every dSM, = {(x,v) €
SM: x € p~(e)}, where M, = p~1(—o00,¢]. The next lemma for 7 is the key
input to deal with the glancing; cf. [38] lemma 4.1.3], [39} lemma 3.2.3], and [
lemma 5.1].

LEMMA 5.10. The functions V't and Tt are bounded on SM \ doSM.

To substantiate the previous claim that the behaviour of ¥ = u’ is the same
as that of v we proceed as follows. We consider a smooth integrating factor
R : SM — GL(n,C) such that XR + ®R = 0. These always exist for any
nontrapping manifold with strictly convex boundary. A simple calculation shows
that we may write u in terms of R as

T(x,v)
u(x,v) = R(x,v)/ (R™ (s (x,v))dr  for (x,v) € SM,
0

where ¢y is the geodesic flow of (M, g). Thus directly from Lemma we obtain
the following:

LEMMA 5.11. The functions Vu and Tu are bounded on SM \ d9SM.

Next we note that all the previous work that we have done assuming ¥ smooth
may be summarized as follows:

THEOREM 5.12. Let (M, g) be a simple Riemannian surface with boundary and
® a smooth, skew-Hermitian matrix field in M. Then for any f € C*°(M), we
have the following stability estimate:

1L lL2a.cny < CLd + 1@ )12t o] g1 sar.cm.
where v is any smooth solution of Xv + ®v = — f.

PROOF OF THEOREM [5.3]IN FULL GENERALITY. Let M, for small ¢ be the sur-
face considered above. We letu : SM — C” be the unique solution to the problem

Xu+ du=—f (SM), ulg_sm = 0.

The function v := u|gp, is smooth in SM, and solves Xv + ®v = — f since u
does. Hence we may apply Theorem [5.12]in M, to obtain

£ llz2ag,.cmy < CrL+ 1@l en)e N1 ®het [lull g1 asag, oy

where we might as well use the constants for M that bound those for M. We now
let ¢ — 0; we clearly have

I/ N\ 2aa..cny = 1S L2 ar,cnys
and using Lemma [5.T1] we see that

Il g1 osmr. .cny = vl gy osmcny-
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Since

Io(f)(x,v), (x,v) €0+SM,

ux.v) =, (x,v) € I_SM,

the theorem is proved. O

5.4 Consistency of the Posterior Mean: Proof of Theorem [3.2]

We assume 02 = 1, the general case 0 < 02

changes.

The overall strategy we pursue here, which has also been used in some form
in [29131,144], is to show first that the Bayesian algorithm recovers the ‘regression
function’ Cg consistently in a natural statistical distance function, and to combine
this with quantitative stability estimates for the inverse map Cg¢ +> P in appropri-
ate metrics. This exploits crucially that the estimated Bayesian regression outputs
lie in the (nonlinearly constrained) range of the forward map Cg, so that the sta-
bility estimate applies to them. To make this approach work with ‘unbounded’
Gaussian priors is challenging, and our proofs proceed as follows: We first es-
tablish the posterior contraction Theorem [5.13] under general conditions, borrow-
ing from Bayesian nonparametric theory (e.g., [16l theorem 8.19] or [18, theorem
7.3.3]), slightly strengthening the usual statement of such theorems to give explicit
exponential bounds for the convergence rate to 0 of certain posterior probabili-
ties. Since our regression functions Cg take values in SO(n), they are uniformly
bounded and the usual Hellinger distance occurring in such contraction theorems
is then Lipschitz-equivalent to the standard L2-distance (see Lemma [5.14). Then
Lemmauses results of [26] to show that the key small ball condition in Theo-
rem can be verified for the Gaussian priors from Condition [3.1|even after they
have been shrunk towards 0, if the true matrix field ®¢ belongs to the RKHS H.

Next, Lemma(5.17]exploits fine properties [3l[15]] of infinite-dimensional Gauss-
ian measures to show that such ‘shrunk’ priors charge ‘sufficiently regular’ matrix
fields (effectively C B _balls) with probability close enough to 1 that the posterior
distributions inherit these regularity properties. This is crucial to apply the ‘for-
ward’ estimate Theorem [2.2] and the ‘stability” estimate (2.4) in the proof of The-
orem [5.19—effectively the specific structure of our inverse problem enters only in
this theorem and only through these two estimates.

< o0 requires only notational

. . _ 2 o
Finally, the exponential convergence to 0 of the order e (€ +3N3X obtained in

Theorem [5.19] permits a ‘quantitative uniform integrability argument’ in Section
[5.4] to deduce convergence of the whole posterior (Bochner-) mean towards the
true matrix field ®g.

Let us mention that in the recent contributions [1,/19] (written after the first
version of this manuscript was completed), the general proof template developed
here has already been used effectively in two different nonlinear inverse problems
(arising with elliptic PDEs); see also Remark [3.6]
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A General Contraction Theorem
Consider a collection P of probability density functions on some measurable
space (X, A) with respect to a dominating measure p; specifically in our measure-
ment model we take
1

dP
P=1:pe = d—; ONS C(M,so(n))}, X =R" x03+SM,

where X is equipped with its natural product Borel-o algebra A, where du =
dy x d A with dy equal to Lebesgue measure on R”*” and A given in (I.3). By the
Gaussianity of the &1 ; x these probability densities are of the form

1 1
(5.43) po(y.(x,v)) = WCXP{_E Z [vik — (Ca((x, U))j,k)]z}s

1<j.k<n

where (y, (x,v)) € X. Since the map (P, y, (x,v)) — pao(y, (x,v)) is jointly
Borel-measurable from C(M) x X to R (using (2.3) and that point evaluation is
| - lloo-continuous), the posterior distribution (3.2)) exists by standard arguments (
[[16], p.7) and has the desired form. In the proof of the following theorem, we show
in particular that the marginal density [ ]_LNZI po(Yi, (Xi, Vi)dIL(®) is positive
on events of Pqﬁ\; -probability approaching 1, so that (3.2) is well-defined also in

the frequentist setting where Dy ~ Pg) . We also define the Hellinger distance A
on such densities by

(544)  K(po.py) = [X (V75 — VPu) dp. ®,W € C(M.s0(n)).

Denote by N(F, h,§) the minimal number of Hellinger-balls of radius § required
to cover a set F of u-densities on X'. We then have the following:

THEOREM 5.13. Consider a prior for ® arising from a sequence I1 = Ily of
Borel probability measures on F C C(M,so(n)) and let T1(-|(Y;, (X;, Vi))zN=1
be the posterior distribution arising from i.i.d. observations (Y;, (X;, Vi)),N= D~
Pg. Let ®g € F, let Sy — 0 be a sequence such that /NSy — coas N — 00,
and define sets

By = {@ cF: Eéo[log Po (v, (x, V))] <8,

(5.45) Pe :

Po
Eéo[log Po (y (x. v>>] < SZN}.

Poy
Suppose for some constant C > O the prior 11 satisfies for all N large enough
(5.46) T(By) > e NN,
and that for some sequence F C JF of approximating sets for which

(5.47) T(F\ Fy) < Le CCHONE forsome 0 < L < oo,
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we have the complexity bound
(5.48) log N(Fn,h.8n) < cN8%
for some fixed constant ¢ > 0. Then for some large enough constant m =
m(C,c) >0
N b - : . NV
P, (M(FN N (@ : h(po. pay) = mSn}I(Yi, (Xi, ViDL,

(5.49) 5
< l_e—(C+3)N8N) N oo O.

PROOF. Recall from (I.4) that we write Dy = (Y5, (Xi, Vi)),N:y The proof
proceeds as in the proof of [18], theorems 7.3.1 and 7.3.3]: We first use [18, lemma
7.3.2] and the hypothesis @ to deduce that the events

(5.50) Ay = %f ]_[ —(Y,, (X;i.V;)) dTI(®) > ¢~ @HCOINGY
1—1

satisfy Pg) (An) — las N — oo. Moreover, using (5.48) and [18, theorem 7.1.4]

with choices g9 = m’Sy, any m’ < m and log N(g) = CNSZZV constant in & > &g,
we deduce that for every k > 1 there exists m’, m large enough such that we can
find ‘tests’ (random indicator functions) Wy = Wx (D) for which

Pg (Iy =1) >Nooo 0 and
(5.51) sup Eg(l — W) < e kNS
QeFN:h(pa,poy)>mdn

Now let us write
Fy = Fn N{h(pe. po,) < méy}

for the event whose posterior probability we want to bound. Then by (3.2) and as
N — o0,

Py ((F§|DN) = e—(C+3)N8§,)
- (fﬁc M= 7o, O X5 V)4 TI(®)

S Ty 22 (Y (X, Vi)d TL(®)
+ o(1)

< Pa, (/FC 1_[ _(Yu (X;, Vi)dTI(®)(1 —Wy) > e (2C+5)N52N)

+ o(1).
By Markov’s inequality, decomposing

Fy = F5 Uth(pe, pa,) > mSn}

> e—(C+3)N5N ‘IJN =0, AN)
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and using Fubini’s theorem as well as

N
(5.52) EY TT 22 i (xi v —wy) = EJ (1 —wy) < 1,

i=1 %o

we further bound the last probability as

L2C+S)NE} /FC EN(1— Uy)dTI(®)

N

< e(2C+5)N8]2V (21-[(]:1%) + / Eg(l — ‘-IJN)dH(CD))
P

EFN:h(po,poy)>mN
2 _ 2
<2LeNB 4 LCHS-ONG, g

where we have used and (5.51)) with k and then m large enough. O

The ‘information-theoretic distance’ % arises naturally in such posterior con-
traction theorems; see [[16]. The following lemma, which adapts a result due to
Birgé [2] to the setting of SO (n)-valued functions, shows that the Hellinger dis-
tance is Lipschitz-equivalent to the standard L?-metric

2
ICo — Cullrz= | Y 1Ca ik — Cujkll]

1<jk<n

LEMMA 5.14. For ® € C(M, so(n)), let Ce: 01+ SM — SO(n) be its non-Abelian
X-ray transform. Then there exist positive constants co = co(n), c1 = c1(n) such
that

1
a”C@ — Cyl7> < h*(pa. pw) < c1|Co — Cyl)7>,

VO, e C(M,so(n)).

(5.53)

PROOF. Write

1
(5.54) p(po. pw) = /X Jpepwdp =1~ Ehz(Pq» Pw)
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for the ‘Hellinger affinity’. By (5.43) and using the standard formula for the mo-
ment generating function of N (0, 1)-variables with probability density ¢, the quan-

tity p(po. pw) equals
1 1 )
N (2;1)7/2 /X exp %Z Z[_[J’j,k — (Co((x.0))j k)]

" D Cutonl]|
[k, + it

% / e% ik Yik (Caol(x,v)) ) k +Cu((x,v))).x) 1_[ ¢ (yix)dy dA(x, v)
R”XU .
jsk

2
= /MM exp{—g Z [C2((x.v))jk + CE((x, v))j,k]}

J.k

[Co((x. ) + Co((x. v)),-,k]z}cm(x, V)

= / exp{—l|Cq>(x,v) - Cq;(x,v)|%~}d)t(x,v).
Ay SM 8

By Jensen’s inequality the last integral is greater than or equal to exp{—||Ce —
Cy ”1%2 /8} and using standard inequalities for | —e ™%, z > 0, the right-hand side of
(5.53)) follows. Next we notice that since Cg(x, v), Cy(x,v) € SO(n), their ma-
trix entries are all bounded by 1, and we hence have |Cg(x, v) — Cy(x, v)|%; /8 <
B? for some constant B = B(n). We can thus proceed exactly as in the proof
of 2}, prop. 1] (or see lemma 21 in [[19]) to also deduce the left-hand side inequal-

ity in (533). 0

Verification of the Prior Mass Condition

We now verify condition (5.46) in the last theorem for an explicit constant C > 0
and the Gaussian prior from Theorem [3.2] To do this we first show that one can
reduce to checking small ball conditions for || - [|2(ss)-norms on the level of the
original matrix parameter .

LEMMA 5.15. For &9 € C(M,s0(n)) and k > 0 define
Bn (k) = {® € C(M,s0(n)) : [|® — Dol 2y = SN /x5,

and let By, 11,8y, be as in Theorem Then for some k = k(M,n) large
enough, we have By (k) C By, and thus in particular, for every N € N,

[(By) = I(By («)).
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PROOF. From (1.3) with ® = ®( and (5.43) we have
log po (Y1, (x,v)) —1og pe, (Y1, (x,v))
1
. [5(C¢(<x, D)k — Coo (6. 00

1<jk<n

T 1 0 (Co(x.v)4 — Can(x. v)),-,k>].

Therefore, since £ 8181’]',]( = 0 and A is the unit volume measure on 04+.SM,

1 P _ 1 2
Ecpo [1Og Do (Y, (X, V))j| = §||Cd> - C¢0||L2(3+SM)

2
1 2
= ) ||CI)—Q)O||L2(M),

where we have used the forward estimate (2.2)) with Lipschitz constant C; =
Ci(M,n). Thus if & > 2/C2 the first inequality defining By is verified for
® € By (k). To verify the second, note that all Cg(x, v) € SO(n) are bounded in
the |||, sm)-norm by some fixed constant B = B(n). Thus

2
pPo
Eg, [log 22 (r.(x, V))}
Pdy

2
< 26} 3 5 (Col(X. V)= Co (X V)07
Jsk

2
+2E E; [ D ek (Col(X. V) — Cay (X, V) j,k>]
Ik
< c'(B.n)||Co — Co, 72 < c(n)Cy || — Doll7»

for some constant c(n) > 0, where we have also used that &; ~d N0, 1)
implies, for (x,v) € d4+ SM fixed,

3 e 4 (Col(x. )k — Ca ((x,0));1) ~ N(O, |Ca(x, v) — Ca (x, 1) %),
ik
and again (2.2)), so that the overall result follows from the appropriate choice of
kK > 0. O

We now turn to lower bound the small ball probabilities TT(By («)) for the prior
IT featured in Theorem [3.2] where for the given o we will choose

(5.55) Sy = N~%@+2) o that NSy = NV/C2H2),

Note that ~/ N §x precisely equals the rescaling of the prior in (3.4). Let us recall
the base RKHS H from Condition[3.11
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LEMMA 5.16. Let I1 = Xjﬁ=1 [1p be the prior for ® from Theorem with a >
B+ 1, B >0, assume ®y € H, and choose Sy as in (5.53). Let By (k) be as in
Lemmal5.15] Then for every k > O there exists a constant C' = C'(k, a, | Do |3,
n, M) such that for every N € N,

(B (k) > exp{—C'N83 }.

In particular, for By as in in Theorem[5.13] there exists a finite constant
C =C(a, |Pollp,n, M) >0

such that for every N € N,

(5.56) MI(By) > exp{—CN§%}.

PROOF. Since [|® — @o||12(ar) < nmax; || Bj — Bo,jl|L2(pr)- to prove the first
inequality it suffices to lower bound, by independence of the B;’s,

n
[10B(B: 1B~ BojllL2an < 8n/(m). 7 = dim(so(n)).
j=1
The sets {b : ||bllL2ar) < ¢}, ¢ > 0, are convex and symmetric, hence by [18,
cor. 2.6.18] we have for every j fixed,

Hp(|B — Bo,jllr2(my < én/(kn))
_ 12
= ¢ 1o lrars 21 (1Bl agay) < Sn/(67)
_as2 2 _
= e NONIBo 2T g (Bl L2 ary < SN/ (k7))
where we have used that

2 2 2
1Bo.j IRk sy = Nl Bo.jll3 < o0

in view of (3.4), (5.59), (and where we refer to [18] exer. 2.6.5] or [16] lemma 1.16]
for standard preservation properties of RKHS under linear transformations).
We next bound the centred probability that by (3.4), (5.53) equals

(Bl 2y < 8n/ () = V(| f'lL2ar) < VNSX /().

By Condition the RKHS of the Gaussian law of f’ in C(M) is continuously
imbedded into H*(M ). The unit ball U of this space satisfies the bound

(5.57)  log N(U. || - lL2ary- €) < (A/e)?®, 0 < e < Aforsome A > 0,

for its L2(M )-covering numbers: Indeed, since the simple surface M is diffeo-
morphic to a disk, we can extend all functions f in H*(M) to elements f, of
the Sobolev space H%(1,) on the 2-torus I, = (0, 1]> O M, with Sobolev-norm
increased by at most a fixed multiplicative constant (chap. 4 in [41]]). An appro-
priate bound for the L2(/,)-covering numbers of { f, : f € U} is then provided
in [[18, (4.184)], which in turn (since || f — f'llL2ar) < lI.fe — follL2(1y) for all
f. f € L?(M)) also bounds the L2(M )-covering numbers of U as required.
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To proceed, we can now use (3.55) and [26| theorem 1.2] (with the value of «
there equal to our 2 /&) to lower bound the last small ball probability by

exp{—c [WSIZV/(KIT)]_Z‘%%) } > exp{—coN8%}.

(5.58)
noting ‘/NSJZV — N—(@=1)/Qa+2)

for constants ¢ = c¢(a),co = co(k,n,a) and since @« > 1. Combining what
precedes proves the first inequality of the lemma with

1 N
(5.59) C" =5 2 I1Bo,j I + iico.
Jj=1
The second inequality (5.56) now follows from the first and Lemma[5.15] O

We note that the proof in fact shows that the constant C' depends only on upper
bounds for ||®g||%.

Excess Mass and Complexity Conditions

Having determined the constant C in for the Gaussian prior in Theo-
rem [3.2] we now turn to verifying the remaining conditions and in
Theorem for a suitable choice of Fp that will provide sufficient regularity

of the posterior distribution to combine it with our stability estimates for the map
O~ Cop.

LEMMA 5.17. Let I1 be the prior from TheoremB.2lwithae > B+ 1, B > 0, let §n
be as in (5.33)) and assume N§% > 1. For m > 0 define subsets of C(M, so(n)) as

FN ={®: P =D + 2. | P12 < Sn. [|DP2llre < m, || Dl cs < m}
(a) Then for every K > 0 we can choose m large enough such that
M(Fy) = 1 —e KN,
(b) Moreover, for some ¢ = (m, o, n, vol(M)) we have
log N(Fn,h,8n) < cN8%.

PROOF.
(a) Recalling (3.4), (5.55), we can identify a prior draw ® with the vector field

1 -
(Bl"”’Bﬁ):J_T&v('fll"""flé)’ .](}/ Nl.l.d. H/.

We denote by IT7 the product measure describing the law of the centred Gaussian
random variable (f{. ..., f7) in the Banach space szl C(M).
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Write next Fy = Fn,1 N Fn,2 where, with fi/ . corresponding to ®;,i =1, 2,

_ n
Fr = {(.f/ B A2 < N6
j=1

n
DN ey < mzN(S]z\'}’
i=1

Fra = {(f{,...,fﬁ') S e < mdﬁaN},
j=1

so that it suffices to bound the prior probabilities of the complements of Fn, 1. Fn 2.
We first turn to Fy,». By Condition 3.1] the vector field (f{. ..., f7) defines a
Gaussian Borel random variable in a separable linear subspace S of x’j:l CcPm).

By the Hahn-Banach theorem its xjﬁzl ch (M )-norm can then be represented as a
countable supremum

(e g cnany = sl (e 1)

of bounded linear functionals 7" = (¢, : m € N) defined on (S, |- ||, .7 LCB( M))-
7=

We then apply Fernique’s theorem [15]], concretely [18] theorem 2.1.20], to the
centred Gaussian process (X(¢) := ¢(f{..... f7) : t € T) to deduce that for some
fixed constant D > 0,

a
EY N filcaan =D <oo.
j=1

and then also, for m = m(D) large enough and since N 8]2\] >1,

n n
M(Fyp) < H”(Z I esan = E D N lcsn = mﬁaN/z)
=1 j=1

S 2e_km2N8]2V

—KN8%

for k a fixed constant, which can be made less than e /2 for any K provided

m = m(K, k, D) is chosen large enough.
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It remains to show that IT(Fn,1) > 1—% exp{—KN 812\'} for m large enough. Us-
ing the continuous imbedding H C H%*(M ) with imbedding constant ¢’ (cf. Con-
dition [3.1), it suffices to lower bound

H;_z((fjl = fll,j + fz,,j),’?=1 :

n n 1/2
SO 12 < Nod. (Z TA j||%) < ;WSN)
j=1

j=1
= H5(An +my Oy)
where Oy is the unit ball in x7_, H and where we define
A n my/N§
Ay ={we xi1C(M) o2 < \/NSIZ\,} my = TN

By Borell’s [3]] isoperimetric inequality (see 18] theorem 2.6.12]) the last proba-
bility is bounded below by

(5.60) (@ (II5(AN)) + my)

where & = Pr(Z < ) is the cumulative distribution function of a N (0, 1) random
variable Z. By the same arguments as those leading to (5.58)) above, we have

H%(/TN) > exp{—c%N(S]z\,} for cy = cr(n,a) > 0,
and using the basic inequality ®~!(u) > —,/2log_u,0 < u < 1 (see [16, lemma
K.6]) and monotonicity of ® we can further lower bound by
m
o((~e2vz+ 5 ) View)
Now given K, define
mly = —@ ' [exp(—KN8%)/2].

which by the previous inequality for ®~! can be made to be less than or equal to
(5 —c2 V2)v/N8y whenever m = m(K, ca,c’) is large enough. Conclude that
the penultimate display is lower bounded by

O~ [exp(~KN83)/2]) = 1 — &(®'[exp(-K N3y /2])
=1- %exp{—KNSIZV},

completing the proof of Part (a).

(b) To prove Part (b), note first that to construct a § y -covering of F in ||-[| L2 pz-
distance it suffices, by definition of F, to construct such a covering fora H*(M)-
ball of radius m, so that (5.57)) and the definition of § give (with A" > 0)

log N(Fn. |-l z2ary- n) < (A'/83)** < bNS3,

(5.61) _
for some b = b(m,a,n) > 0.
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Lemma and (2.2) imply that such a covering induces a (C1 /c1)dn-covering
of Fp in the Hellinger distance / of log-cardinality at most bN 812\,. Since ||+ [|L2¢ar)
is a norm and hence homogeneous, we can increase the constant from b to ¢ =
c(b,c1,Cy,a) in (5.61) and obtain a 8,-covering for 4. The desired inequality in
Part (b) follows. O

Remark 5.18. We note that the introduction of the set F,1 and the use of Borell’s
inequality in the previous lemma can be avoided if one wishes to prove Theorem
3.2 only for any n > 0 (in this case a minor adaptation of Theorem [5.13] and
of (5:61) can be shown to give a slightly worse rate 8y, = N~8/(2+2) i 562)
below). We give this argument however to obtain our sharper bound for 7 in (5.66).

Final Contraction Theorem

We now put everything together to establish a posterior contraction theorem for
® and subsequently deduce Theorem [3.2] from it.

THEOREM 5.19. Under the hypotheses of Theorem[3.2] witha >  + 1, > 0,
Sy = N~YQ2+2) and C from (5.56), we have for all m’ large enough that

Py (n(cp ICo — Caoll 20, sar) < M'SN

(5.62)
e—(c+3)N8,2v)

I®lcaary <m'|Dn) > 1~ —1

as N_— oo. Moreover, if B > 2, then we have for every integer B such that
1 < B < B and all m" large enough,

8_1)/B _ 2
PY (D [® — oll2ary = m"8E VP IDy) = e CTINT) v 0.

Remark 5.20. The constraint 8 > 2 in the second limit in Theorem is only
required to allow space for an integer B € (1, ) in the following proof, when
combining the interpolation inequality with Theoremfor k=peN.If
a version of Theorem were established for noninteger k, then 8 > 1 and real
B € (1, B) would be permitted in Theorem (and then also in Theorem |3.2]).

PROOF. From Lemmata[5.16]and[5.17]with K = 2C + 6 and Theorem[5.13|we
deduce for m = m(C) large enough, and as N — oo

Py (M@ : (@ : h(pa, pay) = mSx} N {1Pllcaqr) < mHDN)

<1- e_(C+3)N5/2V) — 0.

Applying Lemma gives the first limit withm’ = (1 + /co)m.

To prove the second limit we will apply the stability estimate Theorem[2.1]in the
form (2.4) with & = ®g. By hypothesis we have [[@o[lc1(pr) < | Pollcom) <
oo; as a consequence for all ® contained in the event in (5.62) with > 2, the con-
stants ¢ (P, Op) from (2.1)) are uniformly bounded by a fixed constant that depends
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onm’, M, |®ol|c1(ar) and hence for those ®’s

(5.63) @ — Doll2(my < DU Pollcrary, M. m)ICo — Cagll 1 (o, s11)-
To proceed we will need a standard interpolation result for Sobolev spaces on the

manifold d+ SM to the effect that

k—1)/k 1/k
(5.64) W ey smn S W5 san W i, san

for all W € H*(d,SM) and any k > 1. [For real-valued functions this can be
proved using standard arguments from chapter 4 in [41]], and these results extend to
matrix fields in a straightforward way.] Moreover, we will use the basic inequality

(5.65) 1901500y < 1Pl erary < 1@l
forall ® € C#(M). Now Theoremimplies that for all ®’s in the event in

the corresponding |[Co || B, s M)’s are uniformly bounded by a fixed constant
that depends on m’, M, B, B only. Likewise

1€ | 3o, 520y = IC0llce@arsay S (1 + [[Pollca) < o0

in view of Theorem and since &g € C¥ for o > B by hypothesis. Hence for
such @’s the combination of and with W = Cp — Co,, k = B gives

B—1)/B 1/8 B—1)/8
1© = ®oll2ar) = 1Co — Caollzgy) 54y ICo = Caollh g0y S 5877

The second conclusion of Theorem [5.19|now follows from the preceding inequali-

ties and (5.62).

Completion of the Proof of Theorem [3.2]

The last step is to show that the posterior contraction rate in the second limit
of Theorem carries over to the posterior mean E™[®|Dy]. For any integer
B € (1, B) and every

5.66 0<n<
(5:06) "“2t2"p
we have as N — oo

o B—1

o = m"8ETVP ~ NTRTETE = o(NTT),

Then by the inequalities of Jensen and Cauchy-Schwarz
IET (@D~ PollL2(ar)
< EM[||® — Dollz2ar)| Dw]
<y + EM[[® — Dol 2 HI® — Pollr2ary = v} Dw]
<N + [ET[[® = o172 5y DN 2T — Dol 241y = | D)2,
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and it suffices to show that the second summand is stochastically O(ny) as N —
00.

Arguing as in the proof of Theorem[5.13|and using Lemmal[5.16]implies that the
sets Ay from (5.50) with C from (5.56)) satisfy Pé\; (AN) = las N — oo. Now
Theorem [5.19] (3.2), and Markov’s inequality imply

Pay (EMI® = @17 240y | DN] X TH(I® = Doll2ary = 0w | DN) > 1)
< Pg)(EH[”cD - (D0||1242(M)|DN]6_(C+3)N512\, > 1) + o(1)

= @012, 4y TTi21 22 (¥ (X3, Vi) TI(®)
JTI 22 (Y3, (X3, V))d (@)

i=1 Do,

N (C+3)N§2 f||q>
5P<I>0 et N

> N AN) +o(1)

N
_N§2 — P
<o NRREY / 19 = @0l aqa0) [T 0. (X Vi TI(@)
i=1 770

_ 2 _ _ 2 _
< VA2 [ 10 - @01y, dTI®) £ MR >y 0

where we have also used Fubini’s theorem, (5.52)), and that the Gaussian measure
IT is supported in L2(M) and hence integrates ||CI>||]2d2 to a finite constant (see,
e.g., [18} exer. 2.1.5]). Il
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