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of the geodesic X-ray transform on disks of constant curvature
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Abstract. For a one-parameter family of simple metrics of constant curvature (4« for
k € (—1,1)) on the unit disk M, we first make explicit the Pestov—Uhlmann range charac-
terization of the geodesic X-ray transform, by constructing a basis of functions making up
its range and co-kernel. Such a range characterization also translates into moment condi-
tions a la Helgason—-Ludwig or Gel’fand—Graev. We then derive an explicit Singular Value
Decomposition for the geodesic X-ray transform. Computations dictate a specific choice
of weighted L2 — L? setting which is equivalent to the LZ(M, dVol,.) — L?(d+SM, d %?)
one for any k € (—1,1).
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1. Introduction

Our object of study is the geodesic X-ray transform on a special family of simple
surfaces. To give some context, fix a Riemannian surface (M, g), with strictly
convex boundary and no infinite-length geodesic. Denote its unit circle bundle
SM = {(x,v) € TM, gx(v,v) = 1}. The manifold of geodesics can then be
modelled over the inward boundary d+SM (points in SM such that x € dM and
v points inwards), carrying the surface measure d X2 inherited from the Sasaki
volume form on SM. In this context, one defines the geodesic X-ray transform
Ip:C®(M) > C*®(0+SM) as

(x,v)

Io f(x,v):= / f(yxp(@))dt for(x,v) € d4+SM,
0

where yy ,(¢) is the unit-speed geodesic with y(0) = x and y(0) = v, and t(x, v)
is its first exit time. In integral geometry, one is concerned with the reconstruction
of f from knowledge of Iy f, a problem with various generalizations (to tensor
fields, general flows and sections of bundles), whose answer may depend on geo-
metric features of the underlying metric, see [8] for a recent topical review. Under
the additional assumption that M has no conjugate points,! positive answers to
this problem can be provided, with varying degrees of explicitness. The prob-
lem is known to be injective in general [24]; the function f can be reconstructed
via explicit inversion formulas in constant curvature spaces [28, 6], and modulo
compact error in variable curvature [26, 11, 21]. In [26], a general range charac-
terization of Iy is given in terms of a “boundary’ operator P_ (i.e., from a spaces
of functions on d4+SM to itself), which was proved by the second author in [22]
to be equivalent to the classical moment conditions (see Helgason and Ludwig
[16, 6] or Gel’fand and Graev [5]) in the Euclidean case.

Of crucial importance for practical purposes is the knowledge of the Singular
Value Decomposition (SVD) of the operator /¢, be it for truncation and regulariza-
tion purposes [25, 1], to understand the structure of “ghosts” in the case of discrete
data [12, 13], or to seek low-dimensional ansatzes in the case of incomplete data
[14, 15]. Several results on the SVD of ray transforms have been obtained, mainly
existing in the Euclidean case: on functions in [20, 17, 18, 19, 27, 25], tensor fields
in [10] and for the transverse ray transform in [4]. Other transforms on circularly-
symmetric families of curves have extensively been studied, see e.g. [2, 3, 29],

1 The three assumptions of convex boundary, no infinite-length geodesic, and no conjugate
points, are summed up into the term simple manifold.
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though the literature on the SVD of the X-ray transform for families of geodesic
curves remains scarce to the authors’ knowledge. We present below a case where
the SVD can be computed in a geodesic context with metrics of constant curvature
4k, k € (—1,1), on the unit disk M = {(x,y) € R?, x2 + y2 < 1}. While an
extension of the results to the case of “Herglotz” type metrics? seems natural and
of interest to the authors, the explicitness of the present results hinges on Lem-
mas 2.2 and 2.3 below, which at the moment take the form of calculations specific
to constant curvature.

As the works [20, 18, 19] show, even in the Euclidean case there are a few
“natural” choices of weighted L2 — L? settings to be decided upon, for which the
SVD of Iy may or may not be computationally tractable. The current generaliza-
tion to Riemannian settings gives even more options of weights to be chosen for
the target L? space, and somewhat surprisingly, the most “tractable” codomain
topology so far is L2(d+SM, d %?). In this case, the SVD functions obtained on
M involve the Zernike polynomials [31], up to some rational diffeomorphism and
multiplication by an appropriate k-dependent weight. The functions obtained are
no longer polynomials, however.

Although the calculations of the present article are self-contained, several
aspects of X-ray transforms motivate this work and the intuition behind it. A reader
interested on aspects related to transport equations on the unit circle bundle, and/or
microlocal aspects, may find relevant information in the expository paper [8] and
the references there. In some ways, the approach of the present paper follows
that of [22], where the X-ray transform on the Euclidean disk is treated. There,
Euclidean geometry is nice enough that a full understanding of the X-ray transform
defined on more general classes of integrands (vector fields and tensor fields) can
be obtained, and the present results represent a first step towards achieving that
same level of understanding on constant curvature spaces.

Lastly, in their connection with inverse problems, an important motivation
for our results is the following: while it is documented that X-ray transforms
are mildly ill-posed of order 1/2 on simple surfaces, and severely ill-posed on
some non-simple surfaces (see, e.g., the works [30, 23, 7] which address the
unconditional instability incurred by conjugate points), no analysis has been made
of this transition of behavior as a metric evolves from simple to non-simple.
The current article presents the first analysis that quantifies what happens as one
approaches some borderline cases of simplicity, by fully describing the action
of the geodesic X-ray transform along a one-parameter curve of metrics, whose

2By “Herglotz” type metric, we mean a scalar, rotation-invariant metric satisfying a non-
trapping condition.
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endpoints are two such borderline cases (as k — —1, the manifold becomes non-
compact; as k — 1, the manifold has conjugate points on its boundary, and the
latter is also no longer convex).

Main results. As I has an infinite-dimensional co-kernel inside of L?(dSM,
dx?), we first endeavor to explicitly characterize this co-kernel. To this end, we
use range characterization ideas coming from Pestov and Uhlmann [26] and re-
fined in Proposition A.2 below. These range characterizations reframe the range
of Iy in terms of the range of an operator P_ € £(L?(3;SM, dX?)), or alterna-
tivaly in terms of the kernel of an operator C_ € £(L?(d+SM, d $?)) introduced
in [22]. These operators, initially motivated by how the fiberwise Hilbert trans-
form acts on solutions of the geodesic transport equation inside SM (see, e.g., [26,
§4]), admit a final expression solely in terms of “boundary operators,” namely, the
scattering relation and the fiberwise Hilbert transform on the fibers of S M, given
in (19) below. As they are highly relevant in order to understand the range of I,
yet their intuitive understanding is limited at this point, a workaround is to build
their eigendecompositions in geometries where the scattering relation can be ex-
plicitly worked out. Such an endeavor was first carried out in [22] in the case of
the Euclidean disk, and a first salient feature of the present article is to generalize
some of the results there, to the case of the unit disk equipped with the metric

ge(2) = (1 +«|z)2|dz? for|z] < 1, ey

of constant curvature 4« for any fixed x € (—1,1). Specifically, we establish
the singular value decomposition of the operators P_ and C_ when viewed as
operators from L2(d+SM,dX?) into itself, see Theorem 3.3 below. This in
particular allows to formulate a few range characterizations of /. First note that
as a function on d4+SM, the X-ray transform of a function takes the same value
whether one integrates from one end of a geodesic or the other. This gives a first
symmetry, encapsulated by the map S4 (9), mapping one end of a geodesic to the
other. By 87 we denote the pullback Sju := u o 84.

Theorem 1.1. Let M be equipped with the metric g, (1) for k € (—1,1) fixed.
Suppose u € C*(3+SM) such that 83u = u. Then the following conditions are
equivalent:

(1) u belongs to the range of Io: C*°(M) — C*°(d+SM);
(2) there exists w € Cg% _(94+SM) such that u = P_w;
3) C_u=0;



The geodesic X-ray transform on constant curvature disks 1009
(4) u satisfies a complete set of orthogonality/moment conditions:
WYy )20 sMas =0 forn >0,k <Oork >n,
where in fan-beam coordinates,

=" i (n—
Via(B.a) i= L @i B @)
(ei(n+1)5K(a) + (_l)ne—i(n—i—l)s,((a))’

1—«
= tan~ ! (
s (@) 1+«

tan a).

In the Euclidean case where k = 0, the functions 1//}’1‘, ¢ = Yn.k are givenin (32),
s¢ (@) = &, and the content of Theorem 1.1 is established in [22, Theorem 2.3, §4].
Similarly to [22, §4.4], the characterization (3) presents the advantage over (2)
that C_ can be used to construct a projection operator (more precisely, id +C?),
allowing for example to project noisy data onto the range of /, see Theorem 3.4
below. The orthogonality conditions (4) are indexed over the eigenfunctions of
C_ associated with nontrivial eigenvalues.

Now that Theorem 1.1 allows to isolate distinguished functions in L?(d+SM,
dx?) which are orthogonal, and to accurately locate the range of Iy, one is then
tempted to apply the adjoint for / in this topology, and show that the functions
so obtained are orthogonal for a specific choice of measure on M, thereby finding
the SVD of (some version of) /Iy in the process. The second salient feature of
this article is to carry this agenda in full extent, adapting the Euclidean scenario
(whose outcome produces the Zernike polynomials, presented as in [10], see
also Figure 1 and Section 4.1), to the case of constant curvature disks. The
method of proof consists in relating the case k # 0 with the case k = 0 by
constructing diffeomorphisms on M and d4+SM which intertwine the adjoints of
Iy associated with each geometry. To formulate the theorem, in addition to s, («)
and {wf,k}nzo,kez, we also define

~ [1—k1+«|z|? 11—«
Z = —7 —7), 2
nk(2) 1+x1—k|z|? "’k(l —K|Z|2Z) )

where Z,, ;. are the Zernike polynomials in the convention of [10]. The radial pro-
files of the functions Z} ; for low values of n and k are given Figure 2. The family
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Figure 1. Structure of the Zernike polynomials in the convention of [10]. The ones marked

[P

o” can be deduced from the ones marked “e” via the formula Z,, ,—x = (—1)"Z,, .

{Z,,,k}nzo, o<k<n is a complete orthogonal system of L2(M, w, dVol,) where

14 «|z|?
wK(Z) = 1 —K|Z|2
with norm || Z, «||> = 1—1,62;1%' In addition, the family {y ; }a>0,kez is a

complete orthogonal system of the space L?(9+SM, dX?) N ker(id —8%), with
norm ||/, . I? = 4(++K). We formulate our second main result as follows:

Theorem 1.2. Let M be the unit disk equipped with the metric g, (z) defined in (1)
Jor k € (=1, 1), with volume form dVol.. Let Y ,, Z \ defined as above and de-

note Z n.k and @"\k their normalizations in the respective spaces L*(M, w, dVol)
and L*(04SM,dX?). Then given any f € w,L*(M,w,dVoly), admitting a
unique expansion

n —
f = Wg Z Z fn,kzn,k,

n>0k=0
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where -
. = 2
fn,k = (f’ Zn,k)LZ(M,dVolK)’ Z |fn,k| < 00,
n,k
we have
n
Iof =) OnicluiVni
n>0k=0

where

c 1 27

of, = .
mk T T—k S F 1

In particular, the Singular Value Decomposition of

Towe: L*(M, we dVol,) — L*(0.SM, d%?)

is (Zn,ky w;zc,k’ U;f’k)nzo, 0<k=<n-

The case k = 0 recovers the Euclidean case , where Zz,k = Z,x (the
Zernike polynomials as presented in [10]), wrlf,k = Yn i is given in (32) and
w, = 1. The appearance of the weight w, is a result of the method. For any
k € (—1,1), since w, is bounded above and below by positive constants, the
topologies w, L?(M, w, dVol,) and L?(M, dVol,) are equivalent.

Outline. The remainder of the article is structured as follows. In Section 2,
we first introduce the geometric models considered and compute their scattering
relation, involving in particular an important function s, (o) (equal to « in the
Euclidean case). In Section 3, we construct the SVD’s of the operators P_ and C_,
which help describe the range of the geodesic X-ray transform in Theorem 1.1.
Finally, in Section 4, we construct the SVD of an appropriate adjoint of /o, and
give a proof of Theorem 1.2.

Remark 1.3 (on notation). In what follows, we will always work with one fixed
value of «, and all quantities are x-dependent, whether specified in the notation
or not. Our choice for keeping some of the “k” is mainly motivated by the fact
that some equations such as (2) involve quantities associated with two different
geometries (the one for some « # 0, and the Euclidean one). The following may
give a sample of which ones generally include « in the notation and which ones
do not:

dzzs gIC7 dVOlICv 5/{7 wk," Zn,k7 1/’,’;](7 O;;Cky
C_., P, SM, 8, Sa As, AL, I, I
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Figure 2. Plots of the first few radial profiles of the singular functions Z} k(pei @) =
Zn.x (p)et"=29@ defined in (2), for various values of k € (—1,0) (red) and k € (0, 1)
(blue).

2. Preliminaries

2.1. Geometric models and their isometries. For fixed x € (—1,1), we
consider the unit disk M equipped with the metric g,(z) = cc(z)72|dz|?,
ce(z) := 1 + «|z|?, of constant curvature 4k. Fixing k € (—1,1), we will de-
note the unit circle bundle as

SM ={(z,v) e TM, |v[} (., = 1}.

A point in SM will be parameterized by (z, ), where § € S! describes the

tangent vector v = ¢, (z)(°*5). The boundary 9SM is parameterized in fan-beam
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coordinates (B, «) € $!' x 8!, where z = ¢*# denotes a point on 9M and « denotes
the direction of the tangent vector v = ¢, (1)e! #+7+) with respect to the inward
normal, of direction ¢’®+™_ The boundary dSM is equipped with a natural
measure d ¥? = ¢, (1) dB da, coming from restricting the Sasaki metric defined
on SM. The boundary has two distinguished components: the inward boundary
0+SM = {a € [—n/2,n/2]} and the outward one 0_SM = {« € [7/2,37/2]}
which intersect at tangential vectors, where « = +/2.

For fixed ¥ € (0, 1), the manifold (M, g,) can be viewed as a simple surface
included in the Riemann sphere (C U {oo}, g,) and for k € (—1, 0), the manifold
(M, g,) can be viewed as a simple surface included in the hyperbolic space
(D(—y-1/2+ &c)» Where D_)—1/2 = {(x,y) € R* x> + y*> < —«~'}. In either
case, k — 0 recovers the standard Euclidean disk. As |«| — 1, simplicity breaks
down for two different reasons: (M, g;) becomes a “hemisphere” with totally
geodesic (i.e., non-convex) boundary and (M, g_;) is, up to some scalar constant,>
the Poincaré disk, non-compact. In the latter, the interior of M is geodesically
complete, all geodesics are asymptotically normal to the boundary and the fan-
beam coordinate system breaks down.

To compute geodesics, we will use the action of isometries of either model, to
move the following obvious geodesics:

o forxk <0,
1
=K

(z(1),0(1)) = ( tanh(\/—_Kt),O) for 7 € R; (3a)

e forx > 0,
1 /4 b/ 4

1),0(t)) =—= — ).
0.00) = (£ NCEN,
One can find those isometries by conjugating the automorphisms of the
Poincaré disk or the Riemann sphere with appropriate homotheties, which would
result in subgroups of Mobius transformations. Under this latter assumption, let us
find those directly, with the immediate observation that a Mobius transformation
T(z) = 92t pushes forward a tangent vector (z,¢) to T - (z,¢) = (T(z), T'(2)?).

cz+d
We will also write T'(z) = fzzig = [ 4 & ](2) interchangeably.

tan(ﬁt),O) fort (— (3b)

Lemma 2.1. For k € (0, 1), the isometry group of (C U {o0}, gi) is given by

Aut(C U {00}, g¢) = {[—ié 2] lal? + k|b|? = 1}. 4)

3 Customarily, the Poincaré disk carries four times this metric.
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For k € (—1,0), the isometry group of (D(_,y~1/2, &) is given by
a b 5 5
Aut(D(_K)—l/Z,gK) = —Kb_ al |a| +K|b| =15. (5)

Proof. The proofs of (4) and (5) are identical. We seek a Mobius transformation
T = [‘C‘ s,] with ad — bc = 1 such that g, (T (2))(T'(2),, T'(2)¢) = ge(2)(E, 0)
for all (z, ¢). This is recast as

1 1 1

lcz+d]21+k|T@)?  14«|z|>

which yields, for all z in the space considered

14 «|z]? = |ez +d|* + «laz + b)?
= (Ic|® + kla|?)|z|* + 2% (z(cd + kab)) + |d|* + «|b|?.

This is equivalent to having the relations
lc> +«lal®> =k, cd+xab =0, |d*+«k|b]®=1.
Multiplying the second by a and using the first and ad — bc = 1, we get
0 = cad + kla|*h = c(1 + bé) + k|al?b = ¢ + b(|c|? + «|a|?) = ¢ + «b,
hence ¢ = —kb. Similarly, multiplying the same equation by ¢ yields
0 = |c|*b + kabé = |c|*b + kaab — ka = (|c|® + «|a|?)d —ka = kd — ka.

So d = a. Finally, these two relations are necessary and sufficient to describe (4)
and (5). O

Now, given (z;, #) corresponding to a unit tangent vector (z;, c,(z1)e'?), we
want to find the element T which maps (0, 1) to (z1, ¢ (z1)e??), satisfying

TO) =z, T'0)-1=ce(z1)e™?.

Seeking for an element of the form (4) or (5) immediately leads to the unique
transformation
etz + 7,

1O =156 = T
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2.2. Scattering relation. We generally define the scattering relation 8: 0SM —
dSM as

8(X,V) = Qir(x,+v)(x,v) for (x,v) € 0+SM, (6)

where ¢;(x,v) = (Yx(?), Vx,»(¢)) denotes the geodesic flow on a Riemannian
manifold (M, g) and t(x, v) denotes the first exit time of the geodesic yx ,(¢). In
our case, we now compute this relation explicitly.

First notice by rotation-invariance and symmetry of the family of curves,
that in fan-beam coordinates, one expects an expression of the form 8(8,«) =
(B + f(a), 7 — a) for some function f to be determined. To determine f, we
then set B = 0. We first compute the geodesic through the point (1, ¢, (1)e!"T®))
with ¢ € (—x/2, 7/2). From the previous section, the unique isometry mapping
(0, 1) to that point is given by

T(z) =

so that 7'(z(¢)) with z(¢) defined in (3) is the geodesic we seek. We then solve for
|T(z(t*))|> = 1 with t* > 0, the point at which that geodesic exists the domain
M, and obtain

1
1—«

2cosa.

zZ(t*) =
In particular,

T(Z(l‘*)) — _(1 + K) cosa + i(l - K) sino — emezi arg((1+/<)cosa+i(l—lc)sina)'

(1+«x)cosa —i(l —k)sina

The number inside the argument belongs to the right-half plane so that we may
compute that

11—«
* _ . —1
T(z(t™)) =exp (z (n + 2tan (1 " tana))).
In particular, in fan-beam coordinates, given (8, @) € dS M, the scattering relation
is given by

1+«

8(B,a) = (/3 + 7 +2tan”! ( tana), T —a), (7)

recovering the Euclidean case [22] as k — 0, and becoming degenerate as
K — *1.
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2.2.1. Scattering signatures. The function s = s, defined as

K

s¢(e) :=tan~! (: J_r tana) (8)

K

may be thought of as a “scattering signature” of each geometry , in that it is the
only function that distinguishes two circularly symmetric scattering relations on
the unit disk. The function s, describes how, fixing the endpoint z = 1 at the
boundary, the other endpoint of a geodesic moves as the inward-pointing vector
above z = 1 changes. Strikingly (though this is inconsequential for what follows),
we have s, o s_, = id for all « € (—1, 1). This can be interpreted as the fact that
the geodesic “spread” at the boundary induced by negative curvature inside the
disk can be undone by precisely changing the sign of the curvature.

As we will work with only one fixed value of « at a time, we may drop the
subscript « for conciseness. The scattering relation § and antipodal scattering
relation 84 (composition of § with the antipodal map « + « + ) take the form

S(B.a)=(B+m+28(c). m —), 84(f.) =(B+7m+25(),—a). (9)

The map 84 is a diffeomorphism of dSM, and 94 SM are both S4-stable. Since
integrating a function does not depend on the direction of integration, the ray
transform of a function is always invariant under the pullback 83}. For later, we
record that the function s(«) satisfies the following obvious properties:

s(e + ) =s(a) + 7w, s(—a) = —s(a), oecS.
The jacobian of @ > s(«) takes the expression

A2—1 1 _1—K
A 1+ A2tan2¢’ T 14k

1
!/
= 1.
5’ () A+ >

In particular, % < ¢'(x) < A for all @ and s'(«) can be used as a multiplicative
weight on L2(34SM, d ©?) spaces, that yields an equivalent L? topology. In the
Euclidean case, s(o) = «, and therefore no distinction is necessary. In the work
that follows, it will be crucial to work with «, s(o) or a combination of both. To
this end, we now describe some important relations between the two.

2.2.2. Linear fractional relation between ¢2® and 2@ and its conse-
quences. An important calculation is the following: with s(a) = tan™ (A tan o),

A := {3, we compute

Q2is@) _ l+iltana
l—iAtanw
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el _p—ia

(using i tanor = 532 —5)
(e 4 (1= A)e '@
(1 =A)el® + (1 4+ A)eic
(using % = k)
el 4 i
1 + Kke2ia’ (10)
or in short,
. 1 . ) 1 = )
eZts(a) — [K I;](eZwt) eZza — |:_K 1K:| (ezzs(a))' (11)

The following Lemma will be crucial. Below we will say that a function f(«)
is a holomorphic/strictly holomorphic/antiholomorphic/strictly antiholomorphic
in ¢'® if its Fourier expansion in e® only contains non-negative/positive/non-
positive/negative powers of e'®.

Lemma 2.2. For any k € (—1,1), the function ¢**@ is a holomorphic, even
series in e'*, with average k. As a result, for any g > 0, e2195(@) jg g holomorphic,
even series in e'%, and for ¢ < 0, e2195@) g qp anti-holomorphic, even series
. i
ine'“,

Proof. Use a geometric sum in (10) to obtain

o0
@ =k (k=71 D (—x)PeP (12)
=1

The other consequences follow from the fact that products of holomorphic series
are holomorphic. |

The relation (11) also turns into a relation for the cosines:

sis@) _ 0K (€PNt (LHreTHY) 2 2 + P
L+ ke 14 re?i|? 1+ &2 + 2k cos(Ra)

e

Taking the real part, we obtain

1+ k?) cos(2a) + 2k [+« 2k
cos(2s(e)) = 1+k2+2ccosQa) | 2« 1+«? (cos(20)),
which inverts as
1+«% 2
cosa) = [ e 14 /<2] (cos(2s())). (13)
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Using these relations, one may derive useful representations of the jacobian s'(«):

2
§'(a) =

11—« 1
= 14+k2-2 2 . 14
1+ &2+ 2kcosQe) 1 —«2 1+« i cos(25(c))) (14

2.2.3. Relation between ¢® and ¢?®). While there is no obvious relation
between ¢’® and ¢?*@® (and it is unclear whether ¢/*® is holomorphic in terms
of ¢'®), some crucial relations are to be derived. A first one is that +/s’ can be
writen as an expression of both e!® and e?*®.

Lemma 2.3. With s(a) = s¢(«) as given in (8), we have

1 . . .
\/fm = —e’“(e_’s(“) - /ce”(“)). (15)

1 —«2

Proof. Recall the formula

2
11—« 1 2(1 _ Ke2i5((x))(1 _ K€_2i5(a)).
K

/ p—y p—y
s@)= (1 + ke?i@)(1 + ke=2i®) 1 —

Define f(«) 1= ¢®(e 5@ — ke?5@®)) then an immediate calculation shows that

fl@)fla) = (1—«?)s (). (16)

Further, notice that

S () _ p2ie,~2is@) 1_"8_215(“) e2ia [_K ! ](ezjﬁ(“))

7 () 1 — ke2is(@) 1 —«
_ 2ia| 7K 1 I« 2ix
=¢ [ 1 —K:||:K 1](e )
e2i(x
= ezia =

So f is in fact real-valued, and using (16), it is nothing but ~/1 — x2/s'(). 0O

Multiplying (15) by e~*% and identifying real and imaginary parts, we obtain
relations for the sines and cosines:

%\/mcom = cos(s(a)), \/g\/msina = sin(s(«)). (17)
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3. Singular Value Decomposition of the boundary operators
and moment conditions for 7,

Out of the scattering relation (6), one defines operators of extension from 94 S M
to dS M by evenness/oddness with respect to the scattering relation:

Ax:L2(04SM, ndX?) — L*(0SM, || dX?),
u(x,v), (x,v) € 0+SM,

A= {:lzu(S(x, V). (v.v) € 3-SM,

with adjoints A% u(x,v) = u(x,v) £ u(8(x,v)) for (x,v) € 9SM. For
(x,v) € dSM, the function u is defined as w(x,v) = gx(v, vy) with v, the unit
inner normal to x € dM, in particular in fan-beam coordinates, this is nothing but
cosa.

In the circularly symmetric case, since j4(8(x,v)) = —u(x,v), A+ and A} are
also adjoints of one another in the L2(0+SM, d %) — L?(3SM, d ¥?) setting. In
the smooth setting, as such extensions may generate singularities at the tangential
directions, one must define, somewhat tautologically for now,

AL CL (34 SM) —> C®(ISM)
where,
CL(04SM) :={u € C®(d4SM), Axu € C®(OSM)},

see Appendix A for more detail, and for their further decompositions into spaces
Cor. +(0+SM) in eq. (54). We define the fiberwise Hilbert transform

H:C®0SM) — C®(SM),
defined in fan-beam coordinates as
Hu(B.o) =Y —isign(Oup(B)e’*® foru =Y wup(Be’*® — (18)
keZ keZ

with the convention that sign(0) = 0. Then write H = H + H_, where H ,_ is
the restriction of H onto even/odd Fourier modes. Out of these operators, we can
then define two important operators

P1:Co (04 SM) — C®(04SM), Pi:=A"HiA,,

1 (19)
Cu:CZ2 (04 SM) —> C™(3 M), Ca:= JATHiA.



1020 R. K. Mishra and F. Monard

One of the purposes of this section will be to compute the SVD’s of P_ and C_
for the L2(0+SM,dX?) — L*(0+SM,dX%?) topology. The relevance of these
operators comes from the range characterization described in Proposition A.2,
which tell us that understanding the range of / reduces to understanding the range
of P_on C° _(34+SM). Moreover, understanding C_ provides another range
characterization for [y, together with operators for projecting noisy data onto the
range of /.

In Section 3.1, we first give a characterization of the spaces C7%, | (9+SM) in
terms of “natural,” distinguished bases. We then modify these bases in Section 3.2
so as to construct the SVD’s of P_ and C_. Finally in Section 3.3, we then
formulate the range characterizations of /o, together with some consequences and
applications.

3.1. Description of the spaces C::’i’ +(@+SM). In cases where the scattering
relation admits an explicit expression, we can construct bases for C7% | (0+SM)
defined in eq. (54) using appropriate Fourier series, ruling out some coefficients
by symmetry arguments. Upon defining the family

epi(B.a) = PP for (B 0) € dSM, (p, L) € 72, (20)

we can formulate the following

Proposition 3.1. In the models (M., g,), k € (—1, 1), the spaces C7°, (+SM) are

spanned* by
Ceoy 1 (04SM) = (epog + (=1)Pepap—q). P4 € Z7), 1)
Coy _(04SM) = (ep2g+1 — (—1)Pepap—q)—1. P4 € Z7), (22)
C L (04SM) = (ep2g+1 + (=1)Pepap—q)—1. P.q € Z7), (23)
Ce2 _(04SM) = (epog — (—1)Pepr(p—q). P.q € 7). (24)

Proof. Letu € C*®(3SM). Since the function u(B,5 ! («)) is smooth on the
torus dSM = S} x S, it can be written as a Fourier series

u(,B, 5—1 (Ol)) — Z up’zei(Pﬂ-l-Za) ,
pAEZ

for some coefficients {u, ¢}, ¢ with rapid decay in the sense that

sup {|upe|(1+ |pD?(1 + €))%} < 00 fora,b € N. (25)
pAEZ

4in the sense of expansions with rapid decay. This decay is inherited from the rapid decay
of Fourier series of smooth periodic functions, as in eq. (25).
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This implies the following expression for u:

u(B, o) = Zul’ eei(pﬂ+€5(0t))_
PAEZ

Upon looking at e, ¢ defined in (20), we find that

Szep,l = (_l)pep,Zp—Z’ S*ep,l = (_1)p+£ep,2p—£’ (26)

so that

Squ = Z(—l)pupﬁp—@epl’ 8*u = Z(_l)pM“pJp—ﬁep,@-
DPAEZ pAEZ,

Now fix 01 € {+,—}and 03 € {+,—}. If w € C7%, ,,(0+SM), then u := Ay w
satisfies

u = 083U = 018*u.

At the level of the Fourier coefficients, this means

tpe D 021 up 050 B 0r(-1) s, for (p, ) € 72,
For 01 = 03, equality () forces u,, = 0 for all £ odd, and using equality
(x) implies (21) and (24) upon writing £ = 2gq. For o7 # 0, equality (xx)
forces u, ¢ = 0 for all £ even, and equality (x) implies (22) and (23) upon writing
£ =2q+ 1. O

3.2. Singular value decompositions of P_ and C_. Recall the definitions (19)
of P_ and C_, where according to Appendix A, P_ is naturally defined on
Cor —(04+SM) and C_ is naturally defined on C7° |, (9+SM).

Functions which transform well under P_ or C_ must be nicely compatible
with both the fiberwise Hilbert transform (18) and the scattering relation (6).
The bases displayed in (22) and (23) do the latter but not the former. These are
naturally orthogonal in L2(0SM,s'(«) d %?), and to make them orthogonal in
L?(0SM, dX?) (a space where i H_ is naturally self-adjoint), a natural modifica-
tion is to multiply these bases by /s’(«). Let us then define, for p,q € Z,

$pg = Vo'epagr1 for (p.q) € 22 @7
Combining (26) with the fact that

s@)=s(a+n)=5(a)=¢@—wa), ie, 8i)=8%F)=4¢,
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we immediately obtain for every (p, q) € Z?2,

Sitpq = SV )Shepag+1 = Vi (=) ep2p-2g-1 = (~1)P$} 4 1.

8*¢;;,q = 8*(‘/57)5*617,2q+1 = \/57(_1)p+2q+13p,2p—2q—1 = _(_1)p¢;,p—q—l'
Regarding ¢, , as fiberwise odd functions on dSM, their fiberwise Hilbert

transform can be computed, using in an important way the +/s’ factor.

Lemma 3.2. Forall (p,q) € Z?, we have
Hgbl/),q = H_¢;)’q = —i sign(2q + 1)¢1/),Q'

Proof. Forq > 0,¢), , = (1—k2?)71/2e1%ePP (¢2145() _co21(aTDs(@) jg by virtue
of Lemma 2.2, ¢’ times a fiber-holomorphic series, so it is strictly holomorphic
and as such satisfies H¢, , = —i¢y, ..

For g < 0, we write ¢, , = (1 — K2)"1/26iPB gl (p=2is(@) _ ) 2i(g+1)s(@)
By virtue of Lemma 2.2 again, the last factor is antiholomorphic, while upon
complex-conjugating (12),

o0
eia(e—Zis(a) _ K) _ (K _ K_l) Z(_K)pei(—2p+l)a’
p=1

is a strictly antiholomorphic series. The product is thus strictly antiholomorphic
in ¢, therefore H ¢;7, g =1 ¢;,’ P The formula follows. O

Constructing functions with symmetries under 8%, we then define
u;;,q = (ld +8:;)¢1/7,q = ¢I/75‘I + (_1)P¢I/7’p_q_1’
Vpg = 1d=8)¢, 4 = b4+ (=DP, g1
Such bases have the natural redundancies

/ — (_ P.,/ / — _(_ P,/
Upgq = (=1) Up,p—q—1> VUpg = (=D Up.p—q—1-

Upon removing these redundancies in the set of indices, we can rewrite (22)
and (23) as

Co2 (048SM) = (u, .. p <2q + 1),
Coo —(048M) = (v, .. p <2q +1).

Finally, we note how the basis elements ¢;)’q transform under id —8*:

(d=8%)¢p g = Upgr  (d=8*)(=1)Pdy, , oy =10,
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Now, given the properties satisfied by ¢,, ., uj, ;, v, ,, the action of H_ and
§* and 8% on them are formally identical as in the Euclidean case, and the same
calculation as in [22, p. 444] allows to deduce that for any (p, ¢) in the appropriate

range,

—i
C_ul, , = —(sign(2q + 1) + sign(2p — 2 — D)), ,,
pq ) pq (28)

P_v,, , = —i(sign(2q + 1) —sign(2p — 2q — D), .

Since the families {u, ,} and {v, ,} are orthogonal in L?(0;.SM,dx?), this
automatically produces the singular value decompositions of P_ and C_, viewed
as operators from that space into itself. The statements are identical to those of
the Euclidean case made in [22, Prop. 1 and 2] (except that the definitions of u;)’ 4
and U;L 4 differ from [22] by a fixed constant). Below we denote the orthogonal
splitting

L2(04SM,d2*) =V @V_, Vi :=L*0+SM,dX?) Nker(id F8%).

Theorem 3.3. Given k € (—1,1), let M be the unit disk equipped with the metric
g« (1) and define P_, C_ as in (19). The SVD of the operator P_:V_ — V4 is
defined as follows: for any (p, q) € Z* with p < 2q + 1,

. . -1 1
Py - —2iu, , zfq>7andp<q+§,

P.q )
0 otherwise.

The eigendecomposition of C_: V1 — V. is defined as follows: for any (p,q) €
72 with p < 2q,

-1 1
iu;’q, ifq<7andp<q+§,
C_u/ = . . _1 1
X —iuy, . zfq>7andp>q+§,
0 otherwise.

3.3. Consequences of Theorem 3.3: range characterizations of 7y and a pro-
jection operator. With all the facts collected in the previous sections, we can
now prove Theorem 1.1.

Proof of Theorem 1.1. (1) = (2) is Proposition A.2.
(2) = (3) comes from the fact that C_ P_ = 0 as readily seen from (28).
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(3) = (2) comes from the fact that C_ has zero kernel on (Ran P_)* (as a
subspace of V).

(3) = (4)is a characterization by orthogonality of (ker C_)* = (Ran P_)> .
The formulation in terms of functions w,’l‘,k is obtained through the re-index-
ing (31) performed in the next sections. O

Projection of noisy data onto the range of Iy. In addition, for purposes of
projection of noisy data onto the range of Iy, an immediate consequence of
Theorem 3.3 is the following:

Theorem 3.4. Let M be equipped with the metric g, for k € (—1, 1) fixed, and
define C_ as in (19). Then the operatorid +C?2 is the L?(3+ S M, d £?) orthogonal
projection operator onto the range of I.

Proof. Following Theorem 3.3, a direct computation at the level of the eigenvec-
tors gives

0, ifg<ztandp<qg+1,
(id+C>u,, =40, ifg>landp>qg+1,
u

otherwise. 0

4. Singular Value Decomposition of the X-ray transform

A conclusion of Theorem 1.1 is that the range of I, is spanned by
{u,,.q9>-1/2,9g>p—1/2}, (29)

an orthogonal family in V4. In what follows, the goal is to apply an ap-
propriate adjoint for /oy to the family (29), and find a topology for which the
functions obtained are orthogonal. Most adjoints for [, are constructed out
of a distinguished one which we denote I(f : it corresponds to the adjoint of
Io: L>(M,dVol,) — L?*(0+SM, u d%?), which in our setting takes the expres-
sion

1tg(z) = / g(B_(z,0),a_(z,0)) dofor z € M, (30)
gl

where (B_,a_)(z,0) are the fan-beam coordinates of the unique g,-geodesic
passing through (z, 8) € SM, or “footpoint map.”
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In what follows, we will first recall in Section 4.1 what is known in the Eu-
clidean case, before showing that combining this knowledge with our previous
derivations ultimately allows to produce the SVD of the X-ray transform in Sec-
tion 4.2. Proofs of some intermediary lemmas are relegated to Section 4.3.

4.1. Euclidean case — Zernike polynomials. It may be convenient to reparame-
terize the set (29) to make the Zernike basis appear, in the form that it is presented
in [10]. Specifically, for n € IN and k € Z, we reparameterize the basis of V as

(=D . . . .
VUnk = 74 Un okn—k instead, i.e. we have involved the change of index

(n,k)y— (p,q) =(n—2k,n—k) forn e Ny, k € Z. 31)

Then an immediate calculation yields

="

Wn,k — 7 ei(n—2k)(ﬂ+a)(ei(n+l)a + (_1)ne—i(n+l)a) forn>0,keZ,
74
(32)
and we now want to compute / g [ WZ”‘ |- Together with the definition of 1 g and the

relations satisfied by the Euclidean footpoint map for all (pe’®, 6) € SM:

B—(pe'®.0) + a_(pe'®.0) +m =6,
ﬂ—(peiw’ 0) = IB—(IO7 9 - CL)) + w,
a_(pe'®,0) = a_(p, 0 — w),

we arrive at the expression

Ig[%’k](pe"‘”)
i
—o-wn L f ik € TVCD 4 (1yreTiO a0
27 2cosa—_(p, 0)
g1
With the relation sin@—(p, #) = —psin 6, we may rewrite this as
) i(n—2k)w .
Ig[‘”"sk](petw) = 62— / e =200 (—psin6) de, (33)
T
H &
where we have defined
i(n+1)a —1)" —i(n+1a
Wi (sine) = & + (=1 . (34)

2cosa
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The functions W, are related to the Chebychev polynomials of the second kind U,
specifically through the relation W, (t) = i"U,(¢). In particular, it is immediate
to check the 2-step recursion relation and initial conditions

Wos1(t) = 2itW,(t) + Wi (1), Wo(t) =1, Wi(t) = 2it.

By induction, the top-degree term of W}, is (2i¢)". Fixing n > 0, we now split the
calculation into two cases:

Case k < 0or k > n. Inlight of (33), since W, is a polynomial of degree n,
then W, (—psin 6) is a trigonometric polynomial of degree n in ?%. In particular,
if Kk < 0or k > n, then |n — 2k| > n and thus the right hand side of (33) is
identically zero. In short, we deduce

15[‘/’””‘] =0 forn>0,k<Oork >n.
m

Case0 < k < n. Forthe remaining cases, we then define Z,, ;. := Ig[f()’:(’; ], and
for the sake of self-containment, we now show that the functions {Z,, x }»>0,0<k<n
so constructed are the Zernike basis in the convention of [10], by showing that they

satisfy Cauchy-Riemann systems and take the same boundary values.

Lemma 4.1. The functions {Z, i }n>0.0<k<n Satisfy the following properties: for

alln >0
aZZn,O =0, (35a)
0:Znk +0:Zpk+1 =0 forO<k <n-—1, (35b)
0:Zpn =0, (35¢)
and
Zn k(€)= (=1)ke! 7200 for0 <k <n, 0 e §. (36)

Proof. Using the relation W,,(—t) = (—1)" W, (¢t), we arrive at the expression

. . —1)" .
Zn,k(pelw) — ez(n—2k)w(2_)/ez(n—2k)9Wn(p sin@) do
T

(D" , GD
T o
gl

200y (psin(d — w)) db.
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With 9, = %(Bp — %8w) and 0; = ”T“(a,, + %8w), we compute

—if oif
> dz(psin(f0 —w)) = —i7.

9, (psin(f —w)) =i <

Plugging these into (37) immediately implies
8ZZ,,,k+BEZn,k+1 =0 forO0<k<n-1. (38)

In addition, we compute

. (=1 .
Zn.o(pe'®) = emw% / ™ W, (psin 0) dO
gl

, —1r .
_ oo D" / ¢0(2ipsin 6)" d
2
g1
(=) .
= p"e”“"u / "% (2i sin0)" d6
27
gl

where the second equality comes from the fact that the lower-order terms of
W, (p sin 8) have no harmonic content along ¢?”*?. Finally, the constant is

/eine(eie _ €_i9)n do = /(e2i9 — l)n db = 2%(—1)"
gl gl

In short, Z, 0 = p"ei™® = z" This also implies 0z Z,,0 = 0 and since we have
Znn =(1)"Zy0 = (—1)*z", we deduce that 9, Z,, ,, = 0.
To prove the boundary condition, using that

Zn,k (Peiw) = ei(n—2k)a) Zn,k (:0)7

it is enough to show that Z, 4 (1) = (—1)¥ for every n > 0 and 0 < k < n. That
this is true for k = 0 and k = n follows from the expressions just computed, and
the general claim follows by induction on n once the following equality is satisfied:

Znk() =Zy2p-1(1) = Zp—1k-1(1) + Zy—1 £ (1). (39)
To prove (39), it suffices to input the recursion relation
W, (sin ) = 2i sin W,,_1 (sin 8) + Wy _»(sin )

into the expression (37), and to evaluate it at pe’® = 1. O
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From Lemma 4.1, we see that the family so defined satisfies the characteriza-
tion (b) of [10, Theorem 1] of the Zernike polynomials. One may see that this
characterization defines the same family due the following facts: for » > 0 and
k = 0, the functions Z,  in both sets agree; by induction on k > 0, in both
sets of functions, Z, x satisfies a d; equation with same right-hand side and same
boundary condition, for which a solution is unique if it exists.

We can then use some of the properties given in [10], in particular, the follow-
ing orthogonality property

s
(Znks Zw k) r2omy = n—+15n,n’5k,ku (40)

and the fact that {¥ ntl

/T Zn,k}n>0 o0<k<n 18 an orthonormal basis of L%2(M).

4.2. Constant curvature case - Proof of Theorem 1.2. As in the previous
section, we reparameterize the basis of V1 using (n, k) indexing: for n € IN and

k € Z, consider ¥, , 1= (_4;)’1 u;_2k 42—k Which can be rewritten as
P G i(n—2k) (B +5(@))
Vk = yp Ve (@)e gn(s(a)), 41)
where

gn(s(a)) = (ei(n+1)5((x) + (_1)ne—i(n+1)5(0[))'

First observe the following fact:

Lemma 4.2. The family {yy ., n > 0, k € Z} is orthogonal in V., with norm
||W,'f,k||2 = mfor alln > 0and k € Z.

Proof. Let (n,k) and (n’, k') given. First notice that if n —2k # n’ —2k’, the inner
product (V5 ., ¥y, /)ax2 Will vanish due to the integration of el (n—2k—('—2k"))B
Now assuming n — 2k = n’ — 2k’, this implies that n and n” have the same parity.
In this case, write for example n’ = n + 2{ for some £ > 0, fix k' such that
n —2k =n’ — 2k’, and compute

/2

-1
UiV sda = 00— [ anlst@)Ermits@)s' @) da

—m/2

/2
C/c(l)_l

- [ s da

—m/2
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=C“(1) | / (cos(2¢a) + (—1)" cos(2(n + £ + 1)a)) de

—/2

1
4(1 4+ «)

hence the result. O

8¢,0

For the topology L2(d+SM, dX?), the adjoint of I, is given by w > Ig[%]
with Ig defined in (30). Let us then consider the functions

Y :
15[~ | (pe)
"
_ D" S (12K (B o) 5/(Ol_)el(n-f—l)s(ot—) + (_1)ne—l(n+l)s(a_) "
27 2 cos(a—)
gl

where (B_, a_) are short for (B_(pe'®, 0), a_(pe'®, )), the fan-beam coordinates
of the unique g,-geodesic passing through (pe’®, #). With the identities (17), this
can be rewritten as

Ig[wgk](pe"‘”)

I+ (=D" o (=20 (B—+5(@-))
1—«x 27

et(n+1)5(a_) + (_1)ne—i(n+1)5(a_)

s'(a-) 2 cos(s(a_)) 0
1+/<( )" ol (1=2K)(B—+s(a-)) s’ (=) Wy (sin(s(a-))) d.
l—k 27

Using the symmetries

ﬂ—(peiw’ 0) = IB—(IO7 0 — CL)) + o, a—(peiw’ 0) = O‘—(P’ 0 - Cl)),

we obtain the expression

TRLTAP
Iy [T’](Pe )
_ 1+K(_1)nei(n—2k)w/ i(n—2k)(B—+s(a-)) /(a )W (Sln(ﬁ(a ))) de
11—« 2m
gl

(42)
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with W, defined in (34), and where (x—, B—) are now evaluated at (p, 6). We now
need to make the functions f_ + s(«—) and sin(s(«—)) more explicit. Specifically,
we will derive the following in the next section:

Lemma 4.3. The following relations hold:

B _1( Kkp*sin(20)
B_(0,0) + s(a—(p,6)) + 7 = 0 — tan (—1 Fp—G; 9)), (43)
sin(s(a—(p, 60))) _ V11— K22 psiné. (44)

s'(a—(p, 0)) I +kp
In light of (43), we want to make in (42) the change of variable in the fiber

Kkp? sin(26) ) 45)

0'(p,0) ;=0 —tan! (————F—
(p-6) an (1+szcos(26)

We then state two important identities, also proved in the next section:

Lemma 4.4. The change of variable 6 — 6’ in (45) satisfies the following:

00  1—xp* 14«
30  1+kp?1—k

2
i’ = 1 T VD) sine. 7)

s'(a—(p, 0)), (46)

Combining (47) with (44), we arrive at the relation

1 —
sin(s(a-(p. 6))) = —7— K; _psind'.

Using these relations with (42), we then arrive at
1 —kp? |14 Klﬁ[w'l:’k](peiw)
14+xp2V1—k L p

ei(n—zk)w

, / 11—« a6’
_ i(n—2k)6 _ CayaY
=— /e Wn< —I_Kp2ps1n9>80 do

(48)
gl
ei(n—2k)(u

. , 1—
=L / 208y (— ——psin’)dd".
0

27 1—«
Sl
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We now split cases in a similar way as the Euclidean case.

Case k < 0or k > n. Inlight of (48), since W, is a polynomial of degree n,
then the function W, ( — 11__7';2 psin@’) is a trigonometric polynomial of degree n
in e'?. In particular, if k < 0 or k > n, then |[n — 2k| > n and thus the right hand

side of (48) is identically zero, and we conclude that

wK
1 ;”‘]:0 forn >0,k <0ork > n. (49)

Case 0 <k <n. WhenO < k < n, we then define

K
Zoge = 1§ %]
W

and comparing (48) with (33), we find that

1—kp? [14+k~ , l—k
— 7 oy — 7 (— l(u)’
1+ sz 1 —« n,k(pe ) n,k 1— K,02pe

in other words, foranyn > 0and 0 < k < n,
~ - 14+kp? [1—« 11—« :
7 1 (pel®) = J—z (7 ””). 50

Orthogonality of Z,,,k. Now that we fully understand the action of / gﬁ onV,,

the last question is then to find out for which topology on M the family {Z nk)is
orthogonal. We look for a measure of the form

pdpdw
w(p) dVol, = w(p) TETT=Ek
and want to change variable
, 1=k
IO - 1 _ K,Oz IO’
with jacobian
1 + kp?

"dp' = (1 —k)2————pdp,
p dp = (1-«x) d—rp2i’
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to make appear
pdpdw

[ Zustoe ™) Z ooy o) 2

M
=« (A +kp>?
S 14k ) (1 —kp?)?
M

pdpdw
(1 +«p?)?

Zn,k (pleiw)zn/,k/ (P/eiw)w(/o)

(1—«k)?pdpdw
(1 —kp?)?

1 . .
— 5 [ 2 Zy )
M

In light of the jacobian, the change p — p’ will land in the Euclidean volume form

2
if w(p) = i*_’ﬁﬁz . Assuming this is the case, we obtain, upon using (40),

pdp dw

[ Zastoe ™) Z ooy ) LS

M

1 7 .
- [ 2z o
M

1 b4
1—k2n+1

Now Theorem 4.5 below and the proof of Theorem 1.2 will be based on the
following observation. Let (Hy, | - |l1), (Hz, || - ||2) be two Hilbert spaces and
A:Hy — H, be a bounded operator. If there exist two complete orthogonal
systems {x,} in H;y and {y,} in H, such that Ax, = y, for all n, then the singular
value decomposition of A is (xp/l|Xull1. Ya/lynll2. [Iynll2/Xnll1)a. This also
implies that the SVD of the adjoint A* is (y/l|ynll2, Xn/lIXn |1, | Yall2/l1%n1l1)n-

Based on this observation and the earlier calculations, we can formulate the
following result:

8n,n/8k,k’-

Theorem 4.5. Let k € (—1,1). Define the weight w,(z) := ileljllj forz e M.
Then the operator

13,‘%: Vi —s L2(M, we dVole)
has kernel
kerl(jfi = span{y, ;, forn > 0, k € Z\{0,1,...,n}}
and its restriction to the orthocomplement of that kernel has SVD

—

(U e Zngo 0k 1) n 20,0 <k <n),
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where
« ~
— = Zn Kk VN +1
{/ =21+ kY’ , Zpk = \/l—KZk,
k= ||w,fk|| N ARV "
and where the spectral values equal
K _ ”Zn,k” _ 1 2ﬁ

forn>0,0<k <n.

(o - - ’
R 7 IV ey |

The proof of Theorem 1.2 now becomes straightforward.
Proof of Theorem 1.2. Inlight of Theorem 4.5, the SVD of the adjoint of /; 41 . just

-

consists of interchanging the families 1// &> Zn k> and this is the operator we are
interested in. We now compute

& _ t &
(f’ lo I:M])w,( dVolg (w"f’ lo [M])dVolK
_ g
= (To(we /), M)Mz
= (lo(wie f). 8)ax>-
In other words, the adjoint of the operator
1
1= 123, SM.dS?) — L*(M, w, dVol,)
n

is the operator

A: L*(M, w,dVol,) — L2(0:SM,d%?), Af := Ip(w,f).

In particular, the relation AZ, k=0 kxp/"\k implies Io(wKZn k) =0 kw for

all n, k. Now, given f € w,L*(M, w, dVolK) expands into the basis Zn k>

f Zzankznk,

n>0 k=0
where P
= (L 70) = Fran.
nk (wx k) v (fs Zn k) dvol,

Then we compute directly
IOf = IO(Zan,kwchn,k) = Zan,kAZn,k = Zan,ka;’;,kw,’;,k-
n,k n.k n.k

hence the result. O
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4.3. Proof of Lemmas 4.3 and 4.4

Proof of Lemma 4.3. We will compute ¢!®=+5(-)) and sin(s(er—)). The first
quantity (or rather, its square) admits a rather simple expression. The way to arrive
there is as follows: the unique g,-geodesic passing through (p, c(p)e’?) has (non

unit speed) equation

efx
Ty =22HP
1 —ketfpx

for x € Rifx € [0,1) and |x| < (—«)~Y2 if k € (=1, 0). The endpoints in the
unit disk are for |T'(x)|?> = 1, which yields the quadratic equation

2
—1
T p = x2—Sx + P.

1
0 = x2 + 2xpcos 6
p 1—x2p2 " 1—k2p2
By definition of the scattering relation, the two roots x4 are such that 7' (x_) =
eP—and T (xy) = e!B-F25(@)+7) i particular, we obtain that

ei9x+ +p efx_ + P
1 —kelfpxy 1 —kel?px_
20 p + peiOS 4 102
1 —kelfpS + k2e2i9p2 P

i6

_2i(B—s(a-)) _ T(x)T(x=) =

_ gl trp’e?
= —¢ —.
1 + kp2eif

This yields the relation

Kkp? sin(26) )

2(B- +s(-)) = 2(6 — tan”! 1+ kp? cos(26)

which determines f_+s(«—) up to an additive 7 term. With the Euclidean relation
B— + a— + = = 6, we deduce the relation (43).

We now derive a formula for sin(s(«—)). Since the surrounding space has
constant curvature 4«, it is convenient to define the weighted sine function sing
as follows:

(4ic)x3 (4/()2x5 (4/()3x7
3! st 7
ﬁ sin(2/kx), Kk >0,

2\/1—7 sinh(2/—kx), Kk <O0.

Singe(x) = x —
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Such a function appears in the law of sines for a g,-geodesic triangle of geodesic
sidelengths (a, b, ¢) and opposite angles (A, B, C), namely we have
sin A sin B sin C

- = — = — . (51)
Sing, a sing, b Sing, ¢

see [9]. Denoting by d,(z1, z2) the g.-geodesic distance between z; and z,, it
follows directly from (3) that for p € [—1, 1]

1
tanh™ ! (V/=kp), « € (—1,0),
de(p,0) = ﬁ .
ﬁtan (Vkp). k €(0,1),

and by rotation invariance, d,(z1,0) = d(|z1],0). In particular, trigonometric
identities imply in all cases that

P

sinai (de(p,0)) = Tre

Applying the sine rule (51) to the geodesic triangle with vertices 0, p and e?A— (-9
we obtain

sin(—a—(p, 0)) sin 0 B sin 0

singe (di(p,0))  sing(dic(e-©9,0))  sinay(die(1,0))’

and we obtain

. singx (d (0, 0)) . Ko
sin(—a¢—) = ————————sinf = psind,
sing, (de(1,0)) 1+ kp?
and hence .
sin(a—(p,0)) = — ++K’;2psin .
Combined with (17), we arrive at (44). O

Proof of Lemma 4.4. We first connect the expression s'(a—(p, #)) with sin 6:

s'(a-) = —alt * = 2ic cos(25(e-)))
T _1 — (1= 1)? + 4k sin*(s(a)
el - _1K2 (1 —k)>+ 4K5/(a_)ﬁ,02 sin® 6)
- ll_TI; + ¢/ (a-) a j_Klf;)Z sin” 6.
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Solving for s’ () we arrive at

1— 1 232
PTIROIY ) F L SR L .0 S—
1+« (1 + kp?)? — 4kp?sin® 0
To obtain (46), differentiate the relation ¢2/¢" = fzm% to obtain
+Kkp-e
eZiG/a_e/ _ 1—«2p? 210
00 1+ K,0262i9)2
Then
8_0/ B 1 — K2 p ezi91+“ﬁ’2€2i0
30 (1 + kp2e?if)? €210 4 kp?
_ 1— K2p4
(1+ szezm)(l + sze—zio)
1— K2p4

T (L + kp2)2 —dkp?sin® 0’
and (46) follows from using (52).

Now to relate sin 8 and sin 0, from the relation

i X0 +kp? (1 +k%p*) cos(20) + 2kp? + i (1 — k2 p*) sin(26)
e = =

1 4 kp2e2i® 1 + «2p* + 2kcp? cos(20)

’

whose real part gives

1 4 «?p* 2kp?

2up? . K2,04j| (cos(20)).

cos(20’) = [

Together with the relation cos(26) = [ 2 ! |(sin® #), this implies the relation

. —1 171 +«2p* 2kp? -2 11, .
2 n/ 2
0 = 0
- [0 2][ 2w 1+pt[ 0 1)Cn

_ (1 - sz)z -n2 e

N + « — 4k p” sin

(1 4 kp?)? — 4kp?sin® O
2 1+ (1=xp*)? , o
= T T /c,o2)25 (o) sin” 6.

(52)

Together with the fact that sin 6 and sin 6 have simultaneously the same sign, (47)

follows upon taking squareroots.

O
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Appendix A. Spaces C°, | (3+SM), operators Py, Cx
and a refinement of the Pestov—Uhlmann range characterization

In this section, we work on a general simple surface (M, g) with inward boundary
d+SM. The objects of study are the geodesic X-ray transforms /o: C*°(M) —
C*®(04+SM) and [;:C®°(M;TM) — C*°(0+SM), defined for any (x,v) €
0+SM as

(x,v)

Io f(x.v) = / Frew(®) dt, fecom,
0

(x,v)

Iih(x,v):= /(h(yx,v(t)),)'/x,v(t))g dt, he C®(M;TM),
0

where (yx.v(t), Vx,v(¢)) is the unit speed geodesic with (yx 4 (0), vx,»(0)) = (x, v),
and where t(x, v) is its first exit time.

The Pestov—Uhlmann range characterization of /o and /, appearing in [26,
Theorem 4.4] relates the ranges of /oy and /; with those of P_ and P4 as defined
on

C(94SM) :={u € C®4SM), Ayu € C®(SM)}. (53)

We would like to restrict CJ°(d+SM) to a “half’-subspace incorporating a
natural symmetry associated to whether one is integrating a function or a one-
form. Namely, a function u in the range of I, satisfies $3u = u and a function u
in the range of /; satisfies S3u = —u. One must also encode whether extension
from 04 SM to dSM through Ay produces smooth functions.

To this effect, we then define

Cop(04SM) :={u € C*(04+SM), Axu € C*(ISM)}.
Thus, C7°, (0+SM) coincides with C7°(9+SM) as defined in [26].
Lemma A.1. The spaces C;°L(0+SM) are stable under the pull-back S}.

Proof. The map 84 is the composition of the scattering relation S§ and the an-
tipodal map (x,v) + (x,—v), as such it can be regarded as a smooth dif-
feomorphism of dSM, thus 8% can be viewed as an operator on C*°(d+SM)
or on C*°(dSM). Moreover, we have the relations 854+ = A+8%. In par-
ticular, if w € CJ%(9+SM), then Ayrw is smooth on dSM. Then so is
SyA+w = A4 (8jw), which exactly means that Syw € C7% (3+SM). O
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Lemma A.1 justifies that we can now write the direct sum decompositions:
0?3:(34_SM) = $i5+(a+SM)®C§?ﬂ:,_(a+SM),

where we have defined
Coor (04 SM) :={u € C7° (0+SM), Sju = *u},
Co2 £ (04SM) :={u € C° (0+SM), Sju = Fu}.

(54)

Each decomposition is produced through the equality
1. . 1. .
W=wy+w_ = 5(1d+SA)w + 5(1d—8A)w

which, thanks to Lemma A.1, produces summands in the correct spaces. Note that
we can also characterize these spaces as

Cor £(0+SM) = {u € C32, (0+SM), Atu is fiberwise even/odd},

Cor 1(04+SM) = {u € CJ2 (0+SM), A_u is fiberwise odd/even}.

Recall then the definitions of the boundary operators
* 1 *
P =A"H Ay, Cyi= EA_HiA_.

The spaces above provide natural smooth functional settings for these operators:
e the operators Py are naturally defined on C7° (+SM) and in the direct
decomposition w = w4 + w—, (Where Sjw+ = Fw.), we get
P+w = P+IU+ € ker(ld +SZ) (P+w_ = 0),
P_w= P_w_ e ker(id—8%) (P-wy =0).

e the operators Cy are naturally defined on C;? (d+SM) and in the direct
decomposition w = w4 + w—, (where Sjw+ = £w4), we get

C+w = C+U)_ S ker(ld +S:;) (C+U)+ = O),
C_w=C_wy € ker(id—8%) (C_w— =0).

The observations about the action of P+ allows us to refine the Pestov—
Uhlmann range characterization [26, Theorem 4.4] as follows:
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Proposition A.2. Let (M, g) be a simple Riemannian surface with boundary.
Then,

(i) afunctionu € C*®(d+SM) belongs to the range of 1y if and only ifu = P_w
Jor some w € C7°, _(0+SM);

(ii) afunctionu € C*°(04+SM) belongs to the range of 11 if and only ifu = Py w
Jor some w € C7° , (34+SM).

Proof. We prove (i) as (ii) is similar. The usual characterization produces v €
Cy(04SM) such that u = P_v. Writing v = v4 + v—, we have that u =
P_(vy +v-) = P_v_wherev_ € C7°, _(9+SM). Thus w := v_ fulfills (i). O
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