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Abstract
Non-perennial rivers and streams make up over half the global river network and are becoming
more widespread. Transitions from perennial to non-perennial flow are a threshold-type change
that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether
streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated
drivers and feedbacks associated with regime shifts between wet and dry conditions in an
intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence
suggested that these regimes represent alternative stable states, including (a) significant jumps in
discharge time series that were not accompanied by jumps in flow drivers such as precipitation and
groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing
no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and
pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels
appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial
aquifer were higher than the stream stage during wet regimes and lower than the streambed during
dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the
regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale
(stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were
associated with diverse pressures including network disconnection caused by upstream water use,
increased flow stability potentially associated with reservoir operations, and anomalous wet and
dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer
interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states
at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to
non-perennial flow will be difficult to reverse.

1. Introduction

Non-perennial streams—a category of hydrological
features that do not flow year-round, including inter-
mittent rivers and ephemeral streams (Busch et al
2020)—make up over half of the global river net-
work (Messager et al 2021) and have become drier
over the past half-century indicating an expansion of
non-perennial flow (Zipper et al 2021). Streamflow

and stream drying are driven by factors including
meteorology, geology, land cover, and human actions
(Zimmer et al 2020, Hammond et al 2021, Shanafield
et al 2021), which interact over a range of spatial
and temporal scales. Complex systems research has
shown that cross-scale interactions can generate sys-
tem configurations that are resilient to change due
to stabilizing feedbacks that maintain the system in
its current configuration (figure 1), often known as

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac7539
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac7539&domain=pdf&date_stamp=2022-6-16
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8735-5757
https://orcid.org/0000-0001-6655-8195
https://orcid.org/0000-0002-0365-2333
mailto:samzipper@ku.edu
http://doi.org/10.1088/1748-9326/ac7539


Environ. Res. Lett. 17 (2022) 074005 S Zipper et al

Figure 1. Stability landscape showing a hydrological system with alternative wet and dry stable states. In the ball’s current
position, hydrological feedbacks maintain the system within the dry basin of attraction unless a sufficiently large external forcing
causes a regime shift by pushing the ball past the tipping point to the wet basin of attraction.

alternative stable states (Scheffer and Carpenter 2003,
van Nes et al 2016). Regime shifts between stable
states can occur when large perturbations in external
forcings overwhelm these feedbacks and push the sys-
tem across a tipping point (Rocha et al 2015, 2018).

Transitions from flow to no-flow are a threshold-
type change, which are often (but not always) associ-
ated with alternative stable states (Dodds et al 2010,
Capon et al 2015). Stream drying is a dominant
determinant of aquatic ecosystem structure and func-
tion (Leigh et al 2016, Leigh and Datry 2017) and
past work on alternative stable states in non-perennial
streams has treated hydrology as an external abi-
otic driver of ecosystem processes, rather than an
endogenous part of the ecohydrological system (i.e.
Heffernan 2008, Bogan and Lytle 2011). However,
both streamflow and groundwater can be subject
to feedbacks that induce stability in different sys-
tem states. In particular, theoretical modeling has
demonstrated that interactions between surface and
subsurface processes can lead to alternative hydrolo-
gical stable states due to feedbacks between land sur-
face and groundwater dynamics (Peterson et al 2009,
Bense et al 2012, 2014, Peterson et al and Western
2014). However, no empirical studies have evalu-
ated the evidence for flow and no-flow conditions as
alternative stable states in non-perennial streams.

Our goal was to determine whether flowing and
no-flow conditions represent alternative hydrological
stable states and, if so, identify the feedbacks that cre-
ate stability in both flowing and no-flow states and
the pressures that induce regime shifts between states.
To accomplish this, we characterized the historical
hydrology of a large intermittent river, the Arkan-
sas River near Larned, Kansas (USA) by investigating
time series characteristics (jumps, multi-modality,
and hysteresis) often associated with alternative stable
states. We found evidence for stabilizing feedbacks
between upstream surface water inflows, stream–
aquifer exchange, climate, vegetation, and pumping.
These feedbacks act over timescale from days to years
and create alternativewet (flowing) and dry (no-flow)

stable states. Regime shifts between stable states were
associated with diverse human and climatic changes
to thewater cycle including surfacewater and ground-
water use, extremewet or dry climatic conditions, and
reservoir construction.

2. Methods

2.1. Study site
The Kansas Geological Survey (KGS)’s Larned
Research Site is on a 7th order reach of the Arkan-
sas River near Larned, KS (figure 2(a)), co-located
with U.S. Geological Survey (USGS) stream gage
07141220 (figure 2(b)) and ∼17 km downstream
of the junction between the Pawnee and Arkansas
Rivers. The river’s sandy bed is channelized in a
highly-conductive sand and gravel alluvial aquifer
approximately 10 m in thickness and underlain by a
low-permeability leaky clay layer separating the allu-
vial aquifer from the underlying High Plains aquifer
(figure 2(c)) (Healey et al 2001, Butler et al 2004,
2007b, 2011). The Arkansas River was historically
a gaining, perennial river with rare dry conditions
in western Kansas, but surface and groundwater use
for agriculture have caused long-term streamflow
declines and drying of many rivers in western Kan-
sas, and at the Larned Research Site the Arkansas
River has periodically ceased to flow since at least
2002 (figure 2(a); Sophocleous and Perkins 1993,
Whittemore 2002). The High Plains aquifer is heav-
ily pumped for irrigation in the region, with over
1 million cubic meters of groundwater pumped
annually within 2 km of the site (1990–2019 mean).
The riparian floodplain at the site is dominated by
phreatophytic cottonwood trees, which can induce
water level fluctuations due to groundwater uptake
when the water table is within the root zone (Loheide
et al 2005, Butler et al 2007a).

2.2. Data
We compiled stream stage, stream discharge,
groundwater level, groundwater pumping, and
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Figure 2. (a) Stream network in Kansas (USA), colored by flow status in 1961 and 2009. Hydrological features discussed in this
manuscript are marked including the Arkansas and Pawnee Rivers, HorseThief Reservoir, and the gages on the Arkansas River at
Dodge City, Pawnee River at Rozel, and Arkansas River near Larned. Data source: Kansas Surface Water Register. (b) Larned
Research Site map including location of stream gage and nested monitoring wells used in this study. Flow is from south to north
in the image. Imagery source: Google Earth. (c) Conceptual model of site (not to scale) showing primary hydrostratigraphic
features (bolded text) and ecohydrological fluxes (italicized).

meteorological data for the Larned Research Site
through the end of the 2021 water year. Daily mean
stream stage and discharge have been monitored by
theUSGS since 1998 (gage 07141220), and dailymean
groundwater levels have been monitored since 2003
from a nested set of wells installed by the KGS in
the shallow alluvial, deep alluvial, and High Plains
aquifers. We also collected streamflow data from
upstream USGS gages including the Arkansas River
at Dodge City (gage 07139500) and the Pawnee River
at Rozel (gage 07141200). Irrigation in the vicinity
of the Larned Research Site is sourced entirely from
groundwater, so we extracted pumping data for the
region from the KGS Water Information Manage-
ment and Analysis System database. We found that a

4 km radius was most strongly correlated with annual
High Plains aquifer water level change at the site, and
used total pumping within 4 km of the study site as an
indicator of groundwater use for subsequent analyses
(see supplemental information for details).

We created a daily meteorological record of pre-
cipitation and temperature for both the site and the
Pawnee River watershed for the period beginning 1
January 1904 from several nearby stations within the
National Oceanographic and Atmospheric Adminis-
tration Global Historical Climatology Network Daily
database. To calculate atmospheric water demand,
we calculated daily reference evapotranspiration
(ETo) using the Hargreaves–Samani (Hargreaves
and Samani 1985, McMahon et al 2013) approach
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as implemented in the ‘Evapotranspiration’ package
for R (Guo et al 2022). We empirically corrected ETo
through comparison with 10 years of American Soci-
ety of Civil Engineers (ASCE) standardized grass ETo
estimates from a nearby Kansas Mesonet station. We
then used the monthly precipitation and ETo data
to calculate the 12 month standardized precipitation
evapotranspiration index (SPEI), an index of cli-
matic water availability (Vicente-Serrano et al 2009,
Zipper et al 2016, Peña-Gallardo et al 2019, Tramblay
et al 2021), using the ‘SPEI’ R package (Begueria and
Vicente-Serrano 2013). Negative and positive val-
ues of SPEI indicate drier- and wetting-than-average
conditions, respectively.

Detailed information about the data sources
and calculations are available in the supplemental
information. All data and code used in this study are
archived in Zipper et al (2022b).

2.3. Characterizing alternative stable states
We used a mixture of historical observational data,
statistical tests, and hydrological time series models
to evaluate the presence and drivers of stability at
the Larned Research Site. To characterize historical
stream intermittency, we extracted the duration of
no-flow conditions as well as the date and season for
the onset of no-flow for each time the USGS gaging
station reported no-flow conditions.

While the presence of stable states can never be
proven from observational data alone, we evaluated
three lines of evidence that are often associated with
alternative stable states in observational data (Scheffer
and Carpenter 2003): (a) jumps in time series of the
hydrological state variable in the absence of jumps
in hydrological forcings, which we evaluated using
the sequential t-test analysis of regime shifts (STARS)
method (Rodionov 2004, Rodionov and Overland
2005); (b) a multi-modal distribution of the hydrolo-
gical state in the absence ofmulti-modal distributions
of driver variables, which we evaluated using an ana-
lysis of histograms; and (c) a hysteretic response of the
hydrological system to drivers, which we evaluated by
comparing the temporal dynamics of the hydrological
state in response to hydrological forcings. For each of
these three tests, we represented the hydrological sys-
tem state using the percent of each month with no-
flow conditions, and considered climate and ground-
water pumping as potential forcing variables.We used
monthly resolution tominimize the impacts of short-
term precipitation-driven rewetting events.

To understand ecohydrological feedbacks that
could contribute to stability, we investigated regional-
scale relationships between flow at the Larned
Research Site and discharge at upstream stream gages,
and reach-scale relationships between water levels in
the river, alluvial aquifer, and High Plains aquifer.
To support our interpretations of these hydrological
data, we also developed a time series model using a
transfer function noise approach (Von Asmuth et al

2008, Bakker and Schaars 2019, Collenteur et al 2019).
This model estimated the degree to which historic
variation in alluvial aquifer water levels could be
attributed to three drivers: (a) climate-driven dif-
fuse recharge through the soil column, represented
in the model using a simple soil water budget model
driven by precipitation and ETo (Collenteur et al
2021); (b) stream–aquifer exchange, represented via
a linear response to stream stage variation; and (c)
groundwater pumping, represented via the Hantush
and Jacob (1955) response to pumping. This model
does not simulate the potential existence of multiple
stable states because it does not include interactions
among these factors, but provides an indication of
the relative importance of each of these drivers on
water levels in the alluvial aquifer, and the time scale
over which each of them influences alluvial aquifer
water levels. Additional model details are in the sup-
plemental information.

3. Results and discussion

3.1. Historical stream intermittency
The Arkansas River near Larned dried for the first
time during our study period on 18 April 2002
(figure 3(a)). During the period of record, there have
been a total of 28 dry events, ranging in length
from one to 789 consecutive days. While most dry
events were relatively short, the majority of histor-
ical no-flow conditions were concentrated in relat-
ively few, long-duration dry events (figure 3(b)) that
were occasionally interrupted by ephemeral, short-
duration flow. For example, from 18 June 2011 to 7
May 2015 the river was dry for a total of 1404 out of
1422 days (98.7% of the time). While dry events can
start in any season, the largest number and longest
average duration of dry events began during the sum-
mer (figure 3(c)).

3.2. Evidence for alternative stable states
All three lines of evidence we evaluated suggested the
existence of alternative hydrological stable states at the
Larned Research Site. First, there were abrupt jumps
from persistent flow (0% no-flow days in a month) to
persistent no-flow (100% no-flow days in a month)
conditions, and vice versa, throughout the period of
record (figure 4(a)). The STARS algorithm identified
a series of five alternating wet and dry regimes with
significant regime shifts occurring in April 2002 (wet
to dry), January 2007 (dry to wet), June 2011 (wet
to dry), and April 2016 (dry to wet). The final wet
regime included some shorter-duration transitions
between flowing and no-flow conditions, and could
perhaps be considered a more extended transitional
period between dry and wet that spans from April
2016 to July 2018 (Popescu et al 2022). None of the
jumps in hydrological time series were accompan-
ied by jumps in either precipitation (figure 4(b)) or
pumping (figure 4(c)), with the possible exception
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Figure 3. Characteristics of historical stream intermittency. (a) Daily discharge hydrograph. Yellow shading indicates periods of
no-flow. (b) Number of no-flow events grouped by the duration of the event. Colors indicate the percentage of the total number
of no-flow days falling in each no-flow duration bin. (c) Seasonal distribution of the onset of no-flow conditions, colored by the
mean no-flow duration for an event beginning in that season. Winter= December–February, Spring=March–May,
Summer= June–August, Fall= September–November.

Figure 4. There were significant jumps in the time series of (a) the number of no-flow days as a percentage of each month, but no
corresponding jumps in either (b) monthly precipitation or (c) annual pumping within 4 km of the study site. Dashed lines
indicate regime shifts identified using STARS analysis, which are classified along the top.
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Figure 5. Histograms showing the distribution of (a) monthly percent of no-flow days, (b) monthly precipitation, and (c) annual
pumping within 4 km of the study site.

of the 2007 dry-to-wet transition that occurred dur-
ing a particularly wet spring both at the site and in
the Pawnee River watershed (figures 4(b) and S2).
While there were no jumps in pumping time series,
there was evidence for lagged impacts of pumping on
streamflow. For example, the 2002 wet-to-dry regime
shift occurred in the midst of a four-year stretch of
higher-than-average pumping and the 2011 wet-to-
dry regime shift occurred after four years of stead-
ily increasing pumping, while the 2016 dry-to-wet
regime shift is coincident with the lowest pumping on
record (figure 4(c)). The jumps in hydrology suggest
that there has been a highly nonlinear and potentially
lagged flow response to changes in drivers.

Second, the Arkansas River near Larned had a
strongly bimodal hydrological state distribution, but
unimodal distributions of both precipitation and
pumping. Of the 276 months during our period
of analysis, 254 months (92%) had no-flow condi-
tions either <10% of days (148 months) or >90% of
days (106 months) (figure 5(a)). Monthly precipita-
tion exhibited a unimodal right-skewed distribution
(figure 5(b)), reflecting the seasonal pattern of precip-
itation in the region (figure 4(b); Compare et al 2021),

and annual pumping in the region exhibited a unim-
odal normal distribution (figure 5(c)). Since monthly
pumping data are not available and stabilizing hydro-
logical feedbacks can vary as a function of timescale
(Peterson andWestern 2014), we also evaluatedmod-
ality with no-flow days and precipitation aggregated
to an annual scale to match pumping data. At the
annual scale, no-flow days still had a strong bimodal
distribution and precipitation and pumping both had
unimodal distributions (figure S3). Thus, the mis-
match between the state distributions of the hydrolo-
gical system (bimodal) and potential driver variables
(unimodal) in both monthly and annual data sugges-
ted the existence of alternative stable states.

Third, stream intermittency at the Arkansas River
near Larned responded to climate in a hystereticman-
ner. The relationship between no-flow days and SPEI
had a clear clockwise loop as the hydrological sys-
tem shifted between wet and dry states (figure 6).
We divided the total period of record into two wet-
dry-wet cycles based on the STARS algorithm so that
the progression of time through different hydrolo-
gic states was evident. In each cycle, we found that
a substantial dry climate anomaly (SPEI < −1) was
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Figure 6. Hysteretic response of stream intermittency (percent of each month with no-flow conditions) to climate (12 month
standardized precipitation evapotranspiration index, SPEI) for (a) 1998–2008 and (b) 2009–2021 water years. In each
wet-dry-wet cycle, the system progressed through a clockwise hysteresis loop. Negative SPEI indicates dry climatic conditions and
positive SPEI indicates wet climatic conditions. Monthly no-flow days were smoothed using a 12 month moving average to match
the timescale of the SPEI.

necessary for the river to dry. For flow to resume, the
climate had to becomewetter than average (SPEI > 0).
In the second wet-dry-wet cycle (2009–2021), there
was a brief negative climatic excursion during the re-
wetting phase which led to a nested counterclockwise
hysteresis loop (figure 5(b)). This excursion was the
potential transitional period between 2016 and 2018
in which the river shifted between wet and dry condi-
tions, seen in figure 4(a) and described earlier in this
section.

Taken together, these three lines of evidence
strongly suggest the existence of alternative hydrolo-
gical stable states for the Arkansas River near Larned.
Both jumps in time series (Rodionov and Over-
land 2005, Stirnimann et al 2019) and multi-modal
state distributions are common indicators of altern-
ative stable states (Kosten et al 2012, Buschke et al
2013). The historical hydrological time series clearly
shows both jumps (figure 4) and multi-modality
(figure 5), while these characteristics are not present
in either climate or pumping time series, indicating
a nonlinear response of the hydrological system to
potential drivers. However, neither time series jumps
nor multi-modality are definitive proof of stability
because the bimodality may be driven by threshold-
type responses to drivers (Scheffer and Carpenter
2003). The hysteretic response of streamflow to cli-
mate (figure 6) provides an additional indicator of
stability by demonstrating that restoring the system
to the climatic conditions that existed before a regime
shift was insufficient to reverse the shift and revert
to the previous state (Hansen et al 2013). In sum-
mary, all the empirical lines of evidence we evaluated
indicated that the hydrological system at the Larned
Research Site is characterized by alternative wet and
dry stable states.

3.3. Regime shift drivers
3.3.1. Changing surface water inflows from upstream
While our analysis focuses on the Larned Research
Site, this reach is near the downstream end of hun-
dreds of kilometers of the Arkansas River that have
transitioned from perennial to non-perennial flow
over the past 70 years due to upstream surface water
and groundwater use (figure 2(a); Whittemore et al
2006, Koehn et al 2019, 2020, Zimmer et al 2020).
Since 2001, there have only been two days of flow at
the closest upstream gage along the Arkansas River
(Dodge City; ∼115 km upstream), though surface
water inflows from Colorado into Kansas (∼325 km
upstream) have remained relatively stable over the
period of record due to an interstate water com-
pact (figure S4). The first wet-to-dry shift, in April
2002, occurred shortly after upstream flow ceased
(figure 7), and this regime shift appears to have been
driven by upstream surface water and groundwater
use that caused the Larned Research Site’s disconnec-
tion from the water supply from the headwaters in
Colorado.

After the Arkansas River near Larned was discon-
nected from stable surface water inflows from Color-
ado, the Pawnee River became the primary contrib-
uting area to the gage at Larned, and both dry-to-wet
regime shifts are associated with high flow events in
the Pawnee River (figure 7). While the Pawnee River
historically flowed only ephemerally in response to
precipitation events (less than 30% of days between
October 1998 and May 2018), the Pawnee River at
Rozel flowed 93.8% of days from June 2018 through
September 2021. This increase in flow persistence on
the Pawnee River coincided with flowing conditions
at the Larned Research Site and may be driven by
the construction of the HorseThief Reservoir in the
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Figure 7. Daily streamflow at three gages: the Arkansas River at Dodge City, which is the closest upstream gage along the Arkansas
River; the Pawnee River at Rozel, which is the closest upstream gage in the Pawnee River that joins with the Arkansas River just
upstream of Larned; and the Arkansas River near Larned, which is the focus of our study. In each panel, yellow shading indicates
no-flow conditions at that site. Dashed lines with blue and red notation at the top of the panel indicate wet and dry regimes,
respectively, for the Arkansas River near Larned identified by the STARS analysis in .figure 4.

Pawnee River watershed (figure 2), which was com-
pleted in September 2009 and filled to capacity in
July 2016 (Kansas Department of Agriculture 2016).
TheHorseThief Reservoir hasmaintained streamflow
by providing outflows exceeding inflows during some
dry periods since 2016, though outflows were sub-
stantially lower than inflows during parts of 2020 and
2021 (figure S5). However, the influence of the reser-
voir on downstream flow persistence is challenging
to isolate because precipitation has been higher than
average since 2016 (figures 4 and S2). Overall, this
suggests that the Pawnee River watershed emerged
as the key control over the hydrological state at the
Larned Research Site after the disconnection from the
upstream Arkansas River watershed, with a combina-
tion of wet climatic conditions and outflows from the
HorseThief Reservoir potentially contributing to the
stability of the current wet regime.

3.3.2. Local ecohydrological feedbacks
Changing upstream inflows interacted with local-
scale ecohydrological processes to determine the flow
regime at the Larned Research Site. Regime shifts
in surface water flow were accompanied by changes
in groundwater levels that induce a reversal of the
hydraulic gradient at the site (figure 8). There was a

downward hydraulic gradient during the dry regimes,
with water levels in the semi-confined High Plains
aquifer lower thanwater levels in the unconfined allu-
vial aquifer. There was rarely streamflow during dry
regimes, but when there was, water levels in the river
typically peaked at a higher value than the alluvial
aquifer, indicating transmission losses and recharge
from the stream into the alluvial aquifer (Shanafield
and Cook 2014, Villeneuve et al 2015, Koehn et al
2020). There was also a clear seasonal pumping sig-
nal in the High Plains aquifer at the site, character-
ized by reductions in water level during the sum-
mer and recovery during the winter (Butler et al
2021). The declines in alluvial aquifer water levels
during pumping in dry regimes (i.e. summer 2012)
suggest that pumping in the High Plains aquifer
induces downward flow through the leaky confining
layer (figure 2(c)), leading to a lagged and dampened
decline in alluvial aquifer water levels, which is con-
sistent with past work at the site (Butler et al 2007b,
2011). In contrast, during wet regimes, there was a
persistent upward gradient with the highest water
levels in the High Plains aquifer, intermediate water
levels in the alluvial aquifer, and lowest water levels in
the river. This gradient allowed streamflow to persist
through periods with minimal precipitation within
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Figure 8. Time series of water levels in the Arkansas River, alluvial aquifer, and High Plains aquifer. Gaps in the river stage data
correspond to the periods when the river was dry. Blue and red notation at the top of the panel indicate wet and dry regimes,
respectively, identified by the STARS analysis in figure 4.

Figure 9. Conceptual model of stabilizing feedbacks within dry and wet states and drivers of regime shifts at the Larned Research
Site.

the wet regimes. The results from our time series
model support this interpretation, showing that the
alluvial aquifer water levels responded immediately to
changes in stream stage, while the response to diffuse
recharge through the soil column was primarily on
seasonal to annual timescales and reductions in allu-
vial aquifer water levels due to pumping were lagged
over multiple years (figure S7).

3.4. Interactions and complexity across scales
We propose that cross-scale interactions between
regional processes (surface water inflows from
upstream, groundwater pumping) and local eco-
hydrological feedbacks (stream–aquifer exchange,
diffuse recharge through the soil column) govern
streamflow and can trigger regime shifts at this site
(figure 9). The two primary ecohydrological feed-
backs in the system are the balance between precip-
itation and plant water use in the riparian corridor,
which drives the amount of diffuse recharge through
the soil column (Collenteur et al 2021), and ground-
water pumping for agricultural use, which is sensitive
to precipitation at the regional scale and depletes
streamflow by lowering groundwater levels locally
and reducing inflows from upstream (Whittemore
et al 2016, Zipper et al 2022a). These cross-scale
interactions suggest that the alternative stable states

we observed here are symptomatic of stressors related
to human activity and climate over much of the
Arkansas River basin, and this site is a reflection of
the broad-scale shift from perennial to non-perennial
streams in western Kansas (figure 2(a)), the Great
Plains (Perkin et al 2017), and worldwide (Sauquet
et al 2021, Tramblay et al 2021, Zipper et al 2021).

Dry-to-wet regime shifts in 2007 and 2016
were associated with wet climatic conditions and
high inflows from the Pawnee River watershed,
which recharged the alluvial aquifer through both
stream–aquifer exchange and diffuse recharge, cre-
ating gaining conditions that sustained flow at the
site (figure 8). By contrast, wet-to-dry regime shifts
in 2002 and 2011 occurred when there was a reduc-
tion in upstream inflows to the site and dry cli-
mate conditions or pumping caused water levels
in the alluvial aquifer to fall below the streambed
for a sustained period of time. The importance of
upstream inflows was particularly evident in 2002,
when upstream water use dried the central portion of
the Arkansas River and cut the Larned Research Site
off from a consistent supply of water (figure 7). The
2011 wet-to-dry regime shift appeared more driven
by local factors and drying occurred when pumping
caused groundwater levels in the High Plains aquifer
and, indirectly, the alluvial aquifer to fall below the
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streambed elevation, indicating the role of pumping
in the High Plains aquifer in causing stream drying
(figure 8). Both dry regimes began when there was
a dry climate anomaly (figure 6) and dry periods
began most frequently in the summer pumping sea-
son (figure 3). Given the strong negative correlation
between pumping and precipitation at this site (Com-
pare et al 2021) and across the region (Whittemore
et al 2016, Butler et al 2018), drought and pumping
appear to be compounding and interacting disturb-
ances that can combine to induce a wet-to-dry regime
shift.

These cross-scale interactions suggest that the
local ecohydrological system can maintain stability in
eitherwet or dry states, and that the state of the system
is ultimately dependent on regional factors (upstream
inflows, regional groundwater pumping, and climate
conditions) that exert pressure on the local system
(figure 9). This builds on past work on complex
ecohydrological systems, which has found that local
feedbacks can induce stability in systems ranging
from drylands (Mayor et al 2019) to boreal forests
(Johnstone et al 2010). While our work focused on
a single stream reach, drought-induced transitions to
alternative hydrological stable states have been sug-
gested to occur across broad scales, for example the
persistent reduction in streamflow following the Mil-
lennium Drought in Australia (Peterson et al 2021),
and appear linked to groundwater declines in some
streams (Kinal and Stoneman 2012). Since ground-
water can have an outsized importance for sustain-
ing aquatic ecosystems (Burns et al 2017, Larsen and
Woelfle-Erskine 2018) and has been identified as a key
feedback in previous studies of hydrological regime
shifts and stable states (Peterson et al 2009, Bense et al
2012, Park and Rao 2014), this suggests that inter-
linked groundwater-surface water systems may be
control points of stability in landscapes with poten-
tially important ramifications for ecosystem structure
and function.

3.5. Implications for land and water management
When considered through the lens of the 23 year
period of record for this site, our analysis sugges-
ted there are distinct wet and dry regimes. However,
from a multi-generational perspective the wet and
dry regimes we identified here may represent a single
transitional period from a historical wet regime to a
future dry regime. The future state of the Arkansas
River likely depends on both local and global human
activities related towater use, water and landmanage-
ment, and climate change, which are already in ten-
sion. In the case of the Arkansas River near Larned,
it appears that upstream water use triggered the first
shift to a dry regime, andwet conditions and reservoir
operations in the Pawnee River watershed may have
pushed the system back to a wet regime (figure 7).

The management actions that triggered these
hydrologic regime shifts were implemented to

maximize specific upstream ecosystem services: agri-
cultural production in the case of upstreamwater use,
flood control and recreation in the case of the Hor-
seThief Reservoir. However, non-perennial streams
provide diverse ecosystem services, which can vary
nonlinearly in response to water availability (Qiu
et al 2018, 2019) and differ between flowing and no-
flow states (Kaletová et al 2019, Stubbington et al
2020), and therefore the management for upstream
ecosystem services inadvertently led to a shift in the
provision of ecosystem services at the downstream
Larned Research Site. These interlinkages suggest
that effective management requires integrating syner-
gies and tradeoffs among ecosystem services through
space and time, for example by balancing the services
gained from upstream water use against potential
losses in downstream flow-driven services such as
water supply and water quality in the Arkansas River
near Larned. Since regime shifts are characterized by
nonlinear change and likely to be difficult to reverse,
avoiding regime shifts may have outsize benefits but
effective management requires detailed characteriz-
ation of stabilizing feedbacks and potential cross-
scale interactions that may trigger undesired regime
shifts.

4. Conclusions

We evaluated multiple lines of evidence, all of which
suggest that dry (no-flow) and wet (flowing) condi-
tions represent alternative stable states for the inter-
mittent Arkansas River. Over the past 23 years, there
have been four regime shifts at the site which appear
to have been driven by changes in surface water
inflows from upstream, groundwater use near the
site, climate in upstream areas, and ecohydrological
feedbacks occurring at the site. Regime shifts can
be triggered by human actions, such as the discon-
nection of the site from headwaters due to stream
drying caused by upstream water use, and natural
phenomena such as anomalously wet or dry cli-
matic conditions. Ultimately, groundwater levels in
the alluvial aquifer at the site are the primary control
over the hydrological regime at the stream reach scale.
Wet-to-dry regime shifts occurred when the water
levels in the alluvial aquifer declined below the stre-
ambed, inducing losing conditions from the stream to
the aquifer, while dry-to-wet regime shifts occurred
when wetter-than-normal meteorological conditions
upstream led to substantial surface water inflows,
recharge from the stream into the aquifer, and diffuse
groundwater recharge through the soil column that
caused gaining stream conditions. Future research
is needed to determine the degree to which these
processes are generalizable to other settings, but the
existence of alternative wet and dry stable states in
a large intermittent river suggests that the observed
worldwide loss of perennial streams may be challen-
ging to reverse.
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