

Obsidian at Kobuleti (Western Georgia): Evidence for early human contact in Western Transcaucasia during the Early Holocene

Guram Chkhatarashvili^a, Michael D. Glascock^b

^a Ajara Museum, Batumi, Georgia, 6010, gurami.chxa87@yahoo.com

^bArcheometry Laboratory Research Reactor Center,

University of Missouri, Columbia, MO 65211, glascockm@missouri.edu

A B S T R A C T. We describe a study of obsidian artifacts from an early Holocene period site located at Kobuleti, Georgia, in the southeastern Black Sea region. A collection of obsidian artifacts discovered there were analyzed by X-ray fluorescence to determine their provenance. Two of the three types of obsidian identified correspond to the Chikiani and Sarikamis sources indicating early human mobility and cultural contact within Caucasia. One unprovenanced artifact did not match any of the currently known sources.

Keywords: Kobuleti, Chikiani, Caucasus Mountains, obsidian, , X-ray fluorescence

1. Introduction

Obsidian (volcanic glass) was one of the most popular varieties of stone used by prehistoric humans to produce sharp-edged tools. The sources of obsidian are generally restricted to geologically-recent volcanic regions, such as eastern Africa, western North America, the trans-Mexican volcanic belt, western South America, Russian Far East, Japan, islands of the South Pacific, Mediterranean, and the Caucasus Mountains. In recent years, archaeologists have made extensive use of geochemical analysis to investigate questions about obsidian artifact provenance (Glascock, 2020).

One of the most active regions for obsidian usage during the early Holocene was the Caucasus Mountains. The Caucasus Mountains are located in the region separating the Black and Caspian seas and where Europe and Asia join. The country of Georgia lies between two separate ranges—the Greater Caucasus in the north and the Lesser Caucasus in the south. Although sources of obsidian are abundant in the region, a majority of the sources are located south and southwest of

Georgia in the countries of Armenia, Azerbaijan, and Turkey (Adler, 2002; Badalyan et al., 2004; Biagi et al., 2017, 2018; Chataigner and Gratuze, 2014a,b; Frahm et al., 2016; Pleurdeau et al., 2007). The two sources most accessible to archaeological sites in Georgia are the Chikiani source in south-central Georgia and the Baksan River source in southern Russia. See the map in **Fig. 1**.

The Chikiani source, located near Lake Paravani, is the most northern of the Lesser Caucasus obsidian sources. The Middle-Late Pliocene volcano whose age is estimated to be between 2.4Ma and 2.8Ma (Lebedev et al., 2008; Nomade et al., 2016) is composed of a mixture of trachyrhyolites, obsidian, and perlites (Nasedkin et al., 1983). The obsidian is very homogeneous, without inclusions, and comes in a variety of colors. According to Gogadze (1980) and Kikodze (1983), exploitation of obsidian from Chikiani began in the Palaeolithic and extended until the Historic Period.

The Baksan source was discovered by Borchevskiy (1900) and is located on the flanks of Mt. Elbrus. The presence of obsidian artifacts from Baksan in the Atzhukino region was confirmed by Dubanskiy (1911, 1912) and at the Neolithic settlement of Nalchik by Ermelenko (1929). According to Chirvinskiy (1934), the exploitation of obsidian from Baksan began during the Palaeolithic. Uranium fission-track dating has estimated the age of Baksan obsidian to be about 2.2Ma (Komarov et al., 1972).

Archaeological excavations in the territory of Georgia have revealed several hundred sites (caves, grottos, rock shelters, open-air sites, etc.) from the Stone Age (Paleolithic, Mesolithic, Neolithic) both near the Black Sea coastline (Gogitidze, 1978; Kalandadze, 1978; Nebieridze, 1972) and in the mountainous area (Adler et al., 2006, 2008; Bar-Yosef et al., 2011; Gabunia, 1976; Grigolia, 1977; Meshveliani et al., 1999; Nioradze, 1933, 1953; Pinhasi et al., 2014; Tsereteli, 1973; Tushabramishvili, 1960; Tushabramishvili et al., 1999, 2012). Many of the sites show evidence of both temporary and long-term habitation. Some of the sites were used as lithic workshops.

Excavations carried out at various times have uncovered extensive archaeological materials, including obsidian. Unfortunately, obsidian artifacts from only a limited number of early Holocene sites in central Georgia have been studied to determine their provenance (Badalyan et al., 2004; Blackman et al., 1998; Le Bourdonnec et al., 2012) which have mainly originated from Chikiani. Due to its convenient location in central Georgia, obsidian from the Chikiani source, is likely to have spread to other sites in western and eastern Georgia.

The available evidence for early Holocene occupation of the western Georgia will be presented here based on the archaeological data obtained from the site of Kobuleti. The main objective of this work is to present evidence of human contact at the site in the early Holocene (10,000 to 7,000 years ago)

2. Geographic and archaeological context

Kobuleti is an open-air site situated on the Colchian Plain, which occupies almost the whole of western Georgia and lies to the east of the Black Sea. The Colchian Plain is characterized by a humid subtropical climate. The site of Kobuleti is located on a hill overlooking the north bank of the river Kintrishi in Ajara (western Georgia) (GPS: 41.8030° N, 41.8844° E). The hill with a height of 50m a.s.l. is formed from basaltic rock. The upper portion is associated with the archaeological site.

The first archaeological investigations at Kobuleti were performed by Berdzenishvili and Nebieridze (1964). The first excavations were conducted by archaeologist Gogitidze (1978, 2008), who organized multiple field seasons at Kobuleti from 1971-1986. Gogitidze (2008) dated the site to the Late Mesolithic - Early Neolithic period. More than one hundred pits used for different purposes were found during archaeological excavations. A total of about 30,000 artifacts made of flint and obsidian were recovered. About 2,000 of the artifacts were tools and the remainder weredebitage (flakes, chips, chunks, etc.). Because of the moist soil, wood and bone materials were not found during the excavations at Kobuleti. Unfortunately, no radiocarbon and palynological studies were conducted.

In 2019, for the first time in 33 years, funding from Batumi Shota Rustaveli State University supported an opportunity to investigate the site of Kobuleti using interdisciplinary research (palynology, use-wear analyses, and geochemistry). The techno-typological and use-wear analysis of the stone artifacts found that the tools were not made locally, but instead were brought to the site as ready-made products. Microscopic analysis of the artifacts reveals that the main activities conducted at the site were the processing of game meat and working with leather (Esakiya and Chkhatarashvili, 2020). No evidence for long-term usage was determined on any of the tools. According to the palynological analysis, the climate was warm at the time when the site was

functioning. This was confirmed by examining the spores of thermophilic plants in the samples (Chkhatarashvili et al., 2020).

The new excavations were carried out in the central part of the hill to the north of a previously studied trench. In order to locate an undisturbed cultural layer, several survey trenches were made. The most interesting among these was trench number 3 where we investigated 32 m² and found the stratigraphic details listed in Table 1.

All cultural evidence was fixed in three soil layers. Despite different colors, all three layers belong to the same period – the Mesolithic – both typologically and structurally. In addition, we discovered 12 pits with numerous flint and obsidian artifacts. Pit 5 was found in layer 1, pit 6 in layer 2 and pits 1-4 and 7-12 were associated with layer 3.

During the course of the archaeological work, a total of 1533 artifacts were discovered (see Tables 2-3). Of these, a total of 262 were formal tools (i.e., burins, chisels, endscrapers, etc.). Also found were 179 bladelets, 165 microblades, and the remainder consisted ofdebitage (i.e., chips, flakes, and chunks). Three spent cores and four tablets (i.e., rejuvenated platforms) were also recovered.

Typological analysis of the flint and obsidian artifacts indicates they were not knapped on the spot. By comparing the quantity of blades versus flakes/chunks, it appears the artifacts were probably brought to Kobuleti in the form of ready-made products and mainly used for hunting.

A majority of the bladelets and microblades have semi-flat shapes. Apparently, they used a pressure technique to produce bladelets and microblades from cores (Hildebrand, 1996). Many of these show evidence of retouching on their edges (**Fig. 2: 1-3**). Some of the bladelets were notched (**Fig. 2: 4-6**).

Second most numerous among the tools were burins. They were rather diverse with side and angle burins, double-faceted and dihedral burins, etc. (**Fig. 2: 7-9**). A majority of the burins were produced from blades, but some of them were made from flakes. There is one combined tool - burin-endscraper (**Fig. 2: 10**).

Also, among the finds were 15 endscrapers (**Fig. 2: 11**) and several chisels (**Fig. 2: 12**). It appears the endscrapers and chisels were produced by retouching some of the flakes. There were also several truncated blades (**Fig. 2: 13**) -- some of them were truncated faceted blades still showing the negative of a microburins spall.

An important group of tools are microblades with abrupt retouching on their edges. These were used specifically for hunting. There are both thick (up to 3 mm) and thin (about 1 mm) microblades (**Fig. 2: 14-18**).

At present, we only have one absolute date for the site of Kobuleti (Table 4). According to other archaeological sites of the Stone Age in Georgia, the date fits exactly in the chronological framework of the Mesolithic period (Gabunia and Tsereteli, 1991: 196). It is still debatable whether the Mesolithic Period should be the distinguished separately and independently from the Upper Paleolithic Period (Rogachev, 1966). Other archaeologists see it as a separate epoch (Formozov, 1970). Some researchers consider the main criteria for isolating the Mesolithic Period to be only the typological features of the tools and the nature of economy; others consider only the ecological-climatic, paleontological and social elements (Kozlowski, 1973). With all this in mind, we suggest that the Kobuleti is a Mesolithic site that early hunters visited seasonally.

3. Materials and Methods

Following the 2019 field work, it was decided to submit obsidian artifacts for geochemical analysis to determine the chemical composition and provenance of the obsidian. It should be noted that four samples of Kobuleti obsidian had been analyzed previously (Badalyan et al., 2004). The earlier study established that all four artifacts came from Chikiani Mountain in southern Georgia. However, our goal was to study a much larger number of samples, which would naturally allow us to draw more accurate conclusions. The study was conducted by submitting 50 artifacts from Kobuleti and ten geological samples from the Chikiani source to the Archaeometry Laboratory at the University of Missouri Reactor Research (MURR).

The geological and artefact samples were analyzed for their compositions by using a ThermoQuantx ARL spectrometer operating at 35kV. The spectrometer was calibrated earlier for obsidian studies by analyzing a suite of 40 geological obsidians analyzed by NAA, XRF and inductively coupled plasma mass spectrometry (Glascock, 2020). The elements measured were K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Y, Zr, Nb, and Th. A measurement time of 60 seconds was used on each sample.

4. Results

The results for the ten geological samples from Chikiani are listed in Table 5. The results for the 50 artifacts from Kobuleti are listed in Table 6. A comparison of the Kobuleti artifacts to the geological samples from Chikiani determined that 48 of the artifacts did indeed come from the Chikiani source (see **Fig. 3**). However, artifacts GUG001 and GUG024 were found to be different from the rest. Artifact GUG001 came from the Sarikamis source (northern subgroup) located in northeastern Turkey. After comparing artifact GUG024 to all known sources in Armenia, Azerbaijan, North Caucasus and Turkey, we concluded that it came from an unknown source.

5. Discussion

The main materials used for the stone tools on Kobuleti site were flint and obsidian. The Lesser Caucasus region is rich in flint outcrops due to the presence of limestone in which large amounts of Turon-type flint are frequently encountered. Flint is absent in the immediate (Kintrishi River valley) and further surroundings (valleys of Supsa, Natanebi and Rioni) near the Kobuleti site. The flint used at Kobuleti and on the eastern Black sea littoral is of very high quality (red, white, grey, yellowish and other colours). Whereas a low-quality chert formed on the basis of petrified wood was exclusively used in the highlands and is not encountered on the littoral. Unfortunately, no attempts have been made to provenance the type of flint used at Kobuleti site by means of archaeometric methods.

Concerning the obsidian, it represents the most often used material after flint for making tools at Kobuleti. The obsidian is of high quality and is mainly characterized by transparent and black colours. However, examples with red-veins points to the fact that different sources were sometimes used. The closest obsidian source is located ca. 170 km from Kobuleti, at Chikiani mountain, which remains as the only known obsidian source on the territory of Georgia. It should be noted that geologists have documented obsidian veins have been in a few gorges in western Georgia, however they are too limited in thickness and volume to be suitable for tool production. Based on the technotypological analysis of stone industry, we conclude that obsidian, being a high quality and easily workable material, was favored by the settlers of Kobuleti site for the tool production.

The second obsidian source used for the tools at Kobuleti site was Sarikamis (Turkey), located at the distance of ca. 200-220 km. The Sarıkamış obsidian source is named after a small town in the Kars province in eastern Turkey. The area is very mountainous. According to chemical

analyses obsidian has been discovered in several deposits that separate into two groups: Sarikamis “South” and “North”. The Sarikamis South source area is located near the towns of Mescitli and Sehitemin. It is characterized by high barium concentrations and relatively low amounts of the zirconium (Chataigner et al., 2014). This group is the oldest (4.9–4.4 Ma, Bigazzi et al., 1998) and comes from an undifferentiated magma (Gallet, 2001). The Sarikamis North source area is located near the towns of Kizil Kilisa, Handere and Hamamlı. It is characterized by low barium concentrations and higher concentrations zirconium. This group is the more recent (3.8–3.5 Ma; Bigazzi et al., 1998) and comes from a more evolved magma in which zircon is present as micro-crystals (Chataigner et al., 2014; Gallet, 2001).

According to geochemical analyses of obsidian artifacts discovered at the sites of Aratashen, Karkrakar, and Keti in western Armenia (Chataigner et al., 2014: 20-22) and at Ortvala-klde in western Georgia (Le Bourdonnec et al., 2012) the obsidian came from the Sarikamis North source. The sample of Sarikamis obsidian in this study also came from the Sarikamis North source.

6. Conclusion

According to our research, the early humans at Kobuleti obtained obsidian from multiple sources. By far, the most important source was Chikiani Mountain which lies southeast of Kobuleti. In addition to being closest to Kobuleti, obsidian from the Chikiani source was favored for tool production because it was a high quality and easily workable material. The Sarikamis source located south of Kobuleti served as a minor secondary source for the inhabitants of Kobuleti. Our analysis also revealed the existence of one unknown source. Although the latter could not be identified, it may be evidence of more extensive contacts as research has shown that early humans were often mobile and had active contacts with other regions. In summary, it can be said that obsidian found in the Ajara region along the southeastern Black Sea coast is the earliest evidence of the use of obsidians from Chikiani and Sarikamis in the early Holocene (approximately 10,000 to 7,000 years ago).

Acknowledgments

This work was supported by Batumi Shota Rustaveli State University (grant number 02-12/19). Special thanks to the head of the archaeological expedition Prof. Amiran Kakhidze and Valery

Manko, a scientific-worker of the Institute of Archaeology of the Ukrainian Academy of Sciences, Candidate of Historical Sciences for consultations in field work. The Archaeometry Lab at MURR acknowledges support from received from the US National Science Foundation through grant number 1912776.

References

Adler, D.S., 2002. Late Middle Palaeolithic Patterns of Lithic Reduction, Mobility, and Land Use in the Southern Caucasus. Harvard University, p. 488. (PhD dissertation).

Adler, D.S., Bar-Oz, G., Belfer-Cohen A., Bar-Yosef, O., 2006. Ahead of the Game, Middle and Upper Paleolithic Hunting Behaviors in the Southern Caucasus. *Current Anthropology*, 47(1): 89-118.

Adler, D., Bar-Yosef, O., Belfer-Cohen, A., Tushabramishvili, N., Boaretto, E., Mercier, N., Valladas, H., Rink, W., 2008. Dating the demise: Neandertal extinction and establishment of modern humans in the south Caucasus. *Journal of Human Evolution*, 30: 1-17.

Badalyan R., Chataigner C., Kohl Ph., 2004. Trans-Caucasian obsidian: The exploitation of the sources and their distribution. *Ancient Near Eastern Studies*, Supplement 12, Peeters, pp. 437-465.

Bar-Yosef, O., Belfer-Cohen, A., Mesheviliani, T., Jakeli, N., Bar-Oz, G., Boaretto, E., Goldberg, P., Kvavadze, E., Matskevich, Z., 2011. Dzudzuana: an Upper Palaeolithic cave site in the Caucasus foothills (Georgia). *Antiquity* 85: 331–349.

Berdzenishvili, N., Nebieridze, L., 1964. New stone age sites in Kitrishi gorge, South-West Georgia, I, Tbilisi, pp. 7-16. (in Georgian)

Biagi, P., Nisbet, R., Gratuze, B., 2017. Discovery of obsidian mines on Mount Chikiani in the Lesser Caucasus of Georgia. *Antiquity*, 91(357): 1–8.

Biagi, P., Nisbet, R., 2018. The Georgian Caucasus and its resources: the exploitation of the Mount Chikiani uplands during the metal ages. *Antiquity*, 92 (362): 1–9.

Bigazzi, G., Poupeau, G., Bellot-Gurlet, L., Yeginil, Z., 1998. Provenance studies of obsidian artefacts in Anatolia using the fission-track dating method: an overview. In: Cauvin, M.-C., Gourgaud, A., Gratuze, B., Arnaud, N., Poupeau, G., Poidevin, J.-L., Chataigner, C. (eds.), *L'obsidienne au Proche et Moyen Orient: du volcan à l'outil*. pp., BAR International Series 738, Archaeopress, Oxford, pp. 69–89.

Blackman, J., Badalyan, R., Kikodze, Z., Kohl, Ph., 1998. Chemical characterization of Caucasian obsidian geological sources. In: Cauvin, M.-C., Gourgaud, A., Gratuze, B., Arnaud, N., Poupeau, G., Poidevin, J.-L., Chataigner, C. (eds.), *L'obsidienne au Proche et Moyen Orient: du volcan à l'outil*. pp., BAR International Series 738, Archaeopress, Oxford, pp. 205-231.

Borchevski, C.I., 1900. Opisanie imerologicheskoi kolektsyi sobrannoi v predelах Kubani v 1898 g. (*Description of mineralogical materials collected near Kuban in 1898*), Izvestie Obshestvo liubitelei Izuvhenia Kubanskoy Oblasti, vip. 2, Ekanterinodar.

Chataigner, C., Gratuze, B., 2014a. New data on the exploitation of obsidian in the Southern Caucasus (Armenia, Georgia) and Eastern Turkey, part 1: source characterization. *Archaeometry*, 56(1): 25–47.

Chataigner, C., Gratuze, B., 2014b. New data of the exploitation of obsidian in the Southern Caucasus (Armenia, Georgia) and Eastern Turkey, part 2: Obsidian procurement from the Upper Paleolithic to the Late Bronze age. *Archaeometry*, 56(1): 48-69.

Chataigner, C., Isikli, M., Gratuze, B., Çil, V., 2014. Obsidian sources in the regions of Erzurum and Kars (north-east Turkey): new data. *Archaeometry*, 56(3): 1-24.

Chkhatarashvili, G., Manko, V., Kakhidze, A., Esakiya, K., Chichinadze, M., Kulkova, M., Strelcov, M., 2020. South-East Black Sea coast in Early Holocene period (according to interdisciplinary investigations in Kobuleti site). *Quaternary International*, (under review)

Chirvinskiy, P.N., 1934. Obsidian is Karachaevskoy I Kabardino-Balkarskoy avtonomnih oblastey [Obsidian from Karachaevskaya and Kabardino Balkarskaya autonomous regions]. Notes of the Russian Mineralogical Society 63 (1), pp. 247-262.

Dubanskiy, V.V., 1911. Elbrus I dolina Baksana (predvaritelnie soobshenie) [Elbrus and plan of Baksan], Trudi Varshavskoiy Obshestvenoi Estestvoispitatel

Dubanskiy, V.V., 1912. Zametka o novoy vulkanicheskoy oblasti v doline Baksana (A note on the new volcanic area in the Baksan valley), Izvestiya of Politecnical Institute in Warsaw.

Ermelenko, M.I., 1929. Neoliticheskoe stoyanka v predelax kabardino-Balkarskoy autonomnoi oblasti (Neolithic site in Autonomous region of Kabardino-Balkaria), Izdatelestvo Oblastnogo Muzeya kabardino-Balkarskoy autonomnoi oblasti, Nalchik.

Esakiya, K., Chkhatarashvili, G., 2020. Complex analysis of the stone industries from the Kobuleti Mesolithic site. *Povolzhskaya Arkheologiya*, (under review)

Formozov, A.A., 1970. O termine "Mezolit" i ego ekvivalentax (about Mezolithic and it's equivalent), Sovetskaya Arkheologiya (Soviet Archaeology), N 3, pp. 6-12 (in Russian).

Frahm, E., Feinberg, J.M., Schmidt-Magee, B.A., Wilkinson, K.N., Gasparian, B., Yeritsyan, B., Adler, D.S., 2016. Middle Paleolithic toolstone procurement behaviors at Lusakert Cave 1, Hrazdan valley, Armenia. *Journal of Human Evolution*, 91: 73–92.

Gabunia, M., 1976. Mesolithic culture of Trialeti, Tbilisi (in Georgian).

Gabunia, M., Tsereteli, L., 1991. Mesolithic. *Georgian Archaeology*, 1: 196-225.

Gallet, S., 2001. Les obsidiennes de la région de Kars et de Sarıkamış,—géochimie et application à l'archéologie, *Travail d'étude et de recherche*, Université de Clermont-Ferrand,

Glascoc, M.D., 2020. A systematic approach to geochemical sourcing of obsidian artifacts. *Scientific Culture* 6(2): 35-46. <https://doi.org/10.5281/zendo.3734847>

Gogadze, E.M., 1980. Excavations at Paravani Kurgan (1979). *Archaeological Expeditions of the Georgian National Museum* 7: 42—48 (in Georgian and Russian).

Gogtidze, S., 1978. Neolithic culture of South-East Black Sea, Tbilisi (in Georgian).

Gogtidze, S., 2008. Archaeological sites in Kintrishi gorge (Early Neolithic site in Kobuleti), Batumi (in Georgian).

Grigolia, G., 1977. Neolithic of central Colkheti, Paluri, Tbilisi (in Georgian).

Hildebrand, E., 1996. Changes in Methods and techniques of blade production during the Epipaleolithic and Early Neolithic in the Eastern fertile crescent, Studies in Early Near Eastern Production, Subsistanse and Environment 3 (SENEPSE), Berlin, ex'oriente, pp. 193-206.

Kalandadze, K., 1978. Stone age sites from Melouri, “Matsne”, 4: 64-79, Tbilisi (in Georgian).

Kikodze, Z.K., 1983. On the methods of study of the Early Palaeolithic bifaces. Sovetskaya Arxeologiya 3: 188-194 (in Russian).

Komarov, A.N., Skovorodkin, N.V., Krapetyan, S.G., 1972. Opredeleniye vozrasta prirodnikh stekol po trekam oskolkov deleniya urana [Determination of age of natural glasses according to trace of uranium fission fragments]. Geokhimiya 6, 693-698 (in Russian).

Kozlowski, S.K., 1973. Introduction to the History of Europe in Early Holocene. In: *The Mesolithic in Europe*, Warshava.

Le Bourdonnec, F.-X., Nomade, S., Poupeau, G., Guillou, H., Tushabramishvili, N., Moncel, M.-H., Pleurdeau, D., Agapishvili, T., Voinchet, P., Mgelandze, A., and Lordkipanidze, D., 2012. Multiple origins of Bondi Cave and Ortvale Klde (NW Georgia) obsidians and human mobility in Transcaucasia during the Middle and Upper Palaeolithic. *Journal of Archaeological Science*, 39: 1317–30.

Lebedev, V.A., Bobnov, S.N., Dudauri, G.Z., Vashakidze, G.T., 2008. Geochronology of Pliocene volcanism in the Dzhavakheti Highland (the Lesser Caucasus). Part 2: Eastern part of the Dzhavakheti Highland. Regional geological correlation. *Stratigraphy and Geological Correlation*, 16: 553—574.

Meshveliani, T., Bar-Yosef, O., Belfer-Cohen, A., Jakeli, N., Kraus, A., Lordkipanidze, D., Tvalchrelidze, M., Vekua, A., 1999. Excavations at Dzudzuana cave, Western Georgia (1996-1998), preliminary results. *Prehistoire Européenne*, 15: 76-86.

Nebieridze, L., 1972. Neolithic of Western Transcaucasia, Tbilisi (in Georgian).

Nasedkin, V.V., Sergeev, N.N., Alibegashvili, G.Ya., Rixiladze, L.G., 1983. Geological structure of the Paravana perlite deposit. In: Geology and genesis of the most important endogenic non-metallic deposits, Moscow, pp. 186—198 (in Russian)

Nioradze, G., 1933. Paleolithic man in Deviskhvreli, Tbilisi (in Georgian).

Nioradze, G., 1953. Stone age man in Sakajia cave, Tbilisi (in Georgian).

Nomade, S., Scao, V., Guillou, H., Messager, E., Mgeldzde, A., Voinchet, P., Renne, P.R., Courtin-Nomade, A., Bardintzeff, J.M., Ferring, R., Lordkipanidze, D., 2016. New $^{40}\text{Ar}/^{39}\text{Ar}$, unspiked K/Ar and geochemical constraints on the Pleistocene magmatism of the Samtskhe-Javakheti highlands (Republic of Georgia). *Quaternary International* 395: 45—59.

Pinhasi, R., Meshveliani, T., Matskevich, Z., Bar-Oz, G., Weissbrod, L., Miller, Ch., Wilkinson, K., Lordkipanidze, D., Jakeli, N., Kvavadze, N., Higham, Th., Belfer-Cohen, A., 2014. Satsurblia: new insights of human response and survival across the Last Glacial maximum in the Southern Caucasus. *PLOS ONE*, 9(10): e 111271, 1-27.

Pleurdeau, D., Touchabramichvili, N., Nioradze, M., de Lumley, H., Lordkipanidze, D., 2007. Les assemblages lithiques du Paléolithique moyen de Géorgie. *L'Anthropologie*, 111: 400-431.

Rogachev, A.N., 1966. Nekotorie voprosi izuchenia Epipaleolita Vostochnoi Evropei (Some questions of study of Epipaleolithic of Eastern Europe). *Materialy i issledovaniia po arkheologii* (Materials and Studies in the Archaeology). The USSR Academy of Sciences, 126: 9-13 (in Russian).

Tsereteli, L., 1973. Mesolithic culture in Caucasia Black-Sea Coast, Tbilisi (in Georgian).

Tushabramishvili, D., 1960. Remains of Paleolithic period from Gvarjilas-Klde, Tbilisi (In Georgian).

Tushabramishvili, N., Lorkipanidze, D., Vekua, A., Tvalcherlidze, M., Muskhelishvili, A., Adler, D.S., 1999. The Palaeolithic rockshelter of Ortvale Klde, Imereti region, the Georgian Republic. *Préhistoire Européenne*, 15: 65-77.

Tushabramishvili, N., Pleurdeau, D., Moncel, M.-H., Agapishvili, T., Vekua, A., Bukhsianidze, M., Maureille, B., Muskhelishvili, A., Mshvildadze, M., Kapanadze, N., Lordkipanidze, D., 2012. Human remains from a new Upper Pleistocene sequence in Bondi Cave (western Georgia). *Journal of Human Evolution* 62, 179e185.

Table 1. Stratigraphy of trench number 3 at the site of Kobuleti.

Depth (m)	Description of layers
0 to 0.2	Humus layer
0.2 to 0.3	Layer 1. Blackish-brown soil
0.3 to 0.45	Layer 2. Brown soil
0.45 to 0.65	Layer 3. Light brown soil with small pebbles
0.65 and below	Yellow (sterile) layer

Table 2. List of flint and obsidian artifacts in soil layers 1-2 at Kobuleti.

Type	Layer 1		Layer 1, Pit 5		Layer 2		Layer 2, Pit 6		Total		
Cores and debitage	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	
Core	1					1			1	1	2
Tablettes					2	1	1		3	1	4
Blades	3				7	2	18	9	28	11	39
Bladelets	8	13	3	8	45	27	7	14	63	62	125
Microblades	2	10	1	6	16	23	34	24	53	63	116
Flakes	8	9	19	16	54	23	99	31	180	79	259
Chips	12	18			16	6	65	21	92	45	138
Chunks	5	12			35	63	13	20	53	95	148
Burin spalls		1			3	2			3	3	6
Tools	15	25	6	8	26	44	15	48	62	122	184
Burins	5	5	5		12	5	3	9	25	19	44
Endscrapers		3		1	2	2		2	2	8	10
Chisels					5	4	1	2	6	6	12
Retouched Flakes					1			2	1	2	3
Retouched blades, bladelets, microblades	7	13		2	4	15	2	13	13	43	59
Notched blades, bladelets	1			5	1	8	2		4	13	17
Truncated Blades, bladelets, microblades	2	3			1	3	4	5	7	11	18
Microblades with abrupt retouch		1				7	3	12	3	20	23

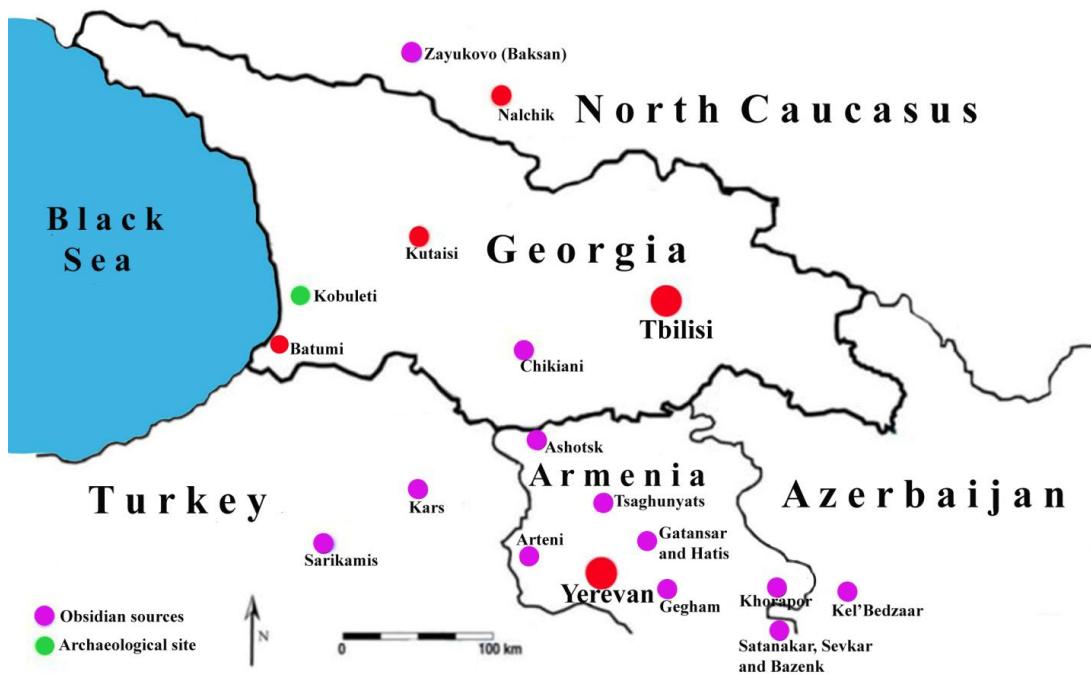
Endscraper-Burin				1						1			1		
Total	54	88		29	38		204	192		252	164		539	482	1021

Table 3. List of flint and obsidian artifacts in soil layer 3 at Kobuleti.

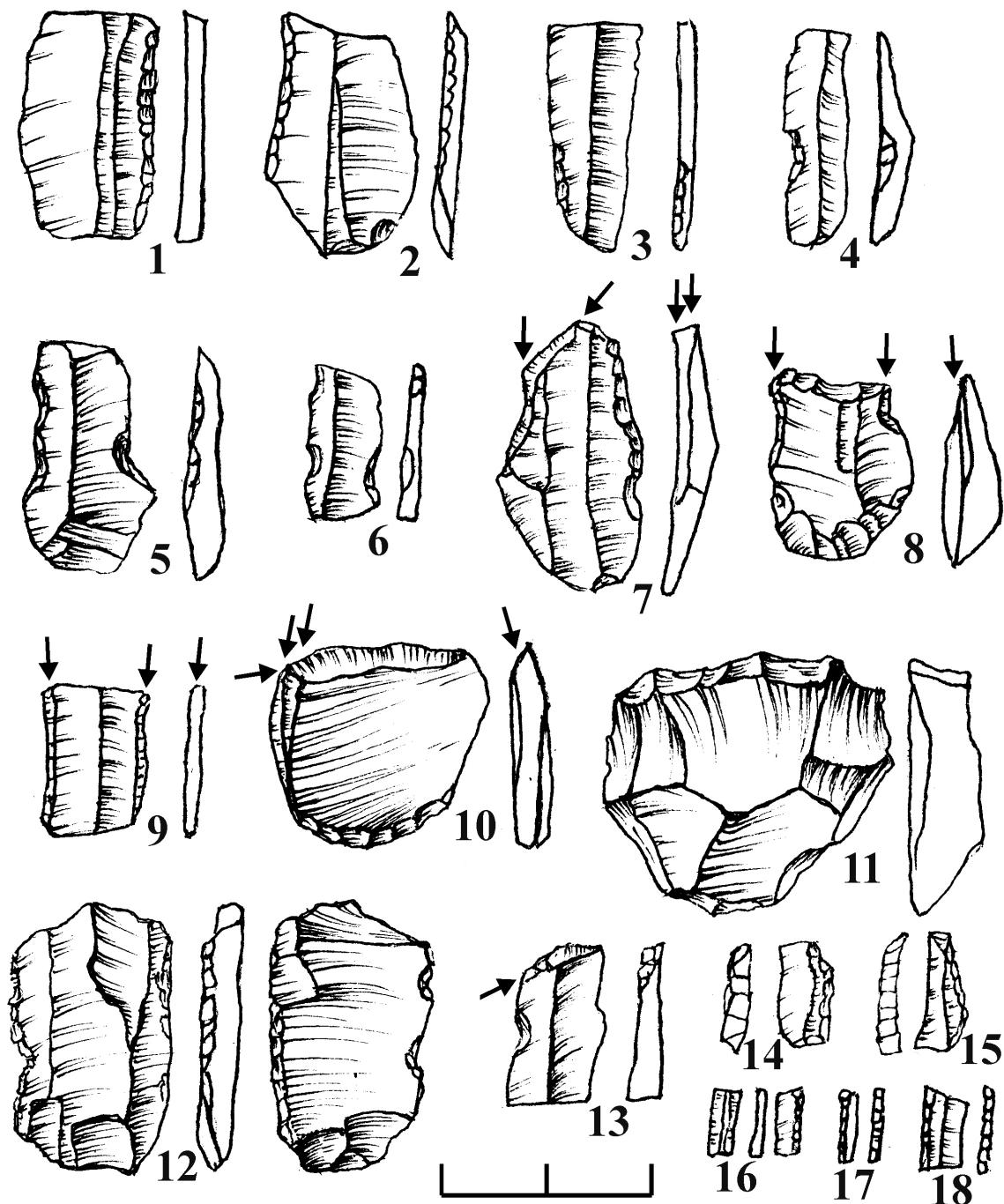
Type	Layer 3		Pit 1		Pit 2		Pit 3		Pit 4		Pit 7		Pit 8		Pit 9		Pit 10		Pit 11		Total			
	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian	Flint	Obsidian
Cores and debitage																								
Cores					1																		1	1
Blades		3	2	3													1	2				3	8	11
Bladelets	14	3			8	1					2	2	3	3	3	2			12	1	42	12	54	
Microblades	12	5	1	4	7	3					1	3			2				8	3	31	18	49	
Flakes	22	11	2	1	17	5				1	2		7	3	26	9		14	6	90	36	126		
Chips	23	2			10	2				3	3	12	3					11	2	59	12	71		
Chunks	47	12			41	4													15	3	104	19	122	
Tools	19	7	0	0	4	1	1	0	0	4	7	7	4	6	2			2	14	43	35	78		
Burins	3	2			2	1				1	1	1	3						4	7	11	18		
Endscrapers		1								1		1		2						4	1	5		
Chisels	2																	1		3		3		
Retouched Flakes	2											1		2	1					5	1	6		
Retouched Blades, bladelets, microblades	12	3			2		1			2	6	4	1	1	1				10	22	21	40		
Truncated Blades, bladelets		1																			1	1		
Microblades with abrupt retouch														1				1		2		2		
Total	137	43	5	8	88	16	1			1	12	15	30	15	37	13			62	29	372	140	512	

Table 4. Radiocarbon date of Kobuleti site.

Location	Sample	Lab. Cod	Dates ^{14}C BP	Dates cal. BC (68.2 %)	Dates cal. BC (95.4 %)	Reference
Pit 7, Level 2	Charcoal	Spb- 3084	8670±100	7831-7584	7995-7534	This work


Table 5. Concentrations of elements in parts per million for obsidian from the Chikiani source.

ANID	K	Ca	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Th
CHIK01	31822	4172	797	536	5520	44.0	122.5	81.2	14.2	83.4	20.9	14.0
CHIK02	25947	3064	588	368	4824	40.4	118.0	74.9	13.4	78.4	20.6	14.9
CHIK03	41274	5645	909	576	6143	44.8	129.2	87.8	14.9	93.3	20.2	14.8
CHIK04	40402	4929	816	473	5684	43.5	126.6	82.4	14.2	86.6	19.4	16.7
CHIK05	43258	6251	963	580	6327	49.4	129.8	93.3	14.5	98.0	21.6	15.7
CHIK06	41727	5431	924	519	5866	43.0	125.5	87.5	15.2	92.6	19.9	15.3
CHIK07	41199	4968	829	508	5635	45.8	122.6	81.5	14.5	84.9	20.8	13.2
CHIK08	35756	4500	749	428	5681	43.6	119.5	86.5	14.5	95.2	19.9	13.7
CHIK09	41265	5623	853	466	5822	45.0	124.8	83.5	14.3	91.2	20.3	15.3
CHIK10	38654	4989	778	474	5864	48.8	124.5	87.4	13.8	93.3	19.5	16.4


Table 6. Concentrations of elements in parts per million for obsidian artifacts from Kobuleti.

ANID	Source	K	Ca	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Th
GUG001	SARIKAMIS	37093	2234	538	623	7899	69.2	136.2	3.3	42.7	222.9	27.1	17.3
GUG002	CHIKIANI	35480	4309	746	431	5613	45.1	117.6	85.4	13.4	97.1	18.6	14.7
GUG003	CHIKIANI	26886	3302	653	274	5606	38.0	97.2	105.3	10.4	117.7	16.9	12.7
GUG004	CHIKIANI	37396	4904	871	441	6224	42.4	118.6	98.6	14.5	109.5	18.6	15.0
GUG005	CHIKIANI	42435	6770	1152	478	7000	45.0	122.7	115.3	14.3	121.2	18.5	16.6
GUG006	CHIKIANI	35441	4200	720	423	5360	41.7	118.0	80.9	13.6	90.0	21.2	14.5
GUG007	CHIKIANI	31828	3547	563	369	4902	45.0	112.9	69.0	13.2	75.7	19.8	12.2
GUG008	CHIKIANI	43092	6236	879	608	6002	47.4	128.7	77.1	16.0	79.0	21.0	15.2
GUG009	CHIKIANI	37242	4406	741	433	5875	42.9	118.7	83.2	13.8	91.4	20.4	12.1
GUG010	CHIKIANI	38044	4767	815	471	5521	42.4	119.4	83.4	14.8	90.1	20.0	14.3
GUG011	CHIKIANI	36764	4322	839	410	5898	42.9	116.6	91.5	13.6	100.8	19.5	15.6
GUG012	CHIKIANI	38249	4785	834	485	6325	46.0	122.9	87.7	13.5	97.3	20.7	14.0
GUG013	CHIKIANI	38363	4107	882	510	6019	47.2	124.5	76.2	14.7	78.8	21.1	14.9
GUG014	CHIKIANI	38430	4705	791	483	5831	42.4	116.5	88.0	14.6	94.2	19.4	13.6
GUG015	CHIKIANI	33274	4631	882	374	6370	38.6	103.8	112.5	12.3	121.5	17.7	14.1
GUG016	CHIKIANI	35608	4227	778	396	5451	36.6	113.6	86.1	13.7	95.4	17.9	13.9
GUG017	CHIKIANI	41694	5359	843	581	5789	45.3	129.5	76.3	16.0	80.3	21.3	15.2
GUG018	CHIKIANI	38094	4818	781	499	5920	45.0	122.9	83.4	14.9	92.8	22.0	14.8
GUG019	CHIKIANI	37510	4326	715	411	5517	43.5	119.8	82.6	14.1	89.4	19.3	15.5
GUG020	CHIKIANI	42580	6348	1036	527	6804	44.0	124.4	99.4	15.0	108.0	17.2	15.0
GUG021	CHIKIANI	40122	4657	767	510	5636	45.2	128.4	76.8	15.7	81.4	21.0	13.1
GUG022	CHIKIANI	37057	5286	1154	450	7258	41.3	112.5	110.1	13.1	117.3	17.8	15.4
GUG023	CHIKIANI	37685	5037	837	445	5833	43.5	121.1	86.3	15.0	94.2	19.4	15.6
GUG024	unknown	39940	6075	647	437	5221	39.9	177.1	51.9	16.1	69.4	27.2	14.2
GUG025	CHIKIANI	33744	3916	823	375	5734	43.4	113.8	87.9	13.2	91.5	19.8	14.8
GUG026	CHIKIANI	35858	4606	992	435	6759	48.6	114.3	89.6	14.2	98.9	17.3	14.5
GUG027	CHIKIANI	39018	5341	847	476	6271	44.9	121.2	95.7	14.1	102.6	17.8	15.8

GUG028	CHIKIANI	34082	3746	684	406	5775	42.7	119.3	73.0	13.1	76.0	20.2	14.8
GUG029	CHIKIANI	42618	6154	1003	567	6400	47.6	127.5	87.4	15.3	91.0	20.1	13.7
GUG030	CHIKIANI	35675	4009	674	430	5086	42.7	120.1	75.6	14.6	78.1	21.0	14.6
GUG031	CHIKIANI	30135	4182	709	342	5300	40.1	110.3	86.9	11.9	93.6	18.0	14.2
GUG032	CHIKIANI	37628	5083	1030	479	6844	45.7	120.1	84.6	13.5	92.4	18.3	14.9
GUG033	CHIKIANI	41173	5061	871	511	5945	44.6	124.0	83.8	15.2	88.5	19.3	15.3
GUG034	CHIKIANI	39145	4985	976	493	6577	47.0	121.5	96.4	13.5	104.3	19.1	16.5
GUG035	CHIKIANI	39369	5432	1098	421	6957	45.3	116.1	108.4	13.9	114.6	19.4	13.7
GUG036	CHIKIANI	37005	4131	696	432	5604	40.4	122.1	80.4	13.0	85.6	21.6	14.7
GUG037	CHIKIANI	42609	5539	879	554	6019	50.9	130.2	83.2	15.2	89.0	20.5	14.8
GUG038	CHIKIANI	35549	3750	717	386	5817	45.9	113.7	85.7	12.5	95.1	18.7	14.4
GUG039	CHIKIANI	28742	3215	701	334	4651	42.4	107.4	73.5	12.6	77.7	19.1	13.0
GUG040	CHIKIANI	38281	5146	807	469	5942	48.6	123.5	79.5	14.7	85.5	20.2	13.4
GUG041	CHIKIANI	37166	4772	814	452	5710	42.3	120.6	79.0	13.6	83.8	19.2	14.8
GUG042	CHIKIANI	38041	4537	792	434	5700	44.3	118.3	92.2	13.9	99.1	18.4	14.3
GUG043	CHIKIANI	43325	6708	1046	539	6882	47.3	126.3	105.7	14.7	112.2	19.4	15.5
GUG044	CHIKIANI	30789	3510	756	381	5275	40.1	118.2	79.5	13.7	87.5	18.8	13.9
GUG045	CHIKIANI	40397	5392	985	469	6179	53.8	121.7	97.9	13.6	109.0	18.3	15.3
GUG046	CHIKIANI	43177	6055	984	515	6552	48.2	125.6	98.1	14.7	106.1	18.6	15.3
GUG047	CHIKIANI	32940	4172	827	415	6014	46.5	111.9	92.3	13.4	99.0	19.3	14.6
GUG048	CHIKIANI	35501	4073	651	398	5655	41.3	114.5	82.3	13.8	90.3	17.1	13.3
GUG049	CHIKIANI	36795	4291	689	423	5676	43.4	117.0	84.9	13.2	88.4	20.2	14.9
GUG050	CHIKIANI	41545	5197	845	557	5748	50.0	132.5	77.3	16.4	76.1	21.2	15.1

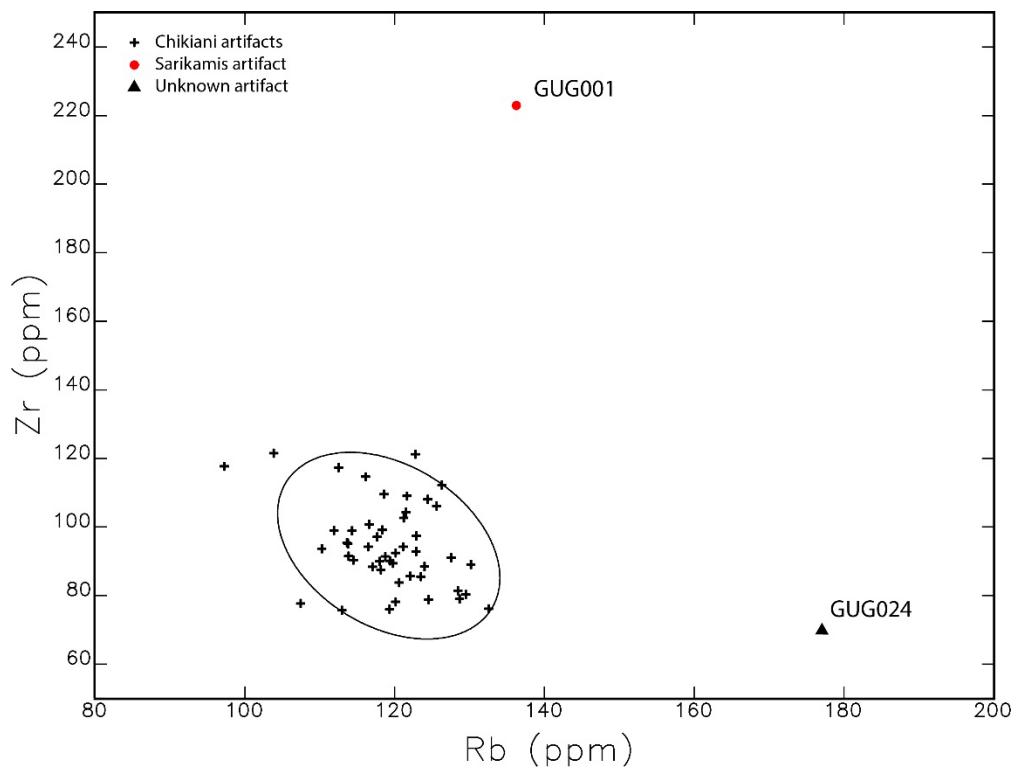


Fig. 1. Map showing the location of the Kobuleti archaeological site and the main obsidian sources in Caucasus.

Fig. 2. Obsidian tools at Kobuleti.

1-3 retouch blades; 4-6 notch blades and bladelets; 7-9 burins; 10 combined tool: endscraper-burin; 11 endscraper; 12 chisel; 13 truncated blade; 14-18 microblades with abrupt retouch

Fig. 3. Scatterplot of Rb versus Zr for obsidian artifacts from the site of Kobuleti. All ellipses indicate 90% confidence intervals for group.