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ABSTRACT

Differing interpretations of geophysical
and geologic data have led to debate regard-
ing continent-scale plate configuration, sub-
duction polarity, and timing of collisional
events on the western North American plate
margin in pre-mid-Cretaceous time. One set
of models involves collision and accretion of
far-traveled ‘‘exotic” terranes against the
continental margin along a west-dipping sub-
duction zone, whereas a second set of models
involves long-lived, east-dipping subduction
under the continental margin and a fring-
ing or “endemic” origin for many Mesozoic
terranes on the western North American
plate margin. Here, we present new detrital
zircon U-Pb ages from clastic rocks of the
Rattlesnake Creek and Western Klamath ter-
ranes in the Klamath Mountains of northern
California and southern Oregon that pro-
vide a test of these contrasting models. Our
data show that portions of the Rattlesnake
Creek terrane cover sequence (Salt Creek as-
semblage) are no older than ca. 170-161 Ma
(Middle—early Late Jurassic) and contain
62-83% Precambrian detrital zircon grains.
Turbidite sandstone samples of the Galice
Formation are no older than ca. 158-153 Ma
(middle Late Jurassic) and contain 15-55%
Precambrian detrital zircon grains. Based
on a comparison of our data to published
magmatic and detrital ages representing
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provenance scenarios predicted by the exotic
and endemic models (a crucial geologic test),
we show that our samples were likely sourced
from the previously accreted, older terranes
of the Klamath Mountains and Sierra Ne-
vada, as well as active-arc sources, with some
degree of contribution from recycled sources
in the continental interior. Our observations
are inconsistent with paleogeographic re-
constructions that are based on exotic, intra-
oceanic arcs formed far offshore of North
America. In contrast, the incorporation of
recycled detritus from older terranes of the
Klamath Mountains and Sierra Nevada, as
well as North America, into the Rattlesnake
Creek and Western Klamath terranes prior
to Late Jurassic deformation adds substan-
tial support to endemic models. Our results
suggest that during long-lived, east-dipping
subduction, the opening and subsequent clos-
ing of the marginal Galice/Josephine basin
occurred as a result of in situ extension and
subsequent contraction. Our results show
that tectonic models invoking exotic, intra-
oceanic archipelagos composed of Cordille-
ran arc terranes fail a crucial geologic test of
the terranes’ proposed exotic origin and sup-
port the occurrence of east-dipping, pre-mid-
Cretaceous subduction beneath the North
American continental margin.

INTRODUCTION

The relationships among deformation, mag-
matism, and sedimentation are essential to our
understanding of fundamental orogenic pro-
cesses along active continental margins (e.g.,

Dewey and Bird, 1970; Ingersoll, 2012; Ben-
Avraham et al., 1981; McCann and Saintot,
2003; Dickinson, 2004). The terrane concept
was originally introduced to aid in unraveling
the complex evolution of orogens based on
distinctions in the deformational, magmatic,
and sedimentary histories of seemingly dispa-
rate elements (i.e., terranes; e.g., Irwin, 1972;
Helwig, 1974; Coney et al., 1980; see Col-
pron and Nelson, 2014). Due to advances in
faunal, isotopic, geochemical, paleomagnetic,
and geochronological analysis, many terranes
originally considered “suspect” or “exotic” and
of unclear relationship to adjacent terranes are
now recognizable as having developed as ad-
jacent, locally linked tectonic elements (e.g.,
English and Johnston, 2005; Nokelberg et al.,
2005; LaMaskin et al., 2011; see Colpron and
Nelson, 2014).

Even with a rich history of investigation,
there is significant contemporary controversy
regarding the key processes of deformation,
magmatism, and sedimentation during the
early Mesozoic assembly of terranes in the
western North American Cordillera (Fig. 1),
with implications for global plate reconstruc-
tion models, continent-scale plate configura-
tion, and subduction polarity (e.g., Shephard
et al., 2013; Sigloch and Mihalynuk, 2013,
2017, 2020; Liu, 2014; Monger, 2014; La-
Maskin et al., 2015; Yokelson et al., 2015;
Gray, 2016; LaMaskin and Dorsey, 2016; Mat-
thews et al., 2016; Lowey, 2017, 2019; Gehrels
et al., 2017; Boschman et al., 2018a, 2018b;
Monger and Gibson, 2019; Pavlis et al., 2019,
2020). Contemporary debate arises from dif-
ferences in interpretations of geophysical and
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Figure 1. Simplified Mesozoic and early Cenozoic geology of the western United States,
modified from Wyld et al. (2006). BM—Blue Mountains Province; LFTB—Luning-Fence-
maker thrust belt; NWC—northwest Cascades; Sri—initial strontium isopleth.

geologic data, leading to paleogeographic re-
constructions that are dissimilar for pre—mid-
Cretaceous time (see Boschman et al., 2018b;
Pavlis et al., 2019). One set of models is based
on tomographic images of large, near-vertical
features in the mantle that are interpreted as
subducted slabs (i.e., tomotectonic models of
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Sigloch and Mihalynuk, 2013, 2017; Clennett
et al., 2020) and construes them to indicate
the collision and accretion of far-traveled “ex-
otic” terranes against the continental subduc-
tion margin during west-dipping subduction
(Figs. 2A, 2B, and 2C). In contrast, a second
set of models invokes east-dipping subduction

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/3-4/965/5555526/b35981.1.pdf

under the continental margin and a fringing
or “endemic” origin for numerous Mesozoic
terranes in the Canadian and Alaskan Cordil-
lera (Figs. 2D and 2E; e.g., Yokelson et al.,
2015; Beranek et al., 2017; Gehrels et al.,
2017; Boschman et al., 2018a, 2018b; Monger
and Gibson, 2019; Pavlis et al., 2019; Fasulo
et al., 2020; Manselle et al., 2020; Trop et al.,
2020), the western United States (Liu, 2014),
and Mexico (Boschman et al., 2018a, 2018b;
Cavazos-Tovar et al., 2020). When subjected
to geologic tests of their proposed tectonic and
paleogeographic reconstructions (i.e., Cowan
etal., 1997), exotic models would be supported
by histories that are genetically distinct from
processes on the continental margin, whereas
endemic models would be supported by his-
tories that can be genetically linked with pro-
cesses on the continental margin.

The Klamath Mountains Province of northern
California and southern Oregon is an excellent
location in which to assess this problem by ap-
plying geologic tests of sedimentary provenance
that are explicitly based on the tectonic and pa-
leogeographic reconstructions proposed in the
exotic and endemic models (Figs. 1 and 3). A
western succession of rocks in the Klamath
Mountains Province (Western Hayfork, Rattle-
snake Creek, and Western Klamath terranes) is
specifically invoked in tomotectonic models and
interpreted as a component of an exotic archi-
pelago resulting from west-dipping, intra-oce-
anic subduction (Sigloch and Mihalynuk, 2013,
2017; Clennett et al., 2020). In this scenario
(Figs. 2A-2C), collision of the “exotic” West-
ern Hayfork, Rattlesnake Creek, and Western
Klamath terranes against the continental margin
was the mechanism responsible for Late Jurassic
deformation in the Klamath Mountains.

In contrast, numerous researchers have
interpreted an endemic Middle-Late Juras-
sic setting for rocks of the Western Hayfork,
Rattlesnake Creek, and Western Klamath
terranes (e.g., Snoke, 1977; Harper, 1980;
Saleeby et al., 1982; Harper and Wright, 1984;
Wright and Fahan, 1988; Hacker and Ernst,
1993; Harper et al., 1994; Hacker et al., 1995;
Frost et al., 2006; Yule et al., 2006; Ernst
et al., 2008). In these models (Figs. 2D-2E),
slab rollback and associated extension on the
continental-plate margin during east-dipping
subduction generated a fringing magmatic
arc built on older previously accreted terranes
(i.e., endemic to the plate margin) and a mar-
ginal basin. Subsequent contraction ca. 155—
150 Ma led to closure of the marginal basin,
deformation, and re-accretion of the endemic
arc (e.g., Snoke, 1977; Harper, 1980; Salee-
by, 1981, 1983, 1992; Saleeby et al., 1982;
Saleeby and Busby-Spera, 1992; Saleeby
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and Harper, 1993; Harper and Wright, 1984;
Wright and Fahan, 1988; Hacker and Ernst,
1993). As noted by Snoke and Barnes (2006),
assessment of the facing directions and polar-
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ity of the arcs that formed the terranes in the
Klamath Mountains is one of the most impor-
tant outstanding questions in early Mesozoic
Cordilleran geology.
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The goal of this contribution was specifically
to test these contrasting Middle—Late Jurassic
paleogeographic and paleotectonic models for
the Klamath Mountains Province by assessing
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the provenance of Middle and Late Jurassic
sedimentary rocks of the Rattlesnake Creek and
Western Klamath terranes. We present new de-
trital zircon U-Pb ages and compare them with
published magmatic and detrital ages represent-
ing specific provenance scenarios matched to
the exotic and endemic models. Our observa-
tions add substantial support to endemic models
wherein, during east-dipping subduction, the
opening and subsequent closing of the Galice/
Josephine marginal basin resulted from in situ
extension and contraction along the continental
subduction margin.

GEOLOGIC BACKGROUND
Terranes of the Klamath Mountains

The Klamath Mountains Province (Figs. 1 and
3) is a system of fault-bounded and imbricated
thrust plates of variably metamorphosed igne-
ous and sedimentary protoliths that shallowly dip
eastward in a regional sense and are intruded by
numerous early Paleozoic to Early Cretaceous
plutons (Irwin, 1972; Hacker et al., 1995; Irwin,
2003; Snoke and Barnes, 2006; Dickinson, 2008).
Tectonostratigraphic units in the Klamath Moun-
tains range from Neoproterozoic to Late Jurassic,
with ages generally decreasing to the west and
structurally downward (Snoke and Barnes, 2006).

The easternmost terrane, the Eastern Klamath
terrane, consists of the Trinity, Yreka, and Red-
ding subterranes (Fig. 3; Metcalf et al., 2000;
Grove et al., 2008; Lindsley-Griffin et al., 2008).
The Trinity subterrane is composed of the Neo-
proterozoic Trinity ophiolite (ca. 579-556 Ma;
Wallin et al., 1988; Metcalf et al., 2000), Ordovi-
cian Trinity peridotite (ca. 472 + 32 Ma, Sm-Nd
mineral isochron; Jacobsen et al., 1984), and a
Silurian—Devonian succession of ophiolitic plu-
tons (ca. 435-404 Ma; Wallin et al., 1995; Wallin
and Metcalf, 1998). Apatite fission-track ages in-
dicate at least two episodes of exhumation of the
Trinity subterrane in mid- to Late Cretaceous and
early Miocene time (Batt et al., 2010), suggest-
ing that the Trinity ophiolite, Trinity peridotite,
and Silurian—Devonian ophiolitic plutons were
not exposed at the surface until mid-Cretaceous
time at the earliest.

The Yreka subterrane (Fig. 3) structurally
overlies the Trinity subterrane and consists
mostly of Silurian—Devonian metapelites de-
posited ca. 450-400 Ma with detrital zircon
ages of 381-476 Ma, 2.0-1.0 Ga, and 2.7 Ga
(Wallin et al., 1995, 2000; Grove et al., 2008).
In addition, the Antelope Mountain Quartzite oc-
cupies a thrust sheet at the northeast edge of the
Yreka terrane and bears ca. 2.5-1.7 Ga detrital
zircon grains (Wallin et al., 2000; Lindsley-
Griffin et al., 2008). The Redding subterrane also
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structurally overlies the Trinity subterrane and
consists of mid-Paleozoic volcanic rocks over-
lain by Mississippian to Jurassic volcanic and
marine sedimentary rocks (Wallin and Metcalf,
1998; Barrow and Metcalf, 2006).

West of the Eastern Klamath terrane, the Cen-
tral Metamorphic terrane (Fig. 3) has been inter-
preted to represent oceanic lithosphere that was
accreted to the Eastern Klamath terrane during
east-dipping Devonian subduction (Barrow and
Metcalf, 2006; Dickinson, 2008). Devonian (ca.
380 Ma) Rb-Sr radiometric ages from the Cen-
tral Metamorphic terrane (Lanphere et al., 1968)
are commonly interpreted as dating the emplace-
ment of the structurally overlying Trinity perido-
tite (see Snoke and Barnes, 2006).

To the west, the Siskiyou thrust fault separates
the Central Metamorphic terrane from the under-
lying Stuart Fork—North Fork terranes (Fig. 3).
The Stuart Fork terrane includes shale, chert, and
volcanic rocks metamorphosed to blueschist fa-
cies in Late Triassic time and is generally inter-
preted as a subduction complex or accretionary
prism (Hotz, 1977; Goodge, 1989; Hacker et al.,
1995). The North Fork terrane (Fig. 3) is Triassic
to Early Jurassic in age (ca. 200-188 Ma) and
includes serpentinized ultramafic, metasedimen-
tary, metabasaltic, volcaniclastic metasedimen-
tary, and metagabbroic rocks (Ando et al., 1983;
Ernst, 1991; Hacker et al., 1993; Ernst et al.,
2008; Scherer and Ernst, 2008). Ion microprobe
detrital zircon U-Pb ages from the North Fork
terrane include abundant Paleozoic to early Pro-
terozoic grains with youngest age modes ca. 189
and 162 Ma, indicating an Early to Middle(?) Ju-
rassic maximum depositional age (Scherer and
Ernst, 2008).

The Eastern Hayfork terrane (Fig. 3) lies
structurally beneath the Stuart Fork—North Fork
terranes and consists of disrupted and weakly
metamorphosed sedimentary rocks, mélange,
and broken formation of Middle Triassic to Early
Jurassic age (Irwin, 1972; Wright, 1982; Hacker
and Ernst, 1993). Sandstone blocks in the East-
ern Hayfork terrane yield detrital zircon U-Pb
ages of 2600-2500, 2350-2250, 1900-2020, and
18901725 Ma (Scherer et al., 2010), interpreted
as olistoliths of Antelope Mountain Quartzite de-
rived from the Yreka terrane. Chert-argillite ma-
trix mélange yields detrital zircon age modes of
1870, 1620, 1285, 966, 792, 628, 539, 417, 298,
and 245 Ma (Ernst et al., 2017).

The three most western terranes of the
Klamath Mountains, located to the west of the
Eastern Hayfork terrane, are the Western Hay-
fork, Rattlesnake Creek, and Western Klamath
terranes (Figs. 3). The exotic versus endemic
nature of these three outboard terranes bears
directly on the problem of plate configuration
and the associated mechanism responsible for
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orogeny and westward expansion of the Cordil-
leran plate margin during Late Jurassic time.
Evidence that indicates the Rattlesnake Creek
terrane formed the basement to both the West-
ern Klamath terrane and the Western Hayfork
terrane includes (1) late Middle Jurassic intru-
sions into the Rattlesnake Creek terrane (i.e.,
the 164 + 4 Ma Preston Peak ophiolite; Snoke,
1977, Saleeby and Harper, 1993), (2) the occur-
rence of rocks similar to the Rattlesnake Creek
terrane in the Western Klamath terrane (i.e., the
Onion Camp complex and Fiddler Mountain
olistostrome; Yule et al., 2006), and (3) place-
ment of Middle Jurassic plutons requiring that
the Rattlesnake Creek terrane was juxtaposed
with the Western Hayfork terrane (Wright and
Fahan, 1988). These observations have been
interpreted to represent the presence of “rift-
edge facies,” linking the three terranes dur-
ing Middle—Late Jurassic time (Snoke, 1977;
Wright and Fahan, 1988; Saleeby and Harper,
1993; Yule et al., 2006).

The Early to Middle Jurassic Western Hay-
fork terrane (Fig. 3) consists of a suite of ca.
177-168 Ma metamorphosed sedimentary and
volcanic rocks intruded by ca. 170 Ma calc-alka-
line plutons (Fig. 4A; Wright, 1982; Gray, 1986;
Wright and Fahan, 1988; Hacker and Ernst,
1993; Barnes and Barnes, 2020). The Western
Hayfork terrane lies structurally beneath the
Eastern Hayfork terrane along the Wilson Point
thrust and is thrust over the Rattlesnake Creek
terrane along the Salt Creek thrust (Figs. 3 and
4A; Wright, 1982; Wright and Fahan, 1988;
Wright and Wyld, 1994; Barnes et al., 2006).

The Rattlesnake Creek terrane includes a
basement of late Paleozoic to Triassic serpen-
tinite-matrix mélange and peridotite massifs
and a cover sequence of clastic sedimentary
and volcanic rocks known as the Salt Creek and
Dubakella Mountains assemblages in the south-
ern Klamath Mountains (Wright and Wyld,
1994). Based on radiolaria in mélange chert
blocks and crosscutting relationships with a ca.
207-193 Ma early Mesozoic intrusive suite,
Wright and Wyld (1994) assigned an age of
Late Triassic—Early Jurassic to the Rattlesnake
Creek terrane cover sequence. In contrast, Ir-
win and Blome (2004) reported multiple loca-
tions of Early to Middle Jurassic (Bathonian)
radiolaria in the Rattlesnake Creek terrane, and
Irwin (2010) and Irwin et al. (2011) suggested
that detrital sedimentary rocks in the Rattle-
snake Creek terrane may be more analogous
to the Galice(?) Formation. In the west-central
Klamath Mountains, Snoke (1977) mapped a
conglomerate-grit unit in a coherent metavol-
canic and metasedimentary sequence (his
Bear Basin Road sequence), which represents
the Rattlesnake Creek terrane cover sequence
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(Bushey et al., 2006; Frost et al., 2006). Wright
and Wyld (1994) noted the presence of volcanic
as well as quartzose metamorphic detritus in the
Rattlesnake Creek terrane cover sequence and
suggested that the depositional basin was situ-
ated near an active volcanic system with sedi-
ment input from the western North American
Cordillera (Wright and Wyld, 1994). Subse-
quent analysis of meta-argillite from the Rattle-
snake Creek terrane cover sequence yielded ini-
tial 87Sr/86Sr of 0.7063-0.7114, initial eNd from
—4.5 to —8.3, and depleted mantle model ages
ca. 1.67-1.34 Ga, leading Frost et al. (2006)
to suggest that the isotopic composition of the
cover sequence was comparable to major river
systems in North America and supporting a link
between the Rattlesnake Creek terrane and the
western North American Cordillera.

The Western Klamath terrane is the young-
est and most outboard terrane in the Klamath
Mountains and was emplaced structurally be-
neath the Rattlesnake Creek terrane along the
Orleans thrust before ca. 150 Ma (Figs. 3 and
4A; Saleeby et al., 1982; Harper and Wright,
1984; Harper et al., 1994). The Western Klam-
ath terrane consists of three key units (Fig. 4A):
(1) the ca. 160—153 Ma Rogue-Chetco arc com-
plex (Harper et al., 1994; Harper, 2006; Yule
et al., 2006), (2) the ca. 164—162 Ma Josephine
and Devils Elbow ophiolite (Harper, 1984; Wyld
and Wright, 1988; Harper et al., 1994), and (3) a
ca. 157-150 Ma sedimentary basin nonconform-
ably overlying the above basement units (Galice
Formation; Pessagno and Blome, 1990; Harper

970

et al., 1994; Pessagno, 2006). The Galice For-
mation sensu lato includes a basal hemipelagic
sequence ranging from 162 Ma (late Callovian;
the youngest age of the underlying Josephine
ophiolite) to 157 Ma (middle Oxfordian), based
on correlation of the top of the hemipelagic
sequence to 157 &= 2 Ma radiolarian tuff at the
top of the Rogue Formation (Saleeby, 1984;
MacDonald et al., 2006). A turbiditic sequence,
the Galice Formation sensu stricto, overlies the
hemipelagic sequence and is interpreted to range
in age from ca. 157 to 150 Ma (Harper et al.,
1994; Harper, 2006; Pessagno, 2006).

Various provenance techniques suggest that
the source area for the Galice Formation repre-
sents a mix of young volcanic arc and older ac-
creted terrane sources (MacDonald et al., 2006).
Miller and Saleeby (1995) presented detrital zir-
con U-Pb ages of multigrain fractions from the
Galice Formation and observed two distinct age
distributions that they expressed as average in-
tercept ages, including a Mesoproterozoic aver-
age ca. 1583 Ma and an early Mesozoic average
ca. 215 Ma. Subsequently, Miller et al. (2003)
reported ion-microprobe single-crystal detrital
zircon U-Pb ages that included age modes ca.
227 and 153 Ma, as well as lesser quantities of
Paleozoic and Proterozoic ages. Finally, Mac-
Donald et al. (2006) showed that the source area
for rocks of the Galice Formation represents a
mix of arc and accreted terranes that was estab-
lished by ca. 162 Ma. In addition to these Galice
Formation studies, Wright and Wyld (1986) re-
ported xenocrystic Paleoproterozoic (ca. 1.7 Ga)
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zircon grains from the Devils Elbow ophiolite in
the southern Klamath Mountains (Fig. 3), equiv-
alent to the Josephine ophiolite, supporting the
input of Precambrian sources into the Western
Klamath terrane.

Jurassic Deformation in the Klamath
Mountains and Sierra Nevada

The timing and nature of Jurassic deforma-
tion in the Klamath Mountains and along-strike
equivalents in the Sierra Nevada terranes have
been the subject of great interest and debate
(e.g., Schweickert and Cowan, 1975; Saleeby
et al., 1982; Harper and Wright, 1984; Moores
and Day, 1984; Ingersoll and Schwieckert, 1986;
Wright and Fahan, 1988; Coleman et al., 1988;
Wyld and Wright, 1988; Hacker and Ernst,
1993; Hacker et al., 1995; Snoke and Barnes,
2006; Dickinson, 2008). Accreted terranes of
the Klamath Mountains were contiguous along
strike with accreted terranes of the Sierra Ne-
vada prior to ca. 140 Ma, when the Klamath
block separated from the Sierra Nevada block
and moved trenchward (Constenius et al., 2000;
Snow and Scherer, 2006; Ernst, 2013).

A single Late Jurassic Nevadan orogeny was
originally conceived to be responsible for the
majority of deformation in the Klamath Moun-
tains and Sierra Nevada regions (e.g., Talia-
ferro, 1942; Schweickert and Cowan, 1975;
Schweickert, 1978, 1981; Schweickert et al.,
1984; Day et al., 1985); however, subsequent
work indicated the presence of older, Middle
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Jurassic deformation (e.g., Wright and Fahan,
1988; Coleman et al., 1988). Thus, Jurassic de-
formation in the Klamath Mountains has been
considered both as a Middle-Late Jurassic con-
tinuum of deformation, and as two distinct peri-
ods of deformation, including a Middle Jurassic
Siskiyou orogeny and a Late Jurassic Nevadan
orogeny (Fig. 4A). Evidence for Middle Juras-
sic Siskiyou orogenesis includes emplacement
of the Rattlesnake Creek terrane beneath the
Western Hayfork terrane along the Salt Creek
thrust and emplacement of the Western Hayfork
terrane beneath the Eastern Hayfork terrane
along the Wilson Point thrust, as constrained by
ca. 170-169 Ma multigrain thermal ionization
mass spectrometry (TIMS) zircon U-Pb ages on
the Ironside Mountain batholith, which intrudes
the Wilson Point thrust (Figs. 3 and 4A; Wright
and Fahan, 1988; Barnes and Barnes, 2020).

The Siskiyou orogeny was immediately fol-
lowed by oblique rifting of the Rattlesnake Creek
terrane, forming the Josephine ophiolite—floored
basin, while arc activity broadened to span both
sides of the rift zone, represented by the Wooley
Creek plutonic belt to the east and the Rogue-
Chetco arc to the west (Figs. 3 and 4A; Saleeby
et al., 1982; Harper, 1984; Wright and Wyld,
1986; Wright and Fahan, 1988; Hacker and
Ernst, 1993; Harper et al., 1994; Harper, 2003;
Snoke and Barnes, 2006; Yule et al., 2006). Sev-
eral plutons of the Wooley Creek suite also stitch
the Eastern and Western Hayfork terranes to-
gether along the Wilson Point thrust (Fig. 3), in-
cluding the Vesa Bluffs pluton (167.1 & 1.8 Ma;
single-crystal laser-ablation—inductively coupled
plasma-mass spectrometry [LA-ICP-MS]; Allen
and Barnes, 2006) and the Wooley Creek batho-
lith (as old as 159.22 + 0.10 Ma, single-crystal
chemical-abrasion—isotope-dilution—thermal
ionization mass spectrometry [CA-ID-TIMS];
Coint et al., 2013). Deposition of the Galice
Formation ensued in the submarine Josephine
basin as regional extensional stresses turned to
contractional deformation associated with the
Nevadan orogeny ca. 155-150 Ma (Saleeby and
Harper, 1993; Harper et al., 1994; Hacker et al.,
1995; Miller and Saleeby, 1995; Shervais et al.,
2005; MacDonald et al., 2006).

Evidence for Late Jurassic Nevadan orogene-
sis in the Klamath Mountains includes emplace-
ment of the Rogue-Chetco arc complex beneath
the Josephine ophiolite along the Madstone
Cabin thrust ca. 152-150 Ma (Figs. 3 and 4A;
Dick, 1976; Harper and Wright, 1984; Blake
et al., 1985; Harper et al., 1994; Hacker et al.,
1995; Yule, 1996) and thrusting of the Rattle-
snake Creek terrane over the Western Klamath
terrane along the Orleans thrust (Figs. 3 and 4A;
Saleeby et al., 1982; Harper and Wright, 1984;
Harper et al., 1994; Garlick et al., 2009). In ad-
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dition, numerous workers have observed that
the Galice Formation (Western Klamath ter-
rane) was subject to syndepositional structural
contraction ca. 155-150 Ma and was intruded by
calc-alkaline magmas starting ca. 153-151 Ma
(Figs. 3 and 4A; Western Klamath suite). Ad-
ditionally, the Galice Formation is overlain by
undeformed rocks of the Great Valley Group,
interpreted to indicate that the Nevadan event
concluded no later than 140 Ma (Saleeby et al.,
1982; Wright and Fahan, 1988; Harper and
Wright, 1984; Harper et al., 1994; Irwin, 1997,
Chamberlain et al., 2006; Garlick et al., 2009).
Finally, other workers have suggested that local
deformation persisted in the Klamath Mountains
until ca. 135 Ma (Harper et al., 1994; Hacker
etal., 1995).

Exotic Models for Late Jurassic
Deformation in the Klamath Mountains

Arguments that favor the collision of an exot-
ic, intra-oceanic arc as the mechanism responsi-
ble for Late Jurassic deformation in the Klamath
Mountains (e.g., Davis, 1968; Hamilton, 1969,
1978; Burchfiel and Davis, 1972; Irwin, 1972,
1985; Coney et al., 1980; Moores et al., 2002)
largely derive from geologic relationships of
the terranes of the Sierra Nevada and California
Coast Ranges (Fig. 1; e.g., Moores, 1970, 1998;
Schweickert and Cowan, 1975; Moores and Day,
1984; Schweickert et al., 1984; Dickinson et al.,
1996; Schweickert, 2015). In the Sierra Nevada,
many workers have adopted a double-subduc-
tion model of facing magmatic arcs to explain
the more outboard location of Middle Jurassic
ophiolitic rocks in the California Coast Ranges
(i.e., Coast Range ophiolite) with respect to the
Western Jurassic belt, a Middle-Late Jurassic
arc-basin complex in the foothills of the Sierra
Nevada. These observations are used to sug-
gest that together the Coast Range ophiolite and
Western Jurassic belt represent an east-facing arc
generated above a west-dipping subduction zone
(e.g., Ingersoll and Schweickert, 1986; Moores
etal., 2002; Godfrey and Dilek, 2000; Schweick-
ert, 2015). These models suggest that the mecha-
nism responsible for Late Jurassic deformation
in the Sierra Nevada is the collision and accre-
tion of the exotic, intra-oceanic Western Jurassic
belt and Coast Range ophiolite.

Application of a double-subduction model is
less tenable for rocks of the Klamath Mountains
because the Late Jurassic (ca. 160-153 Ma)
Rogue-Chetco arc complex is located west of
ophiolitic material (Figs. 3 and 4A; see Salee-
by, 1996; Dickinson, 2008), prompting some
authors to present models invoking coeval but
dissimilar along-strike subduction configura-
tions for the contiguous along-strike Klamath

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/3-4/965/5555526/b35981.1.pdf

Mountains and Sierra Nevada foothills (e.g.,
Ingersoll and Schweickert, 1986; Godfrey and
Dilek, 2000). We also note, however, that the
presence of inherited Precambrian zircon grains
in igneous rocks (Day and Bickford, 2004) and
Precambrian detrital zircon grains in sedimenta-
ry rocks (Snow and Ernst, 2008) has led workers
to consider the Western Jurassic belt of the Sierra
Nevada to represent a single, east-dipping sub-
duction zone beneath North America (Day and
Bickford, 2004; Snow and Scherer, 2006; Snow
and Ernst, 2008; LaMaskin, 2012).

One particular set of models by Sigloch and
Mihalynuk (2013, 2017) argues for an exotic,
archipelago origin for numerous western North
Anmerican terranes, including the Western Klam-
ath, Rattlesnake Creek, and Western Hayfork
terranes (Figs. 2A—2C). These models are based
on seismic images of the mantle derived from
USArray and global network data as analyzed
with multiple-frequency P-wave tomography.
These images show massive, almost vertical
features with faster-than-average seismic wave
velocities beneath North America and the Atlan-
tic Ocean from 800 to 2000 km in depth, which
were interpreted by Sigloch and Mihalynuk
(2013, 2017) as cold, relict slab walls formed
by vertical slab sinking. These relict slab walls
were then mapped directly to paleotrench posi-
tions by moving the plates back over the mantle,
which was assumed to be stationary, using plate
motion models. Volcanic arc terranes can then
be interpreted to have formed above stationary
subduction zones feeding the slab walls. The
largest of these imaged slab walls has previ-
ously been interpreted as the Farallon slab (e.g.,
Li et al., 2008; van der Meer et al., 2010, 2012),
a remnant of east-dipping subduction; however,
Sigloch and Mihalynuk (2013; 2017) argued that
most of this slab wall is not Farallon slab. They
instead subdivided it into Angayucham, Mezcal-
era, and Southern Farallon slab wall components,
interpreted as having formed by vertical sinking
during west-dipping subduction. Sigloch and
Mihalynuk (2017) identified a north-south tract
of at least 11 collapsed Jurassic—Cretaceous ba-
sins (in the Klamath Mountains, the Galice-Jose-
phine basin), about half of which contain mantle
rocks, and they proposed that these mark the lo-
cations of an oceanic suture that runs along the
entire western margin of North America. They
termed this feature the Mezcalera-Angayucham
suture, named after the now totally subducted
Mezcalera and Angayucham Oceans and plates,
and they argued that the suture formed diachron-
ously between ca. 155 Ma and ca. 50 Ma during
closure of those oceans.

The geology of the Klamath Mountains is
explicitly tied to the exotic tomotectonic model
of Sigloch and Mihalynuk (2017), who defined
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a Western Jurassic—Foothills composite terrane
as part of their Insular superterrane (Figs. 2A
and 2C). The authors specifically noted that in
the Klamath Mountains, rocks of the Western
Jurassic (here termed the Western Klamath),
Rattlesnake Creek, and Western Hayfork ter-
ranes comprise a “third arc of intermediate
magmatic ages” (Sigloch and Mihalynuk, 2017,
p. 1510) interpreted to have formed above
the westward-subducting Mezcalera Ocean
(Figs. 2A and 2C), an interpretation that they
suggested agrees with that of Dickinson (2008).
Sigloch and Mihalynuk (2017) specifically at-
tributed the “initial pulse of Nevadan deforma-
tion [Harper et al., 1994] to first impingement
of the Insular superterrane into North America”
(Sigloch and Mihalynuk, 2017, p. 1509; their
event Al ca. 146 4 24 Ma). In this scenario, the
Late Jurassic Nevadan orogeny in the Klamath
Mountains occurred offshore in an archipelago
setting and was driven by far-field stresses as-
sociated with the collision of the northernmost
portions of the Insular superterrane against
Canada. The Nevadan orogeny was presumably
followed by continued westward subduction
into a stationary, intra-oceanic trench beneath
the composite Western Klamath—Rattlesnake
Creek—Western Hayfork terranes until collision
with the previously accreted Eastern Klamath
through Eastern Hayfork terranes produced
the Mezcalera-Angayucham suture ca. 135—
110 Ma at the latitude of California (Sigloch
and Mihalynuk, 2017).

The specific geological arguments presented
by Sigloch and Mihalynuk (2017) require that
their Mezcalera-Angayucham suture in the
Klamath Mountains is the Wilson Point thrust
and its along-strike counterparts (Fig. 3), located
between the Western Hayfork (Insular) and East-
ern Hayfork (Intermontane) terranes. Sigloch
and Mihalynuk (2017) stated that the decisive
test between west-dipping versus east-dipping
subduction history is the timing of Intermontane-
Insular superterrane suturing, which should be
post—ca. 155 Ma, and they stated that current
arguments for or against pluton stitching of this
suture lack credence until plutons have been sub-
jected to “robust isotopic studies” (Sigloch and
Mihalynuk, 2017, p. 1507).

In a GPlates model (Miiller et al., 2018) de-
rived largely from inferences made in the tomo-
tectonic model (Fig. 2B), Clennett et al. (2020)
defined a Western Jurassic belt (their Fig. 3)
composed of the (1) Western Klamaths, (2)
basement of the Great Valley, and (3) northwest
Sierra Nevada. This Western Jurassic belt was
considered to be an Insular-associated terrane
situated between the Insular and Guerrero super-
terranes beginning ca. 170 Ma. In this scenario,
Middle-Late Jurassic rifting occurred between
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the southern portion of the Insular superterrane
(Wrangellia terrane) and Guerrero superterrane,
resulting in formation of the Josephine ophiol-
ite and associated Galice basin in the Klamath
Mountains, and closure of the rift (Clennett
et al., 2020) resulted in Late Jurassic (Nevadan)
orogenesis (Fig. 2B). This contractional event is
depicted to have occurred in an offshore archi-
pelago setting, between the Great Valley base-
ment and the Western Klamaths, and driven
by ca. 150 Ma first impingement of the Insular
superterrane into North America, occurring be-
tween their northernmost Insular superterrane
and North American rocks in Canada (Clennett
et al., 2020). Finally, Clennett et al. (2020) por-
trayed the Western Klamaths and portions of the
Great Valley basement colliding with the previ-
ously accreted Intermontane terranes ca. 80 Ma
at the latitude of southern California and arriving
at their present positions ca. 50 Ma, following
dextral translation.

Endemic Models for Late Jurassic
Deformation in the Klamath Mountains

In contrast to exotic models, numerous work-
ers have interpreted an endemic Middle-Late
Jurassic setting for the Western Klamath, Rat-
tlesnake Creek, and Western Hayfork terranes
(e.g., Snoke, 1977; Davis et al., 1978; Harper,
1980; Saleeby et al., 1982; Harper and Wright,
1984; Wright and Wyld, 1986; Wright and Fa-
han, 1988; Wyld and Wright, 1988; Hacker and
Ernst, 1993; McClelland et al., 1992; Harper
et al., 1994; Hacker et al., 1995; Barnes et al.,
2006; Frost et al., 2006; Yule et al., 2006; Harper,
2006; MacDonald et al., 2006). In this scenario
(Figs. 2D-2E and 4A), late Middle Jurassic in-
tra-arc/backarc rifting (i.e., Josephine—Devils El-
bow ophiolite) occurred in the previously accret-
ed Rattlesnake Creek terrane, producing a new
west-facing arc (Rogue-Chetco arc complex)
and leaving behind a remnant arc, the Western
Hayfork terrane, and generating marginal-basin
fill (Galice Formation). Subsequently, the West-
ern Klamath terrane and its Rattlesnake Creek
terrane basement were then re-accreted to the
plate margin during Late Jurassic time (i.e.,
Nevadan orogeny) and stitched by postthrust
plutons of the Western Klamath and Siskiyou
suites (Figs. 3 and 4A; Wright and Fahan, 1988;
Harper et al., 1990; Barnes et al., 2006). The rea-
son for the change from extension to contraction
is vigorously debated and variously attributed to
subduction of a seafloor spreading center (e.g.,
Shervais et al., 2005) or changes in convergence
rate, coupling, and direction of subducting lith-
osphere (e.g., Wright and Fahan, 1988; Ernst,
1990; Saleeby et al., 1992; Hacker et al., 1993,
1995; Harper et al., 1994).
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METHODS
Detrital Zircon U-Pb Geochronology

Sample Preparation and Analysis

To test the exotic versus endemic models, we
targeted clastic rocks of the Rattlesnake Creek
terrane cover sequence and Galice Formation in
the Western Klamath terrane (Fig. 3; Table 1). We
prepared detrital zircon samples following stan-
dard methods of crushing, pulverizing, magnetic
separation, and density separation. We placed
zircons grains onto double-sided tape, mounted
them in epoxy, and ground them to expose grain
interiors, and then we conducted cathodolumi-
nescence imaging at California State University,
Northridge, the Southeastern North Carolina Re-
gional Microanalytical and Imaging Consortium
at Fayetteville State University, and the Arizona
LaserChron Center. U and Pb isotopic data were
collected by LA-ICP-MS at three different labo-
ratories (Table 1; Supplemental Information').

We report 2°°Pb/?38U ages for grains younger
than 900 Ma and 2’Pb/?%Pb ages for grains old-
er than 900 Ma. Analyses with >5% uncertainty
(o) in 29Pb/?38U age are not included, and anal-
yses with >10% uncertainty (1o) in 25Pb/2"Pb
age are not included, unless the 2°°Pb/?38U age
is younger than 900 Ma. For grains older than
600 Ma, we report analyses within the con-
cordance range 80% to 105% (*°°Pb/>*8U vs.
207Pb/2%Pb), whereas for grains younger than
600 Ma, we did not filter for discordance be-
cause of imprecision of the 2’Pb measure-
ment and large uncertainty in 2°7Pb/?Pb ages
for Phanerozoic grains (Bowring and Schmitz,
2003; Ireland and Williams, 2003; Bowring
et al., 2006; Gehrels et al., 2008; Spencer et al.,
2016; Gehrels et al., 2020). We plotted kernel
density estimates (KDEs; Vermeesch, 2018a) of
the full range of ages in each sample at 30 m.y.
bandwidth, which is the average adaptive, auto-
matic, kernel-density bandwidth of our samples.
To assess Mesozoic ages in greater detail and to
detect potential subdistributions at the <10 Ma
level, we plotted KDEs at 5 m.y. bandwidth.
Method details and complete data are provided
in the Supplementary Material (see footnote 1).

Maximum Depositional Age Estimates and
Provenance Analysis

We calculated maximum depositional ages
(MDAs) using IsoplotR (Vermeesch, 2018a) as

ISupplemental Material. Analytical methods,
sample collection locations in the southern Klamath
Mountains, and Data tables. Please visit https:/
doi.org/10.1130/GSAB.S.14721087 to access
the supplemental material, and contact editing@
geosociety.org with any questions.
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TABLE 1. SAMPLE LOCATIONS, ALIQUOTS, AND LOCATIONS ANALYZED, KLAMATH MOUNTAINS PROVINCE

Sample location description Samples Location (WGS84) Aliquots Laboratory*
Latitude (°N) Longitude (°W)
Rattlesnake Creek terrane cover sequence
In the area of Hayfork and Wildwood, California. Map units variably defined as Salt Creek 40°23.845’ 123°07.364°  TLKMO003 (n = 102) usc
undivided sedimentary and volcanic rocks of the Salt Creek assemblage (n=152) 16KMO001 (n = 50) CSUN
(Wright and Wyld, 1994) and clastic sedimentary rock, which may be Dubakella E 40°21.448 123°06.021°  TLKMOO1 (n = 84) usc
correlative with the Galice(?) Formation (Irwin et al., 2011). (n=202) 16KMO003 (n = 118) UsC
Dubakella W 40°21.294' 123°06.329° TLKMO002 usc
n =108
In the area of the Bear Mountain intrusive complex, along Bear Basin Road. glGKM011) 41°48.804 123°45.04 n/a CSUN
Map units variably defined as Bear Basin Road sequence (Snoke, 1977) and (n=164)
Rattlesnake Creek terrane (Frost et al., 2006).
Galice Formation
Along the South Fork of the Smith River, 1.6 km upstream from Patrick Creek. 12TLO41 41°52.158’ 123°49.839’ n/a usc
Stop 5 in Harper et al. (2002). Basal-most thick-bedded unit of the Galice (n=115)
Formation above the Volcano-Pelagic unit (Wagner and Saucedo, 1987).
In the area of the Bear Mountain intrusive complex. Mapped as Galice 15KM50 41°55.783' 123°44.394’ n/a ALC
Formation, Western Klamath terrane (Snoke, 1977; Frost et al., 2006). (n=091)
In the area mapped as Galice Formation in the Klamath River appendage of 19KM1 41°49.601’ 123°22.900’ n/a ALC
Saleeby and Harper (1993). (n=39)
14CM43 41°43.715 123°26.705’ n/a ALC
(n=96)

Note: WGS84—World Geodetic System 1984.

*USC—University of South Carolina; CSUN—California State University, Northridge; ALC—Arizona LaserChron Center.

the weighted mean average of the youngest clus-
ter of grains overlapping at 20 with individual
20 grain errors that overlap the weighted mean
age (Dickinson and Gehrels, 2009b; Spencer
et al., 2016; Dumitru et al., 2018; Andersen
et al., 2019; Coutts et al., 2019; Herriott et al.,
2019; Gehrels et al., 2020). Advantages of this
approach include calculation of a statistical
point estimate that can be objectively compared
to other geological ages calculated as point es-
timates (Schmitz, 2012) and demonstration of
the best overall coincidence with MDAs calcu-
lated by chemical abrasion—thermal ionization
mass spectrometry (Coutts et al., 2019; Herriott
et al., 2019).

To assess provenance, we compared the age
distributions in our samples to previously pub-
lished ages representing geologically plausible
Middle-Late Jurassic sediment sources (Fig. 5;
Table 2) by combining available U-Pb zircon
data (detrital and primary igneous) for rocks old-
er than 150 Ma within the proposed source areas.
To avoid a priori biasing of the predicted sedi-
ment source area age distributions, we did not
preferentially weight those distributions. Where
available, we used all of the 26Pb/238U ages re-
ported from individual intrusive bodies to render
an age distribution that was representative of that
which might be expected were they measured in
a detrital sample eroded from the intrusive body.
While the proportions of zircon grains represent-
ing age modes in the unweighted, composite age
distributions constructed for each predicted sedi-
ment source area may ultimately be equivocal,
the age modes themselves are an accurate rep-
resentation of the ages in each predicted source
area and are therefore useful for provenance
analysis. We then used visual and multidimen-
sional scaling techniques (MDS) to assess our
results as compared to these scenarios. MDS is
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a means of assessing the dissimilarity between
samples as distance in Cartesian coordinates
(Saylor et al., 2018) based on a statistical dis-
tance between age distributions, here assessed in
two dimensions using the Kolmogorov-Smirnov
distance statistic (Vermeesch, 2018a). On MDS
plots, more similar samples cluster together,
and more dissimilar samples plot farther apart
(Vermeesch, 2018a). Although the Kolmogorov-
Smirnov dissimilarity is sample-size dependent,
differing sample sizes are not considered to
be a major problem for MDS analysis (Ver-
meesch, 2018b).

Scenario 1 (Figs. 2A, 2C, and 5; Table 2) is
consistent with the model of Sigloch and Mihal-
ynuk (2013, 2017), which invokes west-dipping
subduction beneath an exotic, intra-oceanic arc.
In scenario 1, sediment is assumed to have been
derived from local sources restricted to the West-
ern Klamath, Rattlesnake Creek, and Western
Hayfork terranes (Table 2).

Scenario 2 (Figs. 2B, 3C, and 5; Table 2) is
also consistent with models involving west-dip-
ping subduction beneath an exotic, east-facing,
intra-oceanic arc, but it incorporates the paleo-
geographic reconstructions of Clennett et al.
(2020) and Sigloch and Mihalynuk (2020). Sce-
nario 2A (Table 2) is consistent with sediment
sourced from the Insular superterrane to the
north of the study area via southward longshore
transport and/or funneling of sediment through
the proposed trench to the east of the Insular
superterrane (Figs. 2B and 2C) and includes
two scenarios. Scenario 2A1 (Fig. 5; Table 2)
includes a local Western Klamath, Rattlesnake
Creek, and Western Hayfork source (i.e., scenar-
io 1) plus primary and recycled sources from the
Wrangellia terrane (Insular superterrane) to the
north of the study area, whereas, scenario 2A2
includes all sources of scenario 2A1, but it also
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accounts for potential long-distance transport of
sediment from the north by adding additional
primary and recycled sources in the Alexander
terrane (Insular superterrane). Scenario 2B is
consistent with sourcing of sediment from the
Guerrero superterrane to the south of the study
area via northward longshore transport and/
or funneling of sediment through the proposed
trench to the east of the Guerrero superterrane
and includes a local Western Klamath, Rattle-
snake Creek, and Western Hayfork source (i.e.,
scenario 1) plus a source of recycled detritus
from the Guerrero superterrane.

Scenario 3 (Figs. 2D, 2E, and 5; Table 2) is
consistent with endemic models invoking east-
dipping subduction beneath the continent and
includes tests for four geologically plausible
sediment sources. Scenario 3A (Fig. 5; Table 2)
represents a sediment source that includes rocks
of the Western Klamath, Rattlesnake Creek, and
Western Hayfork terranes (i.e., scenario 1) and
sourcing of recycled sediment from previously
accreted terranes of the greater Klamath Moun-
tains Province excluding ages from the Eastern
Klamath terrane not exposed at the surface in
Middle Jurassic time (i.e., Batt et al., 2010).
Scenario 3B (Fig. 5; Table 2) includes sourcing
from rocks of the Western Klamath, Rattlesnake
Creek, and Western Hayfork terranes (i.e., sce-
nario 1) and models primary and recycled sedi-
ment derivation from the previously accreted ter-
ranes of both the Klamath Mountains and Sierra
Nevada foothills using U-Pb ages from modern
streams draining both provinces, consistent with
the accreted terranes being contiguous along
strike prior to ca. 140 Ma (Constenius et al.,
2000; Ernst, 2013). Scenarios 3C and 3D expand
the possible sediment source areas to include
plausible sources of recycled sediment from
the continental interior. Scenario 3C (Fig. 5;
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Sediment Provenance Scenarios

SCENARIO 1

Sediment derived from Western Klamath, Rattlesnake
Creek, and Western Hayfork terrane source.

n=246

SCENARIO 2A1

Same as scenario 1 plus sediment derived from a

n=1357

source to the north in Wrangellia (Insular superterrane).

SCENARIO 2A2
Same as scenario 2A1 plus sediment derived via
long-distance transport from the Alexander terrane

(Insular superterrane).
n=5843

SCENARIO 2B

Same as scenario 1 plus sediment derived from a
source to the south in the Guerrero superterrrane.
n=722

SCENARIO 3A

Same as scenario 1 plus previously accreted
terranes of the Klamath Mountains.
n=793

SCENARIO 3B
Same as scenario 1 plus previously accreted terranes
of the Klamath Mountains and those of the Sierra

Nevada.
n=1540

SCENARIO 3C

Same as scenario 3A plus sediment derived from
a recycled transcontinental source.

n=1533

SCENARIO 3D

Same as scenario 3A plus sediment derived from
recycled Paleozoic sources in the southwestern U.S.

n=3462

| [ [ [ [ [
0 500 1000 1500 2000 2500 3000

age [Ma]

Table 2) represents sediment derived from the
Western Klamath, Rattlesnake Creek, and West-
ern Hayfork terranes plus recycled sediment
from previously accreted terranes of the greater
Klamath Mountains Province (i.e., scenario 3A)
and adds a source of recycled transcontinen-
tal sand enriched by southwestern Laurentian
sources (Fig. 3D). Recycled transcontinen-
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Figure 5. Kernel density esti-
mate plots (30 m.y. bandwidth)
of sediment provenance scenar-
ios (see Table 2).

tal sand enriched by southwestern Laurentian
sources is represented by Middle and Late Ju-
rassic ages from rocks of the Colorado Plateau
inferred to have been delivered to the study area
via a river system that flowed north along the
axis of the Cordilleran arc, or by erosion and
recycling of backarc basin deposits from colli-
sional orogenic highlands in western and central

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/3-4/965/5555526/b35981.1.pdf
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Nevada (Fig. 3D; Luning-Fencemaker fold-and-
thrust system; Wyld, 2002; Wyld et al., 2003;
LaMaskin et al., 2011). Scenario 3D (Fig. 5;
Table 2) represents sediment derived from the
‘Western Klamath, Rattlesnake Creek, and West-
ern Hayfork terranes plus recycled sediment
from previously accreted terranes of the greater
Klamath Mountains Province (i.e., scenario 3A)
and adds a source of recycled sediment repre-
sented by U-Pb ages from Paleozoic rocks in the
Grand Canyon delivered to the study area via a
river system that flowed north along the axis of
the Cordilleran arc (Fig. 3D).

RESULTS

All samples of clastic rocks in the Rattlesnake
Creek terrane cover sequence and Galice For-
mation in the Western Klamath terrane contain
a range of Precambrian, Paleozoic, and Meso-
zoic ages (Figs. 6, 7, and §8; Table 3). Rattle-
snake Creek terrane cover sequence samples
(Fig. 6; Table 3) all contain prominent Precam-
brian age distributions ca. 2.7-2.5, 1.8-1.7, and
1.5-1.0 Ga, dominated by ca. 1.8-1.7 Ga ages.
Each of our Rattlesnake Creek terrane cover
sequence samples, except 16KMO11 (n = 64),
contain Neoproterozoic ages ca. 630-560 Ma
(Fig. 6). Paleozoic ages centered on 370-360 Ma
are present in all samples and were represented
by proportionally large numbers of grains in
our samples Dubakella E and W (Figs. 6 and
8). Mesozoic ages vary in our samples (Fig. 8;
Table 3), with dominant age distributions ca.
300-250 Ma and 197-160 Ma. The MDA for
Rattlesnake Creek terrane cover sequence sam-
ple Salt Creek is Middle Jurassic (Bajocian, ca.
170 &+ 1.7 Ma; Fig. 9A; Table 3). MDAs are
early Late Jurassic (Oxfordian) for samples
Dubakella E (ca. 162 £+ 5.0 Ma) and Duba-
kella W (ca. 161 £ 3.8 Ma; Figs. 9B and 9C;
Table 3). In MDS space (Fig. 10A), our Rattle-
snake Creek terrane cover sequence samples are
well clustered in both dimensions. The samples
plot near scenarios 3A, 3C, and 3D (Figs. 5 and
10A; Table 2).

Precambrian detrital zircon age distributions
are present in all Galice Formation samples
(Fig. 7; Table 3). Samples 14CM43 and 19KM1
from the Klamath River appendage of Saleeby
and Harper (1993) contain Precambrian ages
ca. 2.6-2.3, 1.8-1.7, 1.4, and 1.0 Ga (Fig. 7).
Samples 12TL041 and 15KM50, both from the
area of the Bear Mountain intrusive complex,
contain lower proportions of ca. 2.0-1.6 Ga
grains and greater proportions of ca. 1.4-1.0 Ga
ages as compared to the other Galice Forma-
tion samples (Fig. 7). Neoproterozoic ages ca.
690-545 Ma are present in three of our Galice
Formation samples (Fig. 7). Mesozoic ages vary

Geological Society of America Bulletin, v. 134, no. 3/4
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TABLE 2. MIDDLE-LATE JURASSIC SEDIMENT PROVENANCE SCENARIO INFORMATION AND DATA SOURCES

Paleotectonic/ paleogeographic
setting

Predicted sediment sources

Previously published ages representing predicted sediment sources

Scenario 1

An intra-oceanic arc exotic to
western Laurentia generated
by west-dipping subduction.

Scenario 2

An intra-oceanic arc exotic to
western Laurentia generated
by west-dipping subduction
and experiencing Middle-
Late Jurassic rifting between
southern Wrangellia (Insular
superterrane) and the Guerrero
superterrane.

Scenario 3
East-dipping subduction beneath

the continent. A period of
extension and slab rollback on
the continental-plate margin
generated a fringing magmatic
arc built on older previously
accreted terranes.

Sediment derived from Western Klamath,
Rattlesnake Creek, and Western Hayfork
terrane source.

Scenario 2A1: Same as scenario 1 plus
sediment derived from a source to the north
in Wrangellia (Insular superterrane).

Scenario 2A2: Same as scenario 2A1
plus sediment derived via long-distance
transport from the Alexander terrane (Insular
superterrane).

Scenario 2B: Same as scenario 1 plus sediment
derived from a source to the south in the
Guerrero superterrane.

Scenario 3A: Same as scenario 1 plus
previously accreted terranes of the Klamath
Mountains.

Scenario 3B: Same as scenario 1 plus
previously accreted terranes of the Klamath
Mountains and those of the Sierra Nevada.

Scenario 3C: Same as scenario 3A plus
sediment derived from a recycled
transcontinental source.

Scenario 3D: Same as scenario 3A plus
sediment derived from recycled sources in

Individual ages (>ca. 150 Ma) derived from igneous bodies in the Klamath
Mountains (Irwin and Wooden, 1999; Irwin, 2003; Allen and Barnes, 2006)
with approximate ages 208—-193 Ma (Rattlesnake Creek plutons), 177—-168 Ma
(Western Hayfork and Ironside Mountain suites), 166—154 Ma (Wooley Creek
suite), and 160—153 Ma (Rogue-Chetco complex).

Same as scenario 1 plus known primary and detrital ages from southern
Wrangellia (Alberts, 2019, Paleozoic samples; Ruks, 2015).

Same as scenario 2A1 plus the data of White et al. (2016) representing all
Alexander terrane ages.

Same as scenario 1 plus known ages from the Guerrero superterrane (Ortega-
Flores et al., 2016, Arteaga complex, sample Placeres 23; Martini et al., 2009,
Arteaga complex, samples TJP, TZT; Ortega-Flores et al., 2021, Charcas
Formation sample CH14-1, Esperanza Formation sample GTO14-1).

Same as scenario 1 plus detrital zircon data from the Klamath Mountains
(Scherer and Ernst, 2008; Scherer et al., 2010; Ernst et al., 2017).

Data published by Cecil et al. (2010), Cassel et al. (2012), and Malkowski et al.
(2019) from modern streams draining both the Klamath Mountains and Sierra
Nevada foothills terranes, an actualistic estimator of the age distributions
present in regional accreted terrane sources.

Same as scenario 3A plus data from samples of Middle and Late Jurassic age
from the Colorado Plateau (Dickinson and Gehrels, 2009a, samples CP-12,
15, 16, 21, 24, 43, 45, and 54).

Same as scenario 3A plus all data from samples of Paleozoic strata in Grand
Canyon (Gehrels et al., 2011).

the southwestern U.S.

in our samples (Fig. 8), with age distributions
ca. 420, 305-281 Ma, 230, 195, 180-165 Ma,
and a dominant age mode in each sample of
158 or 157 Ma. The MDA for sample 14CM43
(Fig. 9D; Table 3) is early Late Jurassic (Oxford-
ian, ca. 158 £ 1.7), and the remaining samples
(Figs. 9E-9G; Table 3) are middle Late Jurassic
(Kimmeridgian) with MDAs of 157 4+ 2.4 Ma
(15KM50), 154 £1.6 Ma (19KM1), and
153 £ 1.4 Ma (12TL0O41). In MDS space,
Galice Formation sequence samples are distinct
from Rattlesnake Creek terrane cover sequence
samples (Fig. 10A). Three Galice Formation
samples plot in a group around scenario 3B, and
sample 15KMS50 plots nearest to scenario 3C.

DISCUSSION
Maximum Depositional Ages

Samples from the Rattlesnake Creek terrane
cover sequence do not contain a high proportion
of young ages (e.g., as low as 7% total Mesozoic
ages; Table 3), making MDA assessment noni-
deal (Dickinson and Gehrels, 2009b; Spencer
et al., 2016; Andersen et al., 2019; Coutts et al.,
2019; Herriott et al., 2019; Gehrels et al., 2020;
Sharman and Malkowski, 2020). Nonetheless,
our samples do include 38 grains younger than
the previously assigned minimum age of 193 Ma
(Wright and Wyld, 1994) and thus provide new
constraints on the timing of deposition for por-
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tions of the Rattlesnake Creek terrane cover
sequence. Samples yield MDAs (Figs. 4B and
9A-9C) ranging from 170 Ma (Middle Juras-
sic; Bajocian) to 161 Ma (early Late Jurassic;
Oxfordian), a span of 9 m.y., and suggesting that
deposition of the Rattlesnake Creek terrane cover
sequence occurred during the interval of exten-
sion and seafloor spreading in numerous loca-
tions in the Klamath Mountains (e.g., Devils El-
bow, Preston Peak, and Josephine ophiolites), as
well as deposition of the hemipelagic sequence of
the Galice Formation (Figs. 4A and 4B; ca. 162—
157 Ma) and the early period of Wooley Creek
suite magmatism (Allen and Barnes, 2006).
Early Late Jurassic MDAs of 158-153 Ma
(Oxfordian—Kimmeridgian) for the Galice For-
mation (Figs. 4B and 9D-9G) are in excellent
agreement with existing faunal estimates of ca.
157 Ma for initiation of Galice Formation tur-
bidite deposition (Pessagno and Blome, 1990;
Pessagno, 2006) and the 157 + 2 Ma radiolarian
tuff age from the top of the underlying Rogue
Formation (Saleeby, 1984), as well as regional
estimates of ca. 155-150 Ma for thrusting and
subsequent deformation of the Galice Formation
in the Klamath Mountains (Harper et al., 1994;
MacDonald et al., 2006). Based on the degree
of concurrence with paleontologic ages and the
high proportion of young zircon in the Galice
Formation samples (i.e., Cawood, 2012; Dick-
inson and Gehrels, 2009b; Spencer et al., 2016;
Herriott et al., 2019; Sharman and Malkowski,

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/3-4/965/5555526/b35981.1.pdf

2020), we suggest that our MDAs are reasonable
estimates for turbidite deposition in the Galice
Formation.

Additional observations suggesting that the
majority of our samples were deposited close to
the calculated MDAs include a lack of post-Ne-
vadan ages in our samples, despite the fact that
magmatism in the Klamath Mountains was near-
ly continuous from ca. 150 to 136 Ma (Allen and
Barnes, 2006; Barnes et al., 2006). In particular,
we note a general lack of ages in our Rattlesnake
Creek terrane cover sequence samples represent-
ing magmatism in the late period of the Wooley
Creek suite, which was nearly continuous from
166 to 152 Ma.

Taken together, our data corroborate a period
of late Middle to early Late Jurassic regional
basin formation and sedimentation in the Rat-
tlesnake Creek and Western Klamath terranes
(Figs. 2D, 2E, 4A, and 4B). Regional crosscut-
ting relationships suggest that basin formation
began as early as ca. 170 Ma (inferred age of
the Preston Peak and China Peak precursors to
the Josephine ophiolite; Saleeby and Harper,
1993) and no later than ca. 164 Ma (Josephine
and Devils Elbow ophiolites) and that sedimen-
tation of the Galice Formation was syncontrac-
tional, ending ca. 150 Ma (Harper et al., 1994;
Hacker et al., 1995). Thus, our data fall excep-
tionally well within these temporal estimates
of basin formation and sedimentation based on
paleontologic and geochronological estimates

975



LaMaskin et al.

RATTLESNAKE CREEK TERRANE - COVER SEQUENCE

Dubakella E (n=202)

Salt Creek (n=152)

Figure 6. Tera-Wasserburg plots and kernel density estimate plots (30 m.y.

Rattlesnake Creek terrane cover sequence.

independent of our data (Figs. 4A and 4B; Salee-
by, 1984; Pessagno and Blome, 1990; Saleeby
and Harper, 1993; Pessagno, 2006).

Our radioisotopic data corroborate field struc-
tural and intrusive observations showing that our
samples were deposited prior to the postulated
ca. 150 Ma collision of the Mezcalera arc and

976

the “initial pulse of Nevadan deformation” (Si-
gloch and Mihalynuk, 2017, p. 1509). Our new
MDA confirm that the provenance of sedimen-
tary rocks in the Rattlesnake Creek and Western
Klamath terranes bears directly on the question
of contrasting exotic versus endemic Late Juras-
sic paleogeographic and paleotectonic models
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Cordillera.

Provenance Analysis

The age distributions present in our samples
and our provenance analysis of geologically

Geological Society of America Bulletin, v. 134, no. 3/4
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Figure 7. Tera-Wasserburg plots and kernel density estimate plots (30 m.y. bandwidth) as insets for U-Pb detrital zircon data from the
Galice Formation of the Western Klamath terrane.

plausible Middle-Late Jurassic sediment
sources are not consistent with exotic models
for the origin of the Western Klamath or Rattle-
snake Creek terranes. Exotic scenario 1 lacks
the appropriate distribution of Precambrian ages
observed in our samples (Figs. 5-7 and 10B)
and plots far from samples of the Rattlesnake

Geological Society of America Bulletin, v. 134, no. 3/4

Creek terrane cover sequence and Galice For-
mation in MDS space (Fig. 10A). All of our
samples do bear ages ca. 205-160 Ma, which
are broadly consistent with the local sources
that comprise the predicted sediment source
of scenario 1 (Sigloch and Mihalynuk, 2013,
2017); however, our samples also contain up to

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/3-4/965/5555526/b35981.1.pdf

~83% Precambrian and Paleozoic zircon grains
(Figs. 6, 7, and 10B; Table 3). There is simply
no known primary or recycled source of Pre-
cambrian grains in the Western Jurassic, Rattle-
snake Creek, or Western Hayfork terranes that
could comprise the predicted sediment source
in scenario 1.
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RATTLESNAKE CREEK WESTERN KLAMATH Scenarios 2A1 and 2A2, after Sigloch and
TERRANE TERRANE Mihalynuk (2020) and Clennett et al. (2020),
COVER SEQUENCE GALICE FORMATION do contain Precambrian zircon; however, the

age distributions in these potential sources do
AGES <500 Ma AGES <500 Ma not match the ages in our samples, and they
plot far from samples of Rattlesnake Creek ter-
rane cover sequence and the Galice Formation
180 15KM50 in MDS space (Figs. 10A and 10B). Scenarios
148 16KMO011 (n=41) 2A and 2B predict that there should be few ages
(n=1 0) © 157 older than 600 Ma and very few ages older than
1.3 Ga; however, our samples bear abundant
ages in these ranges (Figs. 6, 7, and 10B). Sce-
nario 2B, after Sigloch and Mihalynuk (2020)
and Clennett et al. (2020), plots closer to samples
from our study area, reflecting age modes at 1.2—
1.0 Ga, 470, 335, 254, and 171 Ma, which are
broadly similar to our data; however, scenario
2B contains only a very small proportion of
19KM1 ages older than 1.2 Ga (Figs. 5 and 10B), which
are present in great abundance in our samples

7 (n=22) (Figs. 6, 7, and 10B).
- 187 In contrast, our results are broadly consis-
tent with all four predicted sediment sources
representing endemic models (scenarios 3A,
3B, 3C, and 3D; Figs. 5 and 10B). Each pre-
- dicted source includes detrital zircon grains of
the appropriate ages and proportions as those
\ /U\ /Hk observed in samples from the Rattlesnake
Creek and Western Klamath terranes (Figs. 5,
6,7, and 10B). To address potential bias in our
provenance comparisons resulting from over-
14CM43 representation of ages younger than 250 Ma
(n=43) in modern sediment from the Klamath Moun-
tains and Sierra Nevada (i.e., swamping-out by
= younger plutonic ages; Cecil et al., 2010; Cas-
sel et al., 2012; Malkowski et al., 2019), we
removed ages younger than 250 Ma and reana-
0 lyzed the data using MDS and visual analysis

461 (Figs. 11A and 11B).
J 195 Our Rattlesnake Creek terrane cover se-
" quence samples and two Galice Formation
samples (19KM1 and 14CM43; Figs. 11A and
a3 Sa(I’:_C:;::)ek 11B) plot near or between Klamath—Sierra Ne-
- ~ 158 12TL041 vada sources (scenario 3A and 3B) and recycled
=97 transcontinental sand enriched by southeastern
(n_ ) U.S. sources (scenario 3C), as well as sources
in the southwestern United States (scenario
3D). Galice Formation samples 15KM50 and
12TLO41 bear a low to moderate proportion of
post—250 Ma grains, but those present are a close
match to recycled transcontinental sand enriched

N J by southeastern U.S. sources (scenario 3C).

o = Samples Dubakella E and W contain abun-
100 200 300 400 5C 100 200 300 400 500 dant ages ca. 370 and 360 Ma, as well as ca.
Age (Ma) Age (Ma) 1.8-1.7 Ga, which, along with other ages pres-
ent, provide a close match to ages from modern
streams draining the Klamath Mountains and
Sierra Nevada (Figs. 11A and 11B; scenario
3B). Ages ca. 380 Ma in modern sediment likely
represent the full age range of grains present in
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Figure 8. Kernel density estimate plots (5 m.y. bandwidth) for detrital zircon ages younger
than 500 Ma from our samples. Note that many of these plots show more age modes than the
plots in Figures 6 and 7 due to the differences in bandwidth used.
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TABLE 3. RESULTS OF U-PB GEOCHRONOLOGY, KLAMATH MOUNTAINS PROVINCE

Sample name Percent of ages

by era

Age modes and distributions
at 30 m.y. kernel bandwidth

Age modes and distributions
for grains younger than 500 Ma

Maximum depositional age

at 5 m.y. kernel bandwidth

Rattlesnake Creek terrane cover sequence
Salt Creek (n = 152) 78% Precambrian

8% Paleozoic
14% Mesozoic
69% Precambrian
24% Paleozoic
7% Mesozoic
62% Precambrian
31% Paleozoic
7% Mesozoic
83% Precambrian
5% Paleozoic
12% Mesozoic

Dubakella E (n = 202)
Dubakella W (n = 108)

16KMOT1 (n = 64)

Western Klamath terrane, Galice Formation
14CM43 (n = 96) 55% Precambrian
1% Paleozoic
44% Mesozoic
54% Precambrian
13% Paleozoic
33% Mesozoic
44% Precambrian
7% Paleozoic
49% Mesozoic
15% Precambrian
6% Paleozoic
79% Mesozoic

15KM50 (n = 91)

19KM1 (n = 39)

12TLO41 (n = 115)

ca. 2645, 1780, 1185, 560,
255, and 175 Ma

ca. 2650, 2530, 1960, 1780,

1400, 1100, 565, 360, and
167 Ma

ca. 2630, 2450, 1780, 1350,

ca. 260 and 173 Ma

ca. 360, 288, 251, 203, and
167 Ma

ca. 461, 370, 327, 283, and

170 + 1.7 Ma, MSWD = 1.36, n = 6;
Middle Jurassic, Bajocian

162 + 5.0 Ma, MSWD = 1.27, n = 4;
early Late Jurassic, Oxfordian

161 + 3.8 Ma, MSWD = 2.99, n = 3;

1100, 63(1’626'& 370, and 163 Ma early Late Jurassic, Oxfordian
a
ca. 2700-2550, 1850—-1730, ca. 180 and 148 Ma n/a
1075, and 175 Ma
ca. 2670, 2330, 1850, 1760, ca. 157 Ma 158 4+ 1.7 Ma, MSWD = 0.48, n = 30;

1430, and 157 Ma

ca. 2050, 1660, 1415, 1172,
1030, 604, 415, 157 Ma

ca. 1750, 1050, 415, and
157 Ma

ca. 1042, 1160, 1025, 690—
544, 230, and 157 Ma

ca. 420, 281, 230, 196, and
157 Ma

ca. 195 and 157 Ma

ca. 235, 205, and 158 Ma

early Late Jurassic, Oxfordian

157 + 2.4 Ma, MSWD = 0.49, n = 17;
middle Late Jurassic, Kimmeridgian

154 + 1.6 Ma, MSWD = 0.92, n = 4;
middle Late Jurassic, Kimmeridgian

153 + 1.4 Ma, MSWD = 1.50, n = 23;
middle Late Jurassic, Kimmeridgian

*MSWD—mean square of weighted deviates.

rocks of the Bowman Lake batholith and as-
sociated plutons in the Northern Sierra terrane,
which range from 371 to 353 Ma (Powerman
et al., 2020). The presence of prominent age
modes ca. 370 and 360 Ma in our samples is
further confirmation that accreted terranes of
the Klamath Mountains were contiguous along
strike with the Sierra Nevada foothills prior
to ca. 140 Ma, when the Klamath block sepa-
rated from the Sierra Nevada block and moved
trenchward (Constenius et al., 2000; Snow and
Scherer, 2006; Ernst, 2013).

Our results suggest that sediment sources to
the Klamath Mountains during Middle and Late
Jurassic time were largely mixtures generated
from recycling through previously accreted
terranes of the Klamath Mountains and Sierra
Nevada, recycled transcontinental sand either
input directly to the basin or recycled through
Middle and Late Jurassic, “pre-Nevadan™ oro-
genic sources (e.g., through the Luning-Fence-
maker fold-and-thrust belt; Wyld, 2002; Wyld
et al., 2003; LaMaskin et al., 2011; LaMaskin,
2012), and primary and/or recycled sources
in the southwestern United States. Variations
within our samples and as compared to the pre-
dicted sediment sources analyzed here likely
represent a combination of sampling bias due
to the low number of pre-Mesozoic analyses
per sample, hydrodynamic sorting of ages dur-
ing transport and deposition (Lawrence et al.,
2011), and variations in the evolution of drain-
age basins and sediment routing systems over
time (e.g., DeGraaff-Surpless et al., 2002; see
Caracciolo, 2020).

Geological Society of America Bulletin, v. 134, no. 3/4

Implications for the History of the Klamath
Mountains Province

Middle Jurassic and early Late Jurassic
MDAs for the Rattlesnake Creek terrane cover
sequence (Salt Creek assemblage) are at least
23 m.y. younger than the age of the Late Triassic
to Early Jurassic intrusive suite (207-193 Ma)
that was interpreted by Wright and Wyld (1994)
to crosscut the cover sequence. We suggest that
multiple bodies of sedimentary rock of varying
ages—some cut by the Mesozoic intrusive suite
(Wright and Wyld, 1994) and some not—may be
present in the Rattlesnake Creek terrane, and we
note that these MDAs are consistent with Mid-
dle Jurassic radiolaria ages in Irwin and Blome
(2004) and the interpretations of Irwin (2010)
and Irwin et al. (2011), who suggested that some
clastic portions of the Rattlesnake Creek terrane
cover sequence may be more analogous to the
Galice Formation. Deformation of the cover se-
quence corresponds to a period of serpentinite
remobilization, causing fragments of the cover
sequence to be incorporated into the basement
mélange (Wright and Wyld, 1994). Traditionally,
this deformation of the cover sequence has been
attributed to Middle Jurassic Siskiyou deforma-
tion; however, ca. 170-161 Ma MDAs for the
cover sequence require that these rocks were
deformed after the Siskiyou event by Late Ju-
rassic (Nevadan) orogenesis (Figs. 4A and 4B).
More detailed U-Pb geochronology is necessary
to decipher these details; however, the detrital
zircon U-Pb ages presented here suggest that
sampled rocks of the Rattlesnake Creek terrane
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cover sequence were deposited no earlier than
early Middle to early Late Jurassic time.

Our data are consistent with endemic models
of the Middle-Late Jurassic tectonic evolution
of the Klamath Mountain Province (Fig. 12),
where Middle-Late Jurassic extension in the
Rattlesnake Creek terrane generated a new con-
tinent-fringing arc-basin complex, the Western
Klamath terrane. Deposition of the Rattlesnake
Creek terrane cover sequence took place 170—
161 Ma during extension and seafloor spreading
in numerous locations in the Klamath Mountains
(Fig. 12A; e.g., Devils Elbow, Preston Peak, and
Josephine ophiolites). Although the timing of
sedimentation of the Rattlesnake Creek terrane
cover sequence is revised here, the conclusion
that previously accreted terranes of the Klam-
ath Mountains and the Sierra Nevada provided
an uplifted orogenic source of sediment to de-
pocenters on the basement assemblage of the
Rattlesnake Creek terrane is consistent with the
petrographic and isotopic observations and inter-
pretations of Wright and Wyld (1994) and Frost
et al. (2006).

Subsequent early and middle Late Jurassic
filling of the marginal ocean basin is repre-
sented by turbidite sandstone deposits of the
Galice Formation (Fig. 12A). Our results sug-
gest that the sources of sediment to the Galice
Formation turbidite sandstone are dominated
by local syndepositional magmatic sources
likely derived from volcanic equivalents of
the Wooley Creek suite and Rogue-Chetco
arc complex, but they also contain detritus
eroded from previously accreted terranes of
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Exotic collision versus endemic re-accretion, Klamath Mountains

the Klamath Mountains and the Sierra Nevada,
and a likely additional source of recycled
transcontinental sand. Finally, in Late Jurassic
time ca. 155-150 Ma, the arc-basin complex
closed, the Western Klamath and Rattlesnake
Creek terranes were re-accreted to the North
American plate margin, and the Rattlesnake

Geological Society of America Bulletin, v. 134, no. 3/4

Creek terrane cover sequence was deformed
and incorporated into the Rattlesnake Creek
terrane basement assemblage (Fig. 12B). Our
interpretation of the presence of Middle and
Late Jurassic rift-related sedimentary depos-
its in the Rattlesnake Creek terrane is analo-
gous to other interpretations of rift-edge facies
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(Snoke, 1977; Saleeby and Harper, 1993; Yule
et al., 2006; MacDonald et al., 2008) that tie
rocks of the Western Klamath terrane and
Rattlesnake Creek terrane together during
the evolution of in situ extension of the North
American plate margin in Middle and Late
Jurassic time.
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Figure 11. Provenance analy-
sis results for ages older than
250 Ma in endemic scenarios
(i.e., scenario 3; see Table 1).
(A) Multidimensional scal-
ing plot showing Rattlesnake
Creek terrane cover sequence
and Galice Formation samples,
as well as scenarios 3A, 3B, 3C,
and 3D. DW—Dubakella West
sample, DE—Dubakella East
sample, SC—Salt Creek sam-
ple. (B) Kernel density estimate
plots (30 m.y. bandwidth) com-
paring ages older than 250 Ma.
See Figure 10 for sample name
abbreviations.

in the sediment sources predicted by the tomotec-
tonic models or Sigloch and Mihalynuk (2013,
2017) or Clennett et al. (2020). Second, we note
that the boundary between the Eastern and West-
ern Hayfork terranes, which is proposed to be the
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A [ate Middle to middle Late Jurassic

h

Rogue-Chetco
trench

e arc

Sediment derived from older terranes of the
Klamath Mountains and Sierra Nevada and
sources in the continental interior.

= —
\sgt 1\\\\\{

Josephine/Devils Elbow

ophiolite

B middle Late to late Late Jurassic

h
trench

basement

Closure of the Galice/Josephine
basin and re-accretion of the
Western Klamath terrane built on
Rattlesnake Creek terrane

Figure 12. Simplified model
depicting the western Klam-
ath Mountains from ca. 170 to
150 Ma, modified from Frost
et al. (2006). Green represents
sediment of the Rattlesnake
Creek terrane cover sequence,
and yellow represents sedi-
ment of the Galice Forma-
tion in the Western Klamath
terrane. (A) Intra-arc rifting
of the Rattlesnake creek ter-
rane away from the Western
Hayfork terrane and associ-
ated generation of Middle—
Late Jurassic ophiolites and
sedimentation sourced from
older, previously accreted ter-
ranes and dominantly recy-
cled sources on the continental
interior. RCt—Rattlesnake
Creek terrane, WHt—West-
ern Hayfork terrane, EHt—
Eastern Hayfork terrane,
WKt—Western Klamath ter-

rane. (B) Late Jurassic closure of the basin and re-accretion of the endemic Western Klamath terrane against North America.

Mezcalera-Angayucham suture of Sigloch and
Mihalynuk (2017), is stitched by the ca. 170-169
Ironside Mountain batholith and by the Wooley
Creek batholith with robust isotopic ages as old
as ca. 159.22 4+ 0.10 Ma (Fig. 3; Coint et al.,
2013). Thus, the “suture” developed prior to ca.
155 Ma, in contrast to Sigloch and Mihalynuk’s
(2017) requirement that the “suture” must ev-
erywhere be younger than ca. 155 Ma, and well
prior to either the 135-110 Ma age suggested by
Sigloch and Mihalynuk (2017) at the latitude of
California, or the 80 Ma age depicted by Clen-
nett et al. (2020). Finally, we note that the in-
terpretations of Dickinson (2008) are in fact not
consistent with the interpretation of Sigloch and
Mihalynuk (2017), i.e., that the Western Klam-
ath, Rattlesnake Creek, and Western Hayfork
terranes formed above the westward-subducting
Mezcalera Ocean. While Dickinson (2008) does
suggest that the Rattlesnake Creek terrane may
have formed above a west-dipping subduction
zone, he honors geologic constraints that require
its accretion to the plate margin to have occurred
by Middle Jurassic time. Dickinson (2008) then
suggests that accretion of the Rattlesnake Creek
terrane was followed by a flip in subduction po-
larity and that magmatism in the Western Hay-
fork terrane “can be taken to mark initiation of
a west-facing magmatic arc built on the newly
expanded continental margin” (p. 337). In this
manner, Dickinson (2008) accepts the endemic
model argued for here, wherein the Western

Klamath terrane and associated Josephine/Galice
basin formed during slab rollback and extension
on the plate margin during east-dipping subduc-
tion, followed by contraction and basin closure.

These fundamental geologic observations in
the Klamath Mountains add to arguments against
west-sipping subduction presented for portions
of the Canadian and Alaskan Cordillera (e.g.,
Monger, 2014; Pavlis et al., 2019, 2020) and
further call into question essential elements of
the exotic tomotectonic models. Our results are
consistent with geologic observations presented
in numerous other studies suggesting that tec-
tonic models invoking exotic, intra-oceanic ar-
chipelagos composed of Cordilleran arc terranes
formed above a west-dipping subduction zone
are not supported by geologic data (e.g., Trop
and Ridgway, 2007; Hampton et al., 2010; Mon-
ger, 2014; Surpless et al., 2014; Yokelson et al.,
2015; Box et al., 2019; Pavlis et al., 2019, 2020;
Manselle et al., 2020; Trop et al., 2020). Detailed
geologic observations in these regions, and in the
Klamath Mountains, suggest that collisions and
sutures that match tomotectonic predictions are
not observed. As a result, the interpretation of a
continent-scale suture representing Late Jurassic
and Cretaceous consumption of an oceanic Mez-
calera plate is not supported. Instead, numerous
observations in western North America lend sup-
port to models incorporating east-dipping Me-
sozoic subduction beneath the North American
continental margin.

CONCLUSIONS

New detrital zircon U-Pb ages from clas-
tic rocks of the Rattlesnake Creek and Western
Klamath terranes in the Klamath Mountains are
consistent with derivation from a combination of
the older terranes of the Klamath Mountains and
Sierra Nevada, active-arc sources, and recycled
sources in the continental interior. Our observa-
tions are consistent with, and lend additional sup-
port to, an endemic Middle—Late Jurassic setting
for the Western Klamath, Rattlesnake Creek, and
Western Hayfork terranes (e.g., Snoke, 1977;
Harper, 1980; Saleeby, 1981, 1983, 1992; Salee-
by et al., 1982; Saleeby and Busby-Spera, 1992;
Saleeby and Harper, 1993; Harper and Wright,
1984; Wright and Fahan, 1988; Hacker and Ernst,
1993), where during east-dipping subduction, the
opening (Galice/Josephine basin) and subsequent
closing (local Nevadan orogeny) of a marginal
ocean basin occurred as a result of in situ exten-
sion and contraction, respectively, along the con-
tinental subduction margin (Fig. 12). Middle and
Late Jurassic incorporation of sediment derived
from previously accreted material of the Klamath
Mountains and Sierra Nevada, plus sand from the
interior of North America, into the Rattlesnake
Creek and Western Klamath terranes requires
that these terranes were endemic to the North
American plate margin in Middle-Late Jurassic
time and indicates that re-accretion of these en-
demic terranes was the driver of subsequent Late
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Jurassic deformation in the Klamath Mountains.
Models of exotic, intra-oceanic archipelagos com-
posed of Cordilleran arc terranes formed above a
west-dipping subduction zone and accreted to the
plate margin after ca. 150 Ma are not consistent
with multiple lines of geologic evidence.
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