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Abstract

We consider a general class of mean field control problems described by stochastic delayed
differential equations of McKean-Vlasov type. Two numerical algorithms are provided based
on deep learning techniques, one is to directly parameterizing the optimal control using neural
networks, the other is based on numerically solving the McKean-Vlasov forward anticipated
backward stochastic differential equation (MV-FABSDE) system. In addition, we establish
the necessary and sufficient stochastic maximum principle of this class of mean field control
problems with delay based on the differential calculus on function of measures, and the exis-
tence and uniqueness results are proved for the associated MV-FABSDE system under suitable
conditions.
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1 Introduction

Stochastic games were introduced to study the optimal behaviors of agents interacting with each
other. It is used to study the topic of systemic risk in the context of finance. For example, in [6], the
authors proposed a linear quadratic inter-bank borrowing and lending model, and solved explicitly
for the Nash equilibrium with a finite number of players. Later, this model was extended in [5]
by considering delay in the control in the state dynamic to account for the debt repayment. The
authors analyzed the problem via a probabilistic approach which relies on stochastic maximum
principle, as well as via an analytic approach which is build on top of an infinite dimensional
dynamic programming principle.
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Both mean field control and mean field games are used to characterize the asymptotic behavior
of a stochastic game as the number of players grows to infinity under the assumption that all
the agents behave similarly, but with different notation of equilibrium. The mean field games
consist of solving a standard control problem, where the measure is fixed, and solving a fixed point
problem such that the measure matches the distribution of the dynamic of a representative agent.
Whereas, the mean field control problem is a nonstandard control problem in the sense that the law
of state is present in the McKean-Vlasov dynamic, and optimization is performed while imposing
the constrain of distribution of the state. More detail can be found in [3] and [2].

In this paper, we considered a general class of mean field control problem with delay effect in
the McKean-Vlasov dynamic. We derived the adjoint process associated with the McKean-Vlasov
stochastic delayed differential equation, which was a type of anticipated backward stochastic dif-
ferential equation of McKean-Vlasov type due to the fact that the conditional expectation of the
future of adjoint process was involved. This type of backward stochastic differential equations
(BSDE) was introduced in [13], and for the general theory of BSDE, we refer [16]. We also es-
tablish a necessary and sufficient stochastic maximum principle based on differential calculus on
functions of measures. In the meantime, we also prove the existence and uniqueness of the system
of McKean-Vlasov forward anticipated backward stochastic differential equations (MV-FABSDE)
under some suitable conditions using the method of continuation, which can be found in [12], [1]
and [5]. For a comprehensive study of FBSDE theory, we refer [11].

When there was no delay effect in the dynamic, [10] proved the relation between the solution
to the FBSDE and quasi-linear partial differential equation (PDE) via ”Four Step Scheme”. [7]
and [14] explored the use of deep learning for solving high dimensional PDEs. However, the
class of fully coupled MV-FABSDE considered in our paper has no explicit solution. Here, we
presented one algorithm to tackle the above problem by means of deep learning techniques. Due to
the non-Markovian nature of the state dynamic, we applied the long short-term memory (LSTM)
network, which was able to capture the arbitrary long-term dependencies in the data sequence. It
also partially solved the vanishing gradient problem in vanilla recurrent neural networks (RNNs).
This was shown in [9]. The idea of our algorithm is to approximate the solution to the adjoint
process and the conditional expectations of the adjoint process. The optimal control was readily
obtained after the MV-FABSDE being solved. We may also emphasis that the way that we present
here for numerically compute conditional expectation may have a wide range of applications, and it
is simple to implement. We also present another algorithm solving the mean field control problem
by directly parameterizing the optimal control. Similar idea can be found in the the policy gradient
method in the regime of reinforcement learning [15]. Numerically, two algorithms we proposed in
this paper yield the same result. Besides, out approaches embrace the case with no delay.

The paper is organized as follows. We start with a N player game with delay, and let num-
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ber of players goes to infinity to introduce a mean field control problem in Section 2. Next, in
Section 3, we mathematically formulate the feedforward neural network and LSTM network, and
propose two algorithms to numerically solve the mean field control problem using deep learning
techniques. One is based on directly parameterizing the control, and the other depends on numeri-
cally solving the MV-FABSDE system. The adjoint process associated with the delayed dynamic
is derived, as well as the stochastic maximum principle is proved in Section 4. Finally, the unique-
ness and existence solution for this class of MV-FABSDE are proved under suitable assumptions
via continuation method in Section 5.

2 Formulation of The Problem

Let (Ω,F ,P) be a probability space, and let T > 0, τ > 0 be given constants. We consider
a N -player game with delay in both state and control. The dynamic (X i

t)0≤t≤T for player i ∈
{1, . . . , N} is given by a stochastic delayed differential equation (SDDE),

dX i
t = bi(t,Xt,Xt−τ , α

i
t, α

i
t−τ )dt+ σi(t,Xt,Xt−τ , α

i
t, α

i
t−τ )dW

i
t , t ∈ (0, T ]

X i
0 = xi0,

X i
t = αit = 0; t ∈ [−τ, 0),

(2.1)

where Xt = (X1
t , · · · , XN

t ), and where ((W i
t )t∈[0,T ])i=1,···,N are N independent Brownian motions

defined on the space (Ω,F ,P), (Ft)0≤t≤T being the natural filtration of Brownian motions.

(b, σ) : [0, T ]× Ω× RN × RN × A× A→ R× R,

are continuously differentiable Ft-measurable functions. We denote A a closed convex subset of
R, the set of actions that player i can take, and denote A the set of admissible control processes. For
each i ∈ {1, . . . , N}, A-valued measurable processes (αit)0≤t≤T satisfy an integrability condition
such that E

[∫ T
−τ |α

i
t|2dt

]
< +∞.

Given an initial condition x0 = (x1
0, · · · , xN0 ) ∈ RN , each player would like to minimize his

objective functional:

J i(α) = E
[∫ T

0

f i(t,Xt,Xt−τ , α
i
t)dt+ gi(XT )

]
. (2.2)

for some Borel measurable functions f i : [0, T ]×Ω×RN ×RN ×A→ R, and gi : Ω×RN → R.
In order to study the mean-field limit of (Xt)t∈[0,T ], we assume that the system (2.1) satisfy

a symmetric property, that is to say, for each player i, the other players are indistinguishable.
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Therefore, drift bi and volatility σi in (2.1) take the form of

(bi, σi)(t,Xt,Xt−τ , α
i
t, α

i
t−τ ) = (bi, σi)(t,X i

t , µ
N
t , X

i
t−τ , µ

N
t−τ , α

i
t, α

i
t−τ )

and the running cost f i and terminal cost gi are of the form

f i(t,Xt,Xt−τ , α
i
t) = f i(t,X i

t , µ
N
t , X

i
t−τ , µ

N
t−τ , α

i
t) and gi(XT ) = gi(X i

T , µ
N
T ),

where we use the notation µNt for the empirical distribution of X = (X1, · · · , XN), which is
defined as

µNt =
1

N

N∑
j=1

δXj
t
.

Next, we let the number of players N goes to +∞ before we perform the optimization. Ac-
cording to symmetry property and the theory of propagation of chaos, the joint distribution of the
N dimensional process (Xt)0≤t≤T = (X1

t , . . . , X
N
t )0≤t≤T converges to a product distribution, and

the distribution of each single marginal process converges to the distribution of (Xt)0≤t≤T of the
following Mckean-Vlasov stochastic delayed differential equation (MV-SDDE). For more detail
on the argument without delay, we refer [3] and [4].

dXt = b(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ )dt+ σ(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ )dWt; t ∈ (0, T ],

X0 = x0,

Xt = αt = 0; t ∈ [−τ, 0).
(2.3)

We then optimize after taking the limit. The objective for each play of (2.2) now becomes

J(α) = E
[∫ T

0

f(Xt, µt, Xt−τ , µt−τ , αt)dt+ g(XT , µT )

]
, (2.4)

where we denote µt := L(Xt) the law of Xt.

3 Solving Mean-Field Control Problem Using Deep Learning
Techniques

Due to the non-Markovian structure, the above mean-field optimal control problem (2.3)-(2.4) is
difficult to solve either analytically or numerically. Here we propose two algorithms together with
four approaches to tackle the above problem based on deep learning techniques. We would like to
use two types of neural networks, one is called the feedforward neural network, and the other one
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is called Long Short-Term Memory (LSTM) network.
For a feedforward neural network, we first define the set of layers Mρ

d,h, for x ∈ Rd, as

Mρ
d,h := {M : Rd → Rh|M(x) = ρ(Ax+ b), A ∈ Rh×d, b ∈ Rh}. (3.1)

d is called input dimension, h is known as the number of hidden neurons, A ∈ Rh×d is the weight
matrix, b ∈ Rh is the bias vector, and ρ is called the activation function. The following activation
functions will be used in this paper, for some x ∈ R,

ρReLU(x) := x+ = max(0, x); ρs(x) :=
1

1 + e−x
; ρtanh(x) := tanh(x); ρId(x) := x.

Then feedforward neural network is defined as as a composition of layers, so that the set of feed-
forward neural network with l hidden layers we used in this paper is defined as

NNl
d1,d2

= {M̃ : Rd1 → Rd2|M̃ = Ml+1 ◦Ml ◦ · · · ◦M1 ◦M0,

M0 ∈MρReLU
d1,h1

,Ml+1 ∈MρId
hl+1,d2

,Mi ∈MρReLU
hi,hi+1

, h· ∈ Z+, i = 1, . . . , l}. (3.2)

The LSTM network is one of recurrent neural network(RNN) architectures, which are powerful
for capturing long-range dependence of the data. It is proposed in [9], and it is designed to solve
the shrinking gradient effects which basic RNN often suffers from. The LSTM network is a chain
of cells. Each LSTM cell composes of a cell state, which contains information, and three gates,
which regulate the flow of information. Mathematically, the rule inside tth cell follows,

Γft =ρs(Afxt + Ufat−1 + bf ),

Γit =ρs(Aixt + Uiat−1 + bi),

Γot =ρs(Aoxt + Uoat−1 + bo),

ct =Γft � ct−1 + Γit � ρtanh(Acxt + Ucat−1 + bc),

at =Γot � ρtanh(ct),

(3.3)

where the operator � denotes the Hadamard product. (Γft ,Γit ,Γot) ∈ Rh × Rh × Rh represents
forget gate, input gate and output gate respectively, h refers the number of hidden neurons. xt ∈ Rd

is the input vector with d features. at ∈ Rh is known as the output vector with initial value a0 = 0,
and ct ∈ Rh is known as the cell state with initial value c0 = 0. A· ∈ Rh×d are the weight matrices
connecting input and hidden layers, U· ∈ Rh×h are the weight matrix connecting hidden and output
layers, and b ∈ Rh represents bias vector. The weight matrices and bias vectors are shared through
all time steps, and are going to be learned during training process by back-propagation through
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time (BPTT) method, which can be implemented in Tensorflow platform. Here we define the set
of LSTM network up to time t as

LSTMd,h,t =

{
M : (Rd)t × Rh × Rh → Rh × Rh |M(x0, . . . , xt, a0, c0) = (at, ct),

ct = Γft � ct−1 + Γit � ρtanh(Acxt + Ucat−1 + bc), at = Γot � ρtanh(ct), a0 = c0 = 0

}
, (3.4)

where Γf· ,Γi· ,Γo· are defined in (3.3).
In particular, we specify the model in a linear-quadratic form, which is inspired by [5] and [8].

The objective function is defined as

J(α) = E
[∫ T

0

(
1

2
α2
t +

1

2
(Xt −mt)

2

)
dt+

c

2
(XT −mT )2

]
, (3.5)

subject to
dXt =(αt − αt−τ )dt+ σdWt, t ∈ [0, T ]

X0 =x0

Xt = αt =0, t ∈ [−τ, 0)

(3.6)

where σ, c > 0 are given constants, and mt :=
∫
R xdµt(x) denotes the mean of X at time t. In

the following subsections, we solve the above problem numerically using two algorithms together
with four approaches. The first two approaches are to directly approximate the control by either a
LSTM network or a feedforward neural network, and minimize the objective (3.5) using stochastic
gradient descent algorithm. The third and fourth approaches are to introduce the adjoint process as-
sociated with (3.6), and approximate the adjoint process, conditional expectation of adjoint process
using neural networks.

3.1 Approximating the optimal control using neural networks

We first set ∆t = T/N = τ/D for some positive integer N . The time discretization becomes

−τ = t−D ≤ t−D+1 ≤ t0 = 0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ T,

for ti − ti−1 = ∆t, for i ∈ {−D,−D + 1, · · · , 0, · · · , N − 1, N}. The discretizing the SDDE
(3.6) according to Euler–Maruyama scheme now reads

Xti+1
= Xti + (αti − αti−D)∆t+ σ

√
∆t∆Wti , for i ∈ {0, · · · , N − 1} (3.7)
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where (∆Wti)0≤i≤N are independent, normal distributed sequence of random variables with mean
0 and variance 1.

First, from the definition of open loop control, and due to non-Markovian feature of (3.6), the
open-loop optimal control is a function of the path of the Brownian motions up to time t, i.e.,
α(t, (Ws)0≤s≤t). We are able to describe this dependency by a LSTM network by parametrizing
the control as a function of current time and the discretized path of Brownian motion, i.e.,

(ati , cti) =ϕ1(ti, (Ws)t0≤s≤ti|Φ1)

for ϕ1 ∈ LSTM2,h1,t and Φ1 = (Af , Ai, Ao, Ac, Uf , Ui, Uo, Uc, bf , bi, bo, bc),

α(ti, (Ws)t0≤s≤ti) ≈ψ1(ati|Ψ1) for ψ1 ∈MId
h1,1

and Ψ1 = (A, b),
(3.8)

for some h1 ∈ Z+. We remark that the last dense layer is used to match the desired output
dimension.

The second approach is again directly approximate the control but with a feedforward neural
network. Due to the special structure of our model, where the mean of dynamic in (3.6) is constant,
the mean field control problem coincides with the mean field game problem. In [8], authors solved
the associated mean field game problem using infinite dimensional PDE approach, and found that
the optimal control is a function of current state and the past of control. Therefore, the feedforward
neural network with l layers, which we use to approximate the optimal control, is defined as, for
Ψ2 = (W, b)

αti(Xti , (αs)ti−D≤s<ti) ≈ψ2(Xti , (αs)ti−D≤s≤ti |Ψ2)

for ψ2 ∈ NNl
D+1,1, Ψ2 = (A0, b0, . . . , Al+1, bl+1).

(3.9)

From Monte Carlo algorithm, and trapezoidal rule, the objective function (3.5) now becomes

J =
1

M

M∑
j=1

[(
1

2
(α

(j)
t0 )2 +

1

2
(X

(j)
t0 − X̄t0)

2 +
N−1∑
i=1

(
(α

(j)
ti )2 + (X

(j)
ti − X̄ti)

2

)
+

1

2
(α

(j)
tN

)2 +
1

2
(X

(j)
tN
− X̄tN )2

)
∆t

2
+
c

2
(X

(j)
tN
− X̄tN )2

]
, (3.10)

where M denotes the number of realizations and X̄ := 1
M

∑M
j=1X

(j). After plugging in the neural
network either given by (3.8) or (3.9), the optimization problem becomes to find the best set of
parameters either (Φ1,Ψ1) or Ψ2 such that the objective J(Φ1,Ψ1) or J(Ψ2) is minimized with
respect to those parameters.

The algorithm works as follows,
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Algorithm 1: Algorithms for solving mean field control problem with delay by directly
approximating the optimal control using neural networks

Initialization of parameters Θ0 = (Φ1,Ψ1) for approach 1 (3.8) or Θ0 = (Ψ2) for
approach 2 (3.9);

for each epoch e = 1, 2, . . . do
• Generate ∆W ∈ RM×N for ∆W

(j)
ti := Wji ∼ N(0, 1), j ∈ {1, . . . ,M} and

i ∈ {1, . . . , N} ;
• α(j)

ti = 0 for i = {−D, . . . ,−1} ;
• X(j)

0 = X̄0 = x0, α(j)
0 ≈ ϕ

(j)
0 (Θe) for some network ϕ given by (3.8) or by(3.9) at t0

with proper inputs;
• J = 1

M

∑M
j=1

1
2
(ϕ

(j)
0 )2 ∆t

2
;

for (i = 0, . . . , N − 1) do
• X(j)

ti+1
= X

(j)
ti + (α

(j)
ti − α

(j)
ti−D)∆t+ σ

√
∆t∆W

(j)
ti ;

• X̄ti+1
= 1

M

∑M
j=1 X

(j)
ti+1

;
• α(j)

ti+1
≈ ϕ

(j)
ti+1

(Θe) is given by either (3.8) or (3.9) at ti+1 ;
if (j = N − 1) then

• J+ = 1
M

∑M
j=1

(
1
2
(ϕ

(j)
ti+1

)2 + 1
2
(X

(j)
ti+1
− X̄ti+1

)2

)
∆t
2

;

else

• J+ = 1
M

∑M
j=1

(
(ϕ

(j)
ti+1

)2 + (X
(j)
ti+1
− X̄ti+1

)2

)
∆t
2

;

end
end
• J+ = 1

M

∑M
j=1

c
2
(X

(j)
tN
− X̄tN )2 ;

• Compute the gradient∇J(Θ) by backpropagation through time;
• Update Θe+1 = Θe + η 1

M

∑M
j=1∇J(Θe), according to stochastic gradient descent

algorithm, for some learning rate η > 0 small ;
• Stop if J(Θ) converges, or |∇J(Θ)|< δ for some threshold δ, and return Θ;

end

In the following graphics, we choose x0 = 0, c = 1, σ = 1, T = 10, τ = 4,∆t = 0.1,M =

2000. For a specific representative path, the underlying Brownian motion paths are the same for
different approaches. Figure 3.1 compares one representative optimal trajectory of the dynamic
and the control, and they coincide. Figure 3.2s plot the sample average of optimal trajectory of the
dynamic and the control, which are trajectories of 0. This is the same as the theoretical mean.
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Figure 3.1: On the left, we compare one representative optimal trajectory of (Xt)0≤t≤T . The plot
on the right show the comparison of one representative optimal trajectory of (αt)0≤t≤T between
approach 1 and approach 2.

Figure 3.2: On the left, we compare the sample mean of optimal trajectories of (Xt)0≤t≤T . The
plot on the right show the comparison of sample mean of trajectories of optimal control(αt)0≤t≤T
between approach 1 and approach 2.

3.2 Approximating the adjoint process using neural networks

The third and fourth approaches are based on numerically solving theMV-FABSDE system us-
ing LSTM network and feedforward neural networks. From Section 4, we are able to write the
backward stochastic differential equation associated to (3.6) as,

dYt = −ε(Xt −mt)dt+ ZtdWt, t ∈ [0, T ] (3.11)

with terminal condition YT = c(XT −mT ), and Ys = 0 for s ∈ (T, T + τ ]. The optimal control
(αt)0≤t≤T can be obtained in terms of the adjoint process Yt from the maximum principle, and it is
given by

αt = −Yt + E[Yt+τ |Ft].
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From the Euler-Maruyama method, the discretized version of (3.6) and (3.11) now reads,

Xti+1
=Xti + (αti − αti−D)∆t+ σ

√
∆t∆Wti ,where ∆Wti ∼ N(0, 1). (3.12)

Ỹti+1
=Yti − ε(Xti − X̄ti)∆t+ Zti∆Wti , (3.13)

where we use the sample average X̄· = 1
M

∑M
j=1X

(j)
· to approximate the expectation of X·. In or-

der to solve the the above MV - FABSDE system, we need to approximate (Yti ,E[Yti+D |Fti ], Zti)0≤ti≤tN .
The third approach consists of approximating (Yti ,E[Yti+D |Fti ], Zti)0≤ti≤tN using three LSTM

networks as functions of current time and the discretized path of Brownian motions respectively,
i.e.,

(aYti , c
Y
ti

) =ϕY (ti, (Ws)t0≤s≤ti |ΦY )

for ϕY ∈ LSTM2,hY ,ti and ΦY = (AYf , A
Y
i , A

Y
o , A

Y
c , U

Y
f , U

Y
i , U

Y
o , U

Y
c , b

Y
f , b

Y
i , b

Y
o , b

Y
c ),

Yti ≈ψY (aYti |Ψ
Y ) for ψY ∈MId

hY ,1
and ΨY = (AY , bY ),

(aEYti , cEYti ) =ϕEY (ti, (Ws)t0≤s≤ti |ΦEY )

for ϕEY ∈ LSTM2,hEY ,ti

and ΦEY = (AEYf , AEYi , AEYo , AEYc , UEY
f , UEY

i , UEY
o , UEY

c , bEYf , bEYi , bEYo , bEYc ),

E[Yti+D |Fti ] ≈ψEY (aEYti |Ψ
EY ) for ψEY ∈MId

hEY ,1
and ΨEY = (AEY , bEY ),

(aZti , c
Z
ti

) =ϕZ(ti, (Ws)t0≤s≤ti |ΦZ)

for ϕZ ∈ LSTM2,hZ ,ti and ΦZ = (AZf , A
Z
i , A

Z
o , A

Z
c , U

Z
f , U

Z
i , U

Z
o , U

Z
c , b

Z
f , b

Z
i , b

Z
o , b

Z
c ),

Zti ≈ψZ(aZti |Ψ
Z) for ψZ ∈MId

hZ ,1
and ΨZ = (AZ , bZ),

(3.14)
for some hY , hEY , hZ ∈ Z+. Again, the last dense layers are used to match the desired output
dimension.

Since approach 3 consist three neural networks with large number of parameters, which is hard
to train in general, we would like to make the following simplification in approach 4 for approx-
imating (Yt,E[Yt+τ |Ft], Zt)0≤t≤T via combination of one LSTM network and three feedforward
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neural networks. Specifically,

(ati , cti) =ϕ(ti, (Ws)t0≤s≤ti |Φ)

for ϕ ∈ LSTM2,h,ti and Φ = (Af , Ai, Ao, Ac, Uf , Ui, Uo, Uc, bf , bi, bo, bc),

Yti ≈ψY (ati |ΨY ) for ψY ∈ NNl
h,1 and ΨY = (AY0 , b

Y
0 , . . . , A

Y
l+1, b

Y
l+1),

E[Yti+D |Fti ] ≈ψEY (ati |ΨEY ) for ψEY ∈ NNl
h,1 and ΨEY = (AEY0 , bEY0 , . . . , AEYl+1, b

EY
l+1),

Zti ≈ψZ(ati|ΨZ) for ψZ ∈ NNhY ,1 and ΨZ = (AZ0 , b
Z
0 , . . . , A

Z
l+1, b

Z
l+1).

(3.15)

In words, the algorithm works as follows. We first initialize the parameters (ΘY ,ΘEY ,ΘZ) =

((ΦY ,ΨY ), (ΦEY ,ΨEY ), (ΦZ ,ΨZ)) in either (3.14) or (ΘY ,ΘEY ,ΘZ) = ((Φ,ΨY ),ΨEY ),ΨZ)

in (3.15). At time 0, X0 = 0, (Y0,E[YtD |F0], Z0) ≈ (ϕY0 (ΘY ), ϕEY0 (ΘEY ), ϕZ0 (ΘZ))for some
network (ϕY , ϕEY , ϕZ) given by either in (3.14) or in (3.15), and α0 = −Y0 + E[YtD |F0]. Next,
we update Xti+1

and Yti+1
according to (3.12), and the solution to the backward equation at ti+1

is denoted by Ỹti+1
. In the mean time, Yti+1

is also approximated by a neural network. In such
case, we refer Ỹ· as the label, and Y· given by the neural network as the prediction. We would like
to minimize the mean square error between these two. At time T , YtN is also supposed to match
c(XtN − X̄tN ), from the terminal condition of (3.11). In addition, the conditional expectation
E[Yti+D |Fti ] given by a neural network should be the best predictor of Ỹti+D . This implies that
we would like to find the set of parameters ΘEY such that E[(Ỹti+D − ϕEYti (ΘEY )] is minimized
for all ti ∈ {t0, . . . , tN−D}. Therefore, for M samples, we would like to minimize two objective
functions L1 and L2 defined as

L1(ΘY ,ΘZ) =
1

M

[ M∑
j=1

N∑
i=1

(ϕ
Y,(j)
ti − Ỹ (j)

ti )2 +
M∑
j=1

(
ϕ
Y,(j)
tN
− cX(j)

tN

)2
]
,

L2(ΘZ) =
1

M

M∑
j=1

N−D∑
i=0

(
ϕ
EY,(j)
ti − Ỹ (j)

ti+D

)2

.

(3.16)

The algorithm works as follows,

11



Algorithm 2: Algorithms for solving mean field control problem with delay according to
MV-FABSDE

Initialization of parameters (ΘY ,ΘEY ,ΘZ) for approach 3 as in (3.14) or approach 4 as in
(3.15);

for each epoch e = 1, 2, . . . do
• Generate ∆W ∈ RM×N for ∆W

(j)
ti := Wji ∼ N(0, 1), j ∈ {1, . . . ,M} and

i ∈ {1, . . . , N} ;
• α(j)

ti = 0 for i ∈ {−D, . . . ,−1} ;
• X(j)

0 = X̄0 = x0;(
Y

(j)
0 ,E[Y

(j)
tD
|F0], Z

(j)
0

)
≈
(
ϕ
Y,(j)
0 (ΘY

e ), ϕ
EY,(j)
0 (ΘEY

e ), ϕ
Z,(j)
0 (ΘZ

e )
)

given by (3.14)

or by (3.15) ; α(j)
0 ≈ −ϕ

Y,(j)
0 + ϕ

EY,(j)
0 at t0 ;

• L1(ΘY
e ,Θ

Z
e ) = 0, L2(ΘEY

e ) = 0 ;
for (i = 0, . . . , N − 1) do
• X(j)

ti+1
= X

(j)
ti + (α

(j)
ti − α

(j)
ti−D)∆t+ σ

√
∆t∆W

(j)
ti ;

• X̄ti+1
= 1

M

∑M
j=1 X

(j)
ti+1

;
• Ỹ (j)

ti+1
= Y

(j)
tk
− ε(X(j)

ti − X̄ti)∆t+ Ztk∆W
(j)
ti ;

if (i ≤ N −D) then
•
(
Y

(j)
ti+1

,E[Y
(j)
ti+1+D

|Fti+1
], Z

(j)
ti+1

)
≈
(
ϕ
Y,(j)
ti+1

(ΘY
e ), ϕ

EY,(j)
ti+1

(ΘEY
e ), ϕ

Z,(j)
ti+1

(ΘZ
e )
)

given by (3.14) or by(3.15) at ti+1 ;

• L1+ = 1
M

∑M
j=1

(
ϕ
Y,(j)
ti+1
− Ỹ (j)

ti+1

)2

;

else
•
(
Y

(j)
ti+1

,E[Y
(j)
ti+1+D

|Fti+1
], Z

(j)
ti+1

)
≈
(
ϕ
Y,(j)
ti+1

(ΘY
e ), 0, ϕ

Z,(j)
ti+1

(ΘZ
e )
)

given by

(3.14) or by(3.15) at ti+1 ;

• L1+ = 1
M

∑M
j=1

(
ϕ
Y,(j)
ti+1

Ỹ
(j)
ti+1

)2

;

end
end
for (i = 0, 1, . . . , N −D) do

• L2+ = 1
M

∑M
j=1

(
ϕ
EY,(j)
ti − Ỹ (j)

ti+D

)2

;

end

• L1+ = 1
M

∑M
j=1

(
ϕ
Y,(j)
tN
− c(X(j)

tN
− X̄tN )

)2

;

• Compute the gradient∇L1(ΘY ,ΘZ)by backpropagation through time;
• Update ΘY

e+1 and ΘZ
e+1 according to SGD algorithm;

• Compute the gradient∇L2(ΘEY )by backpropagation through time;
• Update ΘEY

e+1 according to SGD algorithm;
• Stop if L1(ΘY ,ΘZ) are close to 0, and L2(ΘEY ) converges, return (ΘY ,ΘEY ,ΘZ);

end 12



Again, in the following graphics, we choose c = 1, σ = 1, T = 10, τ = 4,∆t = 0.1,M =

2000. For a specific representative path, the underlying Brownian motion paths are the same for
different approaches. Figure 3.3 compares one representative optimal trajectory of the dynamic
and the control, and they coincide. Figure 3.4 plot the sample average of optimal trajectory of
the dynamic and the control, which are trajectories of 0. This is the same as the theoretical mean.
Comparing to Figure 3.1 and Figure 3.2, as well as based on numerous experiments, we find that
given a path of Brownian motion, the two algorithms would yield the same optimal trajectory of
state dynamic and the same path for the optimal control. From Figure 3.6, the loss L1 as defined in
(3.16) are minimized to 0 for both approach 3 and approach 4. This can also be observed from Fig-
ure 3.5, the red dash line and the blue solid line coincide for both left and right graphs. In addition,
from the righthand side of Figure 3.6, we observe the loss L2 as defined in (3.16) converges. This
is due to the fact that the conditional expectation can be understand as an orthogonal projection.
Figure 3.7 plot 64 sample paths of the process (Zt)0≤t≤T , which seems to be a deterministic func-
tion since σ is constant in this example. Finally, Figure (3.8) show the convergence of the value
function as number of epoches increases. Although, two algorithms would arrive approximately
at the same optimal value with is about 6, the first algorithm converges faster than the second one,
since it directly paramerizes the control, instead of solving the MV-FABSDE system.

Figure 3.3: On the left, we compare one representative optimal trajectory of (Xt)0≤t≤T . The plot
on the right show the comparison of one representative optimal trajectory of (αt)0≤t≤T between
approach 3 and approach 4.

13



Figure 3.4: On the left, we compare the sample mean of optimal trajectories of (Xt)0≤t≤T . The
plot on the right show the comparison of sample mean of trajectories of optimal control(αt)0≤t≤T
between approach 3 and approach 4.

Figure 3.5: Plots of representative trajectories of ((Yt)0≤t≤T , (Ỹt)0≤t≤T , (E[Yt+τ |Ft])0≤t≤T ), from
approach 3 (one the left) and from approach 4 (on the right).

4 Stochastic Maximum Principle for Optimality

In this section, we derive the adjoint equation associated to our mean field stochastic control prob-
lem (2.3) and (2.4). The necessary and sufficient parts of stochastic maximum principle have been
proved for optimality. We assume

(H4.1) b, σ are differentiable with respect to (Xt, µt, Xt−τ , µt−τ , αt, αt−τ ); f is differentiable with
respect to (Xt, µt, Xt−τ , µt−τ , α); g is differentiable with respect to (XT , µT ), and their
derivatives are bounded.

In order to simplify our notations, let θt = (Xt, µt, αt). For 0 < ε < 1, we denote αε the

14



Figure 3.6: Loss L1 (on the left) and L2 (on the right) as defined in (3.16) from approach 3 and
approach 4.

Figure 3.7: 64 trajectories of (Zt)0≤t≤T based on approach 3 (on the left) and approach 5 (on the
right).

admissible control defined by

αεt := αt + ε(βt − αt) := αt + ε∆αt,

for any (α)0≤t≤T and (β)0≤t≤T ∈ A. Xε
t := Xαε

t is the corresponding controlled process. We
define

∇Xt := lim
ε→0

Xε
t −Xα

t

ε

15



Figure 3.8: Comparison convergence of objective values as in (3.10) among four approaches.

to be the variation process, which should follow the following dynamic for t ∈ (0, T ],

d∇Xt =

[
∂xb(t, θt, θt−τ )∇Xt + ∂xτ b(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µb(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτ b(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂αb(t, θt, θt−τ )∆αt + ∂αtb(t, θt, θt−τ )∆αt−τ

]
dt

+

[
∂xσ(t, θt, θt−τ )∇Xt + ∂xτσ(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µσ(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτσ(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ(t, θt, θt−τ )∆αt + ∂ατσ(t, θt, θt−τ )∆αt−τ

]
dWt

(4.1)
with initial condition ∇Xt = ∆αt = 0, t ∈ [−τ, 0]. (X̃t,∇X̃t) is a copy of (Xt,∇Xt) defined
on (Ω̃, F̃ , P̃), where we apply differential calculus on functions of measure, see [***Carmona
Book ***] for detail. ∂xb, ∂xτ b, ∂αb, ∂ατ b are derivatives of b with respect to (Xt, Xt−τ , αt, αt−τ )

respectively, and we use the same notation for ∂·σ.
In the meantime, the Gateaux derivative of functional (α)→ J(α) is given by

lim
ε→0

J(αε)− J(α)

ε

=E
[
∂xg(XT , µT )∇XT + Ẽ[∂µg(XT , µT )(X̃T )∇X̃T ]

]
+ E

∫ T

0

[
∂xf(θt, Xt−τ , µt−τ )∇Xt + Ẽ[∂µf(θt, Xt−τ , µt−τ )(X̃t)∇X̃t]

+ ∂xτf(θt, Xt−τ , µt−τ )∇Xt−τ + Ẽ[∂µτf(θt, Xt−τ , µt−τ )(X̃t−τ )∇X̃t−τ ]

+ ∂αf(θt, Xt−τ , µt−τ )(∆αt)

]
dt

(4.2)

In order to determine the adjoint backward equation of (Yt, Zt)0≤t≤T associated to (2.3), we

16



assume it is of the following form:

dYt = −ϕtdt+ ZtdWt, t ∈ [0, T ],

YT = ∂xg(XT , µT ) + Ẽ[∂µg(XT , µT )(X̃T )],

Yt = Zt = 0, t ∈ (T, T + τ ]

(4.3)

Next, we apply integration by part to∇Xt and Yt. It yields

d(∇XtYt)

=Yt

[
∂xb(t, θt, θt−τ )∇Xt + ∂xτ b(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µb(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτ b(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂αb(t, θt, θt−τ )∆αt + ∂ατ b(t, θt, θt−τ )∆αt−τ

]
dt

+ Yt

[
∂xσ(t, θt, θt−τ ) + ∂xτσ(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µσ(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτσ(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ(t, θt, θt−τ )∆αt + ∂ατσ(t, θt, θt−τ )∆αt−τ

]
dWt

− ϕ∇Xtdt+∇XtZtdWt

+ Zt

[
∂xσ(t, θt, θt−τ )∇Xt + ∂xτσ(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µσ(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτσ(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ(t, θt, θt−τ )∆αt + ∂ατσ(t, θt, θt−τ )∆αt−τ

]
dt

We integrate from 0 to T , and take expectation to get

E[∇XTYT ] =E
∫ T

0

Yt

[
∂xb(t, θt, θt−τ )∇Xt + ∂xτ b(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µb(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτ b(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂αb(t, θt, θt−τ )∆α+∂ατ b(t, θt, θt−τ )∆αt−τ

]
dt

− E
∫ T

0

ϕt∇Xtdt

+ E
∫ T

0

Zt

[
∂xσ(t, θt, θt−τ )∇Xt + ∂xτσ(t, θt, θt−τ )∇Xt−τ + Ẽ[∂µσ(t, θt, θt−τ )(X̃t)∇X̃t]

+ Ẽ[∂µτσ(t, θt, θt−τ )(X̃t−τ )∇X̃t−τ ] + ∂ασ(t, θt, θt−τ )∆αt + ∂ατσ(t, θt, θt−τ )∆αt−τ

]
dt

(4.4)
Using the fact that Yt = Zt = 0 for t ∈ (T, T + τ ], we are able to make a change of time, and by

17



Fubini’s theorem, so that (4.4) becomes

E[∇XTYT ] =E
∫ T

0

(
Yt∂xb(t, θt, θt−τ ) + Yt+τ∂xτ b(t+ τ, θt+τ , θt) + Ẽ[∂µb(t, θ̃t, θ̃t−τ )(Xt)]

+ Ẽ[∂µτ b(t+ τ, θ̃t+τ , θ̃t)(Xt)

)
∇Xtdt

+ E
∫ T

0

(
∂αb(t, θt, θt−τ ) + ∂ατ b(t+ τ, θt+τ , θt)

)
∆αtdt

− E
[ ∫ T

0

ϕt∇Xt

]
dt

+ E
∫ T

0

(
Zt∂xσ(t, θt, θt−τ ) + Zt+τ∂xτσ(t+ τ, θt+τ , θt) + Ẽ[∂µσ(t, θ̃t, θ̃t−τ )(Xt)]

+ Ẽ[∂µτσ(t+ τ, θ̃t+τ , θ̃t)(Xt)

)
∇Xtdt

+ E
∫ T

0

(
∂ασ(t, θt, θt−τ ) + ∂ατσ(t+ τ, θt+τ , θt)

)
∆αtdt

(4.5)
Now we define the Hamiltonian H for (t, x, µ, xτ , µτ , y, z, α, ατ ) ∈ [0, T ] × R × P2(R) × R ×
P2(R)× A× A× R× R as

H(t, x, µ, xτ , µτ , α, ατ , y, z) = b(t, x, µ, xτ , µτ , α, ατ )y + σ(t, x, µ, xτ , µτ , α, ατ )y

+ f(t, x, µ, xτ , µτ , α) (4.6)

Using the terminal condition of YT , and plug (4.5) into (4.2), and set the integrand containing∇Xt

to zero, we are able to obtain the adjoint equation is of the following form

dYt =−
{
∂xH(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ , Yt, Zt) + Ẽ[∂µH(t, X̃t, µt, X̃t−τ , µt−τ , α̃t, α̃t−τ , Ỹt, Z̃t)(Xt)]

+ E[∂xτH(t+ τ,Xt+τ , µt+τ , Xt, µt, αt+τ , αt, Yt+τ , Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t+ τ, X̃t+τ , µt+τ , X̃t, µt, α̃t, α̃t−τ , Ỹt+τ , Z̃t+τ )(Xt+τ )]|Ft]
}
dt+ ZtdWt

YT =∂xg(XT , µT ) + Ẽ[∂µg(X̃T , µT )(XT )].
(4.7)

Theorem 4.1. Let (αt)0≤t≤T ∈ A be optimal, (Xt)0≤t≤T be the associated controlled state, and

18



(Yt, Zt)0≤t≤T be the associated adjoint processes defined in (4.7).For any β ∈ A, and t ∈ [0, T ],

(
∂αH(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ , Yt, Zt)

+ E[∂ατH(t+ τ,Xt+τ , µt+τ , Xt, µt, αt+τ , αt, Yt+τ , Zt+τ )|Ft]
)

(β − αt) ≥ 0 a.e.

(4.8)

Proof. Given any (βt)0≤t≤T ∈ A, we perturbate αt by αεt := αt + ε(βt − αt) for 0 ≤ ε ≤ 1. Using
the adjoint process (4.7), and apply integration by parts formula to (∇XtYt). Then plug the result
into (4.2), and the Hamiltonian H is defined in (4.6). Also, we use the fact that α is optimal, then

0 ≤ lim
ε→0

J(αε)− J(α)

ε

=E
∫ T

0

(
[∂αH(t, θt, θt−τ , Yt, Zt) + E[∂ατH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft]

)
(βt − αt)dt

(4.9)
Now, let C ∈ Ft be an arbitrary progressively measurable set, and denote C ′ the complement of
C. We choose βt to be βt := β1C + αt1C′ for any given βinA. Then,

E
∫ T

0

(
[∂αH(t, θt, θt−τ , Yt, Zt) + E[∂ατH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft]

)
(βt − αt)1Cdt ≥ 0,

(4.10)
which implies,

(∂αH(t, θt, θt−τ , Yt, Zt) + E[∂ατH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft])(β − αt) ≥ 0. a.e. (4.11)

Remark 4.2. When we further assume that H is convex in (αt, αt−τ ), then for any β, βτ ∈ A, we
have

H(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ , Yt, Zt) ≤ H(t,Xt, µt, Xt−τ , µt−τ , β, βτ , Yt, Zt), a.e.

as a direct consequence of (4.8).

Theorem 4.3. Let (αt)0≤t≤T ∈ A be an admissible control. Let (Xt)0≤t≤T be the controlled state,

and (Yt, Zt)0≤t≤T be the corresponding adjoint processes. We further assume that for each t, given

Yt and Zt, the function (x, µ, xτ , µτ , α, ατ ) → H(t, x, µ, xτ , µτ , α, ατ , Yt, Zt) , and the function
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(x, µ)→ g(x, µ) are convex. If

H(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ , Yt, Zt) = inf
α′∈A

H(t,Xt, µt, Xt−τ , µt−τ , α
′
t, α
′
t−τ , Yt, Zt), (4.12)

then (αt)0≤t≤T is an optimal control.

Proof. Let (α′t)0≤t≤T ∈ A be a admissible control, and let (X ′t)0≤t≤T = (Xα′
t )

0≤t≤T be the cor-
responding controlled state. From the definition of the objective function as in (2.4), we first use
convexity of g, and the terminal condition of the adjoint process Yt in (4.7), then use the fact that
H is convex, and because of (4.12), we have the following
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J(α)− J(α′)

=E[g(XT , µT )− g(X ′T , µ
′
T )] + E

∫ T

0

[f(t, θt, Xt−τ , αt−τ )− f(t, θ′t, X
′
t−τ , α

′
t−τ )]dt

≤E[∂xg(XT , µT )(XT −X ′T ) + Ẽ[∂µg(XT , µT )(X̃T )(X̃T − X̃ ′T )]]

+ E
∫ T

0

[f(t, θt, Xt−τ , αt−τ )− f(t, θ′t, X
′
t−τ , α

′
t−τ )]dt

=E[(∂xg(XT , µT ) + Ẽ[∂µg(X̃T , µT )(XT )])(XT −X ′T )]

+ E
∫ T

0

[f(t, θt, Xt−τ , αt−τ )− f(t, θ′t, X
′
t−τ , α

′
t−τ )]dt

=E[YT (XT −X ′T )] + E
∫ T

0

[f(t, θt, Xt−τ , αt−τ )− f(t, θ′t, X
′
t−τ , α

′
t−τ )]dt

=E
∫ T

0

[
(b(t, θt, θt−τ )− b(t, θ′t, θ′t−τ ))Yt + (σ(t, θt, θt−τ )− σ(t, θ′t, θ

′
t−τ ))Zt

]
dt

− E
∫ T

0

[
∂xH(t, θt, θt−τ , Yt, Zt) + Ẽ[∂µH(t, θ̃t, θ̃t−τ , Ỹt, Z̃t)(Xt)](Xt −X ′t)

]
dt

− E
∫ T

0

[
E[∂xτH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t+ τ, θ̃t+τ , θ̃t, Ỹt+τ , Z̃t+τ )(Xt)]|Ft]}(Xt −X ′t)
]
dt

+ E
∫ T

0

[
H(t, θt, θt−τ , Yt, Zt)−H(t, θ′t, θ

′
t−τ , Yt, Zt)

]
dt

+ E
∫ T

0

[
(b(t, θt, θt−τ )− b(t, θt, θt−τ ))Yt + (σ(t, θt, θt−τ )− σ(t, θt, θt−τ ))Zt

]
dt

=− E
∫ T

0

[
∂xH(t, θt, θt−τ , Yt, Zt)(Xt −X ′t) + Ẽ[∂µH(t, θt, θt−τ , Yt, Zt)(X̃t)(X̃t − X̃t

′
)

]
dt

− E
∫ T

0

[
∂xτH(t, θt, θt−τ , Yt, Zt)(Xt−τ −X ′t−τ ) + Ẽ[∂µτH(t, θt, θt−τ , Yt, Zt)(X̃t−τ )(X̃t−τ − X̃ ′t−τ )]

]
dt

+ E
∫ T

0

[
H(t, θt, θt−τ , Yt, Zt)−H(t, θ′t, θ

′
t−τ , Yt, Zt)

]
dt

≤E
∫ T

0

[
∂αH(t, θt, θt−τ , Yt, Zt)(αt − α′t) + ∂ατH(t, θt, θt−τ , Yt, Zt)(αt−τ − α′t−τ )

]
dt

≤E
∫ T

0

(
∂αH(t, θt, θt−τ , Yt, Zt) + E[∂ατH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ)]

)
(αt − α′t)dt

≤0.
(4.13)
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5 Existence and Uniqueness Result

Given the necessary and sufficient conditions proven in Section 4, we use the optimal control
(α̂t)0≤t≤T defined by

α̂(t,Xt, µt, Xt−τ , µt−τ , Yt, Zt,E[Yt+τ |Ft],E[Zt+τ |Ft])

= arg min
α∈A

H(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ , Yt, Zt),
(5.1)

to establish the solvability result of the McKean-Vlasov FABSDE (2.3) and (4.7) for t ∈ [0, T ]:

dXt =b(t,Xt, µt, Xt−τ , µt−τ , αt, αt−τ )dt+ σ(t,Xt, µt, Xt−τ , µt−τ , α̂t, α̂t−τ )dWt,

dYt =−
{
∂xH(t,Xt, µt, Xt−τ , µt−τ , α̂t, α̂t−τ , Yt, Zt) + Ẽ[∂µH(t, X̃t, µt, X̃t−τ , µt−τ , ˜̂αt, ˜̂αt−τ , Ỹt, Z̃t)(Xt)]

+ E[∂xτH(t+ τ,Xt+τ , µt+τ , Xt, µt, α̂t+τ , α̂t, Yt+τ , Zt+τ )|Ft]

+ E[Ẽ[∂µτH(t+ τ, X̃t+τ , µt+τ , X̃t, µt, ˜̂αt+τ , ˜̂αt, Ỹt+τ , Z̃t+τ )(Xt)]|Ft]
}
dt+ ZtdWt

(5.2)
with initial condition X0 = x0;Xt = α̂t = 0 for t ∈ [−τ, 0) and terminal condition YT =

∂xg(XT , µT ) + Ẽ[∂µg(X̃T , µT )(XT )]. In addition to assumption (H 4.1), we further assume

(H5.1) The drift and volatility function b and σ are linear in x, µ, xτ , µτ , α, ατ . For all (t, x, µ, xτ , µτ , α, ατ ) ∈
[0, T ]× R× P2(R)× P2(R)× A× A, we assume that

b(t, x, µ, xτ , µτ , α, ατ ) =b0(t) + b1(t)x+ b̄1(t)m+ b2(t)xτ + b̄2(t)mτ + b3(t)α + b4(t)ατ ,

σ(t, x, µ, xτ , µτ , α, ατ ) =σ0(t) + σ1(t)x+ σ̄1(t)m+ σ2(t)xτ + σ̄2(t)mτ + σ3(t)α + σ4(t)ατ ,
(5.3)

for some measurable deterministic functions b0, b1, b̄1, b2, b̄2, b3, b4, σ0, σ1, σ̄1, σ2, σ̄2, σ3, σ4

with values in R bounded by R, and we have used the notation m =
∫
xdµ(x) and mτ =∫

xdµτ (x) for the mean of measures µ and µτ respectively.
(H5.2) The derivatives of f and g with respect to (x, xτ , µ, µτ , α) and (x, µ) are Lipschitz continuous

with Lipschitz constant L.
(H5.3) The function f is strongly L-convex, which means that for any t ∈ [0, T ], any x, x′, xτ , x′τ ∈

R, any α, α′ ∈ A, any µ, µ′ ∈ P2(R), any random variables X and X ′ having µ and µ′ as
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distribution, and any random variables Xτ and X ′τ having µτ and µ′τ as distribution, then

f(t, x′, µ′, x′τ , µ
′
τ , α

′)− f(t, x, µ, xτ , µτ , α)

− ∂xf(t, x, µ, xτ , µτ , α)(x′ − x)− ∂xτf(t, x, µ, xτ , µτ , α)(x′τ − xτ )

− E[∂µf(t, x, µ, xτ , µτ , α)(X) · (X ′ −X)]− E[∂µτf(t, x, µ, xτ , µτ , α)(Xτ ) · (X ′τ −Xτ )]

− ∂αf(t, x, µ, xτ , µτ , α)(α′ − α) ≥ κ|α′ − α|2.
(5.4)

The function g is also assumed to be L-convex in (x, µ).

Theorem 5.1. Under assumptions (H5.1-5.3), the McKean-Vlasov FABSDE (5.2) is uniquely solv-

able.

The proof is based on continuation methods. Let λ ∈ [0, 1], consider the following class of
McKean-Vlasov FABSDEs, denoted by MV-FABSDE(λ), for t ∈ [0, T ]:

dXt =(λb(t, θt, θt−τ ) + Ibt )dt+ (λσ(t, θt, θt−τ ) + Iσt )dWt,

dYt =−
{
λ

(
∂xH(t, θt, θt−τ , Yt, Zt) + Ẽ[∂µH(t, θ̃t, θ̃t−τ , Ỹt, Z̃t)(Xt)]

+ E[∂xτH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft] + E[Ẽ[∂µτH(t+ τ, θ̃t+τ , θ̃t, Ỹt+τ , Z̃t+τ )(Xt)]|Ft]
)

+ Ift

}
dt

+ ZtdWt,
(5.5)

where we denote θt = (Xt, µt, αt), with optimality condition

αt = α̂(t,Xt, µt, Xt−τ , µt−τ , Yt, Zt,E[Yt+τ |Ft],E[Zt+τ |Ft]), t ∈ [0, T ],

and with initial condition X0 = x0;Xt = αt = 0 for t ∈ [−τ, 0) and terminal condition YT =

λ

{
∂xg(XT , µT )+Ẽ[∂µg(X̃T , µT )(XT )

}
+IgT , and Yt = 0 for t ∈ (T, T+τ ], where (Ibt , I

σ
t , I

f
t )0≤t≤T

are some square-integrable progressively measurable processes with values in R, and IgT ∈ L2(Ω,FT ,P)

is a square integrable FT -measurable random variable with value in R.
Observe that when λ = 0, system (5.5) becomes decoupled standard SDE and BSDE, which

has an unique solution. When setting λ = 1, Ibt = Iσt = Ift = 0 for 0 ≤ t ≤ T , and IgT = 0, we
are able to recover the system of (5.2).

Lemma 5.2. Given λ0 ∈ [0, 1), for any square-integrable progressively measurable processes

(Ibt , I
σ
t , I

f
t )0≤t≤T , and IgT ∈ L2(Ω,FT ,P), such that system FABSDE(λ0) admits a unique solution,

then there exists δ0 ∈ (0, 1) such that the system MV-FABSDE(λ) admits a unique solution for any

λ ∈ [λ0, λ0 + δ0].
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Proof. Assuming that (X̌, Y̌ , Ž, α̌) are given as an input, for any λ ∈ [λ0, λ0 + δ0], where δ0 > 0

to be determined, denoting δ := λ− λ0 ≤ δ0, we take

Ibt ←δ[b(t, θ̌t, θ̌t−τ )] + Ibt ,

Iσt ←δ[σ(t, θ̌t, θ̌t−τ )] + Iσt ,

Ift ←δ
[
∂xH(t, θ̌t, θ̌t−τ , Yt, Zt) + Ẽ[∂µH(t, ˜̌θt,

˜̌θt−τ ,
˜̌Yt,

˜̌Zt)(Xt)]

+ E[∂xτH(t+ τ, θ̌t+τ , θ̌t, Y̌t+τ , Žt+τ )|Ft] + E[Ẽ[∂µτH(t+ τ, ˜̌θt+τ ,
˜̌θt,

˜̌Yt+τ ,
˜̌Zt+τ )(X̌t)]|Ft]

]
+ Ift ,

IgT ←δ
[
∂xg(X̌T , µT ) + Ẽ[∂µg( ˜̌XT , µT )(X̌T )

]
+ IgT .

(5.6)
According to the assumption, let (X, Y, Z) be the solutions of MV-FABSDE(λ0) corresponding to
inputs (X̌, Y̌ , Ž), i.e., for t ∈ [0, T ]

dXt =(λ0bt + δb̌t + Ibt )dt+ (λ0σt + δσ̌t + Iσt )dWt,

dYt =−
{
λ0(∂xHt + Ẽ[∂µH̃t(Xt)] + E[∂xτHt+τ |Ft] + E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

+ δ(∂xȞt + Ẽ[∂µ
˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft] + E[Ẽ[∂µτ

˜̌Ht+τ (Xt)]|Ft]) + Ift

}
dt

+ ZtdWt,

(5.7)

with initial condition, X0 = x0, Xs = αs = 0 for s ∈ [−τ, 0), and terminal condition

YT = λ0

(
∂xgT + Ẽ[∂µg̃T (XT )]

)
+ δ

(
∂xǧT + Ẽ[∂µ ˜̌gT (X̌T )]

)
+ IgT , (5.8)

and Yt = Zt = 0 for t ∈ (T, T + τ ], where we have used simplified notations,

bt :=b(t, θt, θt−τ ); b̌t := b(t, θ̌t, θ̌t−τ ); σt := σ(t, θt, θt−τ ); σ̌t := σ(t, θ̌t, θ̌t−τ );

∂xHt :=∂xH(t, θt, θt−τ , Yt, Zt); Ẽ[∂µH̃t(Xt)] := Ẽ[∂µH(t, θ̃t, θ̃t−τ , Ỹt, Z̃t)(Xt)]

E[∂xτHt+τ |Ft] :=E[∂xτH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft];

E[Ẽ[∂µH̃t(Xt)]|Ft] :=E[Ẽ[∂µτH(t+ τ, θ̃t+τ , θ̃t, Ỹt+τ , Z̃t+τ )(Xt)]|Ft];

∂xgT :=∂xg(XT , µT ); Ẽ[∂µg̃T (XT )]] := Ẽ[∂µg(X̃T , µT )(XT )]

similar notation for ∂xȞt, Ẽ[∂µ
˜̌Ht(Xt)], E[∂xτ Ȟt+τ |Ft], and E[Ẽ[∂µτ

˜̌Ht+τ (Xt)]|Ft].
(5.9)

We would like to show that the map Φ : (X̌, Y̌ , Ž, α̌) → Φ(X̌, Y̌ , Ž, α̌) = (X, Y, Z, α) is a
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contraction.
Applying integration by parts to ∆XtYt, we have

d(∆XtYt)

=Yt

{
[λ0∆bt + δ∆b̌t]dt+ [λ0∆σt + δ∆σ̌t]dWt

}
−∆Xt

{
λ0(∂xHt + Ẽ[∂µH̃t(Xt)] + E[∂xτHt+τ |Ft] + E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])

+ δ(∂xȞt + Ẽ[∂µ
˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft] + E[Ẽ[∂µτ

˜̌Ht+τ (X̌t)]|Ft])
}
dt

+ ∆XtZtdWt + (λ0∆σt + δ∆σ̌t)Ztdt.

(5.10)

After integrating from 0 to T , and taking expectation on both sides, we obtain

E[∆XTYT ]

=λ0E
∫ T

0

(
∆btYt + ∆σtZt −∆Xt(∂xHt + Ẽ[∂µH̃t(Xt)] + E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])
)
dt

+ δE
∫ T

0

(
∆b̌tYt + ∆σ̌Zt −∆Xt(∂xȞt + Ẽ[∂µ

˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜̌Ht+τ (X̌t)]|Ft])

)
dt

(5.11)

In the meantime, from the terminal condition of YT given in (5.8), and since g is convex, we also
have

E[∆XTYT ]

=E
[
∆XT

(
λ0(∂xgT + Ẽ[∂µg̃T (XT )]) + δ(∂xǧT + Ẽ[∂µ ˜̌gT (XT )]) + IgT

)]
≥λ0E[g(XT , µT )− g(X ′T − µ

′

T )] + δ∆XT (∂xǧT + Ẽ[∂µ ˜̌gT (XT )]) + ∆XT I
g
T

(5.12)
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Following the proof of sufficient part of maximum principle and using 5.11, and 5.12, we find

λ0(J(α)− J(α′))

=λ0E[g(XT , µT )− g(X ′T , µ
′
T )] + λ0E

∫ T

0

[f(t, θt, Xt−τ , µt−τ )− f(t, θ′t, X
′
t−τ , µ

′
t−τ )]dt

≤E[∆XTYT ]− δ∆XT (∂xǧT + Ẽ[∂µ ˜̌gT (X̌T )])−∆XT I
g
T

+ λ0E
∫ T

0

[f(t, θt, Xt−τ , µt−τ )− f(t, θ′t, X
′
t−τ , µ

′
t−τ )]dt

=λ0E
∫ T

0

[
∆btYt + ∆σtZt −∆Xt(∂xHt + Ẽ[∂µH̃t(Xt)] + E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])
]
dt

+ δE
∫ T

0

[
∆b̌tYt + ∆σ̌tZt −∆Xt(∂xȞt + Ẽ[∂µ

˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜̌Ht+τ (Xt)]|Ft])

]
dt

+ λ0E
∫ T

0

[H(t, θt, θt−τ , Yt, Zt)−H(t, θ′t, θ
′
t−τ , Yt, Zt)]dt

− λ0E
∫ T

0

(∆btYt + ∆tσZt)dt− δ∆XT (∂xǧT + Ẽ[∂µ ˜̌gT (X̌T )])−∆XT I
g
T

=λ0E
∫ T

0

[
H(t, θt, θt−τ , Yt, Zt)−H(t, θ′t, θ

′
t−τ , Yt, Zt)−∆Xt(∂xHt + Ẽ[∂µH̃t(Xt)] + E[∂xτHt+τ |Ft]

+ E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft])
]
dt+ δE

∫ T

0

[
∆b̌tYt + ∆σ̌Zt −∆Xt(∂xȞt + Ẽ[∂µ

˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜̌Ht+τ (X̌t)]|Ft])

]
dt− δ∆XT (∂xǧT + Ẽ[∂µ ˜̌gT (X̌T )])−∆XT I

g
T

≤− E
∫ T

0

λ0κ|∆αt|2dt+ δE
∫ T

0

[
∆b̌tYt + ∆σ̌tZt −∆Xt(∂xȞt + Ẽ[∂µ

˜̌Ht(X̌t)] + E[∂xτ Ȟt+τ |Ft]

+ E[Ẽ[∂µτ
˜̌Ht+τ (X̌t)]|Ft])

]
dt− δ∆XT (∂xǧT + Ẽ[∂µ ˜̌gT (X̌T )])−∆XT I

g
T

(5.13)
Reverse the role of α and α′, we also have

λ0(J(α′)− J(α))

≤− E
∫ T

0

λ0κ|∆α′t|2dt+ δE
∫ T

0

[
∆b̌′tY

′
t + ∆σ̌′tZ

′
t −∆X ′t(∂xȞ

′
t + Ẽ[∂µ

˜̌H ′t(X̌
′
t)] + E[∂xτ Ȟ

′
t+τ |Ft]

+ E[Ẽ[∂µτ
˜̌H ′t+τ (X̌

′
t)]|Ft])

]
dt− δ∆X ′T (∂xǧT + Ẽ[∂µ ˜̌gT (X̌ ′T )])−∆X ′T I

g
T

(5.14)
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Summing (5.13) and (5.14), using the fact that b and σ have the linear form, using change of
time and Lipschitz assumption, it yields

2λ0κE
∫ T

0

|∆αt|2dt

≤δE
∫ T

0

[
∆b̌t∆Yt + ∆σ̌∆Zt −∆Xt(∆∂xȞt + ∆Ẽ[∂µ

˜̌Ht(Xt)] + ∆E[∂xτ Ȟt+τ |Ft]

+ ∆E[Ẽ[∂µτ
˜̌Ht+τ (Xt)]|Ft])

]
dt+ δ∆XT (∂x′ ǧ

′
T − ∂xǧT + Ẽ[∂µ ˜̌g′T (X̌T )]− Ẽ[∂µ ˜̌gT (X̌T )])

≤1

2
E
∫ T

0

[
ε(|∆Xt|2+|∆Yt|2+|∆Zt|2) +

1

ε
δ2

(
|∆b̌t|2+|∆σ̌|2

+ |∆∂xȞt + ∆Ẽ[∂µ
˜̌Ht(Xt)] + ∆E[∂xτ Ȟt+τ |Ft] + ∆E[Ẽ[∂µτ

˜̌Ht+τ (Xt)]|Ft]|2
)]
dt

+
1

2

(
ε|∆XT |2+

1

ε
δ2

∣∣∣∣∂x′ ǧ′T − ∂xǧT + Ẽ[∂µ ˜̌g′T (X̌T )]− Ẽ[∂µ ˜̌gT (X̌T )]

∣∣∣∣2)
≤1

2
εE
[∫ T

0

ε(|∆Xt|2+|∆Yt|2+|∆Zt|2+|∆αt|2)dt+ |∆XT |2
]

+
1

2
δ
C

ε
E
[∫ T

0

(|∆X̌t|2+|∆Y̌t|2+|∆Žt|2+|∆α̌t|2)]dt+ |∆X̌T |2
]
,

(5.15)
where we have used simplified notation:

∆bt :=b(t, θt, θt−τ )− b(t, θ′t, θ′t−τ ); ∆b̌t := b(t, θ̌t, θ̌t−τ )− b(t, θ̌′t, θ̌′t−τ );

∆σt :=σ(t, θt, θt−τ )− σ(t, θ′t, θ
′
t−τ ); ∆σ̌t := σ(t, θ̌t, θ̌t−τ )− σ(t, θ̌′t, θ̌

′
t−τ )

∂xgT :=∂xg(XT , µT )− ∂xg(X ′T , µT );

∆Ẽ[∂µg̃T (XT )]] :=Ẽ[∂µg(X̃T , µT )(XT )]− Ẽ[∂µg( ˜̌X ′T , µT )(X ′T )]

∆∂xHt :=∂xH(t, θt, θt−τ , Yt, Zt)− ∂xH(t, θ′t, θ
′
t−τ , Yt, Zt)

∆Ẽ[∂µH̃t(Xt)] :=Ẽ[∂µH(t, θ̃t, θ̃t−τ , Ỹt, Z̃t)(Xt)]− Ẽ[∂µH(t, θ̃′t, θ̃
′
t−τ , Ỹt, Z̃t)(X

′
t)]

∆E[∂xτHt+τ |Ft] :=E[∂xτH(t+ τ, θt+τ , θt, Yt+τ , Zt+τ )|Ft]− E[∂xτH(t+ τ, θ′t+τ , θ
′
t, Yt+τ , Zt+τ )|Ft]

∆E[Ẽ[∂µH̃t(Xt)]|Ft] :=E[Ẽ[∂µτH(t+ τ, θ̃t+τ , θ̃t, Ỹt+τ , Z̃t+τ )(Xt)]|Ft]

− E[Ẽ[∂µτH(t+ τ, θ̃′t+τ , θ̃
′
t, Ỹt+τ , Z̃t+τ )(X

′
t)]|Ft]

similar notation for ∆∂xȞt, ∆Ẽ[∂µ
˜̌Ht(Xt)], ∆E[∂xτ Ȟt+τ |Ft], and ∆E[Ẽ[∂µτ

˜̌Ht+τ (Xt)]|Ft].
(5.16)
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Next, we apply Ito’s formula to ∆X2
t ,

d∆X2
t

=2∆XtdXt + d〈X,X〉t

=2∆Xt(λ0∆bt + δ∆b̌t)dt+ 2∆Xt(λ0∆σt + δ∆σ̌t)dWt +

(
λ0∆σt + δ∆σ̌t

)2

dt

(5.17)

Then integrate from 0 to T , and take expectation,

E[|∆Xt|2]

=2λ0E
∫ t

0

|∆Xs∆bs|ds+ 2δE
∫ t

0

|∆Xs∆b̌s|ds+ E
∫ t

0

|λ0∆σs + δ∆σ̌s|2ds

≤λ0E
∫ t

0

(|∆Xs|2+|∆bs|2)ds+ E
∫ t

0

(|∆Xs|2+δ2|∆b̌s|2)ds

+ E
∫ t

0

(2λ2
0|∆σs|2+2δ2|∆σ̌s|2)ds

≤CE
∫ t+τ

0

(|∆Xs|2+|∆αs|2)ds+ δCE
∫ t+τ

0

(|∆X̌s|2+|∆α̌s|2)ds

(5.18)

From Gronwall’s inequality, we can obtain

sup
0≤t≤T

E[|Xt|2] ≤ CE
∫ T

0

|∆αt|2dt+ δCE
∫ T

0

(|∆X̌t|2+|∆α̌t|2)dt (5.19)

Similarly, applying Ito’s formula to |∆Yt|2, and taking expectation, we have

E
[
|∆Yt|2+

∫ T

t

|∆Zs|2ds
]

=2λ0E
∫ T

t

∣∣∣∣∆Yt(∆∂xHt + ∆Ẽ[∂µH̃t(Xt)] + ∆E[∂xτHt+τ |Ft] + ∆E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft]
)∣∣∣∣

+ 2δE
∫ T

t

∣∣∣∣∆Yt(∆∂xȞt + ∆Ẽ[∂µ
˜̌Ht(X̌t)] + ∆E[∂xτ Ȟt+τ |Ft] + ∆E[Ẽ[∂µτ

˜̌Ht+τ (X̌t)]|Ft]
)∣∣∣∣

+ E|∆YT |2

≤E
∫ T

t

(
1

ε
|∆Yt|2+ελ2

0

∣∣∣∣∆∂xHt + ∆Ẽ[∂µH̃t(Xt)] + ∆E[∂xτHt+τ |Ft] + ∆E[Ẽ[∂µτ H̃t+τ (Xt)]|Ft]
∣∣∣∣2)dt

+ E
∫ T

t

(
|∆Yt|2+δ2

∣∣∣∣∆∂xȞt + ∆Ẽ[∂µ
˜̌Ht(Xt)] + ∆E[∂xτ Ȟt+τ |Ft] + ∆E[Ẽ[∂µτ

˜̌Ht+τ (Xt)]|Ft]
∣∣∣∣2)dt

+ E
∣∣∣∣λ0

(
∆∂xgT + ∆Ẽ[∂µg̃T (XT )]

)
+ δ

(
∆∂xǧT + ∆Ẽ[∂µ ˜̌gT (XT )]

)∣∣∣∣2
(5.20)
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Choose ε = 96 max{R2, L}, and from assumption (H5.1 - H5.2) and Gronwall’s inequality, we
obtain a bound for sup0≤t≤T E|∆Yt|2; and then substitute the it back to the same inequality, we are
able to obtain the bound for

∫ T
0
E|Zt|2dt. By combining these two bounds, we deduce that

E
[

sup
0≤t≤T

|Yt|2+

∫ T

0

|Zt|2dt
]

≤CE
(

sup
0≤t≤T

|∆Xt|2+

∫ T

0

|∆αt|2dt
)

+ δCE
[

sup
0≤t≤T

(
|∆X̌t|2+|∆Y̌t|2

)
+

∫ T

0

(
|∆Žt|2+|∆α̌t|2

)
dt

]
(5.21)

Finally, combining (5.19) and (5.21), and (5.15), we deduce

E
[

sup
0≤t≤T

|∆Xt|2+ sup
0≤t≤T

|∆Yt|2+

∫ T

0

(
|∆Z2

t |+|∆αt|2
)
dt

]
≤δCE

[
sup

0≤t≤T
|∆X̌t|2+ sup

0≤t≤T
|∆Y̌t|2+

∫ T

0

(
|∆Žt|2+|∆α̌t|2

)
dt

] (5.22)

Let δ0 = 1
2C

, it is clear that the mapping Φ is a contraction for all δ ∈ (0, δ0). It follows that there
is a unique fixed point which is the solution of MV-FABSDE(λ) for λ = λ0 + δ, δ ∈ (0, δ0).

Proof of Theorem 5.1. For λ = 0, FABSDE(0) has a unique solution. Using Lemma 5.2, there
exists a δ0 > 0 such that FBSDE(δ) has a unique solution for δ ∈ [0, δ0], assuming (n − 1)δ0 <

1 ≤ nδ0. Following by a induction argument, we repeat Lemma 5.2 for n times, which gives us
the existence of the unique solution of FABSDE(1).
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