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Abstract

Inner-shell photoelectron spectroscopy provides an element-specific probe of molec-
ular structure, as core-electron binding energies are sensitive to the chemical envi-
ronment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers
(FELSs), even enable time-resolved site-specific investigations of molecular photochem-
istry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule
1-iodo-2-methylbutane, probed by XUV pulses from the Free-electron LASer in Ham-
burg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Method-
ologically, we employ electron-ion partial covariance imaging as a technique to isolate
otherwise elusive features in a two-dimensional photoelectron spectrum arising from
different photofragmentation pathways. The experimental and theoretical results for
the time-resolved electron spectra of the 4dz/, and 4ds/, atomic and molecular levels
that are disentangled by this method provide a key step towards studying structural

and chemical changes from a specific spectator site.
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Introduction

Molecular restructuring and its consequences for molecular function are of ubiquitous inter-
est across a variety of scientific disciplines. The involved physical and chemical dynamics
typically progress on the femtosecond timescale, which can be observed in ‘real-time’ through
a range of ultrafast spectroscopic techniques.! Modern technological developments in high
intensity short-wavelength FELs have extended such methods for probing ultrafast chemistry
in a site-selective manner by utilizing wavelengths of light which can selectively address core
orbitals.?™

Ultrafast molecular fragmentation can cause significant core-electron binding energy
changes. These changes are typically on the order of few eV for chemical shifts of neutral
fragments, tens of eV for delocalized charges in the valence shell, and more than a hun-
dred eV for localized core-holes.'® Such shifts are measurable by photoelectron spectroscopy
and can be used to study photochemistry in real-time from a specific observer site.’” An
often limiting factor of such studies is that it is difficult to distinguish smaller shifts from
static signal originating from ground-state molecules and background.” Additionally, relat-
ing delay-dependent signal to a specific underlying process is challenging, particularly in
the case of more complex molecules which may undergo a range of photochemical processes
following photoexcitation or -ionization. Omne potential solution to overcome this limita-
tion is to utilize electron-ion correlations, allowing electron spectroscopy to be applied in
a channel-resolved manner, by isolating contributions in an electron spectrum correlated
to a specific photofragmentation channel, determined by ion spectroscopy. ' 13 Electron-ion
coincidence techniques have proven to be very powerful, but are limited to very low count
rates, such that multiple particles produced in the same laser pulse can be assigned to a
single event. 4 While progress in coincidence experiments at FELs has been made,>916718
sufficient data collection rates for highly differential insights into molecular fragmentation
channels still poses a considerable technical challenge that can prospectively be tackled by

high-repetition rate FELs.'® Here, we exploit an alternative method to determine charged-
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particle correlations at far higher count rates per photon pulse; through calculating the co-
variance, a measure of linear correlation between the signals of interest recorded over many
data acquisition cycles (i.e. laser shots).?°"2? This holds the promise of being applicable even
to larger molecules.?® Although the inherently unstable conditions due to stochastic pulse
generation at Self-Amplified Spontaneous Emission (SASE) FELs provide challenges for cor-

relation techniques, schemes have been developed to not only correct for the adverse effects

24,25 £ 26

of such fluctuations, but effectively exploit them through either partia or contingen
covariance analysis. In the present work, we demonstrate the extension of these techniques,
usually applied to a 1D mass spectrum, to a 3D Velocity-Map Imaging (VMI) study of the
ultrafast evolution of electronic structure during a photodissociation, at a particular core
site, in a channel-resolved manner.

We use this technique in order to investigate properties and dynamics of the prototypical
chiral molecule 1-iodo-2-methylbutane (CoH5CH (CH3)CHol) at the iodine 4d edge, as it is
a prominent candidate for approaching dynamical investigations of chirality with FELs in
future studies. Understanding and benchmarking the underlying ultrafast photochemistry
is an important prerequisite for these kind of studies. In particular, we UV-excite the
molecule and predominantly trigger neutral dissociation at its carbon-iodine bond (shown
schematically in Figure 1). We demonstrate the value of partial covariance analysis for

following the iodine in its dynamical change from molecular to isolated atomic environments

through channel-resolved photoelectron spectroscopy.

Results and Discussion

Samples of R/S-1-iodo-2-methylbutane were introduced as a continuous molecular beam,
seeded in helium, into the CAMP end-station?” at the beamline BL1 of FLASH 12® at
DESY in Hamburg, Germany. The molecule was dissociated at its C-I bond following single-

photon UV excitation (267 nm (4.6 V), ~150 fs, maximum pulse energy of 7 u.J). As is the
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case in alkyl iodides in general,?’

photoabsorption in this region arises due to an excitation
from the iodine lone pair (n;) to the C-I antibonding (o%) orbital. The evolving chemical
dynamics following photoexcitation are investigated from the viewpoint of the released neu-
tral iodine atom via a time-delayed, ~63.5¢eV, FEL-based probe pulse with ~50 fs duration
and pulse energy at the target of about 1 uJ (see Methods section for details). Due to the
large cross-section difference to other constituents and electronic orbitals, the I 4d orbital is
predominantly ionized.? The photoions and photoelectrons produced are velocity-mapped
to a pair of position sensitive detectors®”3!33 (as described in more detail in the Methods

section). By using partial covariance analysis to select only electrons that are emitted from

neutrally dissociated iodine, and following their time evolution during the photolysis, an

C,H,CH(CH,)CH,I
()

GS

C Binding Energy

Figure 1: Schematic representation of the experimental scheme to study the ultrafast pho-
todynamics of 1-iodo-2-methylbutane. Photoexcitation (predominantly to the excited state
of 3Qy symmetry) is initiated by a UV pump pulse. The photoexcited molecule is inter-
rogated at a series of pump-probe delays by a XUV-FEL pulse, probing the photoelectron
binding energy of the I (4d) core orbital. Measured changes in the binding energy during
the photodissociation can be related to the underlying photochemistry, supported by quan-

tum Slmulatlons of the photommzatlon process H%&s%mﬁe&ef—%h&%-m&&eeé%mgme%&&eﬁ




&3 advanced scheme for femtochemistry is enabled. The interpretation of the delay-dependent

s« photoelectron spectra is supported by state-of-the-art simulations of photoionization.3*
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Figure 2: a) Normalized ion mass spectra recorded for 1-iodo-2-methylbutane with the XUV
only (magenta), UV only (red) and UV early-XUV late at a pump-probe delay of 4+0.80 ps
(blue). Inset: Raw (left) and reconstructed (right)3® velocity-map 1T ion images at a series
of pump-probe delays. The -0.70 ps image’s intensity has been multiplied by 5, to increase
the visibility of the weak, high-KER channel. The polarization axis of the UV laser is vertical
in these images. b) Delay-dependent kinetic energy distribution for the I?* ion. The UV-
early (>1ps delay) and UV late (<-0.2 ps delay) distributions are projected in red and blue
respectively. ¢) Integrated yield of the low kinetic energy (<0.4 eV) feature as a function of
pump-probe delay (red points) with a fit to a normal cumulative distribution function (blue
line).
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Velocity-map Ion Imaging

Figure 2a) shows mass spectra of 1-iodo-2-methylbutane exposed to the UV and XUV pulses
alone, or with both pulses for positive pump-probe delays (UV preceding the XUV). At
the employed intensities, very little multi-photon dissociative ionization is initiated by the
UV pulse alone, whereas the XUV pulse causes extensive ionic break-up. In the two-color
experiment, a clear pump-probe signal can be observed most prominently in the I?* ion,
whose yield is significantly enhanced when the UV pulse precedes the XUV. As ionization
at the I 4d orbital by the XUV predominantly results in two charges after Auger decay,?’
UV-induced neutral photodissociation followed by ionization at the nascent iodine atoms by
the XUV would lead to an enhanced I>* signal at sufficiently large internuclear distances,
for which charge transfer does not occur.® Small enhancements of other fragments are also
visible in comparison to the XUV-only spectrum.

Velocity-map images for the I?* ion at a series of pump-probe delays, shown in the inset
of Figure 2a), provide insight into the UV-induced C-I dissociation. At negative pump-probe
delays (UV late), a weak, broad feature at high radii is observed, that is assigned to a (multi-
photon) XUV-induced Coulomb explosion of the parent molecule. When the UV pulse pre-
excites the molecules, two clear features emerge in the ion images. Firstly, there is a strong
contribution at low radii, which is peaked along the UV polarization axis As is expected for
one-photon transitions, intensity of this feature as a function of angle to the polarization
axis, 1(0), is of the form I() = (o/47)[1 + BP(cosd)], where P, is the second Legendre
polynomial, and S is the anisotropy parameter. This takes limiting values of -1 and +2
for transitions of pure perpendicular or parallel nature, respectively (under the assumption
of a prompt photodissociation).?%3" In the present case, a (3 value of ~1.80 is extracted
{B-~-180-3%). This is expected for neutral photodissociation following a parallel excitation
predominantly to the 2Qq state, as observed in similar alkyl iodides.?’ The delay-dependent
I[?* kinetic energy is plotted in Figure 2b), and panel ¢) shows the integrated intensity of the

low kinetic energy, neutral dissociation feature. This signal rises on an ultrafast (few hundred
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fs) timescale, as is expected for a direct dissociation, as observed previously in related alkyl
iodides.? The rise in intensity of this feature is somewhat delayed with respect to time-zero.
This is to be expected as, at sufficiently early pump-probe delays, charge transfer can occur
between the multiply charged iodide ion produced following XUV ionization and the recoiling
C,Hy radical, reducing the low energy 1** ions formed. Previous pump-probe studies using
site-selective ionization in similar photodissociation molecules have examined differences in
the delay-dependent behavior of multiple iodine charge states to extract information about
distance-dependent charge-transfer probabilities. 34839 However, in the present work, which
employs a relatively weak XUV pulse which is only a few eV above the I 4d binding energy
of the neutral molecule, a range of iodine ion charge states are not populated, and thus the
extractable insights into charge transfer are limited and not discussed further in the present
manuscript.

Secondly, a weaker, more diffuse feature at higher radii is also visible after time-zero.
This moves towards the center of the image at longer pump-probe delays, indicative of a
Coulombic contribution to the fragment energy, which decreases at larger internuclear sepa-

39742 confirms that

rations, i.e. longer pump-probe delays.**3? Covariance imaging analysis
this minor channel arises from a multi-photon dissociative ionization by the pump pulse,
prior to XUV absorption at the iodine site. At longer pump-probe delays, the double ion-
ization at the iodine fragment occurs when the charged alkyl co-fragment is at a greater
separation, and so the Coulombic contribution to the kinetic energy of this feature decreases
as pump-probe delay advances. This channel is not discussed further in the current work,
which focuses on the dominant, neutral photodissociation channel. As will be demonstrated
shortly, the electron-ion partial covariance imaging method used allows isolation of the pho-
toelectron signal correlated solely to the neutral dissociation feature of interest. As shown
in this section, the temporally and kinetic-energy resolved ion-yield evolution already pro-

vides valuable information about the individual dissociation channels and allows to partially

disentangle them. Deeper insights about selective contributions and processes can then be
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accessed by studying the underlying electronic dynamics.

Electron-Ion Partial Covariance Imaging

The photodissociation dynamics can be further probed through time-resolved inner-shell

5734 at the iodine 4d site, as demonstrated on the ultraviolet

photoelectron spectroscopy
photodissociation of methyl iodide by Braufle et al.,” in which a small increase in I 4d binding
energy was detected following UV excitation. This was assigned to ionization of dissociated
iodine atoms, supported by earlier synchrotron measurements of the I 4d binding energies
of CH3l and 1.43746 The ability to study the temporal evolution of the signal, however,
was hampered by the fact that this small contribution overlaps energetically with signal
arising from unpumped parent molecules (due in part to the significant FEL bandwidth); a
limitation that can be tackled by the partial covariance analysis. A primary aspect of the
current work is that this method can be utilized to isolate delay-dependent spectral features
of interest.

Photoelectron images following irradiation of 1-iodo-2-methylbutane (seeded in He) by
the UV and XUV lasers are plotted in Figure 3a). The strong rings observed in the helium-
only case are due to single and double ionization of He by the XUV pulse, which form a
significant background when 1-iodo-2-methylbutane is present, labeled ‘CsHy;I” in Figure
3a). Subtraction of the helium-only background image, normalized by number of laser shots
and average FEL pulse energy yieldsSubtraction—ofbackeround—eontributions—yields the
image plotted on the right of panel a) of Figure 3. A feature at slightly lower kinetic
energy (higher binding energy) than the He?™ photoline is observed, arising from ionization
at the I 4d site in CsHy11. The associated electron binding energy spectrum (Figure 3c))
shows two clear peaks at approximately 56.5eV and 58.0eV, which can be assigned to the
molecular 4ds/, and 4ds; levels, respectively. In this simple association of electronic origins,
the energy difference is already a reliable parameter. A higher differential view on the

angular distribution patterns is not only a valuable characterization of the given electron
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Figure 3: a) Photoelectron VMI images (UV-XUV) of: (left to right) 1-iodo-2-methylbutane
seeded in He carrier gas, He only and 1-iodo-2-methylbutane following background subtrac-
tion. b) Electron-ion partial covariance analysis for the I ion, showing images of (left to
right) covariance, correction term and the partial covariance. c) Electron spectra associated
with the background subtracted velocity-map electron image (blue) and the I electron-ion
partial covariance image (red). The two main features, arising from molecular 4ds/, and
4d3/, ionization, are labelled.
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orbital compositions of the molecule in its ground state, but also potentially for the evolving
composition of the chemical environment of the respective emitter site. For the static case of
electron emitted from the I 4d site of C5Hj,1, the 5, parameter®%47 for electrons originating
from the molecular I 4d site was determined to be ; = 0.25 for the 4ds/; and 8, = 0.3

for the 4d3/, which is in reasonable agreement to previous work on CHzI*®

under the given
experimental conditions and provides a benchmark for further studies. Following the time
dependence of these angular distributions with partial covariance mapping during molecular
dissociation is a goal for future (higher statistics) studies.

The electron velocity distributions correlated with production of a particular photoion
can be extracted by calculating the covariance between the integrated count of the ion of
interest and each pixel of the electron image. As three-dimensional ion-velocity information
is recorded on an shot-by-shot basis, electron spectra correlated to a specific range of ion
velocities can be calculated by appropriately selecting ions within a given velocity range.
Figure 3b) shows the electron-ion covariance calculated for the IT ion, which is predomi-
nantly produced following interaction of the molecule with the XUV pulse alone (see Figure
2a). In this image, which represents the laboratory-frame photoelectron distribution corre-
lated to the production of I ions, the I 4d feature is clearly highlighted. However, there is
still significant background present from the He seeding gas. This ‘false’ covariance is at-
tributed to correlations induced by the fluctuating FEL power during the experiment, which
has the effect of correlating all measured signals. This can be accounted for through partial

24,2549 a5 the FEL pulse energy is also recorded on a shot-by-shot basis "

covariance analysis
(details of the partial covariance procedure are given in the Methods section). An additional
map, denoted the ‘correction’ map, representing the (linear) correlations induced by the
fluctuating FEL pulse energy is constructed. Subtraction of this term from the covariance
term yields the partial covariance, which isolates the true electron-ion correlations (which,

in this case arise from ionizing at the I 4d orbital of 1-iodo-2-methylbutane). In panel c),

strong principal agreement is observed between the covariant electron spectrum for IT and

11
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the equivalent spectrum obtained following subtraction of the various background contri-
butions from the raw electron image. We note that the photoelectron spectrum extracted
from the partial covariance image is noisier than the equivalent image obtained through
background subtraction of the raw electron image. This is in part due to the nature of the
covariance mapping procedure, which relies on statistical (Poisson) fluctuations in a noisy
dataset and the detection of multiple particles, each of which have rather finite detection
efficiencies. The influence of these factors on covariance mapping has been examined in
detail recently.?'®? The covariant electron spectrum importantly contains information that
cannot be gleaned from the raw photoelectron spectra, namely channel-resolved information

by extracting photoelectron spectra correlated to the production of a given ion channel.
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Figure 4: a) Electron-ion partial covariance images (symmetrized) for the I ion and the I**
ion (low radius ions only, for pump-probe delays of +0.55ps and +0.80ps). A horizontal
line at the radius of the ring seen in the I'" image highlights the shift to lower radius in the
[?* case. b) Photoelectron spectra extracted from each of these partial covariance images.

As discussed previously, the low kinetic energy I?* ions observed in Figure 2 are formed

by a distinct pathway: UV-induced photodissociation and subsequent XUV ionization at the

18 nascent iodine atom 4d orbital. The partial covariance image for low-velocity (i.e. originating

12
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from neutral dissociation) I** ions is plotted in Figure 4(a), for long positive pump-probe
delays (UV first by at least 550fs). In Figure 2(a), a clear circular feature is observed at
a significantly lower radius (higher electron binding energy) than for XUV-only ionization
and fragmentation of the parent molecule. As seen in Figure 4b), the spectrum associated
with the neutral dissociation exhibits a shift to higher binding energies, by approximately
1.5 - 2eV, consistent with synchrotron studies on the I 4d photoelectron spectra of free
iodine atoms.***® Crucially, and in contrast to previous work,” this energetic shift as a
result of dissociation can be completely isolated from the far stronger unpumped parent
molecule signal, as well as from any competing pump-probe channels, such as the multiphoton
dissociative ionization pathway. As such, the method presented here allows for decisive
insights into the photochemistry of this prototypical molecule.

Figure 5 shows the covariant electron spectra associated with low-velocity I1?* ions in a
time-resolved manner. For all pump-probe delays, the electron spectra in covariance with
the I?* photodissociation products show clear differences from the spectrum of ground state
molecules. Three main peaks can be seen in these spectra in the ~56 - 61 eV region, along
with an immediate, unresolved, shift to higher electron binding energies. In the ~54 -
56 eV region, the signal (with either negative or positive intensity) is assigned to the partial
covariance routine failing to correctly remove all the He-background contributions. This
issue arises due to the relatively low statistics when calculating the partial covariance for a
given delay bin. The peak at ~ 56.5 eV visible in panel a) coincides energetically with the
signal stemming from the unpumped molecule, indicated by the I™ signal and displayed in
more detail in Figure 3 ¢). At small time delays, the overall yield of the I*" is reduced since
charge transfer between the fragments can still happen. Therefore, the relevance of such a
contribution could be slightly enhanced, even in the covariance analysis.

In order to better understand the origins of these experimental observations, we have
calculated photoelectron spectra as a function of carbon-iodine distance while keeping the

remaining geometry parameters fixed, for the Qg and 'Q; excited states (a full description

13
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Figure 5: Angle-integrated electron spectra extracted from the I?T electron-ion partial co-
variance images at a series of pump-probe delays in comparison to selected theoretical results.
For each spectrum, the shaded area in blue represents errors at the 1o level estimated from
a bootstrapping analysis. The gray shaded area indicates a level of reduced confidence (see
text). In panels a) and c), simulated spectra on the 3Qq (red) and 'Q; (black) potentials
are shown in comparison to the experimental spectra (blue). In panel a), this is for a for
C-I bond distance of 2.30 A, whereas in c), the theoretical spectra are in the dissociated (i.e.
atomic) limits. In panel a), the electron spectra extracted from the I electron-ion partial
covariance image is also shown (in magenta), representing the photoelectron spectrum of
unpumped molecules.
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of the theoretical methods is given in the Methods section). As in CH3I**® and other

29,54-56 photoexcitation occurs predominantly to the 3Qq state, which correlates

iodoalkanes,
to spin-orbit excited I* (*Py5) products.®” This state is crossed by the 'Q; state, in our case
at around 2.4 A C-T bond distance, correlating to ground state I (P /2). From our classical
simulations of the C-I bond elongation (described in detail in the Methods section), which
reaches an asymptotic velocity of ~25A ps~!, this channel-crossing occurs at around 10fs.
During the dissociation, significant population transfer from 3Qg to 'Q; occurs enabling
production of ground state I atoms. This is the dominant dissociation pathway, particularly
in larger alkyl iodides.?**® In Figure 5, the time-resolved experimental data are compared
with theoretical spectra calculated close to the equilibrium bond distance (panel a)), and in
the long bond distance limit (panel c)) for both electronic states. Our theoretical work does
not consider any possible contributions from other excited states, which, in the case of the
related CHsI molecule, are believed to have extremely low oscillator strengths at the pump
energy used.

Although the time resolution of +100 fs precludes direct observation of the non-adiabatic
behavior at the conical intersection,?%%6! the comparison with theory is still illuminating.
At the earliest pump-probe delay, potential contributions from the initially populated Q)
state and the 'Q; state cannot be clearly distinguished, with qualitative indications for
either state, consistent with some convolution of both involved states. For the second delay
at 300 fs, the evolution of the spectral dynamics (primarily on the 'Q; state) is theoretically
predicted to be finished, which cannot be decisively confirmed by the present data. Whether
this observation is due to relatively poor statistics for this pump-probe delay, or indicates
some longer timescale dynamics (as have been recently observed in CH3l following A-band

5362) cannot be clearly concluded in the current data but will be investigated

excitation
further in future work. For long delays, in contrast, the dominant contribution can be
clearly assigned to the 'Q; channel (I(*Pjs/2)), with any minor contributions from the *Qq

state causing a significantly smaller binding energy shift than that observed.

15
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The current work demonstrates the applicability of electron-ion partial covariance imag-
ing to ultrafast site-specific photoelectron spectroscopy. Future upgrades to FELs in terms

4

of repetition rate, polarization® and pulse duration® control, in combination with ultra-

65-67 and advanced camera readout

short optical laser pulses in particular in the UV regime,
schemes, will enhance the data acquisition rate by orders of magnitude and can hence en-
able robust determination of covariant electron angular distributions and their temporal
evolution. Experiments building on this methodology presented here will enable the study
of coupled nuclear electron dynamics, such as those associated with conical intersections,
in exquisite detail. Besides gaining first photochemical insights into the chiral molecule
1-iodo-2-methylbutane, our approach can also be readily extended to asymmetric angular

distributions, in either the laboratory- or recoil-frame which can provide a promising tool

for exploring ultrafast chiral dynamics.

Methods

Experiment

Experiments were performed at the beamline BL1 of FLASH 1, using the CAMP end-
station.?” The experimental setup consists of a dual-sided velocity-map-imaging spectrom-
eter. Samples of R/S-1-iodo-2-methylbutane were introduced as a continuous molecular
beam, seeded in helium, which is collimated by two skimmers en route to the spectrometer’s
interaction region. Here, molecules were crossed perpendicularly by focused UV and XUV
pulses provided by the FLASH pump-probe laser and FEL respectively. Linearly polarized
UV pulses (267 nm (4.6 eV), ~1501fs) were generated through third-harmonic generation of
the fundamental output of a Ti:Sapphire amplifier (Coherent Inc., Hydra), in a $-BaB,O,
crystal. The resultant UV pulses were focused in the interaction chamber to a diameter of
about 100 pm, with attenuated pulse energies on the order of few pJ (maximum of 7 uJ),

and used to photoexcite the target molecules, ultimately initiating C-I bond cleavage.
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XUV pulses (19.1nm (63.5 eV), ~50fs) generated by FLASH were used to probe the
ensuing molecular dynamics through photoionization, predominantly from the I 4d core
site. 3 The repetition rate was 10 Hz. The optical laser was blocked by a mechanical chopper
for 1 in every 10 pulses (i.e., at 1 Hz), to record background (XUV-only) data. These FEL
pulses were circularly polarized using the recently installed four-mirror reflection polarizer
in order to potentially enable stereochemical sensitivity.% The resultant polarization of the
beam is determined by the angle of the mirror assembly, which can be adjusted via a stepper
motor. The estimated degree of circular polarization was ~80%. The estimated averaged
energy bandwidth of the FEL pulses is approximately 1% FWHM (~0.60eV), which is the
primary contribution to the energy uncertainty in the recorded photoelectron spectra.

The beamline transmission of BL1 at the chosen photon energy is ~18%,%" while the
inserted polarizing mirrors have a reflectively of ~68%. Typical FEL pulse energies were
approximately 50 uJ, but were attenuated by a factor of ~5 using a 420nm Al filter, in
order to reduce contributions from multiphoton effects. Nickel-coated mirrors mounted in
Kirkpatrick-Baez geometry focused the beam to about a diameter of about 10 um.

Following the interaction of target molecules with the focused laser and FEL pulses, the
generated ions and electrons are accelerated to position-sensitive MCP /phosphor screen de-
tectors at the top and bottom of the instrument, respectively. Potentials were applied to the
ion optics such that velocity mapping conditions were met for both ions and electrons.® On
the ion side, the resultant light flashes at the phosphor are imaged by a fast-time-stamping
PImMS2 camera.3%33 This employs a 324 x324 pixel sensor capable of recording the spatial
coordinates (z, y) and arrival time (¢) of events at high count rates. In the current experi-
ment, the sensor was operated at a timing precision of 25ns, which facilitates imaging of a
wide range of ions within a single experimental cycle. Velocity-map images corresponding to
a particular m/z value were extracted from the PImMS dataset by integrating over a char-
acteristic time-of-flight range for the ion of interest. Multi-mass imaging allows momentum

correlations between ionic fragments to be determined using covariance analysis. 2%2%4 The
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electron detector was gated in time by fast HV switches (Behlke) to minimize background
contributions from stray light, and the electron images were captured using a 2448 x2048
pixel CCD camera.

Ion and electron velocity-map images were recorded for several pump-probe delays be-
tween the optical and free-electron lasers, as were relevant single-color and background
datasets. The fluctuations of the FEL timing and pulse energy on a shot-to-shot basis were
recorded using the FLASH Bunch Arrival Monitor® and Gas Monitor Detector,% respec-
tively. Throughout the beamtime, data at several fixed pump-probe delays were recorded
by switching delays between individual (~1-2 hour) data acquisition runs, to minimize the
effect of gradual drifts in experimental conditions on the data at a given pump-probe delay.
Frequently, acquisitions were also recorded whilst scanning the pump-probe delay in small
steps, in order to conclusively establish time-zero and thus verify stable timing between the
optical and FEL pulses. In order to improve the three-dimensional (x, y, t) resolution of
the ion-imaging data recorded by the PImMS camera, centroiding in time and space was

performed.4°

Theoretical Methods

Theoretically, the cross section for ionizing from spin-orbit (SO) coupled states I to SO

coupled state F' were calculated as

or(w) = camw .17 |Cr F I I i i r—Er—w 1
(w) = sar” CraPICr o] 8 - B —w) ()

I F M=-1,0,1

where « is the fine structure constant, Cp/; and Cp p are the expansion coefficients of
the initial and final SO coupled states in the non-SO coupled basis states [¢)Y) and [¢}),

respectively, and 0(Er — Er—w) is a Gaussian broadening function with a standard deviation
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of 0.212eV. The many electron dipole operator in Eq. 1 is

(Wldulr) =Y (Wblele; v (ilduls), (2)
2%
where ¢; and c} are fermionic creation and annihilation operators and (i|dy|5) the dipole
moment in the one-particle basis.

To calculate the transition dipole matrix elements for the basis states, (N |dy|iN) 2,
we employed the one-center approximation, in which we separated the final electronic state
|9A) into a bound part |¢9_1)) and a one electron continuum part ¢;. The respective
continuum wave function ¢, was approximated with atomic continuum wave functions at
the appropriate kinetic energy k?/2 = w — (Er — E;). More details on this procedure can
be found in Ref.™™

We obtained the expansion coefficients Cp; and Cp g, as well as E; and Ep from SO
calculations diagonalizing the Breit-Pauli Hamiltonian in the space of the initial and final
basis states ¢& and ngy_l), respectively. In particular, we conducted a state-averaged com-
plete active space (SA-CASSCF) calculation involving an orbital space of 4 orbitals with
6 electrons for an equal-weighted average over the 3 lowest singlet states employing the 6-
311G(d,p) basis set.™™ With the obtained set of orbitals, we constructed a set of basis
states for the SO calculations for the initial, neutral state consisting of the 6 lowest triplet
and 4 lowest singlet states obtained by diagonalizing the CI matrix in this active space. For
the final state, we took into account the full spectrum of states constructed by diagonalizing
the CI Matrix in the employed active space with an additional hole in the 4d shell resulting
in 80 doublet and 30 quadruplet states. The SO coefficients Cj ;» and Cppr as well as the
respective energetic position of the SO-coupled states were calculated using molpro version
2020.1.7 The cross sections were calculated using the XMOLECULE toolkit. "%

To calculate the molecular photoelectron spectrum, we employed a common orbital set

for the initial, neutral, and final 4d-ionized states. Because orbital relaxation effects due to
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the presence of the 4d hole are not taken into account, the energy differences between initial
and final states are somewhat too large. This effect has been estimated from a calculation for
atomic iodine where the orbital relaxation effect was considered. We find that the inclusion of
relaxation effects results in a spectral shift of ~ 5eV and only minor changes in the spectral
shape. We further note that discrepancies to the experimental spectra may also arise due
to missing relativistic effects and the limited size of the employed basis set. To correct for
these effects and facilitate a comparison with the experimental data, we additionally shifted

the calculated photoelectron binding energies by 1.4 eV towards lower energies.

1.00+
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Figure 6: Calculated photoelectron spectrum of the 4d level of the molecule (ground state).

Figure 6 shows the calculated spectrum for the molecular electronic ground state. As
can be seen, the calculation shows the expected SO splitting of ~ 1.7eV between the two
levels 4ds/, and 4ds, levels.™

For the excited state, we have calculated the photoelectron spectrum as a function of
iodine carbon distance, keeping the remaining geometry parameters fixed. Specifically, we
show spectra, for the excited 2Q, and 'Q); state, that are relevant for the photoinduced

dissociation dynamics. Figure 7 shows the calculated potential energy curves. The 3Q), state
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correlates asymptotically to the excited iodine fragment in 2Py 5 configuration (I*), the '@,
state corresponds to the iodine in its 2P/, ground state. As can be seen, both potential

energy curves cross at ~ 2.4 A.

Energy/eV

2.0 2.5 3.0 3.5 4.0
Rc-1/ A

Figure 7: Calculated potential energy curves for the ground and selected excited states of
the molecule along the C-I bond.

The calculated 4d photoelectron spectrum as a function of internuclear distance is shown
in Figure 8 for the 3Q) state and in Figure 9 for the '), state. With increasing interatomic
distance, one can see that both spectra initially move to lower binding energies and exhibit
only slight changes beyond an internuclear C-I distance of 3.5A. The 3Q, photoelectron
spectrum at large internuclear distances is roughly 0.9eV lower compared to the '@Q; pho-
toelectron spectrum. As expected from the asymptotic dissociation limit, the Q) spectrum
corresponds to the atomic I* photoelectron spectrum at large internuclear distances, whereas
the 1 spectrum corresponds to the atomic I ground state photoelectron spectrum.

To qualitatively assess the dynamics triggered by the initial excitation, we conducted an
MD simulation. Starting from the Franck-Condon geometry of the molecule, the trajectories

were propagated on the lowest triplet excited state using the TD-DFT method employing
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Figure 8: Calculated photoelectron spectrum of the 4d level of the molecule (3Qq excited
state) for selected interatomic distances . The two lowest lines show the calculated spectra
for atomic iodine in its ground (black, solid line) and excited state (black, dotted line).
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Figure 9: Calculated photoelectron spectrum of the 4d level of the molecule (1Q; excited
state) for selected interatomic distances. The two lowest lines show the calculated spectra
for atomic iodine in its ground state (black, solid line) and excited state (black, dotted line).
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the SBKJC effective-core potential basis set”” using GAMESS.™ As we described in the
main text, we observe that the C-I bond distance almost linearly increases with a speed
of ~ 25Aps~! in accordance with earlier results for similar iodoalkanes.? We see that the

conical intersection at 2.4 A is reached within ~ 10fs, as displayed in Figure 10.
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Figure 10: Simulation of the bond-length elongation between the closest carbon (C,) and
the iodine atom.

Assignment of Time Zero

In experiments incorporating a weak-field UV pump and an XUV probe, it is often difficult to
precisely assign time-zero.*"8™ For instance, analysis of the low KE, neutral photodissocia-
tion feature observed in the I?* ion signal in the current work is complicated by the fact that
the feature’s time-evolution depends on delay-dependent (and therefore distance-dependent)
charge-transfer probabilities following photoexcitation. As a result, in the present experi-
ment, time-zero is determined from the delay-dependent intensity of the higher KE feature

observed in the I?T ion signal, whose KE decreases at longer pump-probe delays. As men-
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Figure 11: Pump-probe delay-dependent intensity (red points) of the I?* ‘Coulomb curve’
feature. A Gaussian cumulative distribution function (CDF) fit to this is shown in blue.
The centre of this fit is marked by a blue dashed line, and the standard fitting error of this
parameter is marked by the shaded blue region.

tioned in the main text, this feature arises from a multiphoton UV dissociative ionization to
yield a cationic alkyl fragment, before XUV ionization at the neutral iodine fragment. As we
expect this channel to be observed immediately following UV excitation, and charge-transfer
is much less favorable to an already charged alkyl fragment (and thus less likely to affect the
yield of this channel), we take the center of the rise of this channel as the point at which
the two pulses are temporally overlapped. The intensity of this feature as a function of
pump-probe delay, and a fit to this, from which the time-zero may be extracted, is shown in

Figure 11.

Error Estimation

Figure 4 of the main manuscript displays the delay-dependent electron spectra in partial
covariance with the I** ion. Estimated errors of these spectra (10) are also given, represented
as shaded areas. These errors were determined using a bootstrapping analysis of the data.

The data used to generate each spectrum was originally recorded as multiple distinct data
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acquisitions (each of tens of thousands of laser shots) during the original FEL beamtime.
For each pump-probe delay, these individual data acquisitions were randomly sampled (with
replacement), to generate a new dataset, from which the electron-ion partial covariances
were calculated. This process was repeated many times, and the standard deviation from

the many spectra was used as an estimate of the overall statistical error.

Electron-Ion Partial Covariance Calculation

Covariance, a measure of linear correlation between two variables, X and Y, is defined as:?°

Cov(X,Y) = (XY) — (X)(Y) (3)

where arithmetic means are taken over a series of observations (in our case, laser shots). In
the present work, prior to calculation of the covariance, some data filtering was performed.
Firstly, only laser shots in which both the UV and XUV lasers irradiated the sample were
selected. Secondly, FEL pulses with outlying pulse energies (more than 1.50 away from the
mean pulse energy) were removed. The covariance was then calculated between each pixel of
the electron image (recorded on a shot-to-shot basis) and the total count of the ion channel
in interest, derived from the centroided PImMS camera data. Such a covariance image is
shown in the left-hand side of Figure 2b) of the main manuscript.

The calculated covariance images still feature signal which is not correlated to the ion of
interest. This ‘false covariance’ arises due to the fluctuating FEL power during the experi-
ment, as described in the main text. To account for this, partial covariance is calculated,?>
in which an additional correction term, representing these (linear) correlations induced by

the fluctuating power, is calculated. This term is defined as:

Cov(Y, I)Cov(I, X)

Corr(X,Y; 1) = CovL. D)

(4)

The correction term is calculated using the FEL pulse energy measured by the FLASH Gas
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Monitor Detector®® as the fluctuating parameter. The correction term is calculated by de-
termining the covariance between the FEL pulse energy and the ion count, as well as the
covariance between the FEL pulse energy and each pixel of the electron image, as seen in
Equation 4. Once the correction term is subtracted from the covariance, the partial covari-
ance remains. Example correction and partial covariance images are shown in the centre and
right-hand portions of Figure 2b) in the main manuscript. The covariant electron spectra
presented in the main manuscript are obtained by Abel-inverting the electron-ion partial
covariance images (using the pPBASEX?® algorithm). The presented spectra are normalized

to unit peak intensity in the spectral region of interest.
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