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The dihedral genus of a knot

PATRICIA CAHN
ALEXANDRA KJUCHUKOVA

Let K C S? be a Fox p—colored knot and assume K bounds a locally flat surface
S C B* over which the given p—coloring extends. This coloring of S induces a
dihedral branched cover X — S*. Its branching set is a closed surface embedded
in S* locally flatly away from one singularity whose link is K. When S is homotopy
ribbon and X a definite four-manifold, a condition relating the signature of X and
the Murasugi signature of K guarantees that S in fact realizes the four-genus of K.
We exhibit an infinite family of knots K, with this property, each with a Fox 3—
colored surface of minimal genus m. As a consequence, we classify the signatures of
manifolds X which arise as dihedral covers of S* in the above sense.

57M12, 57M25, 57Q60

1 Introduction

The slice-ribbon conjecture of Fox [7] asks whether every smoothly slice knot in S3
bounds a ribbon disk in the four-ball. The analogous question can be asked in the
topological category, namely: does every topologically slice knot bound a locally flat
homotopy-ribbon disk in B*? Recall that a properly embedded surface with boundary
F' C B* is homotopy ribbon if the fundamental group of its complement is generated
by meridians of F” in S3. Ribbon disks are easily seen to be homotopy ribbon whereas
homotopy-ribbon disks need not be smooth.

For knots of higher genus, the generalized topological slice-ribbon conjecture asks
whether the topological four-genus of a knot is always realized by a homotopy-ribbon
surface in B* When a knot K admits Fox p—colorings, we approach this prob-
lem by studying locally flat, oriented surfaces F' C B* with dF’ = K over which
some p—coloring of K extends, in the sense defined in Section 2.1. The minimal genus
of such a surface, when one exists, we call the p—dihedral genus of K.

When K is slice and p square-free, it is classically known that the colored surface F’
for K can always be chosen to be a disk. This is essentially a consequence of a result
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of Casson and Gordon [6, Lemma 3]; a detailed explanation can be found in work of
Geske, Kjuchukova and Shaneson [9, Lemma 9]. Put differently, p—dihedral genus and
classical four-genus coincide for slice knots. Furthermore, the topological slice-ribbon
conjecture is true for p—colorable slice knots if and only if the minimal p—dihedral
genus for these knots can always be realized by homotopy-ribbon surfaces. With this
in mind, given a square-free integer p and a p—colorable knot K, we ask:

Question 1 Is the (topological) four-genus of K equal to its (topological) p—dihedral
genus?

Question 2 Is the p—dihedral genus of K realized by a homotopy-ribbon surface?

When both of these questions are answered in the affirmative for a knot K with respect
to some integer p, it follows that the topological four-genus and homotopy-ribbon
genus of K are equal; that is, the generalized topological slice-ribbon conjecture
holds for K. If K is not slice, requiring that it satisfy Questions 1 and 2 is a priori
a stronger condition than satisfying the generalized slice-ribbon conjecture; however,
the advantage of this point of view is that dihedral genus can be studied using dihedral
branched covers.

Specifically, our approach is the following. Start with a branched cover of f’: X’ — B*
branched along a locally flat properly embedded surface F’ with 0F’ = K ; that is, F’
is a properly embedded topological submanifold of B*. We now construct a new cover
f: X — S* by taking the cones of dX’, S3 and the map f. The branching set of f
is a surface F embedded in S* locally flatly except for one singular point whose
link is K. Depending on the knot K and the map f, it may be the case that this
construction yields a total space X that is again a manifold. In general, X has one
singular (nonmanifold) point 3, the preimage of the singularity on F. The link of 3 is
the cover f| of S3 branched along K. We will consider the signature of X whether it
is a manifold or has an isolated singularity. In the latter case, by the signature of X we
mean the Novikov signature of the manifold with boundary obtained by deleting an
open neighborhood of 3 in X.

When f: X — S* in the above construction is a p—fold irregular dihedral cover
(see the definition on page 1945), an invariant of (p—colored) knots, &, is extracted
from this construction. This invariant is our main tool. In a general setting, ), can
be thought of as a defect term in the formula for the signature of a branched cover,
resulting from the fact that the branching set is not locally flat. Put differently, the
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presence of a cone singularity K on the branching set causes the signature of the cover
to deviate from the smooth case by a term denoted by Z,(K, p). This term depends
only on the isotopy class of the knot K and its Fox p—coloring p, but not on the locally
flat part of the branching set.

Given a dihedral cover f: X — S* whose branching set is orientable with one singu-
larity, we in fact have

by Kjuchukova [13, Theorem 1.4], when X is a manifold, and
2) Ep(K,p) =—0(X',3X")

when X has a singularity, by Geske, Kjuchukova and Shaneson [9, Theorem 7]. In
the latter formula, 0X” is the dihedral cover of K induced by Jj>and o(-,-) denotes
the Novikov signature of a manifold with boundary. Of course, the first formula
for E,(K, p) in terms of X is a special case of the second, since the signature of a
manifold is unchanged by deleting an open neighborhood of a point.

Unless explicitly stated otherwise, we will only consider orientable branching sets. Thus,
we take the above signature equation to be the definition of E,(K, p). In (5) we recall
an explicit formula [13] for E, which does not rely on constructing the cover X. We
also note that E, (K, p) can be computed algorithmically from a colored diagram of K;
see Cahn and Kjuchukova [4]. We often suppress notation and write E,(K) when the
choice of coloring is clear, or when a knot admits a unique p—coloring (up to permuting
the colors). Thus, for a two-bridge knot K, we will write simply Z,(K). The main
result of this paper, Theorem 1, obtains a certain genus bound for K from E,(K).

As implied by the above, the signature defect 8, (K) is defined for a knot K which
arises as the only singularity on the branching set (not necessarily orientable) of an
irregular dihedral cover [9]. A knot K is called p—admissible over S*, or simply
p—admissible, if there exists a p—fold dihedral cover /: X — S* whose branching set
is embedded and locally flat except for one singularity whose link is K. If, in addition,
the covering space X is a topological manifold, K is called strongly p—admissible.
The distinguishing property of strongly p—admissible knots! is that their dihedral
covers are S>. Admissibility of knots is studied by Kjuchukova and Orr in [14].

I ike the invariant E p» the notion of (strong) p—admissibility of a knot may depend on the choice of

coloring. We do not dwell on this presently since all examples in this paper are two-bridge knots and their
colorings are unique.
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In Section 2, we put side by side the relevant notions of knot four-genus, recall several
definitions, and state our main results, Theorems 1, 2 and 3. In Theorem 1, we give a
lower bound on the homotopy-ribbon p—dihedral genus of a colored knot K in terms
of the invariant E,(K). We also give a sufficient condition for when this bound is
sharp.

In Theorems 2 and 3, we construct, for any integer m > 0, infinite families of knots
for which the 3—dihedral genus and the topological four-genus are both equal to m.
The basis of this construction are the knots K, pictured in Figure 1. The various
four-genera of these knots are computed with the help of Theorem 1. In particular,
for these knots, the lower bound on genus obtained via branched covers is exact and
the generalized topological slice-ribbon conjecture is seen to hold. The proofs of
Theorems 1, 2 and 3 are given in Section 4.

The technique we apply is the following. Given a strongly p—admissible knot K, one
can evaluate E,(K) by realizing K as the only singularity on the branch surface of
a dihedral cover of S* Each of the knots K, arises as the only singularity on the
branching set of a 3—fold dihedral cover

fm: #2m+1 CP? — S%.

The branching set of f;, is the boundary union of the cone on K, with the surface F},
realizing the four-genus of K,,. We construct these covering maps explicitly using
singular triplane diagrams, a technique introduced by Cahn and Kjuchukova in [3].
Equivalently, we construct a family of covers #"TCP? — 54, again with oriented,
connected branching sets, with the mirror images of the knots K, as singularities.
This construction appears in Section 3. As a corollary of this construction, we realize
all odd integers as values of E3. In Theorem 5, we prove that the range of values
of E3 on strongly admissible knots is precisely the set of odd integers.

We work in the topological category, except where explicitly stated otherwise. Through-
out, F denotes a closed, connected, oriented surface, and F’ a connected, oriented
surface with boundary. D, denotes the dihedral group of order 2p, and p is always
assumed odd.

Acknowledgements The idea of dihedral genus first appeared in discussion with Kent
Orr [14]. The examples used in Theorem 2 were inspired by joint work with Ryan
Blair [1]. This work was partially supported by NSF-DMS grant 1821212 to P Cahn and
1821257 to A Kjuchukova. Kjuchukova thanks the MPIM for its support and hospitality.
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2 Dihedral four-genus and the main theorems

2.1 Some old and new notions of knot genus

We study the interplay between the following notions of four-genus for a Fox p—
colorable knot K C S3. Classically, the smooth (resp. topological) four-genus is the
minimum genus of a smooth (resp. locally flat) embedded orientable surface in B*
with boundary K. The smooth (resp. topological) p—dihedral genus of a p—colored
knot K is, informally, the minimum genus of such a surface F’ in B* over which the
p—coloring of K extends. Precisely, a given p—coloring p of K extends over F’ if
there exists a homomorphism p which makes the following diagram commute (where 7
is the map induced by inclusion):

TSP —K) — 5 7 (B4 = F)

\LP ,/:’/
)

=
DP

The p—dihedral genus above is defined for a knot K with a fixed coloring p, and
hence we denote it by g,(K, p) in the topological case. We define the p—dihedral
genus of a p—colorable knot K to be the minimum p—dihedral genus of K over all
p—colorings p of K, and denote this by g,(K) in the topological case. Note that
not every p—colored knot K admits a surface F’ as above. In [14], we determine a
necessary and sufficient condition for the existence of a connected oriented surface
that fits into this diagram. When there is no surface over which a given coloring p
of K extends, we define g, (K, p) to be infinite, and similarly for the refined notions
of dihedral genus defined below.

The ribbon genus of K is the minimum genus of a smooth embedded orientable
surface F’ in B* with boundary K such that F’ has only local minima and saddles with
respect to the radial height function on B*. The smooth (topological) homotopy-ribbon
genus of aknot K is the minimum genus of a smooth (locally flat) embedded orientable
surface F’ in B* with boundary K such that i,: 7;(S® — K) — 7 (B* — F’), that
is, inclusion of the boundary into the surface complement induces a surjection on
fundamental groups. Finally, given a p—colorable or p—colored knot, its ribbon
p—dihedral genus or smooth (topological) homotopy-ribbon p—dihedral genus are
defined in the obvious way. Observe that all notions of dihedral genus refer to surfaces
embedded in the four-ball, even though “four” is not among the multitude of qualifiers
we inevitably use.
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As a straightforward consequence of the definitions, the following inequalities hold
among the smooth four-genera of a knot:

four-genus < hom. ribbon genus < ribbon genus
IA [A A
p—dihedral genus < p—dihedral hom. ribbon genus < p—dihedral ribbon genus

Excluding the last column, the inequalities make sense and hold in the topological
category too.

2.2 The main theorems

Denote by g4(K) the topological 4—genus of aknot K, and by g, (K, p) the topological
homotopy-ribbon p—dihedral genus of a knot K with coloring p. Again, the minimum
such genus over all colorings p of K is g,(K). Let 0(K) be the (Murasugi) signature
of the knot K. We relate g,(K, p), E,(K, p) and 0(K). Here, E,(K, p) denotes
the invariant discussed in Section 1; it is reviewed in more detail in this section and, in
particular, we recall that it can be computed using (5).

Theorem 1 (A) Let K be a p—admissible knot with p—coloring p and denote
by M the irregular dihedral cover of K determined by p. Then
|Ep(K, p)| =tk Hy(MZ) |
p—1 2°

(3) gp(K,p) =

(B) Let K be a p—admissible knot and F' C B* a locally flat homotopy-ribbon
oriented surface for K over which a given p—coloring p of K extends. Denote
by c(K) the cone on K, viewed as embedded in D* = ¢(S?). If the associated
singular dihedral cover of S* branched along F’ Ug c(K) is a definite man-
ifold, then the inequality (3) is sharp. In particular, F' realizes the dihedral
genus g,(K, p) of K. If, in addition, the equality

2Ep(K.p)|

0 (K)| = ==2

1

holds, then the topological four-genus and the topological homotopy-ribbon p—
dihedral genus of K coincide and equal %|0(K )|, so the generalized topological
slice-ribbon conjecture holds for K .

Remark If K has multiple p—colorings, denote by min,(K) the minimum value of

|Ep(K, p)| —1k H{(M:Z)
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over all such colorings of K. Theorem 1 implies
min, (K) 1

4) gp(K) > I 5

Theorem 2 For every integer m > 0, there exists a knot K,, and corresponding
3—coloring p;, such that

ga(Km) = 93(Km) = 51 E3(Km, pm)| — 3 = m.

That is, the inequality (4) is sharp for these knots and computes their 3—dihedral genus
as well as their topological four-genus. The generalized slice-ribbon conjecture holds
for these knots.

Theorem 3 For any integer m > 0, there exist infinite families of knots whose 3—
dihedral genus and topological four-genus are both equal to m.

2.3 Singular dihedral covers of S and the invariant Z

In this section, we revisit the definition of a singular branched cover, and dihedral
covers in particular. We also review the context in which the invariant E, arises, as
well as a couple of techniques for its calculation.

Definition Let Y be a manifold and B C Y a codimension-two submanifold with
the property that there exists a surjection ¢: 71(Y — B) — D,. Denote by X the
covering space of Y — B corresponding to the conjugacy class of subgroups ¢~ (Z /27Z)
in w1 (Y — B), where Z /27 C D), is any reflection subgroup. The completion of X
to a branched cover f: X — Y is called the irregular dihedral p—fold cover of Y
branched along B.

2m crossings

1

Figure 1: The knot K,,,, where m > 0, and its 3—coloring. We have K¢ =61,
Kl = 811, K2 = 1021 and K3 =12a723.
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The manifolds whose irregular dihedral covers we will consider are S3, B* and S*.
The E, invariant was originally defined in the more general context of a dihedral cover
of an arbitrary four-manifold ¥ with a singularly embedded branching set [13].

Recall the following construction from Section 1. Let F’ be a surface with connected
boundary K, properly embedded in B* and locally flat. Given a branched cover of
manifolds with boundary f’: X’ — B* one constructs a singular branched cover of S*
by coning off dX’, dB* and the map f’. The resulting covering map, f: X — S*,
has total space X := X' Uyy’ c(0X’), where c(dX’) denotes the cone on dX’. The
branching set is a closed surface F := F’Ug ¢(K) embedded in S* with a singularity
(the cone point) whose link is K. The space X obtained in this way is a manifold
if and only if 90X’ = S°3.

Denote by o (X’, 9X”) the Novikov signature of the manifold with boundary given as
a cover of B* branched along F’. When 0X’ = S3, denote by o(X) the signature of
the manifold X. In this case, we have o(X) = o(X’, 0X’).

Given f’: X' — B* as before with f’ an (irregular) dihedral covering map, we
always assume that the associated homomorphism p: 7 (S3 — K) — D, is surjective
or, equivalently, that X’ is connected. In this case, assuming that F’ is orientable,
Ep(K, p) = —0 (X', 0X’) by [9, Theorem 7]. In particular, when X is a manifold,
this equation reduces to the earlier result E,(K, p) = —o(X) [13, Theorem 1.4].

Below, we recall two formulas for E, (K, p) from [13]. Equation (5) allows E,(K, p)
to be computed in terms of K and its coloring using [4] and [2]. Equation (6) expresses
Ep(K, p) in terms of a singular branched cover of S 4 in the more general case where
the branching set is a possibly nonorientable surface.

Refocusing for a moment on the case where the dihedral branched cover X of S* is
a manifold, we note that there exist many infinite families of knots K C S3 whose
irregular dihedral covers are homeomorphic to S3. For example, this is a property
shared by all p—colorable two-bridge knots (a well-known fact recalled in the proof
of [13, Lemma 3.3]). By definition, if a p—admissible knot K has S 3 as its dihedral
cover, then it is in fact strongly p—admissible. We are then able study invariants of K
using four-dimensional techniques such as trisections. Criteria for admissibility of
singularities are discussed in more detail in [3], where we also use the invariant E ,(K)
to give a homotopy-ribbon obstruction for strongly p—admissible knots K. A general-
ization of this ribbon obstruction to all p—admissible knots appears in [9].
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We conclude this section by reviewing the formula for computing the invariant &,
given in [13]. Let p be an odd integer and K a p—admissible knot. Let V' be a Seifert
surface for K and V° the interior of V. Denote by f C V° a mod p characteristic
knot? for K, as defined in [5]. Also denote by Ly the symmetrized linking form
for V' and by o the Tristram-Levine ¢ {_signature, where ¢ is a primitive p™ root of
unity. Finally, let W(K, ) be the cobordism constructed in [5] between the p—fold
cyclic cover of S branched along S and the p—fold dihedral cover of S3 branched
along K and determined by p. We briefly describe the manifold W (K, 8). Let &
be the p—fold cyclic branched cover of 8 and let X, (B) x [0, 1] — S3 x [0, 1] be the
induced cyclic cover branched along f x [0, 1]. Letting Z /27 act on an appropriate
subset of X,(B) x {0}, one obtains W(K, ) as a quotient of X,(B) x [0, 1] by this
action. One boundary of this quotient, namely X,(8) x {1}, is clearly the p—fold
cyclic cover of B. The other boundary component, that is, the image of X,(8) x {0}
under the Z /27 action, is the dihedral cover of @ as shown in [5, Proposition 1.1]. By
[13, Theorem 1.4],

_pP-l
-2

p—1
Ly(B.8)+o(W(K.B) + > ori(B).

i=1

) 8p(K. p)

The Novikov signature o (W (K, B)) can be computed in terms of linking numbers in
the dihedral cover of K [13, Proposition 2.5]. Thus, the above formula allows &, (K)
to be evaluated directly from a p—colored diagram of K, without direct reference to a
four-dimensional construction. An explicit algorithm for performing this computation
is outlined in [4]. Note also that when a knot K is realized as the only singularity on an
embedded surface F C S* and moreover this surface is presented by a Fox p—colored
singular triplane diagram, [3] gives a method for computing Z,(K) from this data,
via the signature of the associated cover of S*. This technique is reviewed and applied
in Section 3 below.

We also review the context in which (1) and (2) arise, allowing us to relate E,(K, p)
to the signature of a singular branched cover X of S*. Consider an irregular dihedral
cover f: X — S* whose branching set F is an embedded surface, not necessarily
orientable, locally flat away from one singularity z € F of type K. The induced
coloring of F is, as always, an extension of p. Once again we denote by X’ the

2Precisely, if K admits multiple p—colorings, one must work with a characteristic knot corresponding
to the coloring in question. The sense in which a characteristic knot determines a coloring is laid out in

[5, Proposition 1.1]. The examples we construct always admit a unique p—coloring, up to permuting the
colors, and therefore a unique equivalence class of mod p characteristic knots.
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dihedral cover of B* branched along the complement in F of a neighborhood of the
singular point z. Note also that X’ is obtained by deleting from X a small open
neighborhood of f~!(z). We have

(6) Ep(K)=—2(p—De(F)—a(X', 0X"),

where e(F) denotes the self-intersection number of F. This is a special case of
the signature formula for dihedral branched covers over an arbitrary base? given in
[9, Theorem 7]. Note that, when F' is orientable and X a manifold, (6) reduces to (1),
that is, E,(K) = —o(X). In this case, the E, invariant of a singularity can be
understood entirely in terms of the signature of the branched cover and, in particular,
can be computed using four-manifold techniques. We further note that it is possible
to realize all connected sums #" CP? as 3—fold dihedral covers of S* with one knot
singularity on a connected, embedded branching set, if one allows the branching set
to be nonorientable [1]. By contrast, we see in Theorem 5 that orientability of the
branching set, together with a single singular point, implies that the signature of such a
cover is odd.

3 Khnots with equal topological and dihedral genera

In this section we construct families of knots for which the topological, ribbon and
3—dihedral genus are equal. We use trisections of four-manifolds [8], triplane dia-
grams [15], and singular triplane diagrams [3], all of which we review informally for
the reader’s convenience.

Given a smooth, oriented, 4-manifold X, a (g; k1, k,, k3)—trisection of X is a decom-
position X = X; U X, U X3 into three 4-handlebodies with boundary such that

. X;=gM(B xS,

* XiNXyNXs3 =X, is aclosed, oriented surface of genus g,

e Y =0(X;UXj)x #5152 % S1), where i,j,l €{1,2,3} are distinct,
e X, CYjj is a Heegaard surface for Y;;.

Every embedded surface F C S* can be described combinatorially by a (b; ¢y, ¢3, ¢3)-
triplane diagram [15]. This is a set of three b—strand trivial tangles (A4, B, C) such that

3The reference [9] is written in the language of intersection homology. In the case of a singular
branched cover f: X — S*, this is equivalent to the Novikov signature o(X”, 3X’) since X has only an
isolated singularity.

Algebraic & Geometric Topology, Volume 20 (2020)



The dihedral genus of a knot 1949

each boundary union of tangles AU B, BUC and C U 4 is a c;—component unlink,
for i = 1,2, 3 respectively. Here 7 denotes the mirror image of 7. To obtain F
from (A, B, C), one views each of 4 U B, BUC and C U A4 as unlinks in bridge
position in the spokes Y75, Y>3 and Y3, of the standard genus-0 trisection of S 4
glues ¢; disks to the components of each of these unlinks, and pushes these disks into
the X; to obtain an embedded surface.

We introduce singular triplane diagrams and their colorings in [3]. A (b;1,¢5,¢3)
singular triplane diagram is a triple of b—strand trivial tangles (A4, B, C). As above,
BUC and C U A4 are ¢,— and c3—component unlinks. A U B is a knot K. To build
a surface with one singularity of type K, one again views each of AU B, BUC
and CU 4 in bridge position in the three spokes Y5, Y>3 and Y3; of the standard
genus-0 trisection of S* and glues ¢, and c¢3 disks to the components of each of the
two unlinks. Rather than glue disks to A U B, one attaches the cone on K. Note
that by interchanging the order of the tangles A and B, one obtains a surface with
singularity K, the mirror of K.

A p—colored singular triplane diagram is a singular triplane diagram together with an
assignment of values in {1, 2, ..., p} to the arcs of the diagram such that on each tangle,
the assignment is a Fox p—coloring and such that the colors along the endpoints of each
tangle agree. Such a coloring induces a coloring on the corresponding singular surface.

We use 3—colored singular triplane diagrams to construct a family of 3—fold dihedral
covers of S* which realize the knots K,, given in Figure 1 as singularities on the
branching sets. This construction allows us to compute the values of E3(K,,) using
the induced trisections of the corresponding branched cover. As a corollary, we obtain
Theorem 5, which establishes the range of the invariant 3.

Proposition 4 Each knot K, in Figure 1 arises as the only singularity on a 3—fold
dihedral branched cover fy,: #2MT1 CP2 - S4 whose branching set Fy, is an ori-
ented surface of genus m, embedded smoothly in S* away from the one singular
point. Equivalently, each knot K,, arises as the only singularity on a 3—fold dihedral
branched cover fo,: #2" T CP2 — S4, also with an embedded oriented branching set
of genus m.

Remark By deleting a small neighborhood of the singularity on the branching set
in S* one obtains an oriented, 3—colored surface in F,, C B* with dF), = K.
In Section 4, we prove that the genus of F,, is minimal, that is, equal to g4(Kp).
Moreover, by construction, each surface F ,’n 1s ribbon.
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oM h"(S' x D?)

B4

h"(S' x D?)

Figure 2: An (n;0, 0, 0)—trisection of #" CP2, obtained as a branched cover
of S* over a trisected surface F,, with one singularity K,,.

Proof of Proposition 4 We will construct the surface F;, and will give its Fox coloring
using a colored (singular) triplane diagram. From this information, we will produce a
trisection of the dihedral cover of S* determined by this coloring. We will identify
this cover as #”" @2, where n =2m + 1.

The colored triplane diagram (A, By, C,) for Fy,, where m = %(n — 1), is shown
in Figure 3. We write the value i € {1, 2, 3} next to an arc of a tangle or knot if the
homotopy class of the meridian of that arc is mapped to the reflection in D fixing 7.

The union A, U B, is the knot K ,,, while B,UC,, and C,U A,, are each 2—component
unlinks; see Figure 4 for a verification when n = 3. A triplane diagram with b bridges
and ¢; components in each link diagram has Euler characteristic ¢; + ¢, + ¢3 — b;
hence, the surface F,, with singularity K, has Euler characteristic 3 —n and genus
m = %(n — 1) since Fj, is connected and orientable, and since the tangles A,, By
and C, have b = n + 2 bridges.

The fact that F,, is orientable requires a careful check. Consider the cell structure
on Fj, corresponding to its triplane structure. To show that F, is orientable, we show
that it is possible to coherently orient the faces of this cell structure so that each edge
(a bridge in one of the three tangles A,, B, or Cy) inherits two different orientations
from the two faces adjacent to it. This is shown in Figure 4 in the case m =1 (or n = 3).

An Euler characteristic computation shows that the 3—fold dihedral branched cover
of the bridge sphere S2, branched along the 2(n + 2) endpoints of the bridges, is a

Algebraic & Geometric Topology, Volume 20 (2020)
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2
3
1 2 2 2
A N2
" 1 2 3 4 5 6 7 2n+2 2n+3 2n+4
3

(_\2/7
2
n—1
crossings
9
2 :

1 2 2 :
B, 1 /\ /\ 2, \2
2 3 4 5 6

2n+1 2n+2 2n+3 2n+4

3

C, 1 1 2 /\\/—\

1 2 3 4 5 6 7 8 2n+2 2n+3 2n+4

Figure 3: A colored triplane diagram corresponding to a branched covering
#"CP2 — S*, in the case where 7 is odd. The numbers {1,2, 3} along the
arcs describe the coloring. There is one singularity K, on the branching set,
where m = %(n —1). By reversing the roles of 4, and B, one obtains a
branched covering #" CP? — S* with singularity K,,.

surface X, of genus n. We now show the 3—colored triplane diagram (A4,, By, Cy)
gives rise to a genus-n trisection of #" CP? with central surface X, following a
method explained in [3]. The branching set F,, is orientable and has one singularity
of type Ky, so it will follow from (6) that E3(Ky,) = —o (#" CP?) = n.

If a properly embedded h—strand tangle (7, 07T) C (B3, S?) with arcs 1,15, ..,1 is
trivial, then by definition there exists a collection of disjoint arcs dy,d>, ..., dp in S?
such that the boundary unions #; Ud; bound a collection of disjoint disks in B3. We refer
to the d; as disk bottoms. The existence of such a collection of disks is equivalent to the
arcs of T being simultaneously isotopic to a collection of disjoint arcs (the d;) in S2.

To determine the trisection diagram, we must first find the disk bottoms for the three
tangles A,, B, and C,, then lift them from the bridge sphere S? to its irregular
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. : Colo
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Figure 4: The links A3 U B3, B;UC3 and C3 U A4;. Note that A3 U Bj is
the knot I?l.

dihedral cover X,. The curves in the trisection diagram are formed by certain lifts of
these disk bottoms; we identify these lifts later.

The disk bottoms for each tangle A,, B, and C, are depicted in Figure 5, in the case
n = 3. In Figure 7, we draw just three of the disk bottoms for each of A4, (blue),
B,, (red) and C,, (green) on the same copy of S 2,

In the next step of the proof, we use a construction of the irregular 3—fold dihedral cover
¥, — S?2 branched along 2(n 4 2) points in S 2, due to Hilden [11]. We review this
construction now; the reader should refer to Figure 6 for an example in the case n = 3.
In this construction, the meridians of two branch points map to the transposition (2 3)
(equivalently, are colored “1”’), and the meridians of the remaining 2n + 2 branch points
map to the transposition (13) (equivalently, are colored “2”). One first constructs the
6—fold regular dihedral cover R, — S? branched along 2(n + 2) points determined
by this coloring. The resulting surface has genus 3n 4+ 1. The 3—fold irregular dihedral
cover X, is obtained from this regular one by an involution, namely 180° rotation
about the vertical axis.

Next, we lift the disk bottoms from the bridge sphere to X, where %, is constructed
as above. Each disk bottom has three lifts to ¥,,, two of which fit together to form a
closed curve. Not all of these closed curves are necessarily essential curves on %, ;
see [3] for further examples. However, we may choose n — 2 disk bottoms for each
tangle (A4,, By, C,) whose lifts are essential. These lifts are shown in Figure 8, again
in the case n = 3.

The resulting curves form a trisection diagram for #”" CP2. Moreover, the standard
trisection of S, branched along Fyy,, lifts to an (n; 0, 0, 0)—trisection of #" CP2. This
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Ay
1
3 (n — 1)
annular twists
RN
N
By, a Jj

Figure 5: Disk bottoms for the triplane diagram (A4, B,, C,) when n = 3.

can be found by analyzing the lifts of the three pieces of the trisection of (S*, Fy,);
for details see [3, Theorem 8]. O

We use the above construction to establish the range of the invariant 3.

Theorem 5 Let n be an integer. There exists a strongly 3—admissible singularity Kj
and a 3—coloring p, of K, such that E5(K,, p,) =n ifandonly if n € 27 + 1.

Remark The proof of Theorem 5 is slightly more general than what the theorem
statement requires. That is, we establish that E, (K, p) is odd whenever p = 3 mod 4.
Realizability of all odd integers by E, is open for p # 3.

Proof of Theorem 5 We have given a construction realizing each of the knots K, as
the only singularity on a branched cover #2"T1 CP2 - $* whose branching set is
oriented. By (6), it follows that E3(Ky) = —o (#>" ' CP2) =2m+ 1, where m > 0.
Note also that Ep(l?m) = —E,(Ky), as proved in [3], where K denotes the mirror
image of K. Of course, K is (strongly) p—admissible if and only if K is. This
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1

Figure 6: A 6-fold regular dihedral cover R, of S? branched along 2(n + 2)
points, with n = 3; the irregular cover ¥, is the quotient of R, by 180° rotation
about the vertical axis.

proves that all odd integers are contained in the range of the invariant E3 on strongly
3—admissible knots.

Conversely, we will verify that for any p—coloring p of any strongly p—admissible
singularity K, the integer E,(K, p) is odd. It suffices to assume that p = 3 mod 4.
We use (5). Since p is odd, p? =1 mod 4, so (p? —1)/(6p) Ly (B, B) is even. It
follows from [13, Equation 2.20] that, if p = 3 mod 4, the rank of H,(W(K, B);Z)
is odd, and hence so is the signature. Lastly, each o is an even integer. It follows
that E,(K) is odd. a
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Figure 7: Disk bottoms for the triplane diagram (A4,,, By, C;;) when n = 3,
drawn on the bridge sphere.

Remark The knot K, has bridge number 2, showing that two-bridge knots realize
the full range of €, when p = 3. This answers a question posed in [12]. It is not
known whether the full range of E, is realized by two-bridge knots when p # 3. It
would be of interest to establish that it is “sufficient” to consider two-bridge knots
when constructing singular dihedral covers of four-manifolds since p—admissibility is
particularly easy to detect for two-bridge singularities [14].

a

S e

cd e f gh ]

Figure 8: Lifts of disk bottoms to the 3—fold irregular dihedral cover of S2,
for the triplane diagram (A4, By, C,), when n = 3.
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4 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1 (A) Given a p—admissible knot K with p—coloring p, we wish
to prove the inequality

(K. p)| —tk Hi(M) 1
p—1

where M denotes the dihedral cover of S* branched along K corresponding to p.

’

gp(K’ Io) Z

NS

Throughout, all homology groups are with Z coefficients.

For K a p-—admissible knot, by the definition of homotopy-ribbon dihedral genus,
there exists a topologically locally flat orientable homotopy-ribbon surface F’ for K
such that the genus of F’ equals g,(K, p). (If p does not extend over any locally
flat, orientable, homotopy-ribbon surface, g, (K, p) = co and the inequality is trivial.)
Recall that, since F’ is orientable, |E,(K, p)| = o(X’,dX’); the right-hand side
denotes the Novikov signature of X’ as a manifold with boundary. We will find an
upper bound for |o (X', 0X”)| in terms of the Euler characteristic of X = X' Uc(dX”).
Let
o: 11 (B*—F') - D,

be the homomorphism which extends the coloring p: (S — K) — D, and induces
the cover X’ — B* branched over F'. Let M be the unbranched irregular dihedral
cover of S — K corresponding to p, and M the induced branched cover. Denote by
F C S* the singular surface which is the boundary union of F’ and the cone on K,
so that X is the dihedral cover of S* with branching set F.

We will show that X is simply connected. Consider the commutative diagram

w1 (M) —— 71 (X)

AN
iM* iX*T

m (M) — 5 7 (X

D l/ *
~

T (S3—K) — s (B4~ F)

All maps in the diagram are either induced by inclusions or by covering maps. Clearly
P+ and ¢4 are injective, as they are induced by covering maps, and iz« and iy«
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are surjective, as they are induced by inclusions of unbranched covering spaces into
their branched counterparts. The homomorphisms p and p are surjective by definition.
Finally, since F’ is a homotopy-ribbon surface for K, the homomorphism iy is
surjective.

We now show that j, is surjective as well. Consider an element y € my (f ’). Since iy
is surjective, there exists an element § € 77 (S3 — K) such that i4(8) = ¢«(y). We have
that po g« (y) € Z/27Z C D), the reflection subgroup which determines the cover X’
of B* — F'. By commutativity of the lower triangle, p(§) = p o g«(y) € Z/2, so
8 € im p4. Take §e nl(l\//}) such that p*(g) = §. Consider g« o j*(g), which by
commutativity is equal to ix o px (g) Now ¢« o Jjx (g) = ix(8) = g« (y). By injectivity
of g«, we have jx (g) =Y, S0 Jx is indeed surjective.

Observe that, since jx and iy are both surjective, ix: w1 (M) — m1(X’) is surjective
as well.

By the Seifert-van Kampen theorem, we have 71 (X) > 7y (c(M)) *, ) 71 (X').
The cone ¢(M) is contractible, so 1 (c(M)) is trivial. Hence

w1 (c(M)) #5, vy T (X') = 1 (X7)/ im i (771 (M)).

The quotient 71 (X”)/ im iy is trivial since iy is surjective. Hence X is simply connected
and, in particular, H;(X) = 0. We also know that Hy(X) = 1 since X is path-
connected.

Next, consider
x(X) =1k Hy(X) —1k H3(X) + 1k Hy(X) + 1.
Since X = X' Uc(0X’),
Hy(X) = H,(X'/0X') = Hy(X',0X).
By Lefschetz duality and universal coefficients, we see that

tk Hy(X) =rk H3(X',0X") =k HY(X') = 1k H; (X'),
and
rk Hy(X) =1k Hy(X',0X") =1k HO(X') =k Hy(X') = 1,

and hence
x(X)=2+r1k Hy(X) —rk H{ (X).

By [13, Equation 1.1] we have

7 x(X)=2p—1(p—Dx(F)—3(p—1).
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Recall that the Novikov signature o (X, 0X”) is the signature of the intersection form
defined on the image of the map ix: Hy(X’) - H,(X’,9X’) induced by inclusion.
Thus,

(8) |Ep(K, p)| =0(X,0X") <rkimi, <tk Hy(X’,dX") =1k Hp(X).

The result follows by combining this inequality with the two formulas for y(X) above.
We substitute

X(F)=2-2g(F)
into (7), and
tk Hy(X) = x(X)—2+1k H{(X)

into (8), which gives

|Ep(K. p)| <2p—3(p = 1)(2—2g(F)) = 5(p—1) =2+ 1k H (X").

Simplifying, we obtain
|Ep (K. p)| -tk Hi (X)) 1

g(F) =
p—1

o

Finally, since the inclusion i: M — X’ induces a surjection on fundamental groups,
we also know that tk Hy (M) > rk Hy(X”). Hence
(K. p)| —tk Hi (M)

g(F)=
p—1

| —

(B) Let K be a p—admissible knot with respect to a coloring p and let F/ C B*
be a homotopy-ribbon, locally flat oriented surface with boundary K such that p
extends over F’. Denote by F C S* the surface with singularity K obtained as a
boundary union of F’ and the cone on K, and denote by X the dihedral cover of S*
determined by the induced coloring of F. We assume that X is a definite manifold.
In particular, K is in fact strongly admissible with respect to the coloring p, and the
corresponding branched cover M of S3 along K is again S3. We then wish to show
that the inequality (3) is sharp:

_Ep(K )| 1
gp(K.p) = T 5
Precisely, we will show that the right-hand side of this equation equals the genus of F’.
That is, F’ will be seen to realize the lower bound from (A) on the dihedral genus

gP(K’ IO) of K.
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Since X is a definite manifold, rk H»(X) = |o(X)|. By the proof of (A), X is simply
connected; by Poincaré duality we have x(X) = 2 + rk H,(X) and hence
|Ep(K, p)| = lo(X)| = x(X)—2.
On the other hand, denoting by g(F) the genus of F, by (7) we have
X(X)=2p—3(p—1)(2=2g(F))—3(p—1).

Putting these two equations together, we conclude that

|Ep(K.p)| 1
Fy=—"""—">-—-.
g(F) P 3
By assumption, the coloring p extends over F’, so
|Ep(K.p)| 1
g(F) = gp(K,p) > pT — 5

Thus, F’ realizes the p—dihedral genus of K.

In the second part of the theorem, we assume in addition that

25K, p)|

o (K)| = =22

1,

where o (K) is the signature of the knot K. We wish to show that the topological
four-genus and the topological homotopy-ribbon p—dihedral genus of K are both equal
to 1|0 (K)|.

The additional assumption here can be rewritten as |0 (K)| = 2g,(K, p). Murasugi’s
signature bound [16, Theorem 9.1] states that g4(K) > %|0(K)|. Thus, we have
g4(K) = gp(K, p). But g4(K) =g, (K) = gp(K, p) in general, so g4(K) =g,(K). O

Proof of Theorem 2 Our aim is to show that the equalities

ga(Km) = 03(Km) = L E3(Km, pm)| — L = m

hold for the 3—colored knots K}, introduced in the previous section. In particular, it will
follow that the generalized topological slice-ribbon conjecture holds for these knots.

By Theorem 1(B), it suffices to show that

(1) each K, is the boundary of a homotopy-ribbon surface F,, such that g3(K) =
g(Fy,), and
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(2) the signature o(K,,) satisfies the equality

2EH(K.p)]

o (K)| = ===

1
for p = 3.

We first address (1). Surfaces F,, realizing the lower bound on dihedral homotopy-
ribbon genus for the knots K, are constructed in the proof of Proposition 4: we have
shown g(F,,) =m and |E3(Kn)| =2m+1, so

Ep(Km) 1 _
p—1 2

We note that, since the knots K, are two-bridge, each of them has a unique 3—

coloring (up to permuting the colors), so there is no distinction between g, (K., pm)

and g,(K,,). By construction, the surface F,, C B 4 obtained by deleting a small neigh-

borhood of the singularity K, is ribbon since A, U Bm only bounds the cone on K,

while the unlinks B,, U C,, and C,, U 4,, bound standard unknotted disks in B*.

We now address (2). We will compute the signature o (K,,), and show it is equal to
2m =2|Ep(K)|/(p—1) 1.

The signature of K can be computed using the Goeritz matrix G(K), the matrix of a
quadratic form associated to a knot diagram via a checkerboard coloring, and hence a
(not necessarily orientable) spanning surface; this technique was introduced by Gordon
and Litherland [10]. The advantage of this technique is that the dimension of the Goeritz
matrix associated to a projection of a knot may be much smaller than the dimension
of the corresponding Seifert matrix; indeed, the dimension of G(K,) is 4 for all m.

Gordon and Litherland proved that the signature of a knot is equal the signature of
the Goeritz matrix of a diagram of the knot plus a certain correction term: o(K) =
0(G(K)) — . We start by computing the Goeritz matrix G(Kp,) and its signature.

One first computes the unreduced Goeritz matrix. To do this, one chooses a checker-
board coloring of the knot diagram, and labels the “white” regions X7, ..., Xz. Such
a labeling for the K, is shown in Figure 9. The entries g;; of the unreduced Goeritz
matrix are computed as follows:

g {—Z n(c) fori # j and ¢ a double point incident to X; and Xj,

ij = .
= sefl k(i) &is  fori = J.

The signs n(c) are computed as in Figure 10; shaded areas correspond to “black”

regions of the checkerboard coloring.
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2m crossings

~ ¥
| II
II II I

X3

Figure 9: The “white” regions of a checkerboard coloring of K,,, labeled X1, X>,..., X5.

The unreduced Goeritz matrix of K, is

2m—-3 -2 2m 0 -1

2 3 0 0
G'(Km)=| -2m -1 2m—2 -1 0
0 0 -1 -2 -1
1 0 0 -1 -2

The Goeritz matrix G(Kj,) is obtained by deleting the first row and column of G'(K},).
The characteristic polynomial of this matrix is

Pk, A) = A+ 3O +3)* + 24+ 1)(A + 3)m + 3).

Hence A = —3 is an eigenvalue. In addition, since m > 0, it is straightforward to verify
that any root of the cubic factor must be negative (if A is nonnegative, the cubic, as
written above, is a sum of three nonnegative terms). Hence, 0 (G(K;)) = —4.

The correction term (K) in Gordon and Litherland’s formula for o (K) is computed
as follows. Each crossing ¢ of K can be classified as type I or type II, as shown in
Figure 10. Let u(K) = ). n(c), where the sum is taken over all type II crossings.

A A

=1 n=-1 type I type II

Figure 10: Incidence numbers 1 and type I and II crossings.
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The knot K, has 4 + 2m type II crossings, each of negative sign; see Figure 9. Hence
o0(Km) =—4+4+2m) =2m. a

Proof of Theorem 3 Given any nonnegative integer m, our goal is to construct an
infinite family of knots whose 3—dihedral and topological 4—genus are both equal to m.
Let K;, denote the knot given in Theorem 2 whose 3—dihedral and topological 4-genus
equal m. We will prove that, given a nontrivial ribbon knot y, the knot K, #y has the
desired property. The theorem follows by taking repeated connect sums of K, with y.

Let y denote any ribbon knot and let D C B* be a ribbon disk with 9D = y. The knot
K, #y has 3—dihedral genus and topological four-genus equal to m2, as we now show.
It is clear that the smooth and topological four-genera of K,, #y are both equal to m
since the knot is smoothly concordant to K. Next, note that the given 3—coloring 0,
of K, induces a 3—coloring p), of Ky, #y which restricts trivially to y. Moreover,
since pp, extends over F,, p, extends over the ribbon surface F,, [ D, where f
denotes boundary connected sum. Therefore, the ribbon 3—dihedral genus of K, #y
is at most m. Since g4 is a lower bound for the topological 3—dihedral genus, which
in turn is a lower bound for the ribbon 3—dihedral genus, it follows that these genera
are equal, as claimed. a
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