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Abstract

Late Pleistocene hunter-gatherers in East Asia adopted pottery, yet the ability to reconstruct

circulation, mobility, and exchange has been hampered, in part, due to problematic regional

geochronology. The driving forces behind pottery adoption is unclear. The purpose of this

study is to test our results of the first systematic petrographic pottery sourcing from the pre-

Younger Dryas by utilizing neutron activation analysis. We examine samples from the San-

kauyama I site on Tanegashima Island, southern Japan, dating to the Incipient Jomon, ca.

14,000/13,500–12,800 cal BP, with a well-defined geochronology. Our NAA results corrobo-

rate with the petrographic study suggesting that pottery was mainly produced in-situ, but

some vessels were transported long distances from another island. Changing from high

mobility, sedentary Incipient Jomon foragers made pottery, occasionally investing in long-

distance ceramic vessel transportation and exchange likely involving ocean crossing. This

may be associated with a risk-buffering strategy in the context of rising sea levels and isola-

tion of Tanegashima.

Introduction

Production and circulation of the first pottery vessels adopted by hunter-gatherer groups of

the Holocene have been well investigated in some regions, providing understanding of pot-

tery’s relations to degrees of sedentism, mobility patterns, and exchange, and behavioral orga-

nizations [1–4]. For example, with the earliest pottery from the Savannah River basin of the

Atlantic American Southeast (Early Stallings phase, ca. 5150–4100 cal BP) [5] foragers living in

small communities transported vessels along rivers through seasonal subsistence mobility as

well as exchange networks [4]. In the western Great Basin of North America, a clear adoption

of ceramic technology is found from ca. 700–500 cal BP [1, 6] where highly mobile to less

mobile small forager groups adapted to arid environments transported vessels to locations

with distinct rainfall [2], and sometimes cached pottery in predictable resource zones [1]. In
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the Libyan Sahara, hunter-gatherer-fishers of the Late Acacus (ca. 10,200–8000 cal BP) adopted

pottery during a humid period [7] with one study suggesting long-distance pottery circulation

in the context of seasonally residentially mobile hunting and gathering [3]. Despite these scat-

tered results from Holocene contexts, sourcing of late Pleistocene pottery produced and used

by foragers have been rare and distribution mechanisms remain unclear. Pottery, a traditional

signature of the Neolithic (e.g., [8]), is unsuitable for mobile foraging activities because it is

fragile and heavy and requires at least some sedentary days to produce [1, 9]. Reasons behind

the adoption of new technology need to be investigated.

According to radiocarbon-based geochronology, pottery vessel technology first appeared in

East Asia and Northeast Asia in the late Pleistocene [10–16]. Degrees of mobility have often

been suggested as ranging between high residential mobility to decreased mobility in the con-

text of a broadening diet (e.g., [12, 17–19]). No systematic tests on mobility, however, have

been done with ceramic assemblages from this period. Other than the Japanese archipelago

and the Russian Far East, only small number of Pleistocene pottery-bearing sites have been dis-

covered (e.g., [12, 20]) making the souring, and systematic reconstruction of production and

circulation difficult. Furthermore, there are geochronological uncertainties in the key regions

of East and Northeast Asia where pottery production began that inhibit further research. For

example, in South China, AMS-14C dates have yielded the earliest geochronology in the world

for pottery vessels, ca. 20,000–17,000 cal BP, [10, 19, 21–25] but earlier contextual data and

their interpretations ([semi-] domesticated plant foods, thermoluminescence dates, and dia-

genesis) suggest dates can be as late as the Pleistocene-Holocene boundary [12, 20, 26–30].

Similarly, in the Transbaikal, dates centered on the AMS technique suggest the early pottery

vessels are associated with ca.14,770/14,000–10,500 cal BP [14, 31–34]. However, a strati-

graphic observation of depositional contexts and diagenesis give potential dates as young as

7,000–6,000 years ago [12, 35] or ca. 8,800–5,500 cal BP [31]. Reconstructing pottery produc-

tion and distribution patterns in these regions should enhance our understanding of decisions

made by hunter-gatherers who adopted and used ceramic vessels as part of an adaptation to

terminal Pleistocene conditions. For the sourcing study, a careful selection of sites and regions

with confident geochronology is required.

Southern Kyushu of southern Japan is an exceptional place from a geochronological per-

spective (Fig 1). This region has experienced recurring volcanic eruptions throughout the Qua-

ternary, accumulating dated tephra layers [36]. Satsuma tephra (Sz-S) with tephrochonology

of ca. 12,800 cal BP is found right above the first ceramic-bearing Incipient Jomon occupa-

tions, ca. 14,000/13,500–12,800 cal BP [37–39]. Many of the over 88 Incipient Jomon sites [40]

are directly associated with Sz-S tephra. Those that do not have a clear tephra deposition have

ceramic and lithic stylistic cross dates with sites having an intact Sz-S tephra layer. Sites in this

context can be used to begin to reconstruct ceramic production and circulation patterns. Addi-

tionally, geological heterogeneity (Fig 1) makes this region [41] an appropriate location for

sourcing. In this paper, we study pottery from the Sankakuyama I site of Tanegashima Island,

off the southern coast of mainland Kyushu, and analyze sherds by neutron activation analysis

(NAA). Our study tests the first systematic pottery sourcing done by petrographic analysis and

electron microprobe on pottery prior to the Younger Dryas (starting ca. 12,900 cal BP, [42]) in

East and Northeast Asia [41]. The NAA study from Sankakuyama I employs the same speci-

mens used in the previous petrographic study.

With outstanding accuracy and precision, NAA is among the most powerful bulk geochem-

ical techniques used in pottery provenance studies [45, 46]. NAA has been applied to ceramics

in a variety of geographical regions, time periods, and socio-political and economic contexts

(e.g., [2, 4, 47–52]). Furthermore, methods combining petrography and ceramic geochemistry

have helped interpret production and circulation patterns [47, 48, 53, 54].
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Fig 1. A geological map of southern Kyushu with main geographical place names and a site mentioned in the text.

The lines in the ocean are inferred paleo-coastlines from around 14,000 cal BP. The map was reprinted/modified from

GeomapNavi [43] and Iizuka and Izuho [38] (Fig 2), and Iizuka et al. [41] (Fig 1) with the original source,

Environment Simulation Laboratory Co, Ltd. [44], under CC BY licenses, with permissions from the Geological

Survey of Japan with the original copyright (2001–2019), Elsevier with the original copyright (2017 and 2022), and

Environment Simulation Laboratory Co, Ltd. with the original copyright (2019–2021).

https://doi.org/10.1371/journal.pone.0265329.g001
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In this paper, we assess results on production zones, extent of production, circulation pat-

terns, degrees of sedentism, and mobility and exchange. Sea level rise disconnecting Kyushu

proper (hereafter, signifying the southern region of the Kyushu Island) and Tanegashima likely

occurred by ca. 14,300 cal BP [38, 41, e.g., 55] during the Bølling/Allerød warm period, ca.

14,700–12,900 cal BP [42]. We place our interpretations on forager decisions in the context of

the late Pleistocene environmental change.

Archaeological context

Although the timing and nature of changes require further investigation, existing data suggest

that varied behavioral changes occurred during terminal late Upper Paleolithic (LUP) and

Incipient Jomon transitions in southern Kyushu [56]. Microblade technology was adopted by

the Oldest Dryas, ca. 17,000/16,000 cal BP [57]. Although very high mobility is generally

expected with microblade use [58], raw materials in Kyushu proper are suggested to have been

procured from within 50 km [57]. Small assemblages of ceramics are found ambiguously asso-

ciated with the microblade-using occupation by ca. 15,000 cal BP in Kyushu proper [12]. By

the Incipient Jomon in southern Kyushu, the number of sites increased, and pit-dwellings,

large grinding stones, probable updraft hearths, and greater amounts of pottery are found.

Some Kyushu proper sites have microblades associated with this context [12, 37, 59]. The

Incipient Jomon of Tanegashima, however, has more indicators of sedentism, with the addi-

tion of ground stone projectile points, substantially larger amounts of pottery, and a lack of

microblades (e.g., [12]). There are 11 Incipient Jomon sites identified so far from Tanegashima

[60], doubling in number from the terminal LUP sites with signatures of high mobility includ-

ing microblade use and features without investments (e.g., [61]).

The Sankakuyama I site of the Tanegashima Island was excavated extensively (an area of

58,620 m2) by the Kagoshima Prefectural Archaeology Center [62] (Fig 2). The site is located on

a high marine terrace. It is an open-air, multi-component site with Incipient, Initial, and Early

Jomon, and Kofun occupations [12, 62]. The Incipient Jomon occupation is found in layer V,

right below primary depositional unit of Sz-S tephra. Radiocarbon dates range between ca.

14,000–13,570 cal BP and 11,030–9520 cal BP; however, with the depositional position below the

well-dated Sz-S tephra, date ranges are suggested to be 14,000/13,500–12,800 cal BP [41].

The Incipient Jomon pottery assemblage includes approximately 4000 sherds. Vessel forms

are deep to shallow somewhat closed to open mouthed bowls. Decorations are mostly applique

bands. Lithics include flaked arrowheads, ground arrowheads, wedge-shaped tools, secondary

retouched flakes, cores, ground stone axes, stone plates, grinding stones, pebble tools, ham-

merstones, and polished stones [12, 41, 62, 63]. Features include pit-dwellings, pit aggregates,

earth pits, pebble aggregates, a flaked stone production area, and areas with burnt soil (Fig 3).

Geographical, paleoenvironmental, and geological contexts

Southern Kyushu comprises the current day Kagoshima and Miyazaki Prefectures of the

southern regions of Kyushu Island and a chain of numerous islands extending south with Yor-

onjima Island as the southern boundary. Kyushu proper, Tanegashima, and Yakushima are

the islands most significant to this provenance study and are individually described below.

More detailed geographical, paleoenvironmental, and geological contexts of this region are

provided in Iizuka et al. [41].

In Kyushu proper, the northern part of Kagoshima Bay includes the Aira Caldera with the

active Sakurajima Volcano. A minimum distance between Tanegashima and the Osumi Penin-

sula is about 33 km and between Tanegashima and Yakushima is about 17 km. Tanegashima

has low hills with a maximum elevation of 282 m.a.s.l. In contrast, the mountainous
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Yakushima has a maximum elevation of about 2000 m.a.s.l. and has more diverse vertical eco-

logical zones. Most of Kagoshima proper and the northeastern Tanegashima have an annual

average precipitation range of about 2000–2800 mm, but the southern tip of the Osumi Penin-

sula, southern Tanegashima, and the lowland Yakushima have a higher range of about 3000–

4000 mm [41].

The southern tip of Kyushu Island, Tanegashima, and Yakushima, are inferred to have

been warmer than the northern part of southern Kyushu. Mainly due to the warm ocean cur-

rent, southern Kyushu had a warm climate even during the Last Glacial Maximum, ca. 26,500–

19,000 cal BP (e.g., [66, 67]) with warm-temperate species and temperate coniferous forest

dominated by temperate deciduous broad-leaved mixed forest [38, 41]. The lowlands of the

southern tip of Kyushu proper, then connected with Tanegashima and Yakushima, addition-

ally had warm-temperate evergreen forests/broad-leaved evergreen forests as refugia [38, 41,

68, 69]. Yakushima, with a higher elevation, had additional biomes not present on Tanega-

shima. The onset of the Incipient Jomon occupation roughly corresponds with the sea level

rise inferred from research in the northern Kagoshima Bay (e.g., [55]). Tanegashima may have

been disconnected from Kyushu Island by 14,300 cal BP, with the emergence of the Osumi

Strait, and during the Incipient Jomon, Tanegashima Strait may have appeared [41].

Fig 2. Maps of Tanegashima Island and Sankakuyama I. The map was reprinted/modified from Iizuka et al. [63], Tomohiko Sugimoto [64] of

Kashmir 3D, and Geospatial Information Authority of Japan [65] under CC BY licenses, with a permission from the Kagoshima Prefectural

Archaeology Center, original copyright (2006), Tomohiko Sugimoto of Kashmir 3D, original copyright (1994–2006), and the Geospatial

Information Authority of Japan, original copyright (2016). A: A map that shows the position of Kyushu Island, Tanegashima Island, and

Yakushima Island. B: Tanegashima Island. C: A map showing the location of Sankakuyama sites on Tanegashima. D: The site boundary of

Sankakuyama I. E: The excavation grid of Sankakuyama I.

https://doi.org/10.1371/journal.pone.0265329.g002
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In Kyushu proper, mudstone and sandstone units of the Late Cretaceous lower (northern)

Shimanto belt are found in the southwest and central Satsuma Peninsula, areas surrounding

Takakumayama, and in northwestern Kagoshima Bay [70, 71]. Northeastern, central, and the

Fig 3. Artifacts and features associated with the Incipient Jomon period at Sankakuyama I. The images in this

figure are reprinted and modified from figures in Kagoshima Prefectural Archaeology Center [62] under a CC BY

license, with a permission form the Kagoshima Prefectural Archaeology Center, original copyright (2016). A: ground

stone axes. B: ground projectile point. C: projectile points (above), small projectile points or arrowheads (below) D:

ground stone, E: A pithouse with burnt soil and hardened clay in the center. F: to J are drawings of reconstructed

ceramic vessels.

https://doi.org/10.1371/journal.pone.0265329.g003
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southwestern Osumi Peninsula have mudstone and sandstone units of the upper (southern)

Shimanto supergroup from the Paleogene [70, 72, 73]. There is a wide distribution of volcanic

and tephra sediments above these sedimentary belts [41, 70, 71]. In the Osumi Peninsula, a

granitic unit from the mid-Miocene intrudes in Takakumayama, and the large area in the

southern Osumi Peninsula [41]. There are additional small granitic units in the Satsuma Pen-

insula. Tanegashima and Yakushima geology relate to the upper Shimanto supergroup classi-

fied as Kumage group [74]. On Yakushima, there is a major intrusive granitic unit (Fig 1).

Moreover, there is middle to late Pleistocene distal tephra from the Quaternary, Kakutou

(Kkt), Ata (Ata), Kikai-Tozurahara (K-Tz), and Aira Tn (AT) tephra found in Kagoshima

proper. On Tanegashima, Ata, K-Tz, Tane I-IV, and AT tephra and other late Pleistocene

tephra including Sz-S are reported. The Koseda tephra of ca. 0.58 Ma is additionally reported

from Yakushima [74]. Tanegashima Island has no plutonic, obsidian, or andesite outcrops and

their absence facilitate distinction of locally produced and exotic artifacts recovered from the

island context.

Previous research results

Visual analyses of the formal variability of pottery have been previously published [38, 41, 63].

Here we describe the results from pottery (n = 58) and raw material (n = 50) thin section anal-

ysis using polarized microscope (Fig 4) and electron microprobe. Thin sections studied by

microprobe (n = 3) are from three most distinct sources identified by the polarized microscope

studies [41]. Pottery sources were classified into five types. Type 1 (n = 2, Fig 4A) is dominated

by Y-shaped volcanic glass, identified as derived from AT tephra. Although there are AT

tephra layers on Tanegashima, they are thin, around 20 cm. Instead, about 30 km southeast of

Fig 4. Examples of sourced petrographic groups. Images are reproduced/modified from Fig 4 of Iizuka et al. [41] under CC BY licenses,

with permissions from Elsevier with the original copyright (2022). We also added new images previously unpublished. Petrographic thin

sections were examined by polarized microscopes and tests were done through an analysis by an electron microprobe [41]. A: Type 1

exemplified by SNK-I-001 (PPL) rich in volcanic glass from AT tephra. B: Type 2 exemplified by SNK-I-041a (XPL) with angular granitic

fragments and associated minerals. C and D: Type 3 exemplified by SNK-I-054 and SNK-I-002 (XPL) dominated by single grains of

phenocrysts with lesser amounts of sedimentary rocks. E: Type 4 exemplified by SNK-I-014 (XPL) with sandstone-like composition. F: Type 5

exemplified by SNK-I-027 (XPL) with sedimentary rocks and single grains of phenocrysts.

https://doi.org/10.1371/journal.pone.0265329.g004
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Sakurajima volcano, AT tephra is densely deposited, at least to 800 cm. We suggest that these

sherds may have been from the northern part of the Osumi Peninsula. Type 2 (n = 6, Fig 4B) is

rich in bedrock-derived granitic rocks and associated minerals, likely coming from Yakushima

or the southern Osumi Peninsula. These are clearly imported vessels. Type 3 (n = 36, Fig 4C

and 4D) is composed of major amounts of single grains of phenocrysts derived from tephra,

lesser amounts of sedimentary, and trace amounts of plutonic rock fragments. Type 4 (n = 12,

Fig 4E) has rocks and mineral inclusions similar to the composition of sandstones available

locally. Type 5 (n = 2, Fig 4F) has abundant single grains of phenocrysts and sedimentary rock

fragments [41]. Because the majority of sherds have locally produced signatures, and the pro-

duction patterns match the high degrees of sedentism indicated at Sankakuyama I with pit-

dwellings, heavy duty grinding stones, and other ground stone implements, it is suggested that

residents had high degrees of sedentism, producing pottery in situ. The proportion of exotic

pottery, from outside the present-day Tanegashima Island, is small, between 10–14%, observed

in the thin sectioned samples. This is unlike the small flake-based tools of foreign origin, of

obsidians and andesites, and probably also chert, estimated to be between 30–40% [41, 75].

NAA and behavioral expectations

We hypothesize that paralleling the results from petrography, samples will be discriminated

into the same source groups with NAA. The results should show clear differences among

ceramic Types 1 and 2, that are petrographically quite distinct, from Types 3, 4, and 5 that are

likely locally produced ware. Among Types 3, 4, and 5, there will be compositional overlaps,

but there will be geochemical differences.

Geological literature on geochemical compositions of bedrocks and variability by geological

units is scarce in southern Kyushu. However, from inclusion types observed in thin sections,

we expect that the NAA-based geochemistry of pottery should detect elevated K (potassium)

concentrations in petrographic Type 2 samples rich in near bedrock-derived granitic rocks

and K-feldspars. With feldspar rich characteristics, these samples are also expected to have

higher Al than volcanic glass-rich Type 1. Similarly, we suggest that Type 2 should have more

elevated Al than sherds of Types 3 and 5 with mudstones, pyroclastics, and sandstones con-

tained in distinct proportions as inclusions, and Type 4 with sandstones.

Increased sedentism is expected in the context of resource predictability and concentration

among foragers [76], but some level of exchange is expected even in those conditions [41, 77,

78]. At Sankakuyama I on Tanegaghima Island with relatively warm and predictable environ-

ment in proximity to the coast (e.g., [79]) during the Incipient Jomon, this expectation of

sedentism is reasonable. Although exotic small flake-based tools found in much higher propor-

tion at Sankakuyama I requires alternative explanations, the evidence of only some exotic pot-

tery (up to 14%) obtained from the petrographic results align with this perspective. Hunter-

gatherers engage in feasting, communal hunting, trading, and information exchange through

inter-band, supra-band, and regional networks [77, 80] in part to buffer risks of resource fail-

ures and loss of crucial information for sustenance (e.g., [18, 81–85]). Because pottery produc-

tion during logistical foraging in remote places and transporting vessels back to Sankakuyama

I where they already have vessels is costly, we infer that the imported ware from other islands

found at Sankakuyama I relates to social networks and exchange with other groups [41].

Materials and methods

A necessary permit was obtained for the described study, which complied with all relevant reg-

ulations. We received permission from the Kagoshima Prefectural Archaeology Center for a

minimally destructive analysis. The archaeological center previously analyzed ceramic sherds
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(total of about 4000) excavated from Sankakuyama I, adopting their classification criteria com-

bining thickness, production techniques, decorative styles, and paste types. After considering

horizontal and vertical provenience and proximity within the excavation contexts, they recon-

structed vessels using those sherd fragments. There were nine complete vessels. Six additional

vessels had enough fragments for the vessel forms to be reconstructed [62]. After the recon-

struction, there were 3303 sherds and vessels, which were classified into 15 types. Samples that

did not go through reconstructions were placed by the archaeology center into distinct bags

based on their classification criteria. We studied sherds that were not parts of reconstructions.

We examined sherds from all bags and selected sherds (n = 58) from different bags and from

sherds that exhibited the most diverse paste and technological variability based on visual

observations [41, 63] as well as samples derived from diverse horizontal excavation contexts.

In order to test the analytical results from the thin section analyses, the same sherd samples

were chosen for the NAA analysis. A minimum of 2 grams were removed from each sample.

These samples were sent to the Archaeometry Laboratory at the University of Missouri. Sam-

ple preparation, irradiation, and data collection were carried out using standard procedures

presented in detail elsewhere [46]. Using the pneumatic tube irradiation system (flux of 8 x

1013 neutrons cm-2 s-1) and sample standards in polyethylene vials, we irradiated and mea-

sured short-lived elements (Al, Ba, Ca, Dy, K, Mn, Na, Ti, and V) for 5 seconds and decayed

for 25 minutes; we counted for 12 minutes. Medium-lived elements (As, La, Lu, Nd, Sm, U,

and Yb) and long-lived elements (Ce, Co, Cr, Cs, Eu, Hf, Ni, Rb, Sb, Se, Sr, Ta, Tb, Th, Zn, and

Zr) were irradiated in the reactor pool (flux of 5 x 1013 neutron cm-2 s-1) for 24 hours with

standards. The medium-lived elements were decayed for 7 days and counted for 2000 seconds.

Long-lived elements were decayed for 3 to 4 weeks and counted for 10,000 seconds [46]. We

conducted one-way analyses using JMP and bivariate analysis with the MURR statistical rou-

tines in Gauss 8.0 [86]. We explored varied potential geochemical groups in the bivariate anal-

ysis by paying particular attention to the chemical groups that align with distinct groups

visible through petrography.

Results

The one-way and bivariate analyses discriminate samples into the following geochemical

Groups 1 through 5.

In Group 1 (n = 2, Table 1), AT tephra-based sherds identified as Type 1 from petrographic

analysis (n = 2) are clearly distinguishable from other groups and samples assigned to them,

with a higher concentration of As in the one-way analysis (Fig 5A), and with As plotted against

K in the bivariate analysis (Fig 5B). In the one-way analysis of Fig 5C excluding a single sample

(FIP020) in Group 3, and in the bivariate plot of Fig 5D excluding a single sample (FIP020) in

Groups 3–5, with an anomalously high level of Al (aluminum), Group 1 has somewhat higher

level of Al than all other studied groups and samples. Also, Group 1 has lower level of Rb than

most samples except for FIP045, 057, and 021 in Group 3 as shown in the one-way analysis

(Fig 5E).

Potassium clearly discriminates the samples in Group 2 (n = 6, Table 2) from all others in

both bivariate and one-way analyses as shown in Fig 5B, 5D, and 5F. Samples in Group 2, have

significantly elevated K compared to the rest of the samples. As found in S1 Table and Table 2,

within Group 2, K has a similar range, 25369 to 29235 ppm (average 26860 ppm with a stan-

dard deviation 1346), with a low coefficient of variation of 5.01. The rest of the samples mostly

group together within or are very close to the 90% confidence interval for the ellipse of Groups

3, 4 and 5 in both bivariate plots of K and As, and K and Al (Fig 5B and 5D). Also, in other
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Table 1. Sourced Groups 1 to 5 by NAA compared with petrographic Types 1 to 5.

ID: NAA ID: thin section Vessel Form Exterior Decoration Provenience� Type: petrography Group: NAA

FIP001 SNK-I-001 Jar None Area A, Grid F-5, Layer V 1 1

FIP002 SNK-I-002 N/A None Area A, Grid F-5, Layer V 3 3

FIP003 SNK-I-003 Bowl Applique Ara A, Grid G-5, Layer V 3 3

FIP004 SNK-I-004 N/A None Area A, Grid F-5, Layer V 3 3

FIP005 SNK-I-005 N/A None Area A, Grid F-5, Layer V 3 3

FIP006 SNK-I-006 N/A None Area B-1, Grid F-5, Layer V 2 2

FIP007 SNK-I-007 N/A None Area A, Grid F-5, Layer V 3 3

FIP008 SNK-I-008 N/A None Area B-1, Grid B-12, Layer V 2 2

FIP009 SNK-I-009 Bowl None Area B-2, Grid C-12, Layer V 2 2

FIP010 SNK-I-010 N/A None Area B-1, Grid B-11, Layer V 2 2

FIP011 SNK-I-011 Bowl Applique Area A, Grid D-7, 2T, Layer V 4 4

FIP012 SNK-I-012 N/A None Area A, Grid B-8, Layer V 3 3

FIP013 SNK-I-013 Bowl None Area A, Grid F-6, Layer V 4 4

FIP014 SNK-I-014 N/A None Area A, Grid F-7, Layer V 4 4

FIP015 SNK-I-015 Bowl Applique Area A, Grid F-6, Layer V 3 3

FIP016 SNK-I-016 N/A None Area A, Grid F-7, Layer V 3 3

FIP017 SNK-I-017 N/A None Area A, Grid B-8, Layer V 3 3

FIP018 SNK-I-018 Bowl Applique Area B-1, Grid B-10, Layer V 3 3

FIP019 SNK-I-019 N/A None Area A, Grid C-8, Layer V 3 3

FIP020 SNK-I-020 N/A None Area A, Grid B-8, Layer V 3 3

FIP021 SNK-I-021 Bowl None Area A, GridB-8, Layer V 3 3

FIP022 SNK-I-022 N/A None Area A, Earth Pit 1, Layer V 3 3

FIP023 SNK-I-023 N/A None Area A, Grid B-8, Layer V 3 3

FIP024 SNK-I-024 Bowl None Area A, Grid D-6, Layer V 3 3

FIP025 SNK-I-025 Bowl None Area B-2, Grid C-13, Layer V 5 5

FIP026 SNK-I-026 Jar None Area B-2, Grid C-13, Layer V 4 4

FIP027 SNK-I-027 N/A None Area B-2, Grid D-13, Layer V 5 5

FIP028 SNK-I-028 N/A Applique Area B-8, Earth pit 1, Layer V 3 3

FIP029 SNK-I-029 N/A None Area A, Grid B-7, Layer V 4 4

FIP030 SNK-I-030 N/A Applique Area A, Grid D-6, Layer V 3 3

FIP031 SNK-I-031 N/A None Area A, Grid D-6, Layer V 3 3

FIP032 SNK-I-032 Bowl Applique Area A, Grid D-6, Layer V 3 3

FIP033 SNK-I-033 N/A None Area A, Grid D-6, Layer V 3 3

FIP034 SNK-I-034 N/A None Area A, Grid B-8, Layer V 4 4

FIP035 SNK-I-035 N/A None Area A, Grid B-8, Layer V 4 4

FIP036 SNK-I-036 Bowl None Area A, Grid B-8, Layer V 4 4

FIP037 SNK-I-037 Bowl None Area A, Grid D-6, Layer V 3 3

FIP038 SNK-I-038 N/A None Area A, Grid B-8, Layer V 3 3

FIP039 SNK-I-039 N/A None Area B-1, Grid C-10, Layer V 4 4

FIP040 SNK-I-040 N/A None Area A, Grid 4T, Layer V 1 1

FIP041 SNK-I-041a N/A None Area B-1, Grid B-12-all, Layer V 2 2

FIP042 SNK-I-041b N/A None Area B-1, Grid B-12-all, Layer V 2 2

FIP043 SNK-I-042a N/A None Area A, Grid F-1T-all, Layer V 3 3

FIP044 SNK-I-042b N/A None Area A, Grid F-1T-all, Layer V 3 3

FIP045 SNK-I-043 N/A None Area B-2, Grid D-14, Layer V 3 3

FIP046 SNK-I-044 N/A None Area B-1, Grid C-10, Layer V 4 4

FIP047 SNK-I-045 N/A None Area B-1, Grid C-10, Layer V 4 4

(Continued)
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one-way plots (Fig 5E, 5G and 5H), Rb, Ta (except for FIP055), and Th (except for FIP055) are

higher in Group 2 than in samples of other groups.

Samples assigned to Group 3 (n = 23), Group 4 (n = 12) and Group 5 (n = 2) are listed in

Table 1. Differentiating Groups 3, 4, and 5 is more difficult. However, despite some overlaps in

geochemical values, Ca tends to discriminate Group 4 from Groups 3 and 5, when Ca is plotted

against Zn, K, Sc, V (Fig 6A to 6D), and Ti, and Zr (Fig 7A and 7B). In the one-way analysis

(S1A–S1C Fig), Group 3 has overlapping but somewhat higher values of Sc, Sr, and Ca than in

Group 4. Group 3 additionally is overlapping but has somewhat lower K than Group 4 (Fig

5F). Also, in the one-way analysis (S1D Fig), except for FIP043 and 044 of Group 3, Group 5 is

higher in Fe than other samples from Groups 3 and 4. Group 5 additionally has higher Ta than

other samples in Groups 3 and 4, except for FIP032 in Group 3, and FIP055 in Group 4 (S1E

Fig). Group 5 is discriminated from Group 4, containing inclusions associated with sandstones

observed with petrography, with higher V (S1F Fig) and Ca (S1B Fig) in the one-way analysis

while this is not the case with Group 3 with a wide distribution of V and Ca (S1F and S1B Fig).

Group 5 has more elevated As except for FIP055 (Fig 5A), and Cr, Th, and Ti, except for

FIP055, than Group 4 (S1G–S1I Fig). Finally, the bivariate plot of Ca and Th slightly discrimi-

nates Group 5 from Group 3 and Group 4 (Fig 7C).

In summary, without the elimination of any of the 58 samples, the one-way and bivariate

plots are sufficient to differentiate the five identified compositional groups with assignments

listed in Table 1. Although Groups 3, 4, and 5 are less precisely discriminated compared to

Groups 1 and 2, Group 4 can be distinguished from Groups 3 and 5, with some geochemical

overlaps. Group 5 can be discriminated from Groups 3 and 4 with selected elements. The

small size of the groups prevents the robust calculation of group membership probabilities

using Mahalanobis Distance calculations [86].

Discussion

As hypothesized, our results from the bulk geochemistry corroborate with the results from the

petrographic analyses. This study clearly differentiates Group 1, Group 2, and Groups 3 to 5,

the equivalent of petrographic Type 1, Type 2, and Types 3 to 5 (Table 1). Petrographic Type 1

with an AT volcanic glass-rich composition is assigned as a possible non-local. Petrographic

Table 1. (Continued)

ID: NAA ID: thin section Vessel Form Exterior Decoration Provenience� Type: petrography Group: NAA

FIP048 SNK-I-046 Bowl Applique Area B-1, Grid B-10, Layer V 3 3

FIP049 SNK-I-047 N/A None Area B-1, Grid B-10, Layer V 3 3

FIP050 SNK-I-048 N/A None Area B-1, B-10, Layer V 3 3

FIP051 SNK-I-049 N/A None Area A, Grid D-6, Layer V 3 3

FIP052 SNK-I-050 N/A None Area A, Grid F-5, G-5, Layer V 3 3

FIP053 SNK-I-051 N/A None Area B-1, Grid C-10, Layer V 3 3

FIP054 SNK-I-052 N/A None Area B-2, Grid D-14, Layer V 3 3

FIP055 SNK-I-053 Bowl None Area B-1, Grid C-10, Layer V 4 4

FIP056 SNK-I-054 N/A None Area A, Grid D-6, Layer V 3 3

FIP057 SNK-I-055 Bowl None Area A, Grid B-8, Layer V 3 3

FIP058 SNK-I-056 N/A None Area A, Grid F-7, Layer V 3 3

These samples were excavated from the Sankakuyama I site (N30˚36’, E130˚59’) of Tanegashima Island, and are stored at the Kagoshima Prefectural Archaeology Center

in Kagoshima Prefecture, Japan. Sherd ID in NAA, in thin sections, vessel forms, the type of decoration, and the sherd provenience are also provided. �The information

is taken from Iizuka et al. [63].

https://doi.org/10.1371/journal.pone.0265329.t001

PLOS ONE Pottery production and exchange by pleistocene foragers

PLOS ONE | https://doi.org/10.1371/journal.pone.0265329 March 16, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0265329.t001
https://doi.org/10.1371/journal.pone.0265329


T
a
b

le
2
.

Q
u

a
n

ti
ta

ti
v
e

g
eo

ch
em

ic
a
l

v
a
lu

es
o

f
el

em
en

ts
a
n

a
ly

ze
d

w
it

h
N

A
A

a
n

d
cl

a
ss

if
ie

d
in

to
g
ro

u
p

s.

G
ro

u
p

G
ro

u
p

1
(n

=
2
)

G
ro

u
p

2
(n

=
6
)

G
ro

u
p

3
(n

=
3
6
)

G
ro

u
p

4
(n

=
1
2
)

G
ro

u
p

5
(n

=
2
)

E
le

m
en

t
M

ea
n

(p
p

m
)

S
td

.
D

ev
.

(p
p

m
)

% C
o

ef
fi

ci
en

t

o
f

V
a
ri

a
ti

o
n

M
ea

n

(p
p

m
)

S
td

.
D

ev
.

(p
p

m
)

% C
o

ef
fi

ci
en

t

o
f

V
a
ri

a
ti

o
n

M
ea

n

(p
p

m
)

S
td

.
D

ev
.

(p
p

m
)

% C
o

ef
fi

ci
en

t

o
f

V
a
ri

a
ti

o
n

M
ea

n

(p
p

m
)

S
td

.
D

ev
.

(p
p

m
)

% C
o

ef
fi

ci
en

t

o
f

V
a
ri

a
ti

o
n

M
ea

n

(p
p

m
)

S
td

.
D

ev
.

(p
p

m
)

% C
o

ef
fi

ci
en

t

o
f

V
a
ri

a
ti

o
n

A
s

3
0
.2

9
8

2
.1

9
8

7
.2

5
5

2
.9

3
8

0
.3

3
0

1
1
.2

3
9

6
.6

5
7

2
.6

1
1

3
9
.2

2
7

5
.2

9
1

2
.0

2
7

3
8
.3

2
0

9
.5

9
2

0
.5

2
6

5
.4

8
5

L
a

2
9
.6

8
1

0
.4

9
1

1
.6

5
3

3
8
.8

8
0

2
2
.5

3
3

5
7
.9

5
5

3
1
.3

9
7

1
8
.8

3
2

5
9
.9

8
0

2
6
.3

7
1

1
3
.6

1
7

5
1
.6

3
7

2
1
.5

2
9

5
.1

0
9

2
3
.7

3
2

L
u

0
.4

0
0

0
.0

2
8

7
.0

3
0

0
.4

0
9

0
.1

3
3

3
2
.6

2
0

0
.3

9
3

0
.1

7
1

4
3
.4

6
4

0
.3

8
0

0
.1

5
5

4
0
.7

0
3

0
.4

3
5

0
.0

1
2

2
.8

4
2

N
d

2
5
.0

3
3

0
.7

8
4

3
.1

3
1

3
1
.8

2
6

1
5
.9

9
2

5
0
.2

4
7

2
7
.8

2
9

1
9
.0

0
5

6
8
.2

9
1

2
4
.2

0
3

1
1
.8

2
6

4
8
.8

6
1

2
1
.4

2
5

1
.3

2
1

6
.1

6
5

S
m

5
.5

9
5

0
.2

8
0

5
.0

1
2

6
.4

8
0

2
.9

8
8

4
6
.1

0
2

5
.6

5
9

3
.4

3
1

6
0
.6

2
3

5
.0

0
5

2
.4

0
7

4
8
.0

8
2

5
.0

4
6

0
.4

9
2

9
.7

5
6

U
2
.5

9
1

0
.3

5
2

1
3
.5

7
7

3
.8

3
4

0
.5

9
2

1
5
.4

4
1

2
.5

6
2

0
.9

6
0

3
7
.4

5
5

2
.7

3
1

1
.0

8
5

3
9
.7

3
3

2
.7

9
5

0
.0

3
7

1
.3

2
3

Y
b

2
.6

1
0

0
.0

8
7

3
.3

3
3

2
.6

9
8

1
.0

4
6

3
8
.7

7
6

2
.6

2
6

1
.2

4
4

4
7
.3

8
7

2
.4

8
5

1
.1

0
2

4
4
.3

5
1

2
.7

7
9

0
.0

9
3

3
.3

6
4

C
e

2
8
.4

9
4

0
.8

9
5

3
.1

4
2

6
6
.5

0
9

2
6
.0

1
5

3
9
.1

1
5

3
1
.6

1
2

7
.9

2
7

2
5
.0

7
6

3
7
.6

7
7

1
6
.0

1
6

4
2
.5

0
9

4
7
.4

8
0

7
.4

1
9

1
5
.6

2
6

C
o

8
.1

8
6

0
.5

5
8

6
.8

1
8

6
.3

3
5

0
.7

6
4

1
2
.0

5
3

9
.1

8
6

5
.6

3
5

6
1
.3

4
0

8
.5

0
6

4
.8

1
6

5
6
.6

2
4

1
3
.5

3
2

0
.6

2
0

4
.5

8
5

C
r

3
7
.5

5
7

0
.2

4
7

0
.6

5
7

3
9
.3

2
5

4
.2

1
7

1
0
.7

2
3

5
1
.5

1
5

2
0
.2

5
6

3
9
.3

2
1

4
5
.6

1
3

1
6
.6

7
0

3
6
.5

4
6

6
2
.1

1
9

9
.0

4
6

1
4
.5

6
2

C
s

8
.9

1
8

0
.6

7
5

7
.5

7
3

1
3
.3

6
7

5
.0

3
0

3
7
.6

2
9

8
.0

6
8

4
.4

0
2

5
4
.5

6
6

9
.5

0
2

3
.3

8
0

3
5
.5

7
3

8
.2

8
5

3
.0

0
8

3
6
.3

0
6

E
u

1
.5

4
2

0
.0

3
2

2
.0

8
3

0
.9

8
8

0
.4

9
4

5
0
.0

1
2

1
.4

1
1

0
.7

8
3

5
5
.4

8
4

1
.1

1
4

0
.4

2
1

3
7
.8

1
2

1
.2

2
5

0
.0

4
9

4
.0

2
8

F
e

3
7
2
6
4
.9

6
7

1
4
0
.2

0
3

0
.3

7
6

2
6
1
1
4
.8

3
5

4
5
7
0
.3

8
8

1
7
.5

0
1

3
6
7
0
3
.1

1
4

1
1
5
1
1
.8

5
8

3
1
.3

6
5

2
8
5
8
7
.5

9
4

1
0
7
5
6
.4

1
3

3
7
.6

2
6

5
7
9
7
3
.7

1
9

2
2
3
9
.8

7
1

3
.8

6
4

H
f

6
.1

9
8

0
.0

6
6

1
.0

5
8

8
.2

4
5

0
.3

5
0

4
.2

4
3

5
.3

2
1

1
.7

7
3

3
3
.3

2
6

8
.1

5
6

6
.4

0
9

7
8
.5

7
5

7
.1

5
2

0
.1

4
9

2
.0

8
6

N
i

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

2
.4

2
0

1
0
.4

3
0

4
3
0
.8

9
3

1
.6

5
2

5
.7

2
3

3
4
6
.4

1
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

R
b

3
8
.7

6
1

0
.3

6
1

0
.9

3
0

1
7
8
.8

9
8

4
8
.0

9
6

2
6
.8

8
5

5
7
.6

6
4

1
6
.8

8
1

2
9
.2

7
5

7
0
.2

2
7

1
8
.2

2
1

2
5
.9

4
5

6
5
.4

3
8

1
3
.1

3
5

2
0
.0

7
2

S
b

0
.6

7
3

0
.0

8
0

1
1
.9

4
2

0
.4

0
5

0
.0

4
9

1
2
.0

1
0

0
.5

4
8

0
.1

3
3

2
4
.2

1
1

0
.4

9
6

0
.1

0
0

2
0
.1

7
1

0
.6

4
3

0
.1

2
0

1
8
.5

7
3

S
c

2
3
.4

7
2

0
.0

1
1

0
.0

4
6

1
3
.6

5
8

1
.0

7
4

7
.8

6
1

1
9
.9

9
6

3
.0

4
0

1
5
.2

0
3

1
6
.4

5
3

4
.1

6
2

2
5
.2

9
5

2
2
.0

5
8

1
.0

7
5

4
.8

7
2

S
r

1
4
6
.9

1
9

5
0
.5

8
1

3
4
.4

2
8

3
3
.0

6
8

3
9
.4

1
1

1
1
9
.1

8
2

1
0
3
.1

3
4

3
8
.3

7
2

3
7
.2

0
6

6
5
.9

1
4

3
5
.2

7
5

5
3
.5

1
7

5
5
.9

5
3

7
9
.1

2
9

1
4
1
.4

2
1

T
a

0
.7

0
9

0
.0

2
7

3
.7

4
1

1
.2

9
1

0
.1

0
4

8
.0

6
1

0
.6

9
0

0
.1

2
4

1
7
.9

9
5

0
.7

3
2

0
.1

5
7

2
1
.3

7
9

0
.9

2
9

0
.0

0
9

0
.9

7
4

T
b

0
.7

9
9

0
.1

3
8

1
7
.2

6
7

0
.7

1
1

0
.3

9
9

5
6
.1

5
9

0
.8

4
7

0
.5

7
3

6
7
.5

9
4

0
.6

2
8

0
.3

5
2

5
6
.1

5
2

0
.5

6
6

0
.1

3
2

2
3
.3

8
7

T
h

1
0
.3

1
9

0
.1

1
7

1
.1

3
1

1
6
.9

5
2

2
.3

8
1

1
4
.0

4
8

8
.1

1
3

1
.6

4
2

2
0
.2

3
6

9
.4

6
4

1
.9

3
4

2
0
.4

3
9

1
1
.9

0
6

0
.4

5
8

3
.8

5
0

Z
n

7
2
.6

7
4

7
.5

9
1

1
0
.4

4
5

7
4
.0

4
6

8
.4

5
3

1
1
.4

1
5

7
6
.7

8
5

1
8
.5

4
0

2
4
.1

4
5

6
9
.9

7
8

2
0
.7

3
1

2
9
.6

2
5

9
1
.6

4
3

9
.1

7
1

1
0
.0

0
7

Z
r

1
3
8
.5

4
4

1
8
.2

3
9

1
3
.1

6
4

2
1
3
.1

9
9

2
5
.0

3
1

1
1
.7

4
1

1
4
2
.8

1
2

5
3
.7

8
5

3
7
.6

6
2

2
1
2
.2

2
0

1
7
5
.7

9
7

8
2
.8

3
7

1
6
1
.5

2
8

2
4
.6

1
1

1
5
.2

3
7

A
l

1
3
0
1
8
3
.7

9
7

4
4
4
0
.6

3
1

3
.4

1
1

8
7
1
3
9
.3

7
8

6
4
9
4
.2

7
5

7
.4

5
3

1
0
3
8
6
7
.3

3
4

2
6
2
5
2
.5

8
2

2
5
.2

7
5

8
8
6
3
6
.8

3
9

1
2
8
4
2
.4

3
8

1
4
.4

8
9

1
0
5
3
5
8
.6

7
2

5
2
.9

1
1

0
.0

5
0

B
a

1
7
7
.8

7
8

1
2
.4

4
3

6
.9

9
5

4
3
9
.9

1
9

2
6
.5

3
3

6
.0

3
1

2
6
4
.1

4
4

6
0
.4

2
5

2
2
.8

7
6

3
4
6
.6

9
7

7
3
.5

9
9

2
1
.2

2
9

2
4
1
.6

7
5

5
9
.4

3
0

2
4
.5

9
1

C
a

1
4
0
3
1
.2

0
0

1
7
7
1
.2

1
8

1
2
.6

2
3

3
3
0
5
.9

9
7

9
8
8
.2

3
0

2
9
.8

9
2

1
0
9
1
3
.4

4
0

3
8
3
4
.7

3
2

3
5
.1

3
8

5
4
1
4
.1

9
6

1
6
9
9
.6

1
8

3
1
.3

9
2

1
0
0
2
6
.7

3
7

1
7
7
.1

1
2

1
.7

6
6

D
y

4
.5

4
8

0
.0

1
7

0
.3

8
3

4
.2

3
0

2
.0

3
4

4
8
.0

9
0

4
.6

4
9

2
.9

5
5

6
3
.5

5
2

4
.0

0
1

1
.9

1
9

4
7
.9

5
7

4
.2

5
7

0
.0

3
5

0
.8

1
1

K
6
9
4
6
.4

0
5

1
6
8
8
.2

4
6

2
4
.3

0
4

2
6
8
5
9
.7

9
6

1
3
4
5
.7

2
2

5
.0

1
0

8
7
0
7
.3

2
6

1
7
1
4
.5

2
1

1
9
.6

9
1

1
1
3
6
6
.0

4
0

1
0
8
3
.2

2
7

9
.5

3
0

8
9
2
2
.3

3
4

1
4
3
1
.8

4
4

1
6
.0

4
8

M
n

5
4
1
.9

8
5

1
0
6
.4

8
5

1
9
.6

4
7

4
1
0
.1

3
8

5
0
.2

1
7

1
2
.2

4
4

4
8
2
.3

8
9

2
7
9
.5

3
4

5
7
.9

4
8

3
3
5
.1

7
0

2
6
7
.0

7
7

7
9
.6

8
4

5
9
4
.9

9
1

2
.7

8
2

0
.4

6
8

N
a

1
1
7
9
6
.3

0
9

2
4
3
.0

6
2

2
.0

6
0

6
4
5
3
.5

4
6

2
4
1
2
.9

1
7

3
7
.3

8
9

1
0
7
9
4
.6

6
1

2
1
3
3
.7

2
6

1
9
.7

6
6

9
1
7
2
.1

3
4

1
5
2
2
.7

9
1

1
6
.6

0
2

9
8
0
1
.4

6
1

2
3
9
.5

1
0

2
.4

4
4

T
i

4
0
7
7
.0

1
9

3
0
3
.7

8
5

7
.4

5
1

5
0
2
5
.7

2
0

3
0
2
.2

5
5

6
.0

1
4

5
5
4
0
.6

6
3

1
4
6
3
.5

5
6

2
6
.4

1
5

4
1
1
0
.6

1
5

1
4
1
1
.0

6
8

3
4
.3

2
7

6
5
6
6
.5

7
2

1
6
2
.5

5
2

2
.4

7
5

V
1
2
4
.7

0
8

1
0
.7

0
9

8
.5

8
8

6
7
.7

8
0

8
.7

6
4

1
2
.9

3
1

1
4
7
.4

3
2

4
7
.0

4
6

3
1
.9

1
1

1
1
0
.2

6
8

3
9
.4

4
2

3
5
.7

6
9

2
2
8
.0

6
7

1
4
.7

7
4

6
.4

7
8

M
ea

n
(p

p
m

),
st

an
d

ar
d

d
ev

ia
ti

o
n

(p
p

m
)

an
d

%
co

ef
fi

ci
en

t
o

f
v
ar

ia
ti

o
n

ar
e

p
ro

v
id

ed
fo

r
G

ro
u

p
s

1
to

5
.
T

h
e

fo
rm

at
o

f
th

is
ta

b
le

b
o

rr
o

w
s

th
e

st
y
le

fr
o

m
T

ab
le

3
in

p
ag

e
6
7
6

o
f

[4
9
].

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
6
5
3
2
9
.t
0
0
2

PLOS ONE Pottery production and exchange by pleistocene foragers

PLOS ONE | https://doi.org/10.1371/journal.pone.0265329 March 16, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0265329.t002
https://doi.org/10.1371/journal.pone.0265329


Type 2 with bedrock-derived granitic rocks and associated minerals are confident non-local.

Types 3 to 5 are assigned as local sherds. By NAA, clearly discriminating Types 3 to 5 is diffi-

cult but there are some subtle geochemical differences. By petrographic analysis, Types 3 and 5

tend to have similar rock and mineral compositions but in distinct proportions. Mineral and

rock fragments likely derived from sandstone in Type 4 differed more clearly from Types 3

and 5. The NAA geochemistry supports these results.

Fig 5. One-way analyses (A, C, and E to H) and bivariate plots (B and D) of distinct elements and discriminations of

groups discussed in the text. The letter “G” in the x-axis of the one-way analyses stands for groups. The horizontal

distance in the x-axis in the one-way analysis are the sample numbers in groups. As and Al are elevated in Group 1 shown

in “A”, “B”, “C”, and “D”. K is elevated in Group 2 shown in “B”, “D”, and “F”. Rb, Ta, and Th are also elevated in Group

2, shown in “E”, “G”, and “H”. For the bivariate analyses with Gauss 8.0, ellipses are based on the confidence intervals at

90%.

https://doi.org/10.1371/journal.pone.0265329.g005
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Arsenic is an unusual element to be used as the discriminator of pottery groups. In Group

1, most geochemical studies made on the volcanic glass of AT tephra with the electron micro-

probe were major oxides SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O. On the

other hand, NAA in this study provides the bulk quantitative geochemistry of 32 elements.

Therefore, this study adds a hypothesis that the volcanic glass and/or clayey sediment from

Aira Tn Tephra (AT) has elevated As concentrations, compared to local clayey sediments from

Tanegashima, and the mixture of igneous rocks and associated minerals derived from volcanic

eruptions, and sedimentary rocks and associated minerals. Additionally, As is known to be a

mobile element and the conditions for mobility in sediments have been tested with results

including the As mobility associated with the Fe content (e.g., [87–89]). There is a possibility

that the AT volcanic glass-rich paste of Group 1 adsorbs more As than samples with distinct

petrographic and paste compositions from Groups 2 to 5. The adsorption may have occurred

after deposition at Sankakuyama I. However, Group 1 samples were excavated from distinct

grids within Area A of Sankakuyama I (Table 1, and grids shown in Fig 2) and that sample

FIP001 is found in the same area of the site from where other Group 3 samples (FIP002 to 005

and 007) were excavated with FIP001 of Group 1 being the only sample with elevated As (S1

Fig 6. Bivariate plots A to D show that Group 4 and Groups 3 and 5 are discriminated with partial overlaps. “A” has Ca and Zn, “B” has Ca and K, “C” has

Ca and Sc, and “D” has Ca and V.

https://doi.org/10.1371/journal.pone.0265329.g006
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Table). A particular depositional condition should not be the main reason for the high As in

Group 1 samples. For this reason, more tests, a larger sample size, and a study of raw material

geochemistry and diagenesis related to As are required to suggest the usefulness of As the dis-

tinguishing element of AT tephra-rich samples.

The volcanic glass-rich Group 1 also tends to have elevated Al concentrations (mean:

130184 ppm) (Fig 5C and 5D, Table 2). We hypothesized that Al should be elevated in the bed-

rock-derived granite and K-feldspar rich samples of Group 2; however, Group 2 (mean,

87139 ppm), not only has lower Al than Group 1 but also has somewhat lower concentrations on

average than the likely locally produced sherds of Group 3 (mean, 10386 ppm), Group 4 (mean,

88637 ppm), and Group 5 (mean, 105359 ppm) (Fig 5C and 5D, Table 2). Groups 3 and 5 have

mixed sedimentary and pyroclastics materials, and Group 4 has sandstone-like inclusion compo-

sitions. The much higher Al in Group 1 and somewhat higher or similar Al rage in Groups 3 to 5

compared to Group 2 suggests that the clayey sediment matrix of Group 1 likely is elevated in Al

and similarly, those of Groups 3 to 5 have similar concentrations of Al in the paste matrix or

rocks and mineral inclusions combined are not too low in Al unlike the earlier assumption.

Fig 7. Bivariate plots A and B show that Group 4 and Groups 3 and 5 are discriminated with some overlaps. “A” has Ca and Ti and “B” has Ca and Zr. In

bivariate plot C, Group 5 is discriminated from the bulk of Group 3 and Group 4.

https://doi.org/10.1371/journal.pone.0265329.g007
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As expected, our bulk geochemistry on granitic sherds also parallels the results from the

petrographic study because Group 2 pottery rich in granitic bedrock-derived inclusions has

exceptionally high K compared to other sherds shown both in the one-way analysis and bivari-

ate plots (Fig 5B, 5D and 5F). Other elements in Group 2, however, sometimes have larger

coefficient of variation (Table 2). This suggests that the raw materials of these samples may be

from distinct granitic units from the Osumi Peninsula and/or Yakushima [41]; nonetheless,

we do not subclassify these samples into distinct geochemical groups in this study as our sam-

ple size is too small. The geological reasons for why there is the tendency of elevated Rb, Ta,

and Th in Group 2 than in other groups (Fig 5E, 5G and 5H) is unknown.

We do not attempt to geochemically subdivide Group 3 with frequently widely ranged ele-

mental values within the group. Even petrographically, although it is dominated by single

grains of phenocrysts with lesser amounts of sedimentary materials [41], each sample is unique

having distinct amounts and compositions within the large number of single grains of pheno-

crysts, sedimentary grains found in lesser amounts, and trace amounts of plutonic rock frag-

ments that possibly come from Yakushima via sea currents, and trace amounts of plutonic

phenocrysts derived from pyroclastics [41]. These non-uniform inclusion characteristics sug-

gest that producers were not procuring clayey sediments with or without added inclusions

from a single location. Also, different potters may have procured raw materials from distinct

locations, or within the several hundred to over a thousand years of the Incipient Jomon, raw

material gathering locations changed. We expect that future research on the Incipient Jomon

pottery from other sites on Tanegashima will help characterize and identify the variability in

the paste recipe of Group 3. Group 4 has smaller elemental compositional variability when

compared to Group 3, but it also has some level of variability. This result corroborates with the

observation from petrographic Type 4 inclusions suggested to have been derived from sand-

stone-related rocks and minerals but as not having a homogeneous composition. Group 4

materials, therefore, are not likely to have been gathered from a homogeneous deposit or from

a single location. Group 5 is a small sample (n = 2), similar in inclusion types to Group 3 but

with even amounts of single grains of phenocrysts and sedimentary rocks. It is expected to be

more geochemically uniform than Group 3, however, further studies with increased sample

size are necessary to geochemically characterize this tentatively defined group.

The overall outcome strongly supports the petrographic results suggesting that pottery

assigned to Groups 3, 4, and 5 are locally produced ware with raw materials available in the

vicinity of Sankakuyama I (e.g., [41]). Samples from each of Group 3 and 4 are not likely from

uniform deposits creating petrographic and geochemical variability within. The sample size of

Group 5 is too small to project the variability within the group. Group 1 sherds are likely non-

local wares. As this group is produced with AT tephra-based sediments, they are probably

from the northern part of the Osumi Peninsula, the AT-tephra dense area. Group 2 is clearly

discriminated by K concentrations and this parallels the results from petrography showing

fresh and angular granitic rocks rich in K-feldspar that are likely from the Osumi Peninsula or

Yakushima. Understanding of possible spatial distribution of source types within the site

would require an increased sample size. Finally, this study is another case that suggests, for the

sourcing of earthenware pottery, combining petrographic and bulk geochemical analysis yields

effective results.

Conclusions

At Sankakuyama I, there are various signatures of decreased mobility such as a large ceramic

assemblage of about 4000 sherds, heavy grinding stones, polished stone axes, polished arrow-

heads, pithouses, and high tool diversity (e.g., [56, 90–94]). Combining NAA geochemical
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results with the suggestions from petrographic analysis in Iizuka et al. [41], a large proportion

of pottery, in our study about 86–90%, is likely locally produced ware, suggesting that hunter-

gatherers occupying the site had high degrees of sedentism. In this study, the approximately

10% of confidently foreign vessels suggests they are from long-distance exchanges. Either local

resources were contained in pottery and exchanged and/or pottery itself may have functioned

as the commodity (modifying [41]). Some degrees of long-distance exchange are expected as

risk buffering behaviors for foragers residing in areas with resource predictability and concen-

tration [77, 78]. If the ceramics are from granitic batholiths zones of Yakushima or the south-

ern Osumi Peninsula, and northern Osumi, it is unlikely residents of Sankakuyama I

produced the vessels during logistical activities and transported the vessels back to the base

camps of Sankakuyama I as such behaviors are costly for hunter-gatherers expected to maxi-

mize return during forays [41].

With the expectation that foragers engage in exchange with other groups in distinct

resource and environmental zones in order to buffer risks [77, 78, 90, 95], network brokerage

sites linking groups and people [96, 97] are suggested to exist between producer and consumer

end points. Additionally, because the information and resource exchanges are among the

activities in inter-band and supra band gatherings [77, 80], we suggest that the southern

Osumi in Kyushu proper may have functioned as the mid-zone for exchange. The southern

Osumi may have been where Group 2 pottery was produced, with other Incipient Jomon sites

to the north where raw materials of Group 1 is abundant. The lack of known Incipient Jomon

sites on Yakushima that may have functioned in an exchange network adds to this inference.

Nevertheless, no thorough surveys have yet to be conducted and no sites have been identified

on the southern side of the Osumi Peninsula facing the Osumi Strait. Only with future studies

on clear distinctions of production zones between the southern Osumi and Yakushima batho-

liths and the discovery of sites should we able to provide answers.

Putting the origins of pottery in the context of the terminal LUP to Incipient Jomon transi-

tion, the degrees of exotic lithic use from the terminal LUP (estimated within the range of ca.

17,000/16,000–14,000 cal BP in the Oldest Dryas, colder condition to the beginning of the

Bølling-Allerød [64]) and the exact timing of change to the Incipient Jomon are yet to be inves-

tigated. However, the microblade use, low tool variability, smaller number of sites, and a lack

of substantial features on Tanegashima (e.g., [57, 61]) suggest a high residential mobility for

the terminal LUP. This means, there was a significant behavioral reorganization toward

increased sedentism, and adoption of a variety of new tools and features in the Incipient

Jomon (e.g., [56]) with the regular incorporation of pottery use. An ecotone condition with

possible concentrated and predictable resources in the warmer Bølling-Allerød continued

from the LGM on Tanegashima likely corresponding with significantly increased degrees of

sedentism in the Incipient Jomon. The change may correspond with increased occupations

and sea level rise disconnecting lands.

Obsidian artifacts on Sankakuyama I from the Incipient Jomon clearly come from Kyushu

proper. Assumptions have been made that obsidian tools include those from the Kuwanoki-

zuru-related source(s) from the Kumamoto Prefecture of central, and Himejima Island of

northeastern Kyushu proper [62]. The direct or indirect long-distance circulation extended to

about 330 km. This can indicate that after the sea level rise and the disappearance of the land

bridge between Tanegashima and Kyushu proper by ca. 14,300 cal BP (e.g., [55]), sedentary

foragers began to engage in long-distance exchange of small flake-based tools (perhaps newly)

involving a costly ocean navigation. Small exotic flake-based tools may have been exchanged

with greater frequency, but at this point we do not know the mechanisms of exchange and dif-

ferences in exchange intensity between pottery and small flake-based tools.
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Tanegashima pottery adopted in the Bølling-Allerød was produced and used by foragers

with increased sedentism in a context of abundant resources. Exchange was the means of long-

distance pottery circulation. The vessel adoption is observed with drastic behavioral reorgani-

zations from the earlier highly mobile foraging of the pre-ceramic, terminal LUP. This, how-

ever, may differ from Kyushu proper. There, probable small amounts of pottery that may have

appeared by ca. 15,000 cal BP in the context of microblade production and circulation patterns

is yet to be understood. This paper demonstrates the first example which systematically recon-

structs the pre-Younger Dryas pottery production and exchange within East and Northeast

Asia where the first ceramic vessel production occurred. The result is obtained in the context

of a well-documented artifact and features and an unusually firm tephrochronology within

these regions, allowing the reconstruction of pottery related behavior in the Bølling-Allerød.

Although the study is just from one site, this is the first NAA-based sourcing done on the late

Pleistocene pottery from the Japanese archipelago which confirms the results from petrogra-

phy. In the future, we should compare our results by increasing sample sizes, number of sites,

and by further refining the high-resolution geochronology for finer scale reconstruction of

production and circulation, to make better inferences on degrees of mobility, sedentism, and

exchange.
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