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1. Introduction

In this paper we develop a theory of Anosov representations for geometrically finite
Fuchsian groups into SL(d,K) where K is either the field of real numbers or the field
of complex numbers (and more generally, into any semisimple Lie group G with finite
center). This theory shares two crucial features with Anosov representations of convex
cocompact Fuchsian groups. First, if ' C PSL(2,R) is a geometrically finite Fuchsian
group and p : T' — SL(d,K) is Anosov, then there is a p-equivariant quasi-isometric em-
bedding of an orbit of I' in H? into the Riemannian symmetric space X4(K) associated
to SL(d,K). Moreover, there is a p-equivariant map of the limit set of I" into the appro-
priate (partial) flag variety. Second, small deformations of Anosov representations which
preserve the conjugacy class of the images of parabolic elements in I" remain Anosov. We
further show that these limit maps vary analytically in p. We observe that our represen-
tations are relatively Anosov representations in the sense of Kapovich and Leeb [20] and
relatively dominated representations as defined by Zhu [36]. Our concrete setting allows
for simpler proofs and more explicit results.

Our main motivation was to study the class of cusped Hitchin representations. A
representation p : I' — SL(d,R) of a geometrically finite Fuchsian group is said to be
cusped Hitchin if there exists a continuous p-equivariant positive map from the limit
set of I' into the full flag variety F4. We show that cusped Hitchin representations are
irreducible and Borel Anosov (i.e. they are Pg-Anosov for all 1 < k < d — 1). This
generalizes results of Labourie [24], when I" is cocompact, and Labourie-McShane [25]
(see also Burelle-Treib [10]), when T is convex cocompact. (Recent results of Sambarino
[32] also imply that cusped Hitchin representations are irreducible). Fock and Goncharov
[16] introduced the theory of positive representations. They consider the case where
I" is not cocompact but has cofinite area, and they only require that the limit map
be defined on fixed points of peripheral elements of I'. We show that type-preserving
positive representations, in their sense, are in fact cusped Hitchin representations. Other
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examples of cusped Anosov representations are provided by exterior powers of cusped
Hitchin representations and direct products of cusped Hitchin representations with trivial
representations.

In turn, the motivation for studying cusped Hitchin representations arises from an
intriguing potential analogy with the augmented Teichmiiller space from classical Te-
ichmiiller theory. The augmented Teichmiiller space of a closed orientable surface S is
obtained by appending to the Teichmiiller space of S points corresponding to (marked)
finite area hyperbolic structures on the complement in S of any multicurve on S. Masur
[30] showed that the augmented Teichmiiller space is the metric completion of Teichmiiller
space with the Weil-Petersson metric. Loftin and Zhang [26] construct an analytic model
for an augmented Hitchin component. Bray, Canary, Kao and Martone [6] combine our
work with thermodynamical results from [5] to construct pressure metrics on deforma-
tion spaces of cusped Hitchin representations, generalizing work of Bridgeman, Canary,
Labourie and Sambarino [8]. The hope is that this will allow us to investigate whether
the augmented Hitchin component is the metric completion of the Hitchin component
with the pressure metric. For further discussion of the conjectural geometric picture see
the survey paper [12].

We now turn to a more detailed discussion of our work. Let ' C PSL(2,R) be a
geometrically finite group with limit set A(T") C OHZ2. Suppose that p: I' — SL(d,K) is
a representation and that we are given a continuous p-equivariant map

& = (5,607%) : A(T) = Grip(K?) x Gra_p(K?)

into the Grassmannians of k-planes and (d — k)-planes in K¢. We require that &y is

transverse, i.e.
@)@ty =K? it z#yeAD)
We obtain an associated splitting
E,=UI) xK*=0"® =" where ©F, =¢(v"), =¥, =¢Fw)

and U(T') C TTH? is the set of tangent vectors which extend to geodesics both of whose
endpoints lie in A(T"). This descends to a splitting

(11>

E,=T\E, =06t gEi*

of the flat bundle associated to p over the non-wandering portion U(F) =T\ U(T) of the
geodesic flow. The geodesic flow on U(T") lifts naturally to a flow on E, which preserves
the splitting and is parallel to the flat connection. We say that p is Py-Anosov if the
associated flow on Hom(Eﬁ_k7 @’;) is uniformly contracting with respect to the (operator)

norm arising from some family of continuous norms on the fibers of Ep (see Definition 3.1
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for details). In this case, we call £, the Py-Anosov limit map of p. When I' contains a
parabolic element, we will sometimes refer to our Py-Anosov representations as cusped
Py.-Anosov representations to distinguish them from traditional Anosov representations.

We obtain generalizations of many of the classical properties of Anosov represen-
tations, see Labourie [24] or Guichard-Wienhard [18], in our setting. We say that a
p-equivariant, continuous map & = (€%, €9 . A(I') — Gr¥(K9) x Gr?*(K?) is strongly
dynamics preserving if whenever {v,} is a sequence in T, v,(z) — = € A(T'), and
v 1(2) = y € A(T") for some (any) z € H?, then

p(ym) (V) — gk ()

for any V' € Gr(K?) which is transverse to £97%(y). Given g € SL(d,K) let

A1(g) = = Aalg)

denote the absolute values of the (generalized) eigenvalues of g. Then g is Py-prozimal
if Ax(g) > Met1(g) and g is weakly unipotent if the (multiplicative) Jordan-Chevalley
decomposition of g has elliptic semisimple part and non-trivial unipotent part.

Theorem 1.1. If I' C PSL(2,R) is a geometrically finite group and p : I' — SL(d,K) is
Py-Anosov, then

(1) For any zy € H?, there exists A,a > 1 so that if vy € T, then

1 1 a,(p(7))
A exp (ad]HIQ (Zoﬁ(zo))) < m < Aexp (ady2(20,7(20))) -

(2) There exists B,b > 1 so that if v € T, then

1 1 Ak(p(7))
3 X <b€(’y)> < M1 (7)) < Bexp (bl(7))

where €() is the translation length of v on HZ2.

(3) The Py-Anosov limit map £, is strongly dynamics-preserving and unique. In partic-
ular, if a € T is parabolic, then p(«) is weakly unipotent, while if v € T' is hyperbolic,
then p(vy) is Px-prozimal.

(4) If z0 € H? and x¢ is a point in the symmetric space X4(K) associated to SL(d,K),
then the orbit map 7, : T'(20) = Xa(K) given by 7,(v(20)) = p(v)(x0) is a quasi-
isometric embedding.

We also give a dynamical characterization of Anosov representations in the spirit of
characterizations of traditional Anosov representations by Guéritaud-Guichard-Kassel-
Wienhard [17], Kapovich-Leeb-Porti [21] and Tsouvalas [35].
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Theorem 1.2. Suppose I' C PSL(2,R) is a geometrically finite group and p : I' — SL(d, K)
is a representation. Then p is Py-Anosov if and only if there exists a p-equivariant,
transverse, continuous, strongly dynamics preserving map & = (€F €47F) © A(T) —
Gri(K?) x Gry_1(K?). Furthermore, £ is the Pj-Anosov limit map.

In general, being Pr-Anosov is not an open condition in the space of representations

of a geometrically finite group. For instance, consider the case where I' = (g1,92) C
PSL(2,R) is a free group, go is parabolic, and p : T' — SL(4,R) is P;-Anosov with

p(g2) =

SO OoO
SO ==
o~ OO
— o oo

Next define a family of representations p; where p:(g1) = p(g1) and

1100
0100
o) =10 0 1 ¢
0001

Then p; is not Pi-Anosov for any ¢ # 0 since the sequence {p;(g2)"} does not converge
to a rank one element of P(End(R*)). Bowditch [3, Sec. 5] gave an example of a sequence
{pn} of indiscrete representations of a free group on two generators into SO(4, 1) which
converge to a geometrically finite representation p, so that p,(«) is parabolic if and only
if p(«) is parabolic. However, in his example p,(«) is not conjugate to p(«) for any n.
Bowditch [3, Thm. 1.5] also established a stability theorem for deformations of geomet-
rically finite representations which preserve the structure of the Jordan decomposition
of parabolic elements.

To account for these examples, we introduce the following subset of the representation
variety. If p: T' — SL(d,K) is a representation of a geometrically finite Fuchsian group,
let

Homy, (p) € Hom(T', SL(d, K))

be the space of representations o : I' — SL(d,K) so that if @ € T is parabolic, then
o(a) is conjugate to p(a). We obtain the following stability result for type-preserving
deformations. (In their preprint, Kapovich and Leeb [20] suggest that such a stability
result holds more generally.) Furthermore, we show that limit maps vary analytically.
Combined with work of Bray-Canary-Kao-Martone [5] this will imply that entropy and
pressure intersection vary analytically over the cusped Hitchin component (which will be
used crucially in the construction of the pressure metric). The proof also allows us to see
that the Py-Anosov limit maps are uniformly Hoélder in a neighborhood of a P-Anosov
representation.
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We say that {py tuenr is a K-analytic family of representations if M is a K-analytic
manifold and the map u — p,, is a K-analytic map from M into Hom(T', SL(d, K)).

Theorem 1.3. If ' C PSL(2,R) is geometrically finite and pg : ' — SL(d,K) is Py-
Anosov, then there exists an open neighborhood O of py in Homgp(po), so that

(1) If p € O, then p is Py-Anosov.

(2) There exists o > 0 so that if p € O, then its Py-Anosov limit map £, is c-Holder.

(3) If {putuem is a K-analytic family of representations in O and z € A(T) then the
map from M to Gry(K?9) x Grg_r(K?) given by u — &,,(2) is K-analytic.

When U(F) is compact, stability follows from standard arguments in hyperbolic dy-
namics and the Hélder regularity of the boundary maps is a consequence of standard
results, e.g. [33, Cor. 5.19]. The non-compact case is more involved. Our key idea to prove
stability is to observe that if ps € Homy,(p1), then on each cusp there is a smooth con-
jugacy of the flows associated to p; and ps. This is made precise in Equation (21) below.
This essentially means that the two flows differ by a compact perturbation and thus, es-
sentially, reduces to the compact base case. Our key idea to prove Holder regularity is to
first introduce certain “canonical families of norms” on the flow spaces, see Section 3.1.
Then we prove that if the flow is contracting with respect to any family of norms, then
the flow is contracting with respect to any canonical family of norms (see Theorem 6.1
and Theorem 4.1). Finally, the canonical family of norms are well-behaved enough that
we can adapt an argument from [38] to prove Holder regularity of the boundary maps
directly.

We now discuss the applications of our results to cusped Hitchin representations,
which was the original goal of our work. Given an ordered basis B for R¢, we say that
a unipotent A € SL(d,R) is totally positive with respect to B, if its matrix with respect
to B is upper triangular and all its minors (which are not forced to be 0 by the fact
that the matrix is upper triangular) are strictly positive. The set Uso(B) of unipotent,
totally positive matrices with respect to B is a semi-group (see Lusztig [27, Section 2.12]).
Following Fock and Goncharov [16], we say that an ordered k-tuple (Fy, Fy, ..., Fy) of
distinct flags in Fy is positive, if there exists an ordered basis B = (b1,...,bq) for
R? so that b; € Fi N F,j‘”l for all 4, and there exists ug, ..., up—1 € Uso(B) so that
F, =ug_q1---u;Fj foralli =2,...,k—1. Fock and Goncharov [16] proved that positivity
of a n-tuple is invariant under cyclic permutation and reversal (also see Kim-Tan-Zhang
[23, Section 3.1 —3.3]). If X is a subset of S* then amap & : X — Fy is positive if whenever
(21,...,xy,) is a cyclically ordered subset of distinct points in X, then (£(x1),...,&(xy,))
is a positive n-tuple of flags.

We say that a representation p : I' — SL(d,R) of a geometrically finite Fuchsian
group is a Hitchin representation if there exists a continuous positive p-equivariant map
& : A(I') — Fy4. If T' is cocompact and torsion-free then these are exactly the Hitchin
representations of closed surface groups introduced by Hitchin [19] and further studied
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by Labourie [24], while if T’ is convex cocompact they are the same as the Hitchin
representations studied by Labourie and McShane [25]. We distinguish the case where T’
contains parabolic elements by calling these cusped Hitchin representations. If d = 3 and
S = I'\H? is a finite area hyperbolic surface, then cusped Hitchin representations of I' are
holonomy representations of strictly convex, finite area, projective structures on S (see
Marquis [29]). Further it follows from [16, Thm. 3.3] that holonomy maps of geometrically
finite projective surfaces in the sense of Crampon-Marquis [13] are also cusped Hitchin.
Fock and Goncharov [16] studied the a priori more general class of representations which
admit equivariant positive maps from the set A,(I') of fixed points of peripheral elements
of I" into F; when T is not cocompact but has cofinite area. We show that all such type-
preserving representations are in fact cusped Hitchin representations. Our main result
here is that cusped Hitchin representations are Pg-Anosov for all k.

Theorem 1.4. If ' C PSL(2,R) is geometrically finite and p : I' — SL(d,R) is a Hitchin
representation, then p is irreducible and Py-Anosov for all k. Moreover:

(1) For all k the map x — flg(x) is the Py-Anosov limit map.

(2) If a € T is parabolic, then p(a) = £u for some unipotent u € SL(d,R) with a single
Jordan block.

(3) If v € T' is hyperbolic, then p(7) is loxodromic.

If we let ﬁd(l") denote the space of all Hitchin representations of I" into SL(d,R),
it is easy to see that ﬁd(F) is a real analytic manifold. In fact, one may use results of
Fock and Goncharov [16] to show that the space Hq(I") of conjugacy classes of Hitchin
representations is diffeomorphic to R™ (for some m). (Marquis [28] gives an explicit
parametrization of H3(T') as a topological cell when S = I'\H? is a finite area hyperbolic
surface.)

Comparison to other results As mentioned above, Kapovich-Leeb [20] and Zhu [36]
have previously developed theories of Anosov representations for relatively hyperbolic
groups. Their work is based on extending characterizations of Anosov representations due
to Kapovich-Leeb-Porti [21] and Bochi-Potrie-Sambarino [2] respectively. Theorem 1.1
immediately implies that a Py-Anosov representation p is Pg-relatively dominated, in the
sense of Zhu [36]. Theorem 9.4 in [36] then implies that p is Py-relatively asymptotically
embedded and Remark 9.10 in [36] implies that p is Pg-relatively uniform RCA in the
sense of Kapovich-Leeb [20].

Corollary 1.5. Suppose that I' C PSL(2,R) is geometrically finite and p : T' — SL(d, K)
is a Py-Anosov representation. Then p is Py-relatively dominated, Py-relatively asymp-
totically embedded and Py-relatively uniform RCA.
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Further, it follows from [37, Thm. C] and our Theorems 1.1 and 1.2, that a repre-
sentation of a geometrically finite Fuchsian group I' is Py-Anosov if and only if it is
Py-relatively dominated with respect to P.

Kapovich and Leeb [20] mention that they can show that a cusped Hitchin represen-
tation of a geometrically finite Fuchsian is relatively Anosov in their sense.

In a subsequent preprint, Filip [14] introduces the class of log-Anosov representation
of Fuchsian lattices, which also agrees with the class of cusped Anosov representations.
He introduces adapted metrics, which correspond to our canonical norms. He shows
that monodromy maps of certain variations of Hodge structures on finite area Riemann
surfaces are log-Anosov and uses this result to study their properties. In particular many
monodromy maps coming from hypergeometic differential equations can be analyzed in
this manner, including those previously studied by Brav and Thomas [4] and by Filip
and Fougeron [15].

Acknowledgments The authors thank the referee for their careful reading of the original
manuscript and helpful suggestions which improved the exposition. This material is based
upon work supported by the National Science Foundation under Grant No. DMS-1928930
while the first author participated in a program hosted by the Mathematical Sciences
Research Institute in Berkeley, California, during the Fall 2020 semester.

2. Preliminaries

In this section, we recall some preliminary facts and introduce notation that will be
used throughout this paper.

2.1. Hyperbolic 2-space

In this paper we will identify H? with the Poincaré upper half plane model. For any
v e T H?, let r,, : R — H? denote the unit speed geodesic with 7/ (0) = v and let

vt = lim 7,(t) € OH? and v := lim r,(t) € 9H?

t—+oo t——o0

denote its limit points in 9 H? = R U{oo}. We also let ¢; : T H? — T'H? denote the
geodesic flow, i.e.

¢e(v) = 7,(1)

for all v € T'H? and ¢ € R.
If {gn} is a sequence in PSL(2,R), we say that g, converges to z € dH? if g,(z) — z
for some (any) z € H2. We often simply write g,, — z.
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2.2. Geometrically finite Fuchsian groups

We say that I' C PSL(2,R) is geometrically finite if it is discrete, finitely generated and
non-elementary (i.e. does not contain a cyclic subgroup of finite index). Let A(T") C OH?
denote its limit set. Then let U(T") denote the minimal, non-empty, closed, ¢;-invariant,
[-invariant subset of 7 H?, i.e.

UT) ={veT'H*:vF,v~ € A(T)}.

Let G(I‘) =T\ U(T"), and note that ¢; descends to a flow on O(I‘), which we also denote
by ¢;. If S = T'\H?, then U(T) is the non-wandering portion of T1S and its orbits are
the complete geodesics which remain entirely in the convex core of S.

Definition 2.1.

(1) If p € A(T) is fixed by a parabolic element of T, let str(p) = {y € T | v(p) = p}. We
call str(p) a cuspidal subgroup of T'. An open horodisk H based at p is a precisely
invariant horodisk for str(p) if whenever v € T' and v(H) N H is non-empty, then
v € str(p). In this case, C = str(p)\H is an embedded cusp neighborhood.

(2) A set C = {Cy,...,C,} of disjoint embedded cusp neighborhoods in S = I'\H? is
full if any curve on S which is represented by a parabolic element of I is freely
homotopic into some Cj.

If C =stp(p)\H is an embedded cusp neighborhood, then we set
U)s = {veUI)r(0) € H}  and  U()e =str(p)\U(D)x.

If C is a full collection of cusp neighborhoods for S, then we set

Um)e = |J U@e-

cec

Notice that its complement G(I‘ )¢ is compact. We will sometimes informally refer to
U(T")¢ as the thin part of the geodesic flow and its complement as the thick part.

2.8. The representation theory of SL(2,R)

For d > 1, let 74 : SL(2,R) — SL(d, K) denote the standard irreducible representation.
Explicitly, 71 = 1 and if d > 2, then 74 = i4 o T4, where

e 74:SL(2,R) — SL(Sym?~!(R?)) is the representation induced by the linear SL(2, R)-
action on Sym? ! (R?) given by
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k,d—1-Fk

v (erey )= (y-e)*(y-eg) ™ F

forall k=0,...,d —1, and

o ig: SL(Sym? ' (R?)) — SL(d,R) is the isomorphism induced by the linear isomor-
phism Sym?~!(R?)) ~ R? that identifies efel 7% € Sym?™'(R?)) with ez, € R?
forall k=0,...,d—1.

One may also regard 74 as a representation into SL(d, C). Let &; : 9 H? ~ RP! — F(K%)
be the map defined by [ae; + bes] — F, where FY) = Spang (f1,..., fj) and

d+1—j .
fi= Z] d—j qdt1—i—kpk=1,
a k—1 b

k=1
It is straightforward to verify that &; is a continuous, 74-equivariant, strongly dynamics
preserving map. We call £; the Veronese embedding associated to 74.

One can compute that 74 (é Cf) is the upper triangular matrix in SL(d, R) given by

(s Cf))k,j =(123) )

if 1 < k < j <d. Furthermore, it is well-known that the d x d upper triangular matrix
given by (1) is unipotent and totally positive with respect to the standard basis of R?
when a > 0. From this, it follows easily that &y is a positive map.

2.4. Figenvalues, singular values, and the (multiplicative) Jordan-Chevalley
decomposition

Given an element g € SL(d,K), let

o1(g) = = 0alg)

denote the singular values of g and let

A1(g) = = Aalg)

denote the absolute values of the (generalized) eigenvalues of g. Also, let g = 559, =
gugss denote the Jordan-Chevalley decomposition, that is gss is semisimple, g, is unipo-
tent, and gss, g, commute. We say that g is elliptic if it is semisimple and \;(g) = 1 for
all j. Notice that if ¢ is elliptic, then the cyclic group (g) generated by g is relatively
compact in SL(d, K).

If g € SL(d,K) and o4(g) > orr1(g), let Ur(g) € Grp(K%) denote the subspace
spanned by the k major axes of the ellipse g (S*7!), that is Ux(g) = g {e1,...,ex). The



R. Canary et al. / Advances in Mathematics 404 (2022) 108439 11

following lemma relates the singular values along a sequence in SL(d, K) to the action of
this sequence on the associated Grassmannian. We omit the proof as it is standard.

Lemma 2.2. Suppose Vy € Grk(Kd) and Wy € Grd_k(Kd). If {gn}n>1 is a sequence in
SL(d,K), then the following are equivalent:

(1) There are open sets O C Gr(K%) and O’ C Grq_x(K?), such that g,(V) — Vy for
allV € O and g, * (W) — Wy for all W € O'.
(2) gn(V) = Vo for all V € Gr(K%) transverse to Wy.

(3) lim _9k(gn)_
n—00 041 gn)

= o0, lim Ug(gn) = Vo, and lim Uy_1(g,") = Wo.

n—oo n—oo
Moreover, if g, = g" for all n, then g is Py-prozimal if Vo & Wy = K%, and weakly
unipotent if Vo C Wy or Wy C V.

We will also make use of the following elementary calculations, which we recall without
proof.

Lemma 2.3.

(1) If w = (é }), then for all d > 1 there exists ¢ = c(d) > 0 so that

1 ak(Td(u"))

TS oo =€
foralln e N and k € {1,...,d}.

(2) If A,B € SL(d,K) and C = BAB™!, then

1(B)
oa(B)

Q

0, (C) < o(A)

forallk e {1,...,d}.
3. Anosov representations into SL(d, K)

Following Labourie [24] and Guichard-Wienhard [18] we define Anosov representations
for geometrically finite Fuchsian groups into SL(d,K). In Appendix B, we will extend
our definition to the setting of all semi-simple Lie groups with finite center.

If ' € PSL(2,R) is a geometrically finite group and p : ' — SL(d,K) is a representa-
tion, let

E,=UT)xK? and E,=T\UT) x K¢



12 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

where v € T acts on the first factor by v and on the second factor by p(vy). The projection
map p: E, = U(I") descends to a vector bundle

p:E, = U()

which is called the flat bundle associated to p. The geodesic flow on U(T') extends to
a flow on E, = U(I") x K? whose action is trivial on the second factor. This in turn
descends to a flow on Ep which covers the geodesic flow on G(F) We use ¢ to denote
all four of these flows.

We say that a continuous map ¢ = (&%, ¢97%) : A(T) — Gry(K9) x Grg_i(K?) is

(1) p-equivariant if p(y) o€ =& o for all v € T,
(2) transverse if £ (z) ® £€97F(y) = K for all distinct z,y € A(T).

Such a map induces a continuous ¢s-invariant spitting
E,=0"@ =% where OF|,=¢*(v") and E¥7F|, = ¢k (v7)
which descends to a continuous ¢;-invariant splitting
E,=0FgElFk

Definition 3.1. If ' C PSL(2,R) is a geometrically finite group and k € {1,...,d — 1}, a
representation p : I' — SL(d,K) is Py-Anosov if:

(1) There exists a p-equivariant, continuous, transverse map
€= (", ¢7F)  A(T) — Grg(K?) x Gra—p(K%)
which induces a splitting Ep = Ok @ Ed-k,
(2) For some family of norms |[-||, on the fibers of E, there exists C' > 1 and ¢ > 0 so

that

196Mllour) _ et ¥,
16:(2)ll 6, (v) 1Z1l,

for all t >0, v € U(T), Y € ©F|, and non-zero Z € 2%,

We refer to € as a Py-Anosov limit map of p.

Remark 3.2. Notice that a continuous family of norms |||, ci(r) on the fibers of Ep lifts
to a continuous family of norms |-[|,.cyr on K? which is p-equivariant in the following
sense: if v € U(T), Y € K% and v € T, then



R. Canary et al. / Advances in Mathematics 404 (2022) 108439 13

o)Xy = 1Y 1, - (2)

Conversely, any continuous family of norms satisfying Equation (2) descends to a con-
tinuous family of norms on the fibers of E,,.

If one prefers a bundle-theoretic definition, one can consider the vector bundle
Hom(”d k @k) over U(T"). Notice that since the splitting is flow-invariant, ¢; induces a
flow on Hom(E Sd—k @k) given by

fr> oo fod_y,

with some abuse of notation we use ¢; to denote this flow. Moreover, any norm on the
fibers of Ep induces an operator norm on Hom(= Zd-k G)k ). We say that the flow ¢; on
Hom(”d k @k) is uniformly contracting if there exists C,c > 0 so that

166 (Fllg, 0y < Ce™ " 11,

for all t > 0, v € U(T') and f € Hom(Z?*, ©%),. One may easily check that p is
Pi-Anosov if and only if there exists a p-equivariant, continuous transverse map & =
(¢*, §d*k) A(T) — Gri(K?) x Grg_x(K9) so that the flow is uniformly contracting on
Hom(Z4-F @k) with respect to an operator norm associated to a continuous family of
norms on Ep. (The details of this equivalence are worked out carefully in the proof of
[8, Prop. 2.3].) Moreover, by duality, ¢; is unlformly contracting on Hom(Z Zd—k @k) if
and only if the flow, also called ¢, on Hom(@’“ Zd- #) is uniformly expanding, i.e. the

inverse flow ¢_; is uniformly contracting. We record these observations for future use.

Proposition 3.3. Suppose that T C PSL(2,R) is a geometrically finite group, p : T' —
SL(d,K) is a representation and k € {1,...,d — 1}. Then the following are equivalent:

(1) p is Pi-Anosov,
(2) There exists a p-equivariant, continuous transverse map

€= (€8, €470 A(T) = Grp(RY) x Grg_p(K9)

so that the flow is uniformly contmctmg on Hom(=Z Zd—k @k) with respect to an oper-
ator norm induced by a norm on E
(3) There exists a p-equivariant, continuous transverse map

§= (5,177 A1) — Grp(R?) x Grg_p(K?)

so that the flow is uniformly expanding on Hom(ék, édik) with respect to an operator

norm induced by a norm on E,,.
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As an immediate corollary we obtain:

Corollary 3.4. Suppose that T' C PSL(2,R) is a geometrically finite group, p : T —
SL(d,K) is a representation and k € {1,...,d — 1}. Then p is Py-Anosov if and only if
p is Py_g-Anosov.

Remark 3.5. If we wish to allow I" to be a geometrically finite subgroup of PGL(2,R),
then we simply consider I'y = ' PSL(2,R) and say that p : I' — SL(d, R) is P,-Anosov
if and only if p|r, is Pr-Anosov. With this definition, all of our results for geometrically
finite Fuchsian groups remain true for geometrically finite subgroups of PGL(2,R).

3.1. Canonical norms and cusp representations

It will be useful to construct certain “canonical” norms on the fibers of the vector

bundles Ep, and hence also on Hom(éd*k,@k), that are well behaved on the cusps.

Later we will show that when p is Py-Anosov, the flow ¢; on Hom(Z9~*, ©F) is uniformly
contracting for any canonical norm (see Corollary 6.2).

The crucial property of our canonical norms is that they have a standard form over
the thin part of the geodesic flow. In order to describe this standard form we will use
the following result about representations of SL(2,R). Recall that g = gssg, denotes the

multiplicative Jordan-Chevalley decomposition of g € SL(d, K).

Proposition 3.6. (see Appendiz A) If g € SL(d,K) is weakly unipotent, then there exists
a representation ¥ : SL(2,R) — SL(d,K) where ¥ (<(1) %)) = gy and gss commutes
with the elements of ¥(SL(2,R)).

Proposition 3.6 follows easily from the Jordan normal form of a weakly unipotent
matrix and we delay the proof until Appendix A.

A representation p : I' — SL(d,K) of a geometrically finite Fuchsian group is type-
preserving if p sends every parabolic element in I' to a weakly unipotent element in
SL(d,K). If p is a type preserving representation and « € T' is parabolic, then we say
that a representation ¥ : SL(2,R) — SL(d,K) is a cusp representation for a and p(«) if

(1) ¥(a) = p(a)y, where a is the (unique) unipotent lift of o to SL(2,R) and
(2) p(a)ss commutes with the elements of ¥(SL(2,R)).

Proposition 3.6 implies that cusp representations always exist.

Suppose that T' is a geometrically finite Fuchsian group, p : I' — SL(d,K) is type-
preserving and C' = (a)\ H is an embedded cusp neighborhood where « € T' is parabolic.
Further suppose that W is a cusp representation for a and p(«), and ||-||, is a family of
norms of the fibers 7! H? x K% — T H? such that
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(1) each |||, is p(c)ss-invariant
(2) 1%(g)Z| ) = 1Z]],, for all g € SL(2,R), Z € K% and v € T' H.

Such families are easy to construct: the group K := (p(a)ss, ¥(—1idz)) is abelian and
compact, so there exists a norm ||-|, which is K-invariant, then if we fix some vy € T* H?,

the family of norms defined by || Z]| = ||\Il(g)’1ZHO has the desired properties.

g(vo)
Also, for such a family of norms

(@) Z 0wy = 1¥(@)p(@)ss 2|0y = 121,

for all Z € K% and v € T'H?. So this family descends (and restricts) to a family of
norms on the fibers of E'p over U(F)c which we call a canonical family of norms on the
cusp neighborhood C. Observe that if C’ is an embedded cusp neighborhood properly
contained in C, then U( ) —U(T) ¢ is precompact, and a canonical family of norms on
the fibers of E over U( )¢ is determined completely by its restriction to the fibers over
0(0)e — O(D)er.

Definition 3.7. Let p : I' — SL(d,K) be a type preserving representation of a geomet-
rically finite Fuchsian group. A continuous family of norms ||-||, on the fibers of E’p is
canonical if there exists a full collection C of embedded cusp neighborhoods for I', such
that for all C' € C, the restriction of the family of norms to the fibers over G(I‘)c is a
canonical family of norms on C'.

It is straightforward to construct a canonical family of norms on the fibers of Ep. One
first chooses a full collection of embedded cusp neighborhoods C. For each C € C, one
chooses a canonical norm on the cusp neighborhood C. One then chooses any continuous
norm on a compact neighborhood of the fibers over the thick part U(F) — U(I)¢. One
may then use a cut off function to interpolate between the norms on their interface and
obtain a family of norms on all of Ep which is canonical with respect to a full collection
of cusp neighborhoods contained in C.

We observe that there are uniform upper and lower bounds on the growth rate of a
canonical norm with respect to the (lift of the) geodesic flow ¢,.

Lemma 3.8. Suppose that I' C PSL(2,R) is a geometrically finite group, p : I' — SL(d, K)
is type-preserving and ||-||, s a canonical family of norms on the bundle E,. There exist
Co>1,c0 >0 so that if v € UT), t € R and Z € E,|,, then

L _coltl colt]

o 1211, < 19e(Z) 14, 0y < Coe™ ™ (1 Z]],

Proof. For v € U(T), let

F () = max {1602y, : 11 < 1.7 € Bylus 1 2], =1}
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Let C be a full collection of embedded cusp neighborhoods such that for all C' € C, ||||,,
restricted to the fibers over each component of U(I")¢ is a canonical family of norms on
C. For each C € C, let C" be an embedded cusp neighborhood such that

U e(c) cc.

[t|<1

Then f is constant on each G(P)C/. Further,

~

K=U) - JU@)e

ceC

is compact. Hence

Co:= sup f(v)=max f(v)
vEU(l") veEK

is finite. Set ¢g = log Cy. For any t € R, let n be the largest integer such that n < [¢|. If
t > 0, then

166(2)lg, 0y < CE N90-n(Z)llg, (1) < e ColIZ], < Coe™ | 2],
On the other hand, if t < 0, then

166(Z)lg, 0y < C8 1606n(Dlg,, 00 < € Co 21, < Coe! |1 2], -
This proves the required upper bound. The lower bound is similar. O

Remark 3.9. We will not need this for our work, but with a bit more effort, one can show
that any two canonical families of norms on E, are bilipschitz.

4. Basic properties of Anosov representations

In this section we prove Theorem 1.1 which we restate here.

Theorem 4.1. If I' C PSL(2,R) is a geometrically finite group and p : T' — SL(d,K) is
Py.-Anosov, then

(1) For any zy € H?, there exists A,a > 1 so that if v € T, then

1 1

4 OXP (5%2(20,7(20))) < _owlb)

orn(o(y) S AP (adu2(20,7(20)))
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(2) There exists B,b > 1 so that if v € T, then

1 1 Ak(p(7))
B exp <b£(7)> < m < Bexp (b4(7))

where ((v) is the translation length of -y on HZ2.

(8) The Py-Anosov limit map &, is strongly dynamics-preserving and unique. In partic-
ular, if o € T is parabolic, then p(c) is weakly unipotent, while if v € T' is hyperbolic,
then p(v) is Py-proximal.

(4) If zo € H? and x¢ is a point in the symmetric space Xq(K) for SL(d,K), then the
orbit map 7, : I'(20) = Xa(K) given by 7,(v(20)) = p(v)(x0) s a quasi-isometric
embedding.

Before proving the theorem we note the following consequences which will be useful
=4

in [5].
Corollary 4.2. Suppose that T' C PSL(2,R) is a geometrically finite group and p : T' —
SL(d,K) is Py-Anosov with Py-Anosov limit map &,.

(1) If {vn} is a sequence in I’ with v, — x € A(T"), then im Uy (p(yn)) = &,(2).
(2) If « € T is parabolic and j € {1,...,d}, then there exists an integer c(j,a) and
C; > 1 so that
L _ oy(pl")

Fj G < C; forallneN.

Moreover,
clk,a) —c(k+1,a) > 0.

Proof. Property (1) in Corollary 4.2 is known as the Pj-Cartan property and is an im-
mediate consequence of the fact that £, is strongly dynamics-preserving and Lemma 2.2.
If « € T is parabolic, then part (3) of Theorem 1.1 implies that p(a) is weakly

unipotent. So the group (p(«)ss) is compact. Further, there exists {ds,...,d,,}, so that

p(a), is conjugate to G 74, (1) 1 ) Thus there exists a constant Cy > 1 such that

Loy (e ([3 1)) 2esten <tms (s ([32]))

foralln e N and j € {1,...,d}.
Given j € A and n € N, there exists ¢ and k € {1,...,d;}, so that

o (i ([ 3])) = (= (3 1)),
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Then Lemma 2.3 implies the first claim in part (2) of Corollary 4.2, while the second
claim follows from part (1) of Theorem 4.1. O

Proof of Theorem 4.1. Suppose that I' C PSL(2,R) is a geometrically finite group and
p: ' —= SL(d,K) is Py-Anosov. By definition there exist C' > 1, ¢ > 0, and a p-equivariant
family of norms ||-||, on the fibers of £, — U(I') so that

Y
|| ||¢t(v) < CefctHY”'u
1Z1l4,0) 1Z],

(3)

for all t > 0, v € U(T'), Y € ¢¥(v*) and non-zero Z € 4% (v™).

Fix a distance dse on O H? = S which is induced by a Riemannian metric. The
following very special case of a result of Abels-Margulis-Soifer [1, Theorem 4.1] plays a
key role in the proof.

Lemma 4.3. There exist § > 0 and a finite subset B of I' such that if v € ', then there
exists B € B so that yf3 is hyperbolic and d((v8)", (v8)™) > 4.

Lemma 4.3 allows us to reduce much of the proof to considering hyperbolic elements
v € T with deo(yT,77) > 4. Since £ is transverse and continuous these elements have
the following decomposition: there exists a compact set A C SL(d,K) so that if y € T
is hyperbolic and doo(y",7~) > 6, then there exist g, € A, A, € GL(k,K) and B, €
GL(d — k,K) with

p(7) = 94 (%” jgy)g;l, (") =g,((er,...,ex)) and

¢k () = gy ((ers1s- - ea)).

(4)

There also exists a compact set K of H? so that any bi-infinite geodesic whose endpoints
are a distance at least § apart intersects K. Let

R = max{dg2(i,2) : z € K}.

The next two lemmas establish (1) for any hyperbolic element « with doo (YT, 77) > 4.
The proof of the first lemma makes crucial use of the contraction properties of the flow,
while the second lemma does not depend on the contraction properties.

Lemma 4.4. There exist C1,Cy > 0 such that if v € T is hyperbolic and do(y",7~) > 0,
then

TP S (o ez i)
or+1(p(7)) —

and
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ok (Ay) > Coeh? 7y (By)-
Proof. Recall that r, : R — H? denotes the geodesic with 7/,(0) = v € T'H?. Since

the geodesic joining v to v~ intersects K, there exists vy € U(T") with 7,,(0) € K and

v = ~*. Also, notice that

((y) = dy2 (rv,(0),7(ru (0)) = dig2 (i, 7(i)) — 2R.

Since ¢y (+)(vo) = v(vo), the p-equivariance of the norms and Equation (3) imply that

Y1y _ 1Py g ea) 1PV Dl
120, ~ 1o Dl I,

for all Y € ¢¥(y*) and non-zero Z € £47%(y7).
Since K is compact, there exists L so that if v € U(I') and r,(0) € K, then |-[|, is
L-bilipschitz to the standard Euclidean norm ||-||, on K¢. Therefore,

POl + 1oy ¥l
lon @), = Tzl

for all Y € €¥(y*) and non-zero Z € £€27%(y7). So by the max-min/min-max character-
ization of singular values

e P ST S 1)

or(p(y)) = min > e
veer(yt) 1Y, cL zee vy 2]y
Y #0 Z#0
1
> @6C€(7)0k+1(P(7))-
Hence C4 := ﬁe‘QRC suffices.

Since A is compact,

N

is finite. So, if Y = (Y’,0) € K¥ x{0} and Z = (0, 2’) € {0} x K™%, then

1B, ~ o5 ogn (D], ~ STee, (2], = CLS° igy(2)],

O Y o
“orist 7,

14,0, _ o3 e g Ml _ LlIeMgsWlly 1 oy llgy (Wl

So, again by the max-min/min-max characterization of singular values,
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A, (Y")]| 1 1B, (Z")]] 1

A)>m 2 > () m Y 2 > Mg (B,
orldy) 2 Wil T 2 erige® B Tz, © ot B
Hence Cs := z7rgz - sze 21 suffices. O

Lemma 4.5. There exist C3,co > 0 so that if v € T is hyperbolic and doo(y*,77) > 6,
then

a1(p(y)) < Cyecodnz (10,
In particular,

ar(p(7)) < C§e2codH2(i,v(i)).
orr1(p(7) ~

Proof. Fix a p-equivariant family of norms ||-[|,,cy ) which descends to a canonical family

k
veU
of norms on F,. Then by Lemma 3.8 there exist Cp, cg > 0 so that

1 _ * * *
e MY < V15,0 < Coe M IV (5)

forallv e U(T'), Y e K and t € R.
Since the geodesic joining v to v~ intersects K, there exists vg € U(T') with r,,(0) €
K and v = v*. Also, recall that

() = dig2(rv, (0),7(rvy (0))) < dpg2(i,7(2)) + 2R.

Since ¢y(y)(vo) = v(vo), the p-equivariance of the norms and Equation (5) imply that

* * 1 —c *
¥y = e X)) 2 7€ oI,

if Y e K%
Since K is compact, there exists L so that if v € U(T') and r,(0) € K, then |-||" is
L-bilipschitz to the standard Euclidean norm ||-||, on K?. Therefore, if Y € K<, then
lo() ()l < Caetodiaz GO |y,
where Cy := CyL%e**". So
o1(p(7)) < Cyecodm2 (::7(0)

Finally, notice that

O'k(p(’Y)) < Ul(ﬂ(’Y)) _ 0'1(0(’7))0'1([)(’}/71)) < 0326200%_“2(1',7(2'))- O

or+1(p(7)) ~ aalp(v))
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We can now prove part (1). Since B is finite, both

o1(p(8)) } .
Sp =max § ———= eB and b= max{dyg=(:,8(1)):8€B
o —max { 200 | {dez2(5, 5(0) - 6 € B}
are finite.

Given any v € T, Lemma 4.3 implies that there exists 8 € B so that doo ((v8) ", (v8)™) >
0. Then

1 aw(phB) _ _ox(p(7)) < S ok (p(v8))
Sp ok+1(p(¥B)) ~ ok41(p(v)) T " ok+1(p(v8))

and
|dpg2 (i, 7(7)) — dg2(4,76(i))| < dy= (3, B(i)) < b.
Therefore,
L exp (%demu))) < % < Aexp(a dyg (i,1())

where A = max{c%SBer, C2Spe?*} and a = max{1/c, 2cy}. This proves (1).
Recall that if T' € SL(d,K), then

N(T") = lim (o,(T)""

and £(y) = lim M for all v € T'. Therefore, part (2) follows immediately from
part (1). (One may give a direct proof of (2) in the spirit of Lemma 4.4 by noting that
there is a compact subset K of H2 such that every hyperbolic element of I' is conjugate
to an element of I' whose axis passes through K 2

Part (4) is a simple consequence of part (1) and Lemma 4.5. Recall that Xg(R) =
SL(d,R)/SO(d) and X4(C) = SL(d, C)/SU(d). We may choose xq to be either [SO(d)] or
[SU(d)]. Then, after possibly scaling, we have the following formula for the distance on
X4(K), see for instance [9, Cor. 10.42],

dx, (0, 9(20)) =

Therefore, applying part (1), we see that

1 or(p(7)) a .oy logA
dx, an, o) ) = 5 log (m) > L aiy (i) — B4

for all v € I'. On the other hand, by Lemma 4.5
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dx, (0, p(7)(20)) < Vdmax {|loga;(p(7))|} = Vdmax {logo1(p(7)), log 71 (p(7) ")}
< Vdlog Cs 4 Vdeodg (i, 7(i)),

so the orbit map is a quasi-isometry, which completes the proof of part (4).

We now show that £ is strongly dynamics preserving. Notice that this immediately
implies that £ is unique. Lemma 2.2 will then imply that if « € T is parabolic, then p(«)
is weakly unipotent, while if v € T" is hyperbolic, then p(v) is Pg-proximal.

Fix a sequence {v,} with v, — 2 € A(T') and ~,! — y € A(T'). For each n there
exists f3,, € B such that ~, 3, is hyperbolic and

Since the set B is finite, we can divide {v,} into finitely many subsequences and only
consider the case when 3, = 3 for all n. Then (v,8)" — 2 and (1,8)~ — 871 (y).
Let

- A, O 1
p(¥nB) = gn ( 0 Bn> 9n
be the block diagonal decomposition from Equation (4). Then by Lemma 4.4

. 01 (Bn)
]
00 o (Ap)

=0,
so
9 PmB)gn(W) = {1, ..., ex)
for all W € Gry,(K%) transverse to (exi1,...,eq). Further, by construction
(") = gnller,--ver))  and €77 ((1B)7) = gn({ers1 - ea)).

So by the continuity of &,

p(1mB) V) = € (2)
for all V transverse to £47%(371(y)). This implies that

p(1) (V) = €"(2)

for all V transverse to £&77%(y) = p(8)(£77%(87'(y))) which completes the proof of
(3). O
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5. Basic properties of cusp representations

In this section we establish some useful properties of the cusp representations associ-
ated to type preserving representations introduced in Section 3.1.

We say that a representation ¥ : SL(2,R) — SL(d,K) is Py-prozimal if ¥(y) is Py-
proximal for some (any) hyperbolic element v € SL(2,R). We first observe that a cusp
representation associated to a Pp-Anosov representation is Pg-proximal.

Proposition 5.1. Suppose that T' C PSL(2,R) is a geometrically finite group and p : T —
SL(d,K) is Py-Anosov. If « € T' is parabolic and ¥ : SL(2,R) — SL(d,K) is a cusp
representation associated to o and p(«), then ¥ is Py-proximal.

Proof. Let @ € SL(2,R) be the unique unipotent lift of «. Since p(«) is weakly unipotent,
the group (p(a)ss) is compact. Then, since ¥(a™) = p(«a); p(a™), there exists L > 1
such that

T0,(pla™) < 03 (¥(@) < Loy (p(a")

for all j € {1,...,d} and n € Z. Then, since p is strongly dynamics-preserving,
Lemma 2.2 implies that

A 1G0)

o (p(a™)
n%0 0 (U (@) z

)

> lim

1
— = o0.
L2 n=o0 opi (p(a

0
t € R} is simultaneously diagonalizable, by increasing L > 1 we may assume that

¢
Now, write a&™ = ¢, @y, my, where £,,m,, € SO(2) and ¢, = (6 egt)' Since {U () :

Lo(¥(a) < M(W(a0)) < Lon(U(ar)

for all ¢ € R. Since ¥(SO(2)) is compact, we may increase L > 1 further and assume
that

<0oj(¥(g9) <L

SIS

for all g € SO(2) and j € {1,...,d}.
Then

lim Me (Y (e, ))

i o (Y(eay,))
n—oo Ap41(U(e@y,))

1 ok (¥(et,)) lim op(¥(a"))
L2 n—oo 0341 (¥(y,))

1
> > LA S VA
= = I6 w50 g (U(@")

= 00,

which implies that U(e;) is Pg-proximal for all t € R —{0}. O
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Next we observe that a Pj-proximal representation is itself Pr-Anosov and admits a
Py-limit map, in the following sense.

Proposition 5.2. If U : SL(2,R) — SL(d,K) is a Py-proximal representation, then there
exists a continuous, V-equivariant transverse map

n=0"n"") : 0H* - Grp(K?) x Grg_i(K%)
with the following properties:
(1) If||-|| is a W-invariant family of norms on the fibers of TYH2 x K%, then there exists

B,b > 0 so that ift > 0, v € T'H2, Y € n*(v") and Z € n?*(v™) is non-zero,
then

Y14, ) byl
9t et v, (6)
10000 12,

(2) If {vn} is a sequence in SL(2,R) with v, — = € IH? and ;' — y € IH?, then

V() (V) = 0" (2)
locally uniformly for all V € Gry(K?) transverse to n®*(y).
(3) If g € SL(d,K) commutes with the elements of U(SL(2,R)), then gon =m.

Proof. By conjugating ¥ we can assume that
U= @;117—(17:' (7)

Let &, : OH? — F(K%) denote the 74,-equivariant boundary map described in Sec-
tion 2.3.

By definition, if v € SL(2, R) is a hyperbolic element, then 74, () is diagonalizable with
eigenvalues having pairwise distinct absolute values. Furthermore, forallk =1,...,d;—1,
gk (v") is the direct sum of the eigenspaces of the k largest eigenvalues of 74, (7).

First, we construct the map 7n. Observe that since ¥ is Pj-proximal, U(vy) is Pj-
proximal and P;_-proximal for every hyperbolic element v € SL(2,R). Thus, for all
i=1,...,m, there are integers k; € {0,...,d;} such that

o > k; =k, and for all hyperbolic v € SL(2,R), @ﬁlfij:('yﬂ € Grk(Kd) is the
attracting fixed point for the action of W(v) on Gry(K%), and

« Y7, d—k; = d—k, and for all hyperbolic y € SL(2,R), @72, £ " (y7) € Gra_i(K?)
is the attracting fixed point for the action of W(y~1) on Gry_;(K%).
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Then set
nt =, gl 0l = Gr(KY)
and
't =@l g™ OH? - Grok(KY).

Note that this pair of maps are continuous, ¥-equivariant, and transverse.
For every v € T'H?, there exists a one-parameter subgroup {@+}ier of hyperbolic
elements in SL(2,R) so that «.(v) = ¢;(v) for all ¢t € R. Since ¥(w1) is Py-proximal,

b :=log (M) > 0,

Met1(¥(@1))
Ae(W(er) o
Aet1 (¥ (@)
for all t > 0.

If X € K% then

||XH¢),5('U) = H‘I’(@t)fl(X)H

v

so, if Y € nf(vT) and Z € n?=*(v™) are non-zero, then

Wl _ e (Fle) IVl ll¥1,
1204,y = M(¥lar)) (2], 11,

which completes the proof of (1).

If {v,} is a sequence in SL(2,R) with 7, — z and ~v,!

ot
0
0, — £ and m,, — m with £(c0) = z and m~1(0) = .

Notice that if W € Gry(RY) is transverse to 797%(0), then {¥(«,, )(W)} converges
to 7% (c0) (since, by definition, n*(cc) is the attracting k-plane of ¥(«w;) and n?=*(0)

— 3, one can write vy, =

Ly, @y, my, where £, m, € SO(2),t, > 0,and @; = e(_)t> . By assumption, t,, — oo,

is the repelling (d — k)-plane). So, by equivariance, if V' is transverse to 77 *(y), then
U (m,,)(V) is transverse to 797%(0) = lim ¥(m,,)(n?~*(y)) for all large enough n. Thus,
{¥(@y, my)(V)} converges to n*(c0) locally uniformly in V. Therefore, {¥(v,)(V)} =
{U(l, @, mp)(V)} converges to W(£)(n*(c0)) = n*(z) locally uniformly in V. This
proves (2).

To prove (3), fix x € H? and a hyperbolic element v € SL(2,R) so that 4+ = z.
Then W(y) is Py-proximal and n*(z) € Gry(K?) is the attracting fixed point of W(y), so
gn*(x) = n*(x) since g commutes with ¥(v). Similar reasoning shows that gn¢=%(x) =
n?*(z). O
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The following technical result says that the image of the limit map of an Anosov
representation is asymptotically homogeneous at a parabolic fixed point. In one of the
arguments that follow, we need uniform control over continuous families of Anosov rep-
resentations, so we introduce a parameter wu.

Proposition 5.3. Suppose that o € SL(2,R) is a parabolic element, X is a closed -
invariant subset of OH? containing the fized point a™ = o~ of a, ¥ : SL(2,R) — SL(d, K)
is a Py-prozimal representation with Py-limit map n, and £ € SL(d,K) is elliptic and
commutes with the elements of ¥(SL(2,R)).

Let U be a compact metric space and {gy}ucu be a continuous family of elements in
SL(d,R). Suppose

€= (£%617F) . U x X = Grp(K?9) x Grg_i(K%)

is continuous and for each u € U, the map &, := &(u,-) is transverse, &, (at) = gun(a™)
and

fu ca = guﬁlll(a)gqjl o éu (8)

If v € SL(2,R) is a hyperbolic element with attracting fived point o, then

lim (g.%(7) "9, " 0 &uoq™) (zn) = gun(x)

n—0o0

iflimz, =2z € 0H? and z, € ~~™(X) for all n. Moreover, the convergence is uniform
muel.

Proof. Fix a distance dg on Gry(K%) x Grg_x(K9) induced by a Riemannian metric.
Suppose the proposition fails for a sequence {z,} C X with limz,, = = € X. Then
there exist € > 0, {n;} converging to infinity and a sequence {u;} in U such that

d ((guj‘lf(v)’"fgif 0 &y, © 7”-7) (xnj),gum(x)> > €

for all j. Passing to subsequences we may suppose that u; — us € U.
For notational convenience, let

N = Gu; ¥ (7) Mgyt o &uy 0™

for all j € N. Since 7 is U-equivariant and &,(a™) = g,n(a™) for all u € U,

gu]n(a—‘r) = gu]\I’(7>_nj77(a+) = guj\I](fY)_njg'Lle © guj (a+)
= 9u; V(7)1 gy, 0 &y 07" (@) = i (a”).

So, by passing to a tail of our sequences we may assume that x,,; # at for every j.
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First suppose that {y; =" (2y,)} lies in a compact subset of 9H? — {a}. Then z =
v~ . Since &y; — &u.,, there exists N > 0 sufficiently large so that {gujlfuj (y;)}n>n lies
in a compact subset of flags transverse to g, ! &, (o) = n(y"). Hence Proposition 5.2
part (2) implies that

o, 15 (n;) = () 7" (g5, (y5)

converges to (v~ ). Thus

¢ < liminf dg (nj(2n,)s 9u,n(2)) = di (Guan(Y7), guwn(y™)) =0

and we have a contradiction.
Now suppose that {y;} does not lie in a compact subset of OH? — {a'}. We may
assume without loss of generality that v~ = 0, v* = co = a*, and a = »; where

1 ¢

Then y; € R € 9H? for all j. Let z; = |y;| € Z and w; = y; — 2z; € [0,1] and set
6j =" w,; =" a%. Notice that a® (w;) = y;, d;(w;) = an;, 6; = 0o and 5;? — .
Passing to a subsequence, we can suppose that w; — w € [0,1]. Proposition 5.2 part
(2) then implies that ¥(3;)(V) converges to n*(z) locally uniformly for all V € Gry(K9)
which are transverse to n9=%(c0). Also,

05 (@n;) = gu, (v ") g, (66 (0% (w))) = gu, U (v ") gy (gu, 67U (™) g, N En (w))
= gu, LU (y % ) g (€ (w))) = gu, 57 W(8;) (9., €0 (wy)

(where in the first line we apply assumption (8)). We may pass to a subsequence so
that ¢% — o, € SL(d,K). Then ¢, is also elliptic and commutes with the elements of
U(SL(2,R)) and hence, by Proposition 5.2 part (3), fixes each element in the image of
7. Then

lim 0 (2a,) = gu.loon®(2) = gu. " (z)

j*}OO

since g, 1€5 (wy) = g, L &5 (w), gL &L (w) is transverse to 19" (c0) = g, L&} (00),
and loo 0on = 1.

Reversing the roles of k and d — k, we may similarly show that nd k(xnj) —
Gu..n*F(x). Hence we again have a contradiction. 0O

6. A dynamical characterization of linear Anosov representations
In this section, we prove Theorem 1.2. The forward implication has already been

established as part (3) of Theorem 1.1. The reverse implication follows from the following
more general statement.
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First, recall from Section 3 that a transverse, p-equivariant, continuous map & =
(€F, ¢d- k) : AD) — Grk(Kd) x Grg— k(Kd) induces a continuous decomposition of E
into a pair of sub-bundles E = OF @ EdF of rank k and d — k respectively. Further,
the flow rj)t induces a flow on Hom(= Zd—k @k ), which we denote by ¢, and any canonical
norm on E induces a canonical norm on Hom(Z Zd—k @k) which is simply given by the
associated operator norm.

Theorem 6.1. Suppose I' C PSL(2,R) is a geometrically finite group and p : T — SL(d, K)
is a representation. If there exists a p-equivariant, transverse, continuous, strongly dy-
namics preserving map £ = (£8,¢37F) ¢+ A(T) — Grp(K?) x Grg_x(K%), then p is

/\
=d
—

type-preserving and the flow ¢; on Hom(Z=% @F) is uniformly contracting with respect

~

to any canonical norm on Hom(éd’k,@ ). In particular, p is Pi-Anosov and & is its
Py.-Anosov limit map.

The following is an immediate corollary of Theorem 6.1 and Theorem 4.1.

Corollary 6.2. SupposeT" C PSL(2,R) is a geometrically ﬁm’te group and p : T' — SL(d,K)
is a Py-Anosov representation. Then the flow ¢, on Hom( Zd—k @k) s uniformly con-
tracting with respect to any canonical norm on Hom(Z Ed-k @k)

As another corollary, we see that if p is Zariski dense, then p is Px-Anosov if it admits
a transverse limit map, which generalizes a result of Guichard and Wienhard from the
uncusped Anosov setting [18, Theorem 4.11].

Corollary 6.3. Suppose ' C PSL(2,R) is a geometrically finite group and p : T — SL(d,K)
is a representation.

(1) If p is irreducible, and there exists a p-equivariant, transverse, continuous, map
€= (£4,¢471) : A(I) — Gri(K%) x Grg_1(K?), then p is Pi-Anosov and & is its
Py -Anosov limit map.

(2) If N*p: T — SL(AFK?) is irreducible (e.g. if p(T) is Zariski dense in SL(d,K)) and
there exists a p-equivariant, transverse, continuous, map & = (¢F ¢4=k) « A(T) —
Gry(K?%) x Gry_i(K%), then p is Py-Anosov and & is its Py-Anosov limit map.

Proof. (1): It is enough to show that £ is strongly dynamics preserving. Fix an escaping
sequence {v,} in ' with 7, — 2 and v, — y. Let [p(7,)] denote the image of p(v,)
in P(End(K?)). Then it is enough to show that [p(v,)] converges to the element T €
P (End(K?)) with ker(T) = £~ (y) and Image(T) = £'(z). Since P(End(R?)) is compact
it is enough to show that every convergent subsequence of p(7,) converges to T. So
suppose that [p(y,)] — S in P(End(K?)). Then

S() = lim p(yn)(v)
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for all v € P(K%) \ P(ker S).

We first claim that Image(S) = &!(z). Since p : I' — SL(d,K) is irreducible, there
exists z1,...,2q € A(T) so that &(x1),...,&(zq) spans K% Since O is perfect, we can
perturb each x; and assume that

y&{ry,...,xq}

Then p(v,) (€4 (x;)) — €' (2). Since {&'(x1),...,E (x4)} spans K%, we can relabel and
suppose that

ker S @ ¢! (z1) @ - @ € (wpm) = K?

where m = d — dim ker S. Then
S(&(x;)) = lim p(ya)(€' (2))) =& (2)

for all 1 < j < m. Hence Image(S) = £!(z).

To compute the kernel, we notice that Gry_;(K?) may be identified with P(K%*) by
identifying a hyperplane Q in K¢ with the projective class of linear functionals with
kernel Q. Notice that [*p(v,)] converges to 'S in P(End(K®)). Repeating the argument
above shows that Image(*S) = £971(y), so the kernel of S is €471 (y).

(2): One can argue similarly using the Pliicker embeddings. O

Proof of Theorem 6.1. Suppose that T' C PSL(2,R) is a geometrically finite group, p :
I' — SL(d,K) is a representation and that

€= (68,6477 A(T) = Gri(K9) x Grg_p(K%)

is a continuous, transverse, p-equivariant, strongly dynamics-preserving map. Lemma 2.2
implies that p is type-preserving.

Let ||-|| be a canonical family of norms on E'p and let C be a full collection of embedded
cusp neighborhoods so that the restriction to the fibers over O(F)C is canonical for all
C € C. We will also use ||| to denote the lift of ||-|| to a continuous family of norms on
the fibers of U(I") x K%

The proof divides into two parts. We first use properties of the canonical family of
norms to control the flow over the thin part U(F)C. We then use a compactness argument
to control the flow on the complement.

Proposition 6.4. If C' € C, then there exist constants bc and Bc and an embedded cusp
sub-neighborhood C' C C such that if v € U()¢r, t > 0 and ¢s(v) € U for all
s € [0,t], then
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Y
60t _ sl o
6¢(Z2)M1 4, 0 121,

forallY € (:)k|v and non-zero Z € éd*k|v.

Proof. Suppose that C = («a)\H. Then it suffices to find a horodisc H C H and
constants b, Be such that: if v € U(T) g, ¢t > 0 and ¢5(v) € U(T") g for all s € [0,1],
then

¥l ) R4
— P < BoembetlZ v (10)
1214, 0 1ZIl,

for all Y € ¢¥(vT) and non-zero Z € 47k (v™).

After possibly replacing C' with a subcusp, there exists a cusp representation W :
SL(2,R) — SL(d,K) for a and p(«) such that ||| on U(T')y coincides with a p(a)ss-
invariant, W-equivariant family of norms H'HzeTl H2-

Let 1 be the Pg-limit map of W. Proposition 5.2 implies that there exists B,b > 0
such that

*
Y llgew) g eIV

12150 121

(11)

forall t >0, v € T'H? Y € n*(vt) and non-zero Z € n**(v~). Choose b = b and
T > 0 so that

Be ™ < et forall t > T. (12)

We claim that there is a horodisk H' C H so that if v € U(T')g+, ¢t € [T,2T] and
¢s(v) € U(T) g for all s € [0,¢], then

Yl ) < o—bet Y 1l
1Z1l4,0) 1Zll,

(13)

for all Y € ¢¥(v?) and non-zero Z € ¢97%(v™). If this is not the case, then there exists

e a sequence {t,} in [T, 277,

« anested sequence {H,,} of horodisks centered at the fixed point of & whose intersec-
tion is empty,

o asequence {v,} such that ¢s(vy,) € Ul g, for all s € [0,¢,],

e a sequence vectors {Y,,} such that Y, € £*(v}),

« a sequence of non-zero vectors {Z,,} such that Z, € ¢47%(v),
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such that

¥allg, 0n) s, ¥l
—_— > e _—
1Zals, (oo 1Zall,,

(1t d _(ef 0
w=1\qy 1 and  as={ [ s

As usual, by conjugating, we can assume that ¥ = @74, and o = [e1].

Let

There is a sequence {s,} — oo of positive real numbers and a sequence {m,} of
integers such that {w, := @ _,, %m, (v,)} is relatively compact in 7" H?. By passing to
a subsequence, we may assume that w, converges to some ws, € T H?, and that

— V(e—s, um,)(Yn) V(a_s, tm,)(Zn)
(Vo, W) == (\IJ(@_Sn m,) Vo)l ¥ (a_s, umn)(Zn)H;n)

converges to some (Vioo, Woo) € K? x K¢. By definition,

Vo, W) € ¥(@—s, wm,) (§k<vr—i_) X fd_k(v;)) = ff—f(w:{) X fﬁ_k(w;)

where &, = ¥(@_,, ) 0§ 0w, . Proposition 5.3 (applied when U is a singleton) implies
that lim,,, &, =7, so

(Voo Woo) € 0 (w) x "M (w).
Since |- is ¥-equivariant, Equation (14) implies that

*
IValls,, (wn)

||YTLH v Yn Vn y
o oo o g pon Wl an, Vol
Wally,,

[ Zn

IWallg,., (w) 1Znllg,, (w.)
10 (e ) (Za)Il%
(2. Ti)

that ¢, — t € [T, 2T]. Then taking n — oo in Equation (15) we obtain

where C,, = . By passing to a final subsequence, we can suppose

*
Verllsum o e WVerllig e Vsl
[ A Wl

Since Vo, € n*(wk) and W, € n?*(wZ,), this contradicts (11), thus proving the claim.
Repeated applications of the claim imply that if v € U(T")ys and ¢ > T is a number
such that ¢s(v) € U(T") g for all s € [0,¢], then

1YW, 0 < obet Y1,
1Z1] 4, ) 121l
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for all non-zero Y € ¢¥(vT) and Z € £€47%(v™). Hence, if we define

B et 121 1Y Mg, ) Q.
Be =max<e ——2:0<t<T, veK, Y, ZecK"-{0};,
12114,y IY1l,

(notice that B¢ is finite by Lemma 3.8) then the proposition follows. O

It remains to control the behavior of the flow on the thick part. The proof of the
following proposition is inspired by arguments of Tsouvalas [35, Theorem 1.1].

Proposition 6.5. Suppose that K is a compact subset of G(I‘), {un} is a sequence in
K, Y, € Oy, Z, € 2%k, and |Yull, = |Zull,, = 1 for all n. If {t,} C R,
lim¢, = 400 and ¢, (u,) € K for all n, then

bt (Y
0 )l ) _

0.
n—o0 H(btn (Z”) ||¢tn (un)

Proof. We first choose a compact set K C U(T) so that K C 7(K) (where 7 : U(T') —
U(F) is the quotient map). For each n, choose v, € K so that 7(v,) = u, and 7, € T so
that w, = v, (¢, (v,)) € K. We may assume that v, — vo, and w, — ws for some
Voos Woo € K. Notice that v, — vI and v, — w.

Let V,, € &¥(v;h) and W, € ¢€97%(v;) denote lifts of Y, and Z,, respectively. Then

o0, Yolly, )y WVall, @y lpOrm) V)],

66, (Z)llg,, ) IWallg,, @y o) W)l

Also, since K is compact, there exists L so that if v € K, then |||, is L-bilipschitz to
the standard norm |-||, on K% So it suffices to show that

)T V)l

lim =0.

w00 () W)y

Since € is strongly dynamics preserving, Lemma 2.2 implies that

lim o'd*k(p(lyn)_l) = o0, (16)

n—co 0q_r1(p(vn) 1)

(v}), and Ug_i(p(vn)"1) — €47%(wZ). By the p-equivariance of &,

o0

U(p(n)) — &*
€ ¢47F(w;,), which implies that

p(’yn)_l(Wn)

lim Z(Ua—k(p(1n) 1) plom) ~H (W) = 0.

n—oo

Therefore,
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1

||2 > hm1nf||W Iy > l

L

. Hp(’)/n)
héggéf Udfk(P('Yn) )

We now write Vi, = V,, + V,/, where V| € U(p(vs)) and V;!' € p(v3) (Ua—r(p(1n) 1))
are orthogonal. Notice that

—1 /
lim sup [e(vn) (Vi) -

n—soo Od—k+1(P(7n) 1)

so
" —1 V!
i 1000,
n=oc [[p(y) = (Wa)l,
1 "
As such, if % does not converge to 0 it must be the case that %

does not converge to 0, and hence that

tim sup 1P Vi,
e ORI UA] B

We may then pass to a subsequence so that the limits
lim p(vn)‘l(spanK(Vé')) = lim p(vn)_l(SpanK(Vn))
n—00 n—0oo

are equal and exist. At the same time,

lim p(yn)~ (SpanK(V )) C hm Ua—r(p(yn) ") = €47 (w3),

n—oo

and

tim p(y) ~(Spang(Va)) € Jim p()~ (€ () = Jim & (uf) = € ().

n— 00 n—00

This contradicts the transversality of £, and completes the proof. O

We now combine Proposition 6.4 and Proposition 6.5 to finish the proof of Theo-
rem 1.2.

For each C € C, let C' C C be the embedded cusp subnelghborhood given by Propo-
sition 6.4. Let ¢’ = {C’ : C € C} and let K = U( ) — U(I‘)cf which is compact. Let
b=min{bc : C € C} and B =max{B¢ : C € C}.

Proposition 6.5 implies that there exists 7y > 0 so that: if ¢ > T}, v € K with
¢1(v) € K, Y € ©F|,, and Z € E97|, is non-zero, then

IoeMllgy iy 1 11T,

— . 17
(62,0 ~ 2 |21, {an
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Moreover, since K is compact, there exists R > 0 so that: if v € I?, 0<t<Ty,Y e (:)k|v
and Z € 297k, is non-zero, then

o (Y Y
|| t( )”(z’t(v) S Ret” H’U (18)
624, 0 11,
Now choose T' > 0 so that
2 1 T1(1+4b)—bT 1 or 1
B“Re™! < 5 and Be < 5
We claim that if t > T, v € U(F), Y € C:)k|v and Z € éd_k|v is non-zero, then
Yl 1YV
16 Moy _ LY o
16e( 24,00 — 21121,

Once we have proven our claim, we can choose

_ log(2)
T

ey o 1211, R _
A := max [9:(llgy ) 121 0<t<T, Yeb, -0 ZcZ¥F,-0},
Hqst(Z)||¢t(U) ||YH1)

and

a

(notice that A is finite by Lemma 3.8) and observe that

I9eMllou) gyt ¥,
6214, 0 1211,

for all t > 0, v € UT), Y € ©F, and non-zero Z € Z9=*|,. Hence, we will have shown

that p is Px-Anosov.
We now establish (19). Fix v € U(T'), t > T, Y € ©F|, and non-zero Z € Z¢7F|,. If
¢s(v) ¢ K for all s € [0,¢], then Proposition 6.4 implies that

lée(Y ), (o) 1
166(Z)llg, ) ~ 1zl, — 2121,

Otherwise let
s1=s1(t,v) == min{s € [0,¢] : ps(v) € I?}
and

S92 = $a(t,v) := max{s €10,t] : ¢ps(v) € [?}
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If s5 — s7 > T4, then Proposition 6.4 and (17) give

6e (Yl 6, (0 1 Y]]
+(v < Be—bsl (_) Be—b(t—s2) v
Bl =@ () ( )1zt

:1 b(sg—s1—t) 17 llv ”Y”
2° 121,

1
20Z1,

On the other hand, if so — s; < T7, then by Proposition 6.4 and (18), we have

1Yl , o) 1Y,
¢ (v < Be —bsy Res2— 51 (Be—b(t 82))
Pl = B¢ 7
- Yil, o LI,
< (B2R6T1(1+b) bT) | 1 -
1Z]], =3 1Z1l,

7. Hitchin representations are Borel Anosov

In this section, we show that Hitchin representations are irreducible and Borel Anosov,
i.e. Py-Anosov for all k. Theorem 1.2 reduces the proof that Hitchin representations are
Borel Anosov to the claim that their limit maps are strongly dynamics preserving.

Theorem 7.1. Suppose I' C PSL(2,R) is a geometrically finite group and p : ' — SL(d, R)

is Hitchin with continuous positive p-equivariant limit map £ : A(T') — Fy. If {yn} is a
sequence in T with v, — = € A(T') and v, ' — y € A(T'), then

p(ra) (V) = " (x)
for all V transverse to £47%(y).
Proof. Our proof relies on an observation about convergence of sequences of flags.

Definition 7.2. For any positive triple of flags (F, Fy, F3) in }"(Rd), define the open set
O(F1, Fy, F3) = {F € F(RY) : (F\, F, Fy, F3) is positive}. (20)

The following result is a corrected version of Lemma 3.16 in [7] (whose statement
omits an additional assumption given here).

Lemma 7.3. Let (Fy, F_) be a transverse pair of flags in .F(Rd). Suppose that {Fy ,},
{F2.n} and {Fs.,.} are sequences in F(R?) such that

(1) Fr,, = F* and Fy,, — F,
(2) F5, — F~, and



36 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

(8) (F1n, Fan, Fsn) is positive for all n.

If {F,} is a sequence in .F(Rd) such that F,, € O(F1,y, Fan, F3.) for all n, then F, —
Ft.

We first suppose that « # y. Then by passing to the tail of the sequence {v,}, we
may assume that each -, is hyperbolic with attractor and repellor v;f and v, in A(T).
Then v," — x, v, — y, and v,(2) — = for all 2 € A(T') — {y}.

Since A(T) is infinite, there are points a,b € A(I") — {x,y} such that

o eitherzr <a<b<yory<b<a<az, and
e up to taking subsequences, the sequences {v,(a)} and {v,(b)} both converge mono-
tonically to x, and from the same direction.

Observe that

lim &(yn(a)) = &(x) = lim £(7,(D)).

n—roo n—oo

Now, consider the open sets

Oy := 0 (&(a),£(b),€(7,))

for all n. Since v,, — y, and either a < b <y or b < a < y, it follows that there is some
N > 0 such that either a < b <, foralln > N, or b <a <+, foralln> N.Lemma
3.15 in [7] then implies that O,, = O,, for all n,m > N. Hence, if we set O := Oy, then
for all n > N, we have

P(1) (O) = p(7n) (On) = O(E(n(a)), £(1m (b)), E(7,,))-

Since &(vn(a)),E(1m (b)) — &(z) and £(v;,,) — &(y), we may apply Lemma 7.3 to
deduce that

lim p(7,)(F) = ()

n—oo
for all F' € O. Repeating the same argument with 7,1, we see that there exists an open
set O ¢ F(RY) where

Jimp(y, ) (F) = &(y)
for all F € O'. Hence, we may apply Lemma 2.2 to deduce the proposition when x # y.
Now suppose that = y. Pick v € T such that z := v~ !(z) # 2. Then v,y — z,
(Yay) ™t = z # . By the first part, p(v,7)(F) — &(z) for all F € F(R?) transverse to
£(2). Equivalently, p(y,)(F) — &(z) for all F € F(R?) transverse to £(x). O
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We recall that positive tuples of flags are in general position in the following sense.

Proposition 7.4. (Fock-Goncharov [16, Prop. 9.4], Sun-Wienhard-Zhang [34, Prop 2.21])
If (Fy, ..., Fy) is a positive tuple of flags, (n;)*_, € N¥ and n =ny +---+ny < d, then
@F | F" has dimension n.

We also use the following equivalent formulation of the positivity of a quadruple of
flags.

Lemma 7.5. A quadruple of flags (Fi,Fa, F3, Fy) is positive if and only if there is a
basis (b,...,bq) of R such that by € Fj 0 FI™ for all i € {1,...,d}, and some
u,v € Uso(by,...,bq) such that u(F3) = Fy and v~ (F3) = Fy.

Proof. Suppose first that (Fy, Fp, Fs, Fy) = (Fi,u(F3), F3,v 1 (F3)) for some basis
(bi,...,bq) of R? such that b; € Fj N FI~! for all i € {1,...,d}, and some
u,v € Uso(b1,...,bq). Then v(Fy, Fy, F3, Fy) = (F1,vu(F3),v(F3), F3), which implies
that v(Fy, Fy, F3, Fy) is positive. Thus, (F, Fy, F3, Fy) is positive.

Conversely, suppose that (Fy, Fy, F3, Fy) is positive. By Proposition 7.4, Fy and F5 are
both transverse to Fj, there is a unique unipotent w € SL(d, R) that fixes F} and sends
Fy to F3. Then w(Fy, F, F3, Fy) is positive, which implies that there is a basis (b1, . .., bq)
of R? such that b; € Fi N F¢~" for all i € {1,...,d}, and some u,v € Usq(by, ..., bg)
such that

(F1,w(Fz), w(F3), F3) = w(F, Fa, F3, Fy) = (F1, vu(F3), v(F3), F3).
Since v is unipotent, fixes F;, and sends F3 to w(F3), it follows that v = w. Therefore,
(F1, Fp, Fs, Fy) = v H(Fy, ou(Fs), v(F3), F3) = (Fy,u(F3), F3,0 Y (Fy)). O

Proof of Theorem 1.4. The fact that p is Py-Anosov, and that = + £¥(z) is the Anosov
limit map for k =1,...,d — 1, follows from Theorems 1.2 and 7.1. Further, Theorem 7.1
and Lemma 2.2 imply that:

(1) If « € T is parabolic, then p(«) is weakly unipotent.
(2) If v € T is hyperbolic, then p(v) is loxodromic.

If « is parabolic, let € A(T') — {a*}, and note that (o™, a™1(x),z, a(x)) is a cycli-
cally ordered set of distinct points in A(I"). Then we may apply the following lemma to
(E(a™), &(a(x)), &(z), £(afr)) to further conclude that p(a) = +u for some unipotent
u € SL(d,R) with a single Jordan block.

Lemma 7.6. Let g € SL(d,R) be weakly unipotent, and suppose that there are flags
F,F e .F(Rd) such that Fy is fived by g and (F1,g~*(Fy), Fo, g(Fy)) is positive. Then
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F is the unique fized flag of g, or equivalently, g = +u for some unipotent u € SL(d,R)
with a single Jordan block.

Proof. By Lemma 7.5, there is a basis (bi,...,bs) of R? such that b; € Fj n Fg~—+!
for all i € {1,...,d}, and some u,v € Usqo(b1,...,bq) such that u(Fz) = g(F») and
v Y (Fy) = g Y(Fy). Then a = u~'g and b = gv~! both fix F} and Fy, so they are
diagonal in the basis (by, ..., bq). Furthermore, since g is weakly unipotent, the diagonal
entries of a and b are either 1 or —1.

Assume for contradiction that there is some i, j € {1,...,d} such that the i-th diagonal
entry of b is 1, while the j-th diagonal entry of b is —1. Since all the upper triangular
entries of v are positive, this implies that the upper triangular entries of bv along the
i-th row are positive, while the upper triangular entries of bv along the j-th row are
negative. But this is impossible since ua = g = bv, and for every column of ua, the
upper triangular entries in that column must have the same sign. As such, b = +id. This
implies that gss = +id and g, = v = w.

It now suffices to show that u has a unique fixed flag in F (Rd). Observe the following
linear algebra facts:

(1) If w is a unipotent element that is represented in a basis (e1,...,eq) by upper
triangular matrix where all the upper triangular entries are positive, then the line
spanned by e; is the unique fixed line of w.

(2) Ifw € Uso(by, ..., bg), then for all k € {1,...,d—1}, the linear action of w on A" R?
is represented in the basis (bi; A+ Ab;, )1<i;<..<ip<d Dy an upper triangular matrix
where all the upper triangular entries are positive.

These two observations imply that the unique fixed flag of u is the flag F given by
F* = Spang (by,...,b;) forall k € {1,...,d—1}. O

It only remains to show that p is irreducible. Suppose that p is not irreducible. Then
there is a proper subspace W C R? which is invariant under p(T). By Theorem 7.1, p(y)
is loxodromic for any hyperbolic v € T', so either W contains the attracting fixed point
(in P(R%) of p(v), or W lies in the repelling hyperplane (in P(R%)) of p(7). Since &
is transverse, this implies that either W lies in the repelling hyperplanes of p(y) for all
hyperbolic v € T, or W contains the attracting fixed point of p(+) for all hyperbolic v € T'.
However, this contradicts Proposition 7.4 in either case. Therefore, p is irreducible. O

8. Stability of Anosov representations

In this section, we prove Theorem 1.3, which we restate here.

Theorem 8.1. If ' C PSL(2,R) is a geometrically finite group and po : ' — SL(d,K) is
Py-Anosov, then there exists an open neighborhood O of po in Homy,(po), so that
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(1) If p € O, then p is Py-Anosov.

(2) There exists « > 0 so that if p € O, then §, is a-Holder (with respect to any
distance on A(T') induced by a Riemannian metric on H? and any distance on
Gry,(K?) x Grg_(K%) induced by a Riemannian metric).

(3) If {putuenm is a K-analytic family of representations in O and z € A(T) then the
map from M to Grg(K?) x Grg_i(K%) given by u s &,,(2) is K-analytic.

The proof of (1) is based on the proof of stability for Anosov diffeomorphisms on
compact manifolds given in Shub’s book [33, Cor. 5.19]. The two key features which allow
us to overcome the non-compactness of the base space are the smooth conjugacy of the
flows on the cusps, see Equation (21), and uniform estimates for families of canonical
norms, see Lemma 3.8.

Proof of Theorem 8.1:. We define
E(0)=0xUT) xK? and E(0)=T\(0 x U(I') x K.

The geodesic flow on U(T") extends to a flow on E(O) whose action is trivial on the first
and third factor. This in turn descends to a flow on E(Q). As usual, we use ¢; to denote
these flows. Also, notice that F(O)|, naturally identifies with E,.

Let |]|” be a canonical family of norms for E,, and let C be a full collection of
embedded cusp neighborhoods for I" so that ||||0 is canonical with respect to C. Suppose
that F,, = @’;0 Ego’k is the Py-Anosov splitting of E,.

A ¢-invariant splitting of E (O) First, we prove that (after possibly shrinking O) there
exists a continuous ¢;-invariant splitting

E(0) = 6F g Ed-*

that restricts to the splitting Epo = @’;O &) éﬁg‘k over pg.

If C € C and C = (a)\H, then by shrinking O if necessary, we may assume that there
is a continuous map go : O — SL(d, K) such that

1

gc(p)po(a)ge(p)™ = pla)

for all p € O. Moreover, if p € O, the bundle isomorphism
O Eplumyy — Eplumy, given by (po, v, Z) = (p,v,9c(p)(Z))

descends to a bundle isomorphism

~

c.n o
D, Epo|0(r)c - Ep|0(r)c
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so that if ¢4(Z) € E'p for all s € [0, ¢], then

“|G(F)c
O (04(2)) = ¢u(95(2)). (21)

With this, we may extend the splitting E,, = @50 ® ég’k to a global splitting

0
E(0)=FFeGiF
by first setting
F¥ o) = D (O5,]0) and G7¥|(, ) = D (E5"]0)

forall p € O, C € C and v € U(T')¢, and then extending this globally after perhaps
shrinking O and each C.

The flow ¢, does not necessarily preserve the splitting E (0) = Pk Ga—F. To find the
required ¢s-invariant splitting, we will use the contraction mapping theorem. For that

purpose, we extend ||-|° to a canonical family of norms ||-|| on the fibers of E(O) over
O xU(T") as follows. If C' € C, we define

H%g‘(Z)H = 12, ) forall pe O, veU(T)cand Z € Ejyl..

(p
This gives us canonical norms over all C' € C. Then, perhaps after once more shrinking
O and each C, we may extend this to a continuous family of norms ||-|| for the fibers of
E(0) over O xU(T') such that the restriction to Ep is canonical for all p € O.

Suppose that V is a subspace of E(O)|(p,v)7 W is a subspace of E(O)|(p7w) and T €
Hom(V, W). We define the operator norm

1Tl o= m2x {IT(Z)l oy Z € Vi 112y =1}

Then, if VW C E(O) are subbundles, @ : G(F) — G(I‘) is an isomorphism, and T :
V' — W is a map that restricts to a linear map T'|(,) : V|(p) = W|(p,Qa)) forall p € O
and v € U(T'), we define

1Tl = sup 1Tl (.0

for any subset X C U(F) In the case when @) = id, we may view 7" as an element
of S(Hom(V,W)), the vector space of sections of the bundle Hom(V, W). Note then
that ||~||0(F) defines a norm on S(Hom(V, W)) whose corresponding distance is Cauchy
complete.

We may decompose the flow ¢; as

_ At Bt
¢t - (Ct Dt)
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relative to the splitting E(O) = Fk g Ga-*. Here, A; : Fk — Fk is a map such that for

allpe Oand v € U(F), Ay restricts to a linear map A, . ) : F\k|(p,,u) — ﬁ’“|(p7¢t(v)), etc.

In the case when this splitting happens to be ¢i-invariant, then B; = 0 and C; = 0.
Fix € € (0,1/2) so that

1+e <9 1 e(l+¢)
(1—¢) ™~

Lemma 8.2. Up to taking a subneighborhood of O, there exists T > 0 so that if t € [T, 2T,
then A; and Dy are invertible and

2 2
, + ——= <2 and e(1+26) (1+26)§1.
1—€e (1—¢)? (1—-26)2(1—2€2) — 2

(22)

max{HAt_lBt

t_lctH aLt} <,

— —1
where Ly := SuppEO,vGG(F) (HA(P,U,t)H(p,v) ‘D(p,mt)H(p ¢t(v))) :

Proof. For a subset X C U(F), define

Dty

‘71

<p,¢t<v>)> )

First notice that for all v € 0( '), Bpo,, ) = 0, C(l)va ¢ty = 0 and both A, ,4),
D(,,,v+) are invertible since Fk o G- k|p0 = G)k &) :d is a flow invariant splitting.

Ly(X) = pe?ol?ex <||A(p,v7t) H(p,v)

Since pg is Px-Anosov, there exist ¢, C > 0 such that

14

(Pov,t) ||(p07”) ’D (po,v,t) H(ﬂo bt (v))

for all v € U(T) and ¢ > 0. Choose T so that Ce=T < e.
Consider the compact set

X = {v e U(I) : ¢;(v) ¢ U(I)¢ for some ¢ € [072T]}.

By shrinking O if necessary, we can ensure that on E((’))|@ xx, if t € [T, 2T], then A;
and D; are invertible, and

maX{HAt_lBt Dt_lCt

X)} <e

Ix Iy L

On the other hand, if v € U(F) — X, then there is some C € C such that ¢;(v) € U(T)¢
for all ¢ € [0,27T]. Then by construction,

Pty = B © Dy © (85) 7
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for all p € O and ¢ € [0,2T]. Since &JE is an isometry that preserves the splitting, it
follows that on E(O) if ¢ € [T,2T)], then A, and D, are invertible, B; = 0,
C; =0, and

lo x(0(T)—Xx)’

L (O(F) - X) = sup [l A
vel(I)-X

<e 0O

-1
po,v,wH(pO,@) ‘DW“’“ (p0,¢¢(v))

Consider the bundle Hom(G4~*, F¥) — O xU(T') with its induced operator norm ||-||.
Let R, C Hom(G% %, F*) denote the ball bundle of radius r about the zero section.

Proposition 8.3. If ¢t € [T, 2T, then there is a well-defined map ¢ : R1 — Rae given by
Ui(f) = (Bi+ Af) (D +Cof) ™

forallpe ©,veUT) and f € Ril(pw)- Furthermore:
[¥e(f1) = be(fo)ll < 2¢lfr = foll

forallpe O, v e U(F) and fi, fo € Ril(pu)-

Remark 8.4. One can verify that the map v, has the defining property

Graph(¢(f)) = ¢¢(Graph(f))

for all ¢ € [T,2T), p € O, v € UT) and f € Ril(y.p)- Similarly, if B, = 0 and C; = 0,
then

Ui(f) = Af Dyt =¢ro fogy
is a well defined flow on Hom(@d_k7 ﬁk)
Proof of Proposition 8.3 . If ¢ € [T, 2T, then
D+ Cif = Dy (id+D; ' Cif)
forall pe O, v e U(T) and f € Ril(p,v)- By Lemma 8.2, if [|f[[, ,) <1, then
1D el 0y < 105 Collgey 1oy <€

which implies that id +D; *C;f has trivial kernel for all p € O and v € U(F) Hence,
id+D; 1C, f is invertible. Since Lemma 8.2 also gives that D, is invertible, it follows that

(Bt + Aef) (D + th)_l € Hom(éd_kvﬁk”(p’@(v))
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is a well-defined for all f € Ri|(,.0)-
We first show that (By + A f) (Dy + C’tf)71 € Racl(p, ¢, (v))- By Lemma 8.2,

| A7 "B + f}|(p7v) <l+e

and

1

l6Gd+DC )7 |, < T2

Thus, by Equation (22),

B+ ) (D + o) | < Lo|[A7 B+ £ lGA+D7CN) Y

(p,9e(v))

< 1+e€
€
1

< 2e.
—€

Next, we prove our final claim. For any p € O, v € G(F), [ € Ril(pw) and 1 €
Hom(Gdik’Fk”(p,v)a

(e)(f +sn) = An(Dy + Cof) ™" — (By + A f)(Dy + Co f ) ' Cin(Dy + Co f)

4
ds|,_o

_yy (n(id+Dflth)’1
~ (A7'Bi+ N)(id+D; Cof) 7 Dy Conid +D7 1 Cof) ) D!
€ Hom(GU™, F™)| (.60 (0))-

Thus, by Equation (22),

=@+

E
s=0

1 6(1 +6)>
<6<—+7 17l = 2€lmll )0y - O
(p,¢¢(v)) 1—e¢ (1 — 6)2 (p,v) (pv)

Let S(R,) be the space of continuous sections of R, — O x U(T"). Notice that 1)y
induces a map ¥ : S(Ry) — S(Ra.) given by

W (o) (p,v) = e (0(p, ¢-e(v))) -

By Proposition 8.3, the map 1; is a contraction mapping on S(R1) for each t € [T, 2T].
We may now apply the contraction mapping theorem to conclude that for each ¢ € [T, 27T
there exists a unique 7 -invariant section o® of the bundle Rs..

We claim that ¢(®) does not depend on t. If t1,t, € QN[T,27], then there exist
sequences {n,;},{m;} with n;,m; — oo and njt; = mjty for all 7 > 1. Then by the
proof of the contraction mapping theorem
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o) = lim ¢ (a<t2>) = lim ¢S, (0—“2)) = g(ta),
j—o0 7

]4)00

So o® does not depend on t when ¢t € Q N[T,2T]. Then by uniqueness of invariant
sections and the continuity of ¥y, we see that o?=* := o® does not depend on t. Then
09=F determines a ¢-invariant (d — k)-dimensional subbundle Z4=* of E(Q) defined by

Ed_k'(p,v) = Graph Ud_k(ﬂ? ’U),

see Remark 8.4.

Applying a similar argument to the bundle Hom(ﬁ k G9-k) we obtain, by further
shrinking O if necessary, a ¢s-invariant k-dimensional subbundle OF of E((’))

To show that E((’)) — ©F @ 297 it now suffices to show that the fibers éd_kkpm
and (:)k|(p71,) are transverse for every (ps ) €O XG( I'). Suppose for contradiction that
there is some non-zero Z € Z%7%|, ) N ok l(p,v) for some p € O and v € U(I). We
may write Z uniquely as Zy + Z;_ where Zj € s l(pv) and Zg_p € G- |(p v)- Since

24k corresponds to the section 0?~% € §(Ra.), the fact that Z € 24~ *| (p,v) is nOD-ZETO
implies that Z; ; # 0 and

|‘Zk||(p7y) . ’|0d_k(p7 ,U)(Zdik)H(p,'U) dek
1Za-kllpoy Zatlpm < o (o, 0)| .y < 26 < 1.

For the same reasons, Zj # 0 and

1 Za-kll(p,0)
1 Zk ||(p,v)

< 2e < 1,
which is a contradiction. Thus, ©F and £9-* indeed give a ¢s-invariant splitting of £ (0).
Proposition 8.5. The flow f + ¢ 0 fo¢d_; on Hom(Z Zd—k @k) is uniformly contracting.

Proof. We start by proving the following estimate:

||¢t(Y)H(p’¢t(v < EHYH(p,

||¢t(Z)||(p,qst(v) 2 HZ”(p v)

(23)

itpe O, v e G(F), te|[T,2T],Y € (:)k|(p7v) and Z € 29— *| (.0 is non-zero. Given such
p, v, t,Y and Z, let

Y:Y1+Y2 and Z:Z1+Z2

be the decomposition relative to E(OQ) = F* @& G4=*. Then, by the construction of ©F

and 9%, we have [|Ya|,.,) < 2€[Y1]l,..) and [[Z1]l,., < 2¢[|Zzl;,,,,. Further,
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(V) = (A() + Bu(¥a)) + (Cu¥i) + Du(¥3))
and since ¢4(Y) € (:)k|(p’¢t(v))) we have
1C: (Y1) + De(Ya)ll (6, () < 26 146(Y1) + Be(Y2)ll (6, (1) -
Thus by Lemma 8.2
| A¢ (Y1) + By (Ya)

.60 ()

1+ 2€) || A (Y1 + A7 By(Y2))

||()07¢t(v))
||AtH(p,v) (1 + 262) ||Y1H(P7'U)

)
)
)
)2 (14 262) [ Aell (o 1Y 1l 0 -

Similar reasoning shows that

1

166D psyiony = (1= 2602 (1 — 262) 121l

10 sy

So by Lemma 8.2 and Equation (22),

1oe Moy (142621 +2¢%) Wl _ 1 1¥ M0

€

16D pgpiony — (1 =262(1=2€2) [|Z]l () ~ 2012l 0)°

This proves the estimate in Equation (23).
We then may apply Equation (23) iteratively to show that, for all n € N,

190 s (1" Wl

162N (p6000)) — 2 1Z1l(,.0)

ifpe0,vell),te [nT, (n+1)T], Y € (:)k|(p’v) and Z € éd_kkpm is non-zero.
Finally

||¢t(y)||(p,¢t(v)) < Coe_COt”YH(p,v)
16e(2) M (p.6000)) — 1Z1lp,0)

forallpe O,v € U(F), t>0,Y € (:)k\(p,v) and non-zero Z € éd’kkp’v), where cg :=
and

ot 12000

Cy:=2supse
{ IV,

pyv)

(notice that Cj is finite by Lemma 3.8). O

45

log 2
T

ipe0well), Y ez, , —0, te [O,T]}
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Existence of limit maps Next, we use the ¢;-invariant splitting E(O) = OF g Ed-F 1o
define limit maps

€= (€ €47F) L A(T) — Grp(K?) x Grg_p(K9).
Lift this splitting of E(O) to a splitting
E(0) =6"p=iF,

The flow ¢; on E(O) lifts to a flow, also denoted ¢;, on E(O), under which this splitting
is invariant. Then the bundle Hom (0%, Z¢=F) lifts to the bundle Hom(©*, Z4-*). Finally,
we use ||-|| to denote the lifted norms on E(O) and Hom (0%, Z4-F).

By Proposition 8.5, there exists Cy, ¢y > 0 such that

16001y < Coe™ 1Lf | oy (24)

for all f € Hom(E**,0%)|, ) = Hom(E9* ©F)|(, 4, (1)) and ¢ > 0.
Let

o= (% 07F): OxUT) = Gr(K) x Grg_p(K%)

be the map so that o%(p,v) = ©%|(,.) and oc?*(p,v) = Z47*|, ). Since o is ¢-
invariant, o*(p,v) and 09 *(p,v) depend only on p, v+ and v—. We now check that
0% depends only on p and v~. Let v € T' be a hyperbolic element, let vy, € U(T) be a
vector so that vf{ =~" and vy =" . Let {(v) be the translation distance of v on H2.

d—k

Then ¢+ (vy) = 7" (vy) for all n. Since o is equivariant and ¢;-invariant, it follows

that

R (p,09) = 097 (p, S—ur) (7(v9))) = p(7) (04  (p, v5))

(o

for all p. Furthermore, if W ¢ K% is a (d — k)-dimensional subspace that is transverse to

o (p,v,), we may view W as the graph of an element fy € Hom(Z4~%, 9’“)|(p7vw).

Equation (24) implies that
|{p(7)_n(fw)’|(p7v7) = ||fW||(Pv'Y”(”'\/)) = ||fW||(P7¢né(~/)(“"{)) - 0’
which implies that p(y)™"(W) — o%*(p,v,). Thus, 09=*(p,v,) is the repelling fixed
point of p(7) in Grg_1(K?). Now if 2 € A(T') \ {77}, then there exists v € U(T') so that
vt =2z, v7 =~ and

Jim dy () (¢—t(vy), -¢(v)) =0,

80 V" (P—ne(y)(v)) = vy. Thus,
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o (p,vy) = lim o (0,7 (G_ney () = lim p(3)" (097" (p, ).
Since 0% *(p,v,) is the repelling fixed point of p(v) in Gry_j(K?), this implies that
o@=F(p,v) = 0?7 *(p,v,). Therefore, since 0% % is ¢-invariant, if v~ = 47, then

o9=%(p,v) is the repelling fixed point of p(7y). Since every point in A(T') is a limit of
repelling fixed points of hyperbolic elements of T, this implies that %% depends only
on pand v™.

One may similarly show that o* depends only on p and v, so there exists

€ = (€, 697%) : O xA(T) — Gry(K?) x Cra_p(K?)

so that a(p,v) = (€F(p,v "), €17 F(p,v7)). As such, if p € O, then p is Py-Anosov. This
proves (1).

The limits maps are Holder We now prove that, perhaps after shrinking our neighbor-
hood O again, that the limit maps are uniformly Hoélder. It is possible to establish this
using Shub’s C"-Section theorem [33, Thm. 5.18], however setting up bundles with the
correct regularity (see [33, Cor. 5.19]) and verifying the admissibility condition is some-
what involved when U(F) is non-compact. Instead we provide a direct argument based
on the proof of Lemma 4.4 in [38].

We will continue to work with E(O) and Hom(Z4~%, ©*)], ). For p € O, v € U(T')
and z € A(T') — {vT}, let f, .0 € Hom(E?"* ©%)|, ) denote the unique element with

Graph<fp,v,m) = gg—k@)

Notice that f, 4,(v),c = fpw.e for all t € R.If v € U(T), we let v C 9H? denote the
endpoints of the geodesic through the basepoint of v which is orthogonal to v. (One can
use the orientation to canonically identify them as v1 and v~ but this will not be
needed for our purposes.)

Lemma 8.6. Up to taking a subneighborhood of O, there exists C1 > 1 so that if p € O,
v e U(T) and z € vt NA(T), then

Cil S ||fp,v,ac||(p’v) S Cl-

In the case when I' is convex co-compact, the lemma is a simple consequence of
equivariance and compactness, but in the general geometrically finite case the proof is
somewhat involved. Delaying the proof of the lemma, we first complete the proof of part
(2) of Theorem 8.1.

Let O' C O be a subneighborhood of py such that the closure of O of O isa compact
subset of O. Fix a compact set K C U(T") such that
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AT) = {vt :ve K}.

Let do denote the distance induced by a Riemannian metric on 0 H, and let dg denote
the distance induced by a Riemannian metric on Grd,k(Kd). Fix § > 0 such that: if
v e K and ¢ € A(T") — {v™} satisfies doo(z,v7) < 6, then there exists ¢t > 0 such that
x € ¢_¢(v)* (in particular z # v™T).

Fix p € O" and v € K. Then dg is bilipschitz to the norm l[Il ¢, on any compact
subset of the affine chart

Hom(Z*%,0%)|,.,) =~ {V € Grq_x(K%) : V is transverse to ff;(er)},

where the isomorphism identifies each f € Hom(Ed*k,Gk)kp,v) with its graph in
Grd,k(Kd). By the compactness of O" x K, there exists Cy > 0 such that: if p € O,
v e K and z € A(T") with deo(x,v™) <6, then

da (é-g_k(x)ué-g_k(v_)) < 02 ||f/3,v’$||(p7v) .

There also exists C3 > 0 such that: if v € K, 2 € A(T), doo(w,v™) < § and z € ¢_4(v) ™,
then

1
— et < doo(z,v7) < Cae™t.
3

Finally, let
04 = diam (Grl“d,k;(Kd)7 dg>

and C' = max{d~°Cy, CoC1C2C5° }.
Now suppose z,y € A(T) and p € 0. If doo(z,y) > 6, then

doo (,y)

s < Cdoo(,y)”

da (§77(2), &5 (y)) < Cy < Cy

If doo(7,y) < 6, then there exists t > 0 and v € K such that y = v~ and x € ¢_(v)™*.
Then
de (&7"(@), &7 (7)) < Callfpwell g < CoCoe™ || fopcrall sy on)
< CpC10205%doe (w07 ) < Cdoo (2, ).
Therefore, 5;1_’“ is co-Holder.

One may similarly prove that, perhaps after passing to another sub-neighborhood,
that if p € O, then 5’; is ¢;-Holder for some ¢; > 0. So, (2) holds with a = min{co, c1 }.
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Proof of Lemma 8.6 Let O’ C O be a subneighborhood of py such that the closure of
O’ of O is a compact subset of O. If the lemma fails for @', then there exist sequences
{pm} in O, {v,} in U(T) and {z,,} in A(T) so that x,, € v for all m and

W}gnoo 10g ||fp'm7vm;a77n ||(p7n7Um) = +OO (25)

By passing to a subsequence we can suppose that p,, — p € O. After passing to a further
subsequence and translating by elements in I', either

(1) vy > v e UT) and z,, = € A(T'), or
(2) there exists an embedded cusp neighborhood C = (&) \H such that {v,,} C U(T)g
and {v,,} projects to an escaping sequence in U(T).

In the first case, x € v and limy o0 || fp, 00,00 ) = 1 fowelly # 0. Thus we

Pm,Um

must be in the second case.

By conjugating, we may assume that p,,(a) = po(a) for all m € Z' U{co}, and
that the restriction of the canonical norm on E(Q') to each E,  is with respect to
the same cusp representation ¥ for « and pg(«). Then there exists a po(«)ss-invariant,
U-equivariant family of norms |||} .71 gz such that

.y = 14115 (26)

for all p € O" and v € U(I')g. Also, given a linear map f between subspaces of K%, let
| f|I> denote the operator norm relative to |||

Let y € A(T") be the center of H and fix a hyperbolic element v € SL(2,R) with
attracting fixed point y. After translating each v,, by a power of a and passing to a
subsequence, we can find n,, — oo such that y~"" (v,,) — v € T*H? and v~ (x,,,) —
e dH.

Let n/ : 9H? — Gr; (Kd) denote the boundary maps associated to ¥ for j = k,d — k,
see Proposition 5.2. Let f € Hom(n?*(v=),n*(v")) denote the unique element with

Graph(f) = n% " (x).

Notice that f # 0, since n* and n?~* are transverse and = € v*. By Proposition 5.3,

U(y7) (g, (0) = (RO 08, 0n™ ) (7T (u) = 0 (%),

for j = k,d — k. Similarly, ¥(y~")(& (x)) = nl(z), for j = k,d — k, so

P

A

\I/(’y_nm) © meWme o \IJ(’Ynm) — f'
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Notice, that if X € Z47F| ), then Equation (26) implies that

Pm,Um

*

prm,vm,wm (X)”(pmﬂlm) = H (W('}/_nm) o fpm,v,,“:rm © \II('Ynm)> (W('Y_nm)(X»

= (vm)

and [ €y (X) - o,0) = X, 0,y Thus

; |/

= (Ug)

*
TV}i—I>nOO ”me,Ume (PmsVm) = n}i—{noo "\Ij(ry_nm) © fpnuv'm7$7n o \I/(rynﬂl) v # O

and we have a contradiction. This completes the proof of Lemma 8.6 and hence the proof

of (2).

The limits maps vary analytically It remains to prove the analytic variation of the limit
maps. First suppose that K = R. The general strategy is to complexify and then exploit
the fact that locally uniform limits of complex analytic functions are complex analytic.

Suppose that h : M — Homy,(po) is a real analytic map and every representation in
h(M) is Px-Anosov.

If p: T' = SL(d,R) is Py-Anosov, we may compose with the inclusion map ¢g :
SL(d,R) — SL(d,C) to obtain a Pj-Anosov representation p€ = 150 p: T' — SL(d, C).
Fix generators gi,...gx of I' and view Hom(T,SL(d, C)) as a subset of SL(d, C)N. We
can then view h as a map h : M — SL(d, C)". We can also realize M as a totally real
submanifold of a complex manifold M€ and then extend h to a complex analytic map
h: M€ — SL(d,C)N. Notice that h(M) and h(MC) have the same Zariski closure in
SL(d,C)N.

We claim, after possibly shrinking M, that h(MC) C Homy,(pS). For any a €
SL(d, C), the set

{g € SL(d,C) : g is conjugate to a}

is locally closed (i.e. open in its closure) in the Zariski topology, see for instance [11,
Theorem 3.6]. This implies that Homy, (p§) is itself a locally closed set in the Zariski
topology on SL(d, C)". Then since h(M) C Homtp(pg:)7 by shrinking M€ we may assume
that h(MC) C Homg,(p§).

Since every representation in k(M) is Py-Anosov, by shrinking M€ again if necessary,
we may assume that every representation in h(M©) is also Py-Anosov. Thus, if we can
prove that for any z € A(T), the map u §’,§(u) (z) from M€ to Grk(Cd) is complex
analytic, then its restriction to M is real analytic.

If 7 is a hyperbolic element and p € h(MT), then p(v) is Py-proximal and 5’; (vh) is
the attracting k-plane of p(y). Then it follows from standard results in the perturbation
theory of linear operators, see, for example, [22, Chapter 6], that the function from M c
to Gry(C?) given by u + &, (v") is complex analytic. If 2 € A(T), then there exists a
sequence {7, } of hyperbolic elements of T, so that 7,7 — z. Then, since the map
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() € M€ x A(T) = ff]f(u) (y) € Gri(CY

is continuous, the function u +— fﬁ(u) () is a locally uniform limit of complex analytic
functions, hence complex analytic. This completes the proof of (3) in the case when
K =R.

The case when K = C case follows by simply repeating the argument in the previous
paragraph. O

9. Positive representations in the sense of Fock-Goncharov

In Fock and Goncharov’s work [16], they define positive representations in the follow-
ing way. Suppose that Iy € PSL(2,R) is a discrete group and T\ H? is a non-compact,
finite area hyperbolic surface. Recall that v € ['g is peripheral if it is represented by a
curve which may be freely homotoped off of every compact subset of S = T'\ H?. Let
A, (To) be the set of fixed points of the peripheral elements in I'y (in this case, all of
which are parabolic). Notice that A,(T'g) inherits two natural cyclic orders as a subset of
OH?2. A representation p : Iy — SL(d,R) is positive if there is a positive, p-equivariant
map ¢ : Ap(Tp) — }'(Rd). Notice that, with Fock and Goncharov’s definition, every
Hitchin representation of a convex cocompact, but not cocompact, Fuchsian group Iy is
also a positive representation of a lattice I'. (If I'\H? is homeomorphic to the interior of
a compact surface S, then I' is a finite area uniformization of the interior of S.) In this
case, every peripheral element is mapped to a loxodromic element and there are many
different positive p-equivariant maps from A,(T') to F(R?), corresponding to a choice of
fixed point for the (unique) fixed point of each peripheral element of T.

Motivated by their definition, we define the notion of a positive type preserving repre-
sentation in the following way. Let I' C PSL(2,R) be a geometrically finite group. Then
~v € T is peripheral if it is either unipotent or it is a hyperbolic element whose fixed
points both lie in the boundary of A(T").

Definition 9.1. A representation p : I' — SL(d, R) of a geometrically finite Fuchsian group
is positive type preserving if

o p(v) is weakly unipotent for every parabolic v € T', and
o there is a positive, p-equivariant map ¢ : A,(I') — }'(Rd).

Observe that if p : I' — SL(d,R) is a positive type preserving representation, then
po f.:Tg— SL(d,R) is a positive representation for all homeomorphisms f : T'o\ H? —
I\ H2

It is clear that every Hitchin representation from I' to SL(d,R) is a positive type
preserving representation. We show that the converse is also true.

Theorem 9.2. If I' C PSL(2,R) is geometrically finite group, then every positive type
preserving representation p : IT' — SL(d,R) is Hitchin.
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Let p be a positive, type preserving representation, and let ¢ : A,(I") = F (Rd) denote
a positive, p-equivariant map. We make use of the following well-known fact which is
implicit in Fock-Goncharov [16], see Kim-Tan-Zhang [23, Observation 3.18] for details.
It may be viewed as a generalization of the fact that every bounded monotone sequence
in R is convergent.

Proposition 9.3. Let {F,,} be a sequence of flags in F(R?) and Hy,Hy € F(R?) such
that (Fi,...,Fn, H1, H) is positive for all n. Then the sequence {F,} converges to a
flag Foo € F(RY), and (Fy, ..., Fy,, Fs, Hy) is positive for all n.

We fix for the remainder of the section, one of the two natural cyclic orders on 9 H?.
With this convention, it is natural to define one-sided convergence of sequences.

Definition 9.4. A sequence {z,} in OH? converges to x € dH? in the positive direction
(respectively, in the negative direction) if {x,} converges to x, and there exists N > 0
such that

xy <wxny1 < - - <z (respectively, Ty > Ty > - > )

For short, we write x,, /* x (respectively, x,, \, z) if {z,} converges to = in the positive
direction (respectively, in the negative direction). If {x,} converges to z in either the
positive direction or the negative direction, we say that {x, } converges monotonically
to x.

Definition 9.5. Let z € A(T).

o If there are sequences in A,(I") that converge to x from the positive direction (re-
spectively, from the negative direction), set

Er(x) = lim C(y) (respectively7 E_(xz) = lim C(y)) .

yEA (D), T yEAL (D), y\@

o If there are no sequences in A,(I") that converge to x in the positive direction (re-
spectively, in the negative direction), then there necessarily are sequences in A,(I")
that converge to z in the negative direction (respectively, in the positive direction).
Thus, we may set

i (w) := & (x) (respectively, £ (x) := &4 ().

Since Ap(T") is dense in A(T"), Proposition 9.3 implies that these limit maps are well-
defined. We refer to the maps &4 : A(T) — F(RY) (respectively, £_ : A(T) — F(R?)) as
the plus limit map (respectively, minus limit map).



R. Canary et al. / Advances in Mathematics 404 (2022) 108439 53

Since ( is p-equivariant, both &, and £_ are p-equivariant. We next check that they
satisfy the following positivity property, which implies in particular, that they are both
positive.

Proposition 9.6. Let x1 < xo < - -+ < x) be points in A(T), and let s1,...,s, € {+,—}.
Then

(531 (Z‘]_), 552 ('T2)7 v agsk <$k>)
s a positive tuple of flags.

Proof. For each i =1,...,k, let g;,q; € A,(T") be points satisfying the following condi-
tions:

o ¢; = x; if there are no sequences in A, (T") that converge to x; in the positive direction,

o ¢, = x; if there are no sequences in A, (I') that converge to z; in the negative direction,

o x; < ¢ < git1 if there is a sequence in Ap(T") that converges to x; in the negative
direction, and

e ¢i_4 < qi < x; if there is a sequence in A,(I") that converges to x; in the positive
direction.

Here, arithmetic in the subscripts is done modulo &.

By the definition of £, for each i = 1,...,k, there is a sequence (y; n)n>1 in Ay(T)
that converges monotonically to x;, and satisfies lim,,— oo C(Yin) = &, (x;). By passing
to the tail of the sequences (¥;.n)n>1, Wwe may assume that for all n,

Q<Y <q <q<Yon <y << Q<Y < G

which implies that

(C((Jl)v C(yl,n)v C(q/l)v C(QQ)7 C(yQ,n)7 C(qé)v ce C(qk)v C(yk,n)7 C(Q;c))

is a positive tuple of flags in F (Rd). Our result then follows from repeatedly applying
Proposition 9.3. O

We next prove that {1 satisfy an analogue of the strongly dynamics-preserving prop-
erty of Anosov limit maps. In particular, if £; = £_, then it implies that &1 is strongly

dynamics-preserving. In fact, the proof mimics the proof of Theorem 7.1.

Proposition 9.7. Suppose {v,} is a sequence in T with v, — x € A(T') and v, — y €
A(T). Then after passing to a subsequence, there exists s1,82 € {4+, —} such that

nll_{go p(yn)(F) = &, (z)



54 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

for all F € F(R?) transverse to &, (y).

Proof. We first suppose that = # y. By passing to the tail of the sequence, we may
assume that each =, is hyperbolic. Then v — =z, v, — vy, and 7,(2) — z for all
2 e AT) - {y}.

Since A, (T") is infinite, there are points a,b € A,(I") — {z, y} such that

e citherzx <a<b<yory<b<a<uz, and
e up to taking subsequences, the sequences {v,(a)} and {v,(b)} both converge mono-
tonically to x, and from the same direction.

Therefore,
Jim ((yn(a)) = &, (x) = lim ((yn(b))

for some s; € {+,—}. For each n > 1, choose a point ¢, € A,(I') \ {7, } such that
¢n, — y and v, (cn,) — y. Passing to a further subsequence, we can assume that {v,(c,)}
converges monotonically to y. Thus,

lim C(f)/n(cn)) = 553 (y)

n—oQ

for some s3 € {+,—}.
Now, consider the open sets (defined in Definition 7.2)

On 1= 0 (¢(a),¢(b),¢(cn))

for all n. Since ¢,, — y, and either a < b < y or b < a < y, there exists N > 0 such that
either a < b< ¢, foralln > N,orb<a < ¢, forall n > N.

We may then argue, exactly as in the proof of Theorem 7.1, that there exists an open
set O C F(R?) so that

for all F € O. Repeating the same argument with ~, 1, we see that there exists sp €
{+,—} and an open set O’ C F(R?) where

Jim p(y, ) (F) = €4, (y)
for all F € O'. Hence, we may apply Lemma 2.2 to deduce the proposition when x # y.
If + = y, pick n € " such that 2z := n~!(2) # z. Then v,n = z, (v.n)~ ! — 2 # x.
By the first part, there exists s1,s2 € {+,—} such that p(y,n)(F) — &, () for all
F e F(RY) transverse to &, (z). Equivalently, p(v,)(F) — &, (z) for all F € F(R?)
transverse to &, (x). O
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Given z € A(T') — A,(T), it will be useful to construct a sequence in I' and a pair
of points in A(T"), so that the orbits of the points under the sequence of elements of T'
approach x from opposite sides.

Lemma 9.8. Ifx € A(T')—A, ('), then there exists a sequence {v,} in T, a pointy € A(T),
and points a,b € A(T') — {y} so that:

(Z) Yn — T,
(2) 't =y,
(3) Yn(a) /@ and v, (b) \( .

Proof. Let r : R — H? be a geodesic joining a point w € A(T) — {z} to x. Since z is
a conical limit point, there exists sequences {¢,} C R and {v,} C T so that ¢, — o
and {dgz(r(tn), 7 (r(0))} is bounded. Therefore, after passing to a subsequence, v, =
(v o)/ (t,) converges to a vector v € U(T'). Notice that v, (v;") = z and v, (v, ) = w
for all n.

If there is a point a € A(T") such that v~ < a < v™, then v, < a < v;} for sufficiently
large n. It follows that w < ~,(a) < z for sufficiently large n. Since ~,(a) — =z, it
follows that 7,(a) , x. On the other hand, if there are no points a € A(T") such that
v~ < a < v, then v and v~ are the fixed points of a hyperbolic, peripheral element. In
particular, v, }(z) # vT for any n. Since 7, 1(x) — v, this implies that v, *(z) \, v*,
80 ¥ (vT) M x. In either case, there is some a € A(T) \ {v™} such that v, (a) 7 z.

Similarly, we may find a point b € A(T") — {v™} so that v, (b) \yz. O

Lemma 9.8 allows us to complete the proof of Theorem 9.2.

Proof of Theorem 9.2. We first notice that it suffices to prove that & = ¢_ and
§+la, ) = ¢ Indeed, if we can do so, then we may set § : A(T') — F(R?) to be the
map given by £(z) := £+ (x). Proposition 9.6 implies that & is positive, while Proposi-
tion 9.3 implies that ¢ is continuous.

The proof proceeds in three cases. In the first case, we assume that z is not the fixed
point of a peripheral element. If x is the fixed point of a peripheral element, then z is
the fixed point of either a parabolic element or a peripheral hyperbolic element.

Case 1: x € A(T') — A,(T). Let a,b,y € A(T") and {~,} be as in Lemma 9.8. By Proposi-
tion 9.7, we can pass to a subsequence so that there exists s1, 2 € {+, —} so that

p(m)(F) = &, (2)

for all F € F(R?) transverse to &, (y). By Proposition 9.6, the flags £, (a) and &, (b) are
both transverse to &, (y). So

£ () = lim p(y,) (€4 (@)) = lim &, (1u(a)) = &4 (2) (27)
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and

£ur() = lim p(ya) (€4 (1) = Tim €4 (b)) = € (). (28)

The second equality in (27) and (28) holds because v,, € I" for all n, and the last equality
in (27) and (28) is a consequence of Proposition 9.3. Thus £, (z) = £_(x).

Case 2: x € A,(I") is the fixed point of a parabolic element o € T'. As in the proof of
Theorem 1.4, Lemma 7.6 implies that p(c) has a unique fixed flag in F(R?). It follows
that &4 (z) = £_(x) = ((x) is this unique fixed flag.

Case 3: © € A,(T") is the fixed point of a hyperbolic peripheral element v € I'. By
replacing v with 4y~! we can assume that = y*. Then either v© < a < 4~ for all
a€eA,(T)={yT, v }ory” <a<~T forallae A,(T') — {v",7"}. Also, by definition,
£4(2) =€ ().

We now show &, (z) = ((x). Since y* — v and v~ — v, Proposition 9.7 implies
that there is an increasing sequence {m,,} of integers so that

p(Y")(F) = &4 (2)

for all F € F(RY) transverse to &, (7). It follows that p(7) is loxodromic, and that
&, (y") and &, (y7) are respectively the attracting and repelling fixed flag of p(7).

To finish the proof, it is sufficient to show that ((y) is also the attracting fixed flag
of p(7). Let {x,,} be a sequence in A,(I') that converges monotonically to y~. Since ¢ is
positive, the tuple

(C('y+)’ C(xl)v SRR C(mn)v C(’Y_))

is positive for all n. Since £, (y~) = limy, 00 {(2, ), Proposition 9.3 implies that

(<(7+)7 <($1)7 EER ] C(mn)7 €+(77))

is positive for all n. In particular, ((y*) and £, (y~) are transverse. Since ((y7) is fixed
by p(y) and &, (y7) is the repelling fixed point of p(v), it follows that {(y*) is the
attracting fixed flag of p(y). O

Appendix A. Constructing cusp representations

In this appendix, we prove Proposition 3.6. Suppose g € SL(d, K) is weakly unipotent

and let
(1 1
w=\0 1/
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We will construct a representation ¥ : SL(2,R) — SL(d,K) where ¥ («) = ¢, and gss
commutes with the elements of ¥(SL(2,R)).

First suppose that K = C. Then using the Jordan normal form there exist p €
SL(d,C), integers d; > dy > -+ > d,, > 0, and complex numbers \i,...,\,, € S! so
that dy +--- +d,, =d,

1

pgup” = @74, () and  pgepTt = @OFL N ida, -

It follows that ¥ defined by

for all 8 € SL(2,R) has the desired properties.
Next suppose that K = R. Given two matrices A, B we will let A ® B denote the
Kronecker product, that is if A = [a;;] is an m-by-n matrix, then

allB L alnB
AgB=[ :
amiB - amaB

Also given 6 € R let

cosf) siné
M(9) = (—sin@ cos@) :

Then using the real Jordan normal form there exist p € SL(d,R), integers d1 > dy >
<+« > dpmyn > 0 and numbers Ay, ..., A\ € {=1,1}, Opi1, ..., Oman € R so that dy +
oot dp + 2dpy1 o+ 2dman = d,

pgup ™t = [®Ty 74, ()] & (BT, 7a, (1) @ ids]
and
pgssp” = [®T,Ajidg, | @ [@707, ida, @M(6;)] -

By the multiplicative property of the Kronecker product
[74, (B) ® ida] [idg, @M ()] = [ida, ®M (8;)] [7a, (B) @ ida] = 74, (B) ® M (8;)
for all 5 € SL(2,R) and so it follows that ¥ defined by
v(B)=p ' ([®717q, (B)] @ (@t 17, (B) ©ida]) p

has the desired properties.
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Appendix B. Anosov representations into semisimple Lie groups

In this appendix, we develop a more general theory of Anosov representations of
geometrically finite Fuchsian groups into a semisimple Lie group G with respect to a
parabolic subgroup P*. We extend results of Guichard-Wienhard [18, Prop. 4.3] (see also
Guéritaud-Guichard-Wienhard [17, Section 3]) to show that there exists an irreducible
representation ¢ : G — SL(d, R) so that a representation into G is Anosov with respect to
P if and only if its composition with v is P;-Anosov. This will allow us to immediately
recover generalizations of all the results we obtained for linear Anosov representations.

For the rest of the section, we will assume that G is a semisimple Lie group of non-
compact type with finite center, denote its Lie algebra by g, and let ad : g — sl(g) and
Ad : G — SL(g) be the adjoint representations.

Fix a parabolic subgroup Pt C G and an opposite parabolic subgroup P~ C G and
let F* = G/P* be the associated flag varieties. If p : ' — G is a representation, we
define the bundles

nt _ + o+ +

By =T\(U(I') x F7) and V7 =T\(UT') x T F~),
where T'F¥ is the tangent bundle of F *_ Observe that Vpi is a vector bundle over BpjE
of rank dim(F™*).

The geodesic flow on U(T') extends to flows on U(T') x F* and U(I') x T F* whose
action is trivial on the second factor. These in turn descends to flows on Bf and Vpi

which covers the geodesic flow on G(I‘) We use ¢; to denote all of these flows.
We say that a map

§=(667) MD) = FT x F~
is
o transverse if whenever x # y € A(T'), the pair (67(x), £ (y)) lies in the unique open
G-orbit in FT x F~.

o strongly dynamics preserving if whenever {v,} is a sequence in T, v, — z and
ot =y, then

plm)F = £ ()
for any F' € F* which is transverse to £ (y).

Given a transverse, p-equivariant, continuous map & we define sections

of :UI) = B =U() x F*
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given by 0'2:(’(}) = (v,{i(ui)). Since £ is p-equivariant, agi descend to sections 82':
u(r) - B

Definition B.1. A representation p: I' — G is P*-Anosov if the following hold:

(1) There exists a p-equivariant, continuous, transverse map & = (£7,67) : A(T) —
FrxF.
(2) For some family of norms ||-|| on the fibers of Vpi — Bpjt7 the pullback of the flow

@¢, also denoted ¢, is uniformly expanding/contracting on (32:)*17/?.

We refer to any such map ¢ as the P*-Anosov limit map for p.

Remark B.2. With a little more work, one can show that the pullback of the flow ¢; is
uniformly expanding on (o Iy V+ (with respect to some norm) if an only if it is uniformly

contracting on (g, )* ‘A/p_ (w1th respect to some norm).

Remark B.3. To be precise, the flow ¢; is uniformly expanding on (Eg‘)*‘/}j if there exist
¢,C > 0 such that

16621, 3£ vy = Ce 1 215 )

forallt >0,v e G(I‘) and Z € ‘A/pﬂ&zr(v). Likewise, the flow ¢; is uniformly contracting
on (0, )*‘//\'p’ if there exist ¢, C' > 0 such that

12e(D)N, (57 () < Ce™ 1215 )
forall t >0, v € U(T') and Z € ‘7/7|9£<v>
Remark B.4. In the case when G = SL(d,K) and (P, P~) = (P, P,*") where
P, = Stabg({e1,...,e;)) and P = Stabg((ep+1,---,€4)),

we can identify Ft = Grk(Kd) and F~ = Gry_;(K?). Then for any transverse pair
(F,Q) € Grk(Kd)xGrd 1 (K%), there is a natural identification T Grk(Kd) Hom(F G)

and Tg Gry_1(K?) ~ Hom(G, F). Thus, the pullback bundles (A+) (V*) and (0, )" (Vp*)

are canonically identified with Hom(@k 2d- *) and Hom("d k @k) respectively, where
©F and Z9-* are the sub-bundles of E that lift to sub-bundles ©% and Z¢=* of E,
with the defining property ©%|, = ¢T(vt) and 297%|, = ¢~ (v™). Thus, in this case,
Definition B.1 agrees with Definition 3.1, see Proposition 3.3.

If p : G — SL(V) is a finite-dimensional irreducible representation, we say that ¢ is
adapted to (P*,P™) if V = Lo ® Wy where Ly is a line and Wy is a hyperplane and
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Pt ={g€G:9¢(g)(Lo) = Lo} and P~ ={geG:¢(g)(Wo) = Wo}.

In this case, one may define embeddings ¢, : F© — P(V) and ¢_ : F~ —
Graim(v)—1(V) by letting

Y1 (gPT) = (g)(Lo) and ¢_(gP~) = 1p(g)(Wo).

The following result often allows one to reduce the general study of Anosov representa-
tions to the study of P;-Anosov representations into SL(d, R). For Anosov representations
of word hyperbolic groups the analogous result is due to Guichard-Wienhard [18, Propo-
sition 4.3].

Theorem B.5. Let G be a semisimple Lie group with finite center and let P* be a pair
of opposite parabolic subgroups. Suppose that v : G — SL(V) is a finite dimensional
irreducible representation which is adapted to (P+, P~). Then a representation p : T — G
of a geometrically finite Fuchsian group T' is P*-Anosov if and only if o p is P -Anosov.

Moreover, if &, = (££,€,) is a P£-Anosov limit map for p, then &pop = (Y4 ol o
§p_) is the Pi-Anosov limit map of 1 o p. In particular, the P*-Anosov limit map of p is
unique.

Adapted representations are not hard to construct. If nt is the nilpotent radi-
cal of the Lie algebra of PT, and n = dimn™, then ¥(g) = A" Ad(g) and V =
Span{¢(G)(A"nt)} C A™g is adapted to (P, P~), see [18, Remark 4.12]. We obtain
the following immediate corollary.

Corollary B.6. Suppose that G is a semisimple Lie group with finite center and P* is a
pair of opposite parabolic subgroups. There exists a finite-dimensional irreducible repre-
sentation ¢ : G — SL(V') so that a representation p : I' — G of a geometrically finite
Puchsian group T is P*-Anosov if and only if 1 o p is Py-Anosov.

Corollary B.6 allows us to generalize our main results about linear Anosov represen-
tations into the general setting. As in the SL(d,K) case, if p : I' — G is a representation,
let

Homy,(p) C Hom(T', G)

be the space of representations o : I' — G so that if a € T" is parabolic, then o(«) is
conjugate to p(a). Theorem 1.3 becomes:

Corollary B.7. Suppose that G is a semisimple Lie group with finite center, P* is a pair
of opposite parabolic subgroups of G and I' is a geometrically finite Fuchsian group. If
p:T — G is PT-Anosov, then there exists an open neighborhood O of p in Homy, (p), so
that
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(1) If p € O, then p is P*-Anosov.

(2) There exists a > 0 so that if p € O, then its P*-Anosov limit map &y s a-Holder.

(3) If {putuenm is an analytic family of representations in O and z € A(T'), then the
map from M to F* x F~ given by u — &,,(2) is analytic.

Theorem 1.2 yields:

Corollary B.8. Suppose that G is a semisimple Lie group with finite center, P is a pair
of opposite parabolic subgroups of G and T" is a geometrically finite Fuchsian group. A
representation p : T' — G is P*-Anosov if and only if there exists a p-equivariant, trans-
verse, continuous, strongly dynamics preserving map & = (€%, €47F) . A(T) = FT x F~.
Furthermore, € is the P -Anosov limit map.

One can also obtain analogues of parts (1) and (2) of Theorem 1.1 where the roles
of singular values and eigenvalues are played by roots acting on the Cartan and Jordan
projections (see [17, Section 3] for a complete discussion). Part (4) of Theorem 1.1 remains
true if we replace X4(K) with the symmetric space of G.

Theorem B.5 will be a consequence of Theorem 1.2 and the following dynamical
property of Anosov representations.

Lemma B.9. Suppose p: I' — G is a PT-Anosov representation of a geometrically finite
). If {yn} is a sequence in T

Fuchsian group T' with P*-Anosov limit map & = (£€7,¢
such that v, — x € A(T) and v, * — y € A(T), then
lim p(y,)(F) — € (x)

n—oo

for all F € F* transverse to £~ (y).

Delaying the proof of the lemma we prove Theorem B.5.

Proof of Theorem B.5. We make repeated use of the following observation which follows
from [17, Prop 3.5]. We sketch an alternate proof.

Observation B.10. (F, H) € F* x F~ are transverse if and only if ¢, (F) and +_(H)

are transverse.

Sketch of proof. Fix maximal compact subgroups K; C G =: G; and Ko C SL(V) =: Gy
so that ¢(K;) C K. For j = 1,2, we can fix Gj-invariant Riemannian metrics on
X; = G;/K; so that the map Ty : X; — Xy given by Ty (9K1) = ¢(g)(K2) is a totally
geodesic isometric embedding (see [31, Chapter 2]). Then T, extends to an embedding
Ty : X1(00) < Xa(00) of the CAT(0)-boundaries.

Fix (F,H) = (g+ P",g_P7). Let W,,W_ C X;(o0) be the interior of the Weyl faces
associated to g+P+g;1 and g_ P~ g_" respectively, i.e.



62 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

Wy = {z € X;(00) : Stabg(z) = g+ PTg1'}.

Also, let W+,VT/, C X5(00) denote the interior of the Weyl faces associated to the
parabolic subgroups (g4 )P1¢(g+) "' and ¥(g_)Py_1¢(g_)~! respectively. Notice that

Wy =T, (Ws)

since PT =~ 1(P)) and P~ = ¢~ (Py_1).

Next fix a maximal flat F C X; with W, W_ C F(o0) and fix some p € F. Then let
sp : X1 — X, denote the involutive isometry based at p. Then F and H are transverse if
and only if W, = s,(W_). Since Ty, : X1 — X5 is a totally geodesic isometric embedding,
there exists a maximal flat F C X, with Ty (F) € F. Then W, W_ C F(oo) and if
sp : Xo — X is the involutive isometry based at p := Ty (p), then (F') and ¢(H) are
transverse if and only if W = s,(W_).

Since

Tyosp=s5p0Ty
and any two distinct interiors of Weyl faces have trivial intersection:

Wy = s,(W_) = Typ(Wy) C Wi Nsp(Wo) = Wy = s,(W2) = Ty (s,(W-)) € Wy
= 5, (W_) C Wy =T (Wy) = Wy =5, (W_).

So F' and H are transverse if and only if ¢, (F') and ¢_(H) are transverse. 0O
We first prove the reverse direction of Theorem B.5.

Lemma B.11. If ¢ o p is Pi-Anosov, then p is P*-Anosov. Moreover, if §p 1s the p*.
Anosov limit map of p and §y.p is the Pr-Anosov limit map of Yop, then ¥4 ogpi = €qfop.

Proof. If v is a hyperbolic element of T', then, since ) o p is P;-Anosov, ¥(p(v)) is P;-
biproximal and §:go p(fy"’) is the attracting eigenline of ¥(p()). Since v is irreducible,
there exists F € F 1 such that ¢, (F) is transverse to the repelling hyperplane of ¢(p(7)),
SO

Ehop(YT) = Him (0 p)(9)" (V4 (F)) = lim . (p(7)"(F)) € 1 (FT).

Hence, §$O p(A(I‘)) C 14 (F1) because attracting fixed points of hyperbolic elements are
dense in A(T).

Since 1, is a ¥-equivariant embedding, £+ = w;loﬁjp'op is well-defined, continuous and
p-equivariant. Similarly, £~ = ¢ -! o f;o,) is well-defined, continuous and p-equivariant.
Observation B.10 implies that £ = (£7,£7) is transverse.
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We consider the vector bundles XA/pi and IA/ui , over Egﬁ and Edi)o o respectively. Notice
that the map ¥ induces a bundle embedding L;t : Vpi — X/}wio 0 which intertwines the
flows on the two bundles. Since ©op is P;-Anosov, there is a continuous family of norms on
the fibers of the bundle \A/di p gj}[o , such that ¢ is uniformly expanding/contracting
on the pullback bundle (ngpop)*‘zﬁ ,- Equip the bundle ‘/}pi — Ef} with the pullback
intertwines the flows, we see that the flow is uniformly

). Therefore, p is P*-Anosov

of this norm via L;)t. Since Lpi

expanding/contracting on Ug(Vpi) = () ((35)00)*‘7&)%)

with P*-Anosov limit map & = (¢7,¢7). O
We now prove the forward direction of Theorem B.5.

Lemma B.12. If p is P*-Anosov with P*-Anosov limit maps &y, then op is Pr-Anosov
with Py-Anosov limit map (¢4 0§59 0&).

Proof. Let n = (n*,n7) = (¢4 0 &4 0, ). Then 7 is continuous, ¢ o p-equivariant,
and transverse (by Observation B.10). So, by Theorem 1.2; it suffices to show that 7 is
strongly dynamics-preserving.

Consider a sequence {v,} in I with ,, — z € A(T') and v, — y € A(T"). Then, by
Lemma B.9,

lim (¢ 0 p)(7n) (¥4 (F)) = ™ (x)

n—oQ

for all F € F' transverse to 7~ (y). Similarly,

(¢ o p)(m)(W—(F)) =0~ (z)

lim
n— o0
for all F' € F~ transverse to nt(z).
Since 1) is irreducible, 1, (F ) spans V and one can repeat the proof of Corollary 6.3
to show that 7 is strongly dynamics preserving. O
It only remains to prove Lemma B.9.

Proof of Lemma B.9. Let p* be the Lie algebra of P*. Then there exists a Cartan
decomposition g = €@ p, a Cartan subspace a C p, and an element Hy € a so that

PF=gwe P o

a(£Ho)>0

where

s=00®Ps.

acd

is the root space decomposition associated to a. Let n* = Do+ #y)>0 9o and define
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T:n~ = F" where T(X)=eXPt
The map T has the following properties.

Observation B.13.

(1) T(n™) = {F € F' : F is transverse to P~ }.
(2) If H € a, then eff o T =T o Ad(ef).
(3) d(T)o:n~ — Tp+ FT is a linear isomorphism.

Proof. By definition, F is transverse to P~ if and only if (F,P~) € G- (P*, P™) if and
only if F = gP* for some g € P~. By the Langlands decomposition, P~ = N~ (PTNP™)
where N~ C G is the connected Lie subgroup with Lie algebra n™. Since N~ is nilpotent,
N~ =e" . So F is transverse to P~ if and only if F' = eX P* for some X € n~. This
proves part (1).

Part (2) is an immediate consequence of the definition. Part (3) follows from the fact
that g =n~ @®p™ (as vector spaces) and p™T is the Lie algebra of PT. O

As a consequence of (1) and (2) in Observation B.13, we have the following.

Lemma B.14. If {H,} is a sequence in a with lim,_,, a(H,) = —oo for all « € ¥ with
a(Hp) <0, then

lim ef"(F) = Pt

n—oo

for all F € F* transverse to P~ .

Proof. By Observation B.13 (1), F' = T(X) for some X € n™. Write X = 3" 5,) <0 Xa;
where X, € go. Then by Observation B.13 (2),

Py =T [Ad(e™) [ Y Xo| | =1 > ey,
a(Hp)<0 a(Hp)<0

=T Z eo‘(Hn)Xa
a(Ho)<0

Since lim,, 0o a(H,) = —oc for all a € 3 with a(Hp) < 0, it follows that

lim ef»(F) =T(0)=P". O
n—oo
Let K C G be the maximal compact subgroup with Lie algebra ¢ and fix a K-invariant
Riemannian metric on 71, and let |- | denote the induced family of norms on the fibers
of T F*.
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Let £ = (£F,€7) be the PE-Anosov limit map for p. Then let of (v) = (v, &T (v)).
Since p is Anosov, there is a p-equivariant family of norms on the fibers of U(T') x T F*¥ —
U(T) x F£ and constants C, ¢ > 0 such that

—ct
121ls_, (ot @y < Ce 12104 )

forallt >0, v € U(I') and Z € Te+(p+) F .
Consider an escaping sequence {7, } with v, — x and 7,1 — .

Case 1: If © # y, then =, is hyperbolic when n is sufficiently large. Furthermore, we can
find a bounded sequence {v,,} in U(T") such that v = +:f and a bounded sequence {g,}
in G such that

gn(E (), 6 () = (P, P7).
Then
gnp('yn)gglPi =Pt 5o gnp('yn)g;1 eL:=PTnP.

Notice that

9069 @ 9o
Ho)=

o 0

is a root space decomposition of the Lie algebra of L. Then, using the Cartan decompo-
sition of the reductive group L, there exist k, 1,k,2 € K N L and H, € a so that

9up(¥n)9n " = knpemky 0.
Since {v,} is a bounded sequence there exists C; > 1 such that
1
E|Z|g+(v:;) <N 2llof 0,y < CrlZler ity

foralln >1and Z € T§+(uf{) F7T. Likewise, there exists Cy > 1 such that

1
C_2|Z|F <|gn(2)lg,(r) < ColZ|F

foralln>1, Fe FTand Z € Tp FT.
Notice that v, (vs,) = ¢4, (v,) for some sequence {t,} with ¢, — oco. Since both

kn1 and kyo fix Py and |- | is a K-invariant family of norms, it follows that for any
Z € Tp+ F', we have
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e (Z)|p+ = [k 190 (V)00 K 5(Z) o+ < Calp(vn) 9 k5 (2) e )
—17.—1 _ —17,—1
< 0102 ||p(’7n)gn k”’z(Z)Ho;(v") - 0102 Hgn kn’Z(Z)HQf'—tn(Uz(’Un))

< CQCG_Ct"

9;1]{;;712(Z)H03(vn) < 01202C€_Ctn|g;1k-;712(z)|€+(y¢)
< CRC3Ce7M|Z|ps. (29)

By Observation B.13 (3), we know that for any « € ¥ such that a(Hy) < 0, and any
X € ga, there is some Z € Tp+ F*1 such that d(T)o(X) = Z. Then

efn(Z) = d(efl" o T)o(X) = 4

7 efn o T(tX).

t=0

Then by Observation B.13 (2) (see proof of Lemma B.14),

T(tX) = e Hn) 7.

d| g d d
— noT(tX) = —| T(te®H)X) = eHn) —
e o T(tX) = — (te )= .

dt |1 t=0

Thus, et (Z) = e*Hn) Z, 5o the inequality (29) implies that

lim a(H,) =—o0
n—oo

whenever a(Hp) < 0. Hence, by Lemma B.14,

lim ef"(F) =Pt

n—oo
for all F € F' transverse to P~. Since g,,(¢+ (), (y)) — (P*, P7), k, ;PT = P* and
P(’Yn) = gﬁlkn,leH" knggn we then have

Jim p(n)(F) = €7 (x)

for all F' € G/P™* transverse to £~ (y).

Case 2: If # = y, pick 3 € I so that z := 371(x) # z. Then v,3 — x and (v,3) " — 2z #
x. By the first case, p(v,0)(F) — &(z) for all F € F* transverse to £~ (2) = p(8~1)¢ ().
Equivalently, p(v,)(F) — &+(x) for all F € F' transverse to £~ (z). O
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