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1. Introduction

In this paper we develop a theory of Anosov representations for geometrically finite 

Fuchsian groups into SL(d, K) where K is either the field of real numbers or the field 

of complex numbers (and more generally, into any semisimple Lie group G with finite 

center). This theory shares two crucial features with Anosov representations of convex 

cocompact Fuchsian groups. First, if Γ ⊂ PSL(2, R) is a geometrically finite Fuchsian 

group and ρ : Γ → SL(d, K) is Anosov, then there is a ρ-equivariant quasi-isometric em-

bedding of an orbit of Γ in H2 into the Riemannian symmetric space Xd(K) associated 

to SL(d, K). Moreover, there is a ρ-equivariant map of the limit set of Γ into the appro-

priate (partial) flag variety. Second, small deformations of Anosov representations which 

preserve the conjugacy class of the images of parabolic elements in Γ remain Anosov. We 

further show that these limit maps vary analytically in ρ. We observe that our represen-

tations are relatively Anosov representations in the sense of Kapovich and Leeb [20] and 

relatively dominated representations as defined by Zhu [36]. Our concrete setting allows 

for simpler proofs and more explicit results.

Our main motivation was to study the class of cusped Hitchin representations. A 

representation ρ : Γ → SL(d, R) of a geometrically finite Fuchsian group is said to be 

cusped Hitchin if there exists a continuous ρ-equivariant positive map from the limit 

set of Γ into the full flag variety Fd. We show that cusped Hitchin representations are 

irreducible and Borel Anosov (i.e. they are Pk-Anosov for all 1 ≤ k ≤ d − 1). This 

generalizes results of Labourie [24], when Γ is cocompact, and Labourie-McShane [25]

(see also Burelle-Treib [10]), when Γ is convex cocompact. (Recent results of Sambarino 

[32] also imply that cusped Hitchin representations are irreducible). Fock and Goncharov 

[16] introduced the theory of positive representations. They consider the case where 

Γ is not cocompact but has cofinite area, and they only require that the limit map 

be defined on fixed points of peripheral elements of Γ. We show that type-preserving 

positive representations, in their sense, are in fact cusped Hitchin representations. Other 
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examples of cusped Anosov representations are provided by exterior powers of cusped 

Hitchin representations and direct products of cusped Hitchin representations with trivial 

representations.

In turn, the motivation for studying cusped Hitchin representations arises from an 

intriguing potential analogy with the augmented Teichmüller space from classical Te-

ichmüller theory. The augmented Teichmüller space of a closed orientable surface S is 

obtained by appending to the Teichmüller space of S points corresponding to (marked) 

finite area hyperbolic structures on the complement in S of any multicurve on S. Masur 

[30] showed that the augmented Teichmüller space is the metric completion of Teichmüller 

space with the Weil-Petersson metric. Loftin and Zhang [26] construct an analytic model 

for an augmented Hitchin component. Bray, Canary, Kao and Martone [6] combine our 

work with thermodynamical results from [5] to construct pressure metrics on deforma-

tion spaces of cusped Hitchin representations, generalizing work of Bridgeman, Canary, 

Labourie and Sambarino [8]. The hope is that this will allow us to investigate whether 

the augmented Hitchin component is the metric completion of the Hitchin component 

with the pressure metric. For further discussion of the conjectural geometric picture see 

the survey paper [12].

We now turn to a more detailed discussion of our work. Let Γ ⊂ PSL(2, R) be a 

geometrically finite group with limit set Λ(Γ) ⊂ ∂H2. Suppose that ρ : Γ → SL(d, K) is 

a representation and that we are given a continuous ρ-equivariant map

ξρ = (ξk
ρ , ξd−k

ρ ) : Λ(Γ) → Grk(Kd) × Grd−k(Kd)

into the Grassmannians of k-planes and (d − k)-planes in Kd. We require that ξρ is 

transverse, i.e.

ξk
ρ (x) ⊕ ξd−k

ρ (y) = Kd if x �= y ∈ Λ(Γ).

We obtain an associated splitting

Eρ = U(Γ) × Kd = Θk ⊕ Ξd−k where Θk|v = ξk
ρ (v+), Ξd−k|v = ξd−k

ρ (v−)

and U(Γ) ⊂ T 1H2 is the set of tangent vectors which extend to geodesics both of whose 

endpoints lie in Λ(Γ). This descends to a splitting

Êρ = Γ\Eρ = Θ̂k
ρ ⊕ Ξ̂d−k

ρ

of the flat bundle associated to ρ over the non-wandering portion Û(Γ) = Γ\ U(Γ) of the 

geodesic flow. The geodesic flow on Û(Γ) lifts naturally to a flow on Êρ which preserves 

the splitting and is parallel to the flat connection. We say that ρ is Pk-Anosov if the 

associated flow on Hom(Ξ̂d−k
ρ , Θ̂k

ρ) is uniformly contracting with respect to the (operator) 

norm arising from some family of continuous norms on the fibers of Êρ (see Definition 3.1
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for details). In this case, we call ξρ the Pk-Anosov limit map of ρ. When Γ contains a 

parabolic element, we will sometimes refer to our Pk-Anosov representations as cusped 

Pk-Anosov representations to distinguish them from traditional Anosov representations.

We obtain generalizations of many of the classical properties of Anosov represen-

tations, see Labourie [24] or Guichard-Wienhard [18], in our setting. We say that a 

ρ-equivariant, continuous map ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd) is strongly 

dynamics preserving if whenever {γn} is a sequence in Γ, γn(z) → x ∈ Λ(Γ), and 

γ−1
n (z) → y ∈ Λ(Γ) for some (any) z ∈ H2, then

ρ(γn)(V ) → ξk(x)

for any V ∈ Gr(Kd) which is transverse to ξd−k(y). Given g ∈ SL(d, K) let

λ1(g) ≥ · · · ≥ λd(g)

denote the absolute values of the (generalized) eigenvalues of g. Then g is Pk-proximal

if λk(g) > λk+1(g) and g is weakly unipotent if the (multiplicative) Jordan-Chevalley 

decomposition of g has elliptic semisimple part and non-trivial unipotent part.

Theorem 1.1. If Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K) is 

Pk-Anosov, then

(1) For any z0 ∈ H2, there exists A, a > 1 so that if γ ∈ Γ, then

1

A
exp

(
1

a
dH2(z0, γ(z0))

)
≤ σk(ρ(γ))

σk+1(ρ(γ))
≤ A exp (adH2(z0, γ(z0))) .

(2) There exists B, b > 1 so that if γ ∈ Γ, then

1

B
exp

(
1

b
�(γ)

)
≤ λk(ρ(γ))

λk+1(ρ(γ))
≤ B exp (b�(γ))

where �(γ) is the translation length of γ on H2.

(3) The Pk-Anosov limit map ξρ is strongly dynamics-preserving and unique. In partic-

ular, if α ∈ Γ is parabolic, then ρ(α) is weakly unipotent, while if γ ∈ Γ is hyperbolic, 

then ρ(γ) is Pk-proximal.

(4) If z0 ∈ H2 and x0 is a point in the symmetric space Xd(K) associated to SL(d, K), 

then the orbit map τρ : Γ(z0) → Xd(K) given by τρ(γ(z0)) = ρ(γ)(x0) is a quasi-

isometric embedding.

We also give a dynamical characterization of Anosov representations in the spirit of 

characterizations of traditional Anosov representations by Guéritaud-Guichard-Kassel-

Wienhard [17], Kapovich-Leeb-Porti [21] and Tsouvalas [35].
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Theorem 1.2. Suppose Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K)

is a representation. Then ρ is Pk-Anosov if and only if there exists a ρ-equivariant, 

transverse, continuous, strongly dynamics preserving map ξ = (ξk, ξd−k) : Λ(Γ) →
Grk(Kd) × Grd−k(Kd). Furthermore, ξ is the Pk-Anosov limit map.

In general, being Pk-Anosov is not an open condition in the space of representations 

of a geometrically finite group. For instance, consider the case where Γ = 〈g1, g2〉 ⊂
PSL(2, R) is a free group, g2 is parabolic, and ρ : Γ → SL(4, R) is P1-Anosov with

ρ(g2) =

⎛
⎜⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

Next define a family of representations ρt where ρt(g1) = ρ(g1) and

ρt(g2) =

⎛
⎜⎝

1 1 0 0
0 1 0 0
0 0 1 t
0 0 0 1

⎞
⎟⎠ .

Then ρt is not P1-Anosov for any t �= 0 since the sequence {ρt(g2)n} does not converge 

to a rank one element of P(End(R4)). Bowditch [3, Sec. 5] gave an example of a sequence 

{ρn} of indiscrete representations of a free group on two generators into SO(4, 1) which 

converge to a geometrically finite representation ρ, so that ρn(α) is parabolic if and only 

if ρ(α) is parabolic. However, in his example ρn(α) is not conjugate to ρ(α) for any n. 

Bowditch [3, Thm. 1.5] also established a stability theorem for deformations of geomet-

rically finite representations which preserve the structure of the Jordan decomposition 

of parabolic elements.

To account for these examples, we introduce the following subset of the representation 

variety. If ρ : Γ → SL(d, K) is a representation of a geometrically finite Fuchsian group, 

let

Homtp(ρ) ⊂ Hom(Γ, SL(d, K))

be the space of representations σ : Γ → SL(d, K) so that if α ∈ Γ is parabolic, then 

σ(α) is conjugate to ρ(α). We obtain the following stability result for type-preserving 

deformations. (In their preprint, Kapovich and Leeb [20] suggest that such a stability 

result holds more generally.) Furthermore, we show that limit maps vary analytically. 

Combined with work of Bray-Canary-Kao-Martone [5] this will imply that entropy and 

pressure intersection vary analytically over the cusped Hitchin component (which will be 

used crucially in the construction of the pressure metric). The proof also allows us to see 

that the Pk-Anosov limit maps are uniformly Hölder in a neighborhood of a Pk-Anosov 

representation.
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We say that {ρu}u∈M is a K-analytic family of representations if M is a K-analytic 

manifold and the map u → ρu is a K-analytic map from M into Hom(Γ, SL(d, K)).

Theorem 1.3. If Γ ⊂ PSL(2, R) is geometrically finite and ρ0 : Γ → SL(d, K) is Pk-

Anosov, then there exists an open neighborhood O of ρ0 in Homtp(ρ0), so that

(1) If ρ ∈ O, then ρ is Pk-Anosov.

(2) There exists α > 0 so that if ρ ∈ O, then its Pk-Anosov limit map ξρ is α-Hölder.

(3) If {ρu}u∈M is a K-analytic family of representations in O and z ∈ Λ(Γ) then the 

map from M to Grk(Kd) × Grd−k(Kd) given by u → ξρu
(z) is K-analytic.

When Û(Γ) is compact, stability follows from standard arguments in hyperbolic dy-

namics and the Hölder regularity of the boundary maps is a consequence of standard 

results, e.g. [33, Cor. 5.19]. The non-compact case is more involved. Our key idea to prove 

stability is to observe that if ρ2 ∈ Homtp(ρ1), then on each cusp there is a smooth con-

jugacy of the flows associated to ρ1 and ρ2. This is made precise in Equation (21) below. 

This essentially means that the two flows differ by a compact perturbation and thus, es-

sentially, reduces to the compact base case. Our key idea to prove Hölder regularity is to 

first introduce certain “canonical families of norms” on the flow spaces, see Section 3.1. 

Then we prove that if the flow is contracting with respect to any family of norms, then 

the flow is contracting with respect to any canonical family of norms (see Theorem 6.1

and Theorem 4.1). Finally, the canonical family of norms are well-behaved enough that 

we can adapt an argument from [38] to prove Hölder regularity of the boundary maps 

directly.

We now discuss the applications of our results to cusped Hitchin representations, 

which was the original goal of our work. Given an ordered basis B for Rd, we say that 

a unipotent A ∈ SL(d, R) is totally positive with respect to B, if its matrix with respect 

to B is upper triangular and all its minors (which are not forced to be 0 by the fact 

that the matrix is upper triangular) are strictly positive. The set U>0(B) of unipotent, 

totally positive matrices with respect to B is a semi-group (see Lusztig [27, Section 2.12]). 

Following Fock and Goncharov [16], we say that an ordered k-tuple (F1, F2, . . . , Fk) of 

distinct flags in Fd is positive, if there exists an ordered basis B = (b1, . . . , bd) for 

Rd so that bi ∈ F i
1 ∩ F d−i+1

k for all i, and there exists u2, . . . , uk−1 ∈ U>0(B) so that 

Fi = uk−1 · · · uiFk for all i = 2, . . . , k−1. Fock and Goncharov [16] proved that positivity 

of a n-tuple is invariant under cyclic permutation and reversal (also see Kim-Tan-Zhang 

[23, Section 3.1 – 3.3]). If X is a subset of S1 then a map ξ : X → Fd is positive if whenever 

(x1, . . . , xn) is a cyclically ordered subset of distinct points in X, then (ξ(x1), . . . , ξ(xn))

is a positive n-tuple of flags.

We say that a representation ρ : Γ → SL(d, R) of a geometrically finite Fuchsian 

group is a Hitchin representation if there exists a continuous positive ρ-equivariant map 

ξρ : Λ(Γ) → Fd. If Γ is cocompact and torsion-free then these are exactly the Hitchin 

representations of closed surface groups introduced by Hitchin [19] and further studied 
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by Labourie [24], while if Γ is convex cocompact they are the same as the Hitchin 

representations studied by Labourie and McShane [25]. We distinguish the case where Γ

contains parabolic elements by calling these cusped Hitchin representations. If d = 3 and 

S = Γ\H2 is a finite area hyperbolic surface, then cusped Hitchin representations of Γ are 

holonomy representations of strictly convex, finite area, projective structures on S (see 

Marquis [29]). Further it follows from [16, Thm. 3.3] that holonomy maps of geometrically 

finite projective surfaces in the sense of Crampon-Marquis [13] are also cusped Hitchin. 

Fock and Goncharov [16] studied the a priori more general class of representations which 

admit equivariant positive maps from the set Λp(Γ) of fixed points of peripheral elements 

of Γ into Fd when Γ is not cocompact but has cofinite area. We show that all such type-

preserving representations are in fact cusped Hitchin representations. Our main result 

here is that cusped Hitchin representations are Pk-Anosov for all k.

Theorem 1.4. If Γ ⊂ PSL(2, R) is geometrically finite and ρ : Γ → SL(d, R) is a Hitchin 

representation, then ρ is irreducible and Pk-Anosov for all k. Moreover:

(1) For all k the map x �→ ξk
ρ (x) is the Pk-Anosov limit map.

(2) If α ∈ Γ is parabolic, then ρ(α) = ±u for some unipotent u ∈ SL(d, R) with a single 

Jordan block.

(3) If γ ∈ Γ is hyperbolic, then ρ(γ) is loxodromic.

If we let Ĥd(Γ) denote the space of all Hitchin representations of Γ into SL(d, R), 

it is easy to see that Ĥd(Γ) is a real analytic manifold. In fact, one may use results of 

Fock and Goncharov [16] to show that the space Hd(Γ) of conjugacy classes of Hitchin 

representations is diffeomorphic to Rm (for some m). (Marquis [28] gives an explicit 

parametrization of H3(Γ) as a topological cell when S = Γ\H2 is a finite area hyperbolic 

surface.)

Comparison to other results As mentioned above, Kapovich-Leeb [20] and Zhu [36]

have previously developed theories of Anosov representations for relatively hyperbolic 

groups. Their work is based on extending characterizations of Anosov representations due 

to Kapovich-Leeb-Porti [21] and Bochi-Potrie-Sambarino [2] respectively. Theorem 1.1

immediately implies that a Pk-Anosov representation ρ is Pk-relatively dominated, in the 

sense of Zhu [36]. Theorem 9.4 in [36] then implies that ρ is Pk-relatively asymptotically 

embedded and Remark 9.10 in [36] implies that ρ is Pk-relatively uniform RCA in the 

sense of Kapovich-Leeb [20].

Corollary 1.5. Suppose that Γ ⊂ PSL(2, R) is geometrically finite and ρ : Γ → SL(d, K)

is a Pk-Anosov representation. Then ρ is Pk-relatively dominated, Pk-relatively asymp-

totically embedded and Pk-relatively uniform RCA.
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Further, it follows from [37, Thm. C] and our Theorems 1.1 and 1.2, that a repre-

sentation of a geometrically finite Fuchsian group Γ is Pk-Anosov if and only if it is 

Pk-relatively dominated with respect to P.

Kapovich and Leeb [20] mention that they can show that a cusped Hitchin represen-

tation of a geometrically finite Fuchsian is relatively Anosov in their sense.

In a subsequent preprint, Filip [14] introduces the class of log-Anosov representation 

of Fuchsian lattices, which also agrees with the class of cusped Anosov representations. 

He introduces adapted metrics, which correspond to our canonical norms. He shows 

that monodromy maps of certain variations of Hodge structures on finite area Riemann 

surfaces are log-Anosov and uses this result to study their properties. In particular many 

monodromy maps coming from hypergeometic differential equations can be analyzed in 

this manner, including those previously studied by Brav and Thomas [4] and by Filip 

and Fougeron [15].

Acknowledgments The authors thank the referee for their careful reading of the original 

manuscript and helpful suggestions which improved the exposition. This material is based 

upon work supported by the National Science Foundation under Grant No. DMS-1928930 

while the first author participated in a program hosted by the Mathematical Sciences 

Research Institute in Berkeley, California, during the Fall 2020 semester.

2. Preliminaries

In this section, we recall some preliminary facts and introduce notation that will be 

used throughout this paper.

2.1. Hyperbolic 2-space

In this paper we will identify H2 with the Poincaré upper half plane model. For any 

v ∈ T 1 H2, let rv : R → H2 denote the unit speed geodesic with r′
v(0) = v and let

v+ := lim
t→+∞

rv(t) ∈ ∂ H2 and v− := lim
t→−∞

rv(t) ∈ ∂ H2

denote its limit points in ∂ H2 = R ∪{∞}. We also let φt : T 1 H2 → T 1 H2 denote the 

geodesic flow, i.e.

φt(v) = r′
v(t)

for all v ∈ T 1 H2 and t ∈ R.

If {gn} is a sequence in PSL(2, R), we say that gn converges to x ∈ ∂ H2 if gn(z) → x

for some (any) z ∈ H2. We often simply write gn → x.
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2.2. Geometrically finite Fuchsian groups

We say that Γ ⊂ PSL(2, R) is geometrically finite if it is discrete, finitely generated and 

non-elementary (i.e. does not contain a cyclic subgroup of finite index). Let Λ(Γ) ⊂ ∂H2

denote its limit set. Then let U(Γ) denote the minimal, non-empty, closed, φt-invariant, 

Γ-invariant subset of T 1 H2, i.e.

U(Γ) =
{

v ∈ T 1 H2 : v+, v− ∈ Λ(Γ)
}

.

Let Û(Γ) := Γ\ U(Γ), and note that φt descends to a flow on Û(Γ), which we also denote 

by φt. If S = Γ\H2, then Û(Γ) is the non-wandering portion of T 1S and its orbits are 

the complete geodesics which remain entirely in the convex core of S.

Definition 2.1.

(1) If p ∈ Λ(Γ) is fixed by a parabolic element of Γ, let stΓ(p) = {γ ∈ Γ | γ(p) = p}. We 

call stΓ(p) a cuspidal subgroup of Γ. An open horodisk H based at p is a precisely 

invariant horodisk for stΓ(p) if whenever γ ∈ Γ and γ(H) ∩ H is non-empty, then 

γ ∈ stΓ(p). In this case, C = stΓ(p)\H is an embedded cusp neighborhood.

(2) A set C = {C1, . . . , Cr} of disjoint embedded cusp neighborhoods in S = Γ\H2 is 

full if any curve on S which is represented by a parabolic element of Γ is freely 

homotopic into some Ci.

If C = stΓ(p)\H is an embedded cusp neighborhood, then we set

U(Γ)H = {v ∈ U(Γ)| rv(0) ∈ H} and Û(Γ)C = stΓ(p)\ U(Γ)H .

If C is a full collection of cusp neighborhoods for S, then we set

Û(Γ)C =
⋃

C∈C

Û(Γ)C .

Notice that its complement Û(Γ)c
C is compact. We will sometimes informally refer to 

Û(Γ)C as the thin part of the geodesic flow and its complement as the thick part.

2.3. The representation theory of SL(2, R)

For d ≥ 1, let τd : SL(2, R) → SL(d, K) denote the standard irreducible representation. 

Explicitly, τ1 ≡ 1 and if d ≥ 2, then τd = id ◦ τ̄d, where

• τ̄d : SL(2, R) → SL(Symd−1(R2)) is the representation induced by the linear SL(2, R)-

action on Symd−1(R2) given by
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γ · (ek
1ed−1−k

2 ) �→ (γ · e1)k(γ · e2)d−1−k

for all k = 0, . . . , d − 1, and

• id : SL(Symd−1(R2)) → SL(d, R) is the isomorphism induced by the linear isomor-

phism Symd−1(R2)) � Rd that identifies ek
1ed−1−k

2 ∈ Symd−1(R2)) with ek+1 ∈ Rd

for all k = 0, . . . , d − 1.

One may also regard τd as a representation into SL(d, C). Let ξd : ∂ H2 � RP 1 → F(Kd)

be the map defined by [ae1 + be2] �→ F , where F (j) = SpanK(f1, . . . , fj) and

fj =

d+1−j∑

k=1

(
d − j

k − 1

)
ad+1−j−kbk−1ek.

It is straightforward to verify that ξd is a continuous, τd-equivariant, strongly dynamics 

preserving map. We call ξd the Veronese embedding associated to τd.

One can compute that τd

(
1 a
0 1

)
is the upper triangular matrix in SL(d, R) given by

(
τd

(
1 a
0 1

))

k,j

=

(
j − 1

k − 1

)
aj−k (1)

if 1 ≤ k ≤ j ≤ d. Furthermore, it is well-known that the d × d upper triangular matrix 

given by (1) is unipotent and totally positive with respect to the standard basis of Rd

when a > 0. From this, it follows easily that ξd is a positive map.

2.4. Eigenvalues, singular values, and the (multiplicative) Jordan-Chevalley 

decomposition

Given an element g ∈ SL(d, K), let

σ1(g) ≥ · · · ≥ σd(g)

denote the singular values of g and let

λ1(g) ≥ · · · ≥ λd(g)

denote the absolute values of the (generalized) eigenvalues of g. Also, let g = gssgu =

gugss denote the Jordan-Chevalley decomposition, that is gss is semisimple, gu is unipo-

tent, and gss, gu commute. We say that g is elliptic if it is semisimple and λj(g) = 1 for 

all j. Notice that if g is elliptic, then the cyclic group 〈g〉 generated by g is relatively 

compact in SL(d, K).

If g ∈ SL(d, K) and σk(g) > σk+1(g), let Uk(g) ∈ Grk(Kd) denote the subspace 

spanned by the k major axes of the ellipse g
(
Sd−1

)
, that is Uk(g) = g 〈e1, . . . , ek〉. The 
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following lemma relates the singular values along a sequence in SL(d, K) to the action of 

this sequence on the associated Grassmannian. We omit the proof as it is standard.

Lemma 2.2. Suppose V0 ∈ Grk(Kd) and W0 ∈ Grd−k(Kd). If {gn}n≥1 is a sequence in 

SL(d, K), then the following are equivalent:

(1) There are open sets O ⊂ Grk(Kd) and O′ ⊂ Grd−k(Kd), such that gn(V ) → V0 for 

all V ∈ O and g−1
n (W ) → W0 for all W ∈ O′.

(2) gn(V ) → V0 for all V ∈ Grk(Kd) transverse to W0.

(3) lim
n→∞

σk(gn)

σk+1(gn)
= ∞, lim

n→∞
Uk(gn) = V0, and lim

n→∞
Ud−k(g−1

n ) = W0.

Moreover, if gn = gn for all n, then g is Pk-proximal if V0 ⊕ W0 = Kd, and weakly 

unipotent if V0 ⊂ W0 or W0 ⊂ V0.

We will also make use of the following elementary calculations, which we recall without 

proof.

Lemma 2.3.

(1) If u =

(
1 1
0 1

)
, then for all d ≥ 1 there exists c = c(d) > 0 so that

1

c
≤ σk(τd(un))

nd+1−2k
≤ c

for all n ∈ N and k ∈ {1, . . . , d}.

(2) If A, B ∈ SL(d, K) and C = BAB−1, then

σk(C) ≤ σ1(B)

σd(B)
σk(A)

for all k ∈ {1, . . . , d}.

3. Anosov representations into SL(d, K)

Following Labourie [24] and Guichard-Wienhard [18] we define Anosov representations 

for geometrically finite Fuchsian groups into SL(d, K). In Appendix B, we will extend 

our definition to the setting of all semi-simple Lie groups with finite center.

If Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K) is a representa-

tion, let

Eρ = U(Γ) × Kd and Êρ = Γ\ U(Γ) × Kd
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where γ ∈ Γ acts on the first factor by γ and on the second factor by ρ(γ). The projection 

map p : Eρ → U(Γ) descends to a vector bundle

p̂ : Êρ → Û(Γ)

which is called the flat bundle associated to ρ. The geodesic flow on U(Γ) extends to 

a flow on Eρ = U(Γ) × Kd whose action is trivial on the second factor. This in turn 

descends to a flow on Êρ which covers the geodesic flow on Û(Γ). We use φt to denote 

all four of these flows.

We say that a continuous map ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd) is

(1) ρ-equivariant if ρ(γ) ◦ ξ = ξ ◦ γ for all γ ∈ Γ,

(2) transverse if ξk(x) ⊕ ξd−k(y) = Kd for all distinct x, y ∈ Λ(Γ).

Such a map induces a continuous φt-invariant spitting

Eρ = Θk ⊕ Ξd−k where Θk|v = ξk(v+) and Ξd−k|v = ξd−k(v−)

which descends to a continuous φt-invariant splitting

Êρ = Θ̂k ⊕ Ξ̂d−k.

Definition 3.1. If Γ ⊂ PSL(2, R) is a geometrically finite group and k ∈ {1, . . . , d − 1}, a 

representation ρ : Γ → SL(d, K) is Pk-Anosov if:

(1) There exists a ρ-equivariant, continuous, transverse map

ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd)

which induces a splitting Êρ = Θ̂k ⊕ Ξ̂d−k.

(2) For some family of norms ‖·‖v on the fibers of Êρ there exists C > 1 and c > 0 so 

that

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ Ce−ct ‖Y ‖v

‖Z‖v

for all t > 0, v ∈ Û(Γ), Y ∈ Θ̂k|v and non-zero Z ∈ Ξ̂d−k|v.

We refer to ξ as a Pk-Anosov limit map of ρ.

Remark 3.2. Notice that a continuous family of norms ‖·‖v∈Û(Γ) on the fibers of Êρ lifts 

to a continuous family of norms ‖·‖v∈U(Γ) on Kd which is ρ-equivariant in the following 

sense: if v ∈ U(Γ), Y ∈ Kd and γ ∈ Γ, then
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‖ρ(γ)(Y )‖γ(v) = ‖Y ‖v . (2)

Conversely, any continuous family of norms satisfying Equation (2) descends to a con-

tinuous family of norms on the fibers of Êρ.

If one prefers a bundle-theoretic definition, one can consider the vector bundle 

Hom(Ξ̂d−k, Θ̂k) over Û(Γ). Notice that since the splitting is flow-invariant, φt induces a 

flow on Hom(Ξ̂d−k, Θ̂k) given by

f �→ φt ◦ f ◦ φ−t,

with some abuse of notation we use φt to denote this flow. Moreover, any norm on the 

fibers of Êρ induces an operator norm on Hom(Ξ̂d−k, Θ̂k). We say that the flow φt on 

Hom(Ξ̂d−k, Θ̂k) is uniformly contracting if there exists C, c > 0 so that

‖φt(f)‖φt(v) ≤ Ce−ct ‖f‖v

for all t > 0, v ∈ Û(Γ) and f ∈ Hom(Ξ̂d−k, Θ̂k)v. One may easily check that ρ is 

Pk-Anosov if and only if there exists a ρ-equivariant, continuous transverse map ξ =

(ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd) so that the flow is uniformly contracting on 

Hom(Ξ̂d−k, Θ̂k) with respect to an operator norm associated to a continuous family of 

norms on Êρ. (The details of this equivalence are worked out carefully in the proof of 

[8, Prop. 2.3].) Moreover, by duality, φt is uniformly contracting on Hom(Ξ̂d−k, Θ̂k) if 

and only if the flow, also called φt, on Hom(Θ̂k, ̂Ξd−k) is uniformly expanding, i.e. the 

inverse flow φ−t is uniformly contracting. We record these observations for future use.

Proposition 3.3. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group, ρ : Γ →
SL(d, K) is a representation and k ∈ {1, . . . , d − 1}. Then the following are equivalent:

(1) ρ is Pk-Anosov,

(2) There exists a ρ-equivariant, continuous transverse map

ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Rd) × Grd−k(Kd)

so that the flow is uniformly contracting on Hom(Ξ̂d−k, Θ̂k) with respect to an oper-

ator norm induced by a norm on Êρ.

(3) There exists a ρ-equivariant, continuous transverse map

ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Rd) × Grd−k(Kd)

so that the flow is uniformly expanding on Hom(Θ̂k, ̂Ξd−k) with respect to an operator 

norm induced by a norm on Êρ.
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As an immediate corollary we obtain:

Corollary 3.4. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group, ρ : Γ →
SL(d, K) is a representation and k ∈ {1, . . . , d − 1}. Then ρ is Pk-Anosov if and only if 

ρ is Pd−k-Anosov.

Remark 3.5. If we wish to allow Γ to be a geometrically finite subgroup of PGL(2, R), 

then we simply consider Γ0 = Γ ∩ PSL(2, R) and say that ρ : Γ → SL(d, R) is Pk-Anosov 

if and only if ρ|Γ0
is Pk-Anosov. With this definition, all of our results for geometrically 

finite Fuchsian groups remain true for geometrically finite subgroups of PGL(2, R).

3.1. Canonical norms and cusp representations

It will be useful to construct certain “canonical” norms on the fibers of the vector 

bundles Êρ, and hence also on Hom(Ξ̂d−k, Θ̂k), that are well behaved on the cusps. 

Later we will show that when ρ is Pk-Anosov, the flow φt on Hom(Ξ̂d−k, Θ̂k) is uniformly 

contracting for any canonical norm (see Corollary 6.2).

The crucial property of our canonical norms is that they have a standard form over 

the thin part of the geodesic flow. In order to describe this standard form we will use 

the following result about representations of SL(2, R). Recall that g = gssgu denotes the 

multiplicative Jordan-Chevalley decomposition of g ∈ SL(d, K).

Proposition 3.6. (see Appendix A) If g ∈ SL(d, K) is weakly unipotent, then there exists 

a representation Ψ : SL(2, R) → SL(d, K) where Ψ 

((
1 1
0 1

))
= gu and gss commutes 

with the elements of Ψ(SL(2, R)).

Proposition 3.6 follows easily from the Jordan normal form of a weakly unipotent 

matrix and we delay the proof until Appendix A.

A representation ρ : Γ → SL(d, K) of a geometrically finite Fuchsian group is type-

preserving if ρ sends every parabolic element in Γ to a weakly unipotent element in 

SL(d, K). If ρ is a type preserving representation and α ∈ Γ is parabolic, then we say 

that a representation Ψ : SL(2, R) → SL(d, K) is a cusp representation for α and ρ(α) if

(1) Ψ(α̃) = ρ(α)u, where α̃ is the (unique) unipotent lift of α to SL(2, R) and

(2) ρ(α)ss commutes with the elements of Ψ(SL(2, R)).

Proposition 3.6 implies that cusp representations always exist.

Suppose that Γ is a geometrically finite Fuchsian group, ρ : Γ → SL(d, K) is type-

preserving and C = 〈α〉\H is an embedded cusp neighborhood where α ∈ Γ is parabolic. 

Further suppose that Ψ is a cusp representation for α and ρ(α), and ‖·‖v is a family of 

norms of the fibers T 1 H2 × Kd → T 1 H2 such that
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(1) each ‖·‖v is ρ(α)ss-invariant

(2) ‖Ψ(g)Z‖g(v) = ‖Z‖v for all g ∈ SL(2, R), Z ∈ Kd and v ∈ T 1 H2.

Such families are easy to construct: the group K := 〈ρ(α)ss, Ψ(− id2)〉 is abelian and 

compact, so there exists a norm ‖·‖0 which is K-invariant, then if we fix some v0 ∈ T 1 H2, 

the family of norms defined by ‖Z‖g(v0) :=
∥∥Ψ(g)−1Z

∥∥
0

has the desired properties.

Also, for such a family of norms

‖ρ(α)Z‖α(v) = ‖Ψ(α̃)ρ(α)ssZ‖α(v) = ‖Z‖v

for all Z ∈ Kd and v ∈ T 1 H2. So this family descends (and restricts) to a family of 

norms on the fibers of Êρ over Û(Γ)C which we call a canonical family of norms on the 

cusp neighborhood C. Observe that if C ′ is an embedded cusp neighborhood properly 

contained in C, then Û(Γ)C − Û(Γ)C′ is precompact, and a canonical family of norms on 

the fibers of Êρ over Û(Γ)C is determined completely by its restriction to the fibers over 

Û(Γ)C − Û(Γ)C′ .

Definition 3.7. Let ρ : Γ → SL(d, K) be a type preserving representation of a geomet-

rically finite Fuchsian group. A continuous family of norms ‖·‖v on the fibers of Êρ is 

canonical if there exists a full collection C of embedded cusp neighborhoods for Γ, such 

that for all C ∈ C, the restriction of the family of norms to the fibers over Û(Γ)C is a 

canonical family of norms on C.

It is straightforward to construct a canonical family of norms on the fibers of Êρ. One 

first chooses a full collection of embedded cusp neighborhoods C. For each C ∈ C, one 

chooses a canonical norm on the cusp neighborhood C. One then chooses any continuous 

norm on a compact neighborhood of the fibers over the thick part Û(Γ) − Û(Γ)C . One 

may then use a cut off function to interpolate between the norms on their interface and 

obtain a family of norms on all of Êρ which is canonical with respect to a full collection 

of cusp neighborhoods contained in C.

We observe that there are uniform upper and lower bounds on the growth rate of a 

canonical norm with respect to the (lift of the) geodesic flow φt.

Lemma 3.8. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group, ρ : Γ → SL(d, K)

is type-preserving and ‖·‖v is a canonical family of norms on the bundle Êρ. There exist 

C0 > 1, c0 > 0 so that if v ∈ Û(Γ), t ∈ R and Z ∈ Êρ|v, then

1

C0
e−c0|t| ‖Z‖v ≤ ‖φt(Z)‖φt(v) ≤ C0ec0|t| ‖Z‖v .

Proof. For v ∈ Û(Γ), let

f(v) = max
{

‖φt(Z)‖φt(v) : |t| ≤ 1, Z ∈ Êρ|v, ‖Z‖v = 1
}

.
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Let C be a full collection of embedded cusp neighborhoods such that for all C ∈ C, ‖·‖v

restricted to the fibers over each component of Û(Γ)C is a canonical family of norms on 

C. For each C ∈ C, let C ′ be an embedded cusp neighborhood such that

⋃

|t|≤1

φt(C
′) ⊂ C.

Then f is constant on each Û(Γ)C′ . Further,

K = Û(Γ) −
⋃

C∈C

Û(Γ)C′

is compact. Hence

C0 := sup
v∈Û(Γ)

f(v) = max
v∈K

f(v)

is finite. Set c0 = log C0. For any t ∈ R, let n be the largest integer such that n ≤ |t|. If 
t > 0, then

‖φt(Z)‖φt(v) ≤ Cn
0 ‖φt−n(Z)‖φt−n(v) ≤ ec0nC0 ‖Z‖v ≤ C0ec0|t| ‖Z‖v .

On the other hand, if t < 0, then

‖φt(Z)‖φt(v) ≤ Cn
0 ‖φt+n(Z)‖φt+n(v) ≤ ec0nC0 ‖Z‖v ≤ C0ec0|t| ‖Z‖v .

This proves the required upper bound. The lower bound is similar. �

Remark 3.9. We will not need this for our work, but with a bit more effort, one can show 

that any two canonical families of norms on Êρ are bilipschitz.

4. Basic properties of Anosov representations

In this section we prove Theorem 1.1 which we restate here.

Theorem 4.1. If Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K) is 

Pk-Anosov, then

(1) For any z0 ∈ H2, there exists A, a > 1 so that if γ ∈ Γ, then

1

A
exp

(
1

a
dH2(z0, γ(z0))

)
≤ σk(ρ(γ))

σk+1(ρ(γ))
≤ A exp (adH2(z0, γ(z0))) .
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(2) There exists B, b > 1 so that if γ ∈ Γ, then

1

B
exp

(
1

b
�(γ)

)
≤ λk(ρ(γ))

λk+1(ρ(γ))
≤ B exp (b�(γ))

where �(γ) is the translation length of γ on H2.

(3) The Pk-Anosov limit map ξρ is strongly dynamics-preserving and unique. In partic-

ular, if α ∈ Γ is parabolic, then ρ(α) is weakly unipotent, while if γ ∈ Γ is hyperbolic, 

then ρ(γ) is Pk-proximal.

(4) If z0 ∈ H2 and x0 is a point in the symmetric space Xd(K) for SL(d, K), then the 

orbit map τρ : Γ(z0) → Xd(K) given by τρ(γ(z0)) = ρ(γ)(x0) is a quasi-isometric 

embedding.

Before proving the theorem we note the following consequences which will be useful 

in [5].

Corollary 4.2. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ →
SL(d, K) is Pk-Anosov with Pk-Anosov limit map ξρ.

(1) If {γn} is a sequence in Γ with γn → x ∈ Λ(Γ), then lim Uk(ρ(γn)) = ξρ(x).

(2) If α ∈ Γ is parabolic and j ∈ {1, . . . , d}, then there exists an integer c(j, α) and 

Cj > 1 so that

1

Cj
≤ σj(ρ(αn))

nc(j,α)
≤ Cj for all n ∈ N .

Moreover,

c(k, α) − c(k + 1, α) > 0.

Proof. Property (1) in Corollary 4.2 is known as the Pk-Cartan property and is an im-

mediate consequence of the fact that ξρ is strongly dynamics-preserving and Lemma 2.2.

If α ∈ Γ is parabolic, then part (3) of Theorem 1.1 implies that ρ(α) is weakly 

unipotent. So the group 〈ρ(α)ss〉 is compact. Further, there exists {d1, . . . , dm}, so that 

ρ(α)u is conjugate to ⊕m
i=1τdi

([
1 1
0 1

])
. Thus there exists a constant C0 > 1 such that

1

C0
σj

(
⊕m

i=1τdi

([
1 n
0 1

]))
≤ σj(ρ(αn)) ≤ C0σj

(
⊕m

i=1τdi

([
1 n
0 1

]))

for all n ∈ N and j ∈ {1, . . . , d}.

Given j ∈ Δ and n ∈ N, there exists i and k ∈ {1, . . . , di}, so that

σj

(
⊕m

i=1τdi

([
1 n
0 1

]))
= σk

(
τdi

([
1 n
0 1

]))
.
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Then Lemma 2.3 implies the first claim in part (2) of Corollary 4.2, while the second 

claim follows from part (1) of Theorem 4.1. �

Proof of Theorem 4.1. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group and 

ρ : Γ → SL(d, K) is Pk-Anosov. By definition there exist C > 1, c > 0, and a ρ-equivariant 

family of norms ‖·‖v on the fibers of Eρ → U(Γ) so that

‖Y ‖φt(v)

‖Z‖φt(v)

≤ Ce−ct ‖Y ‖v

‖Z‖v

(3)

for all t > 0, v ∈ U(Γ), Y ∈ ξk(v+) and non-zero Z ∈ ξd−k(v−).

Fix a distance d∞ on ∂ H2 ∼= S1 which is induced by a Riemannian metric. The 

following very special case of a result of Abels-Margulis-Soifer [1, Theorem 4.1] plays a 

key role in the proof.

Lemma 4.3. There exist δ > 0 and a finite subset B of Γ such that if γ ∈ Γ, then there 

exists β ∈ B so that γβ is hyperbolic and d∞((γβ)+, (γβ)−) ≥ δ.

Lemma 4.3 allows us to reduce much of the proof to considering hyperbolic elements 

γ ∈ Γ with d∞(γ+, γ−) ≥ δ. Since ξ is transverse and continuous these elements have 

the following decomposition: there exists a compact set A ⊂ SL(d, K) so that if γ ∈ Γ

is hyperbolic and d∞(γ+, γ−) ≥ δ, then there exist gγ ∈ A, Aγ ∈ GL(k, K) and Bγ ∈
GL(d − k, K) with

ρ(γ) = gγ

(
Aγ 0
0 Bγ

)
g−1

γ , ξk(γ+) = gγ

(
〈e1, . . . , ek〉

)
and

ξd−k(γ−) = gγ

(
〈ek+1, . . . , ed〉

)
.

(4)

There also exists a compact set K of H2 so that any bi-infinite geodesic whose endpoints 

are a distance at least δ apart intersects K. Let

R = max{dH2(i, z) : z ∈ K}.

The next two lemmas establish (1) for any hyperbolic element γ with d∞(γ+, γ−) ≥ δ. 

The proof of the first lemma makes crucial use of the contraction properties of the flow, 

while the second lemma does not depend on the contraction properties.

Lemma 4.4. There exist C1, C2 > 0 such that if γ ∈ Γ is hyperbolic and d∞(γ+, γ−) ≥ δ, 

then

σk(ρ(γ))

σk+1(ρ(γ))
≥ C1ecd

H2 (i,γ(i))

and
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σk(Aγ) ≥ C2ecd
H2 (i,γ(i))σ1(Bγ).

Proof. Recall that rv : R → H2 denotes the geodesic with r′
v(0) = v ∈ T 1 H2. Since 

the geodesic joining γ+ to γ− intersects K, there exists v0 ∈ U(Γ) with rv0
(0) ∈ K and 

v±
0 = γ±. Also, notice that

�(γ) = dH2(rv0
(0), γ(rv0

(0))) ≥ dH2(i, γ(i)) − 2R.

Since φ�(γ)(v0) = γ(v0), the ρ-equivariance of the norms and Equation (3) imply that

‖Y ‖v0

‖Z‖v0

=
‖ρ(γ)(Y )‖γ(v0)

‖ρ(γ)(Z)‖γ(v0)

≤ Ce−c�(γ)
‖ρ(γ)(Y )‖v0

‖ρ(γ)(Z)‖v0

for all Y ∈ ξk(γ+) and non-zero Z ∈ ξd−k(γ−).

Since K is compact, there exists L so that if v ∈ U(Γ) and rv(0) ∈ K, then ‖·‖v is 

L-bilipschitz to the standard Euclidean norm ‖·‖2 on Kd. Therefore,

‖ρ(γ)(Y )‖2

‖ρ(γ)(Z)‖2

≥ 1

CL4
ec�(γ) ‖Y ‖2

‖Z‖2

for all Y ∈ ξk(γ+) and non-zero Z ∈ ξd−k(γ−). So by the max-min/min-max character-

ization of singular values

σk(ρ(γ)) ≥ min
Y ∈ξk(γ+)

Y �=0

‖ρ(γ)(Y )‖2

‖Y ‖2

≥ 1

CL4
ec�(γ) max

Z∈ξd−k(γ−)
Z �=0

‖ρ(γ)(Z)‖2

‖Z‖2

≥ 1

CL4
ec�(γ)σk+1(ρ(γ)).

Hence C1 := 1
CL4 e−2Rc suffices.

Since A is compact,

S = max

{
σ1(g)

σd(g)
: g ∈ A

}

is finite. So, if Y = (Y ′, 0) ∈ Kk ×{0} and Z = (0, Z ′) ∈ {0} × Kd−k, then

‖Aγ(Y ′)‖2

‖Bγ(Z ′)‖2

=

∥∥g−1
γ ρ(γ)gγ(Y )

∥∥
2∥∥g−1

γ ρ(γ)gγ(Z)
∥∥

2

≥ 1

S

‖ρ(γ)gγ(Y )‖2

‖ρ(γ)gγ(Z)‖2

≥ 1

CL4S
ec�(γ) ‖gγ(Y )‖2

‖gγ(Z)‖2

≥ 1

CL4S2
ec�(γ) ‖Y ′‖2

‖Z ′‖2

So, again by the max-min/min-max characterization of singular values,
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σk(Aγ) ≥ min
Y ′ �=0

‖Aγ(Y ′)‖2

‖Y ′‖2

≥ 1

CL4S2
ec�(γ) max

Z′ �=0

‖Bγ(Z ′)‖2

‖Z ′‖2

≥ 1

CL4S2
ec�(γ)σ1(Bγ).

Hence C2 := 1
CL4S2 e−2Rc suffices. �

Lemma 4.5. There exist C3, c0 > 0 so that if γ ∈ Γ is hyperbolic and d∞(γ+, γ−) ≥ δ, 

then

σ1(ρ(γ)) ≤ C3ec0d
H2 (i,γ(i)).

In particular,

σk(ρ(γ))

σk+1(ρ(γ))
≤ C2

3 e2c0d
H2 (i,γ(i)).

Proof. Fix a ρ-equivariant family of norms ‖·‖∗
v∈U(Γ) which descends to a canonical family 

of norms on Êρ. Then by Lemma 3.8 there exist C0, c0 > 0 so that

1

C0
e−c0|t| ‖Y ‖∗

v ≤ ‖Y ‖∗
φt(v) ≤ C0ec0|t| ‖Y ‖∗

v (5)

for all v ∈ U(Γ), Y ∈ Kd and t ∈ R.

Since the geodesic joining γ+ to γ− intersects K, there exists v0 ∈ U(Γ) with rv0
(0) ∈

K and v±
0 = γ±. Also, recall that

�(γ) = dH2(rv0
(0), γ(rv0

(0))) ≤ dH2(i, γ(i)) + 2R.

Since φ�(γ)(v0) = γ(v0), the ρ-equivariance of the norms and Equation (5) imply that

‖Y ‖∗
v0

= ‖ρ(γ)(Y )‖∗
γ(v0) ≥ 1

C0
e−c0�(γ) ‖ρ(γ)(Y )‖∗

v0

if Y ∈ Kd.

Since K is compact, there exists L so that if v ∈ U(Γ) and rv(0) ∈ K, then ‖·‖∗
v is 

L-bilipschitz to the standard Euclidean norm ‖·‖2 on Kd. Therefore, if Y ∈ Kd, then

‖ρ(γ)(Y )‖2 ≤ C3ec0d
H2 (i,γ(i)) ‖Y ‖2

where C3 := C0L2e2c0R. So

σ1(ρ(γ)) ≤ C3ec0d
H2 (i,γ(i)).

Finally, notice that

σk(ρ(γ))

σk+1(ρ(γ))
≤ σ1(ρ(γ))

σd(ρ(γ))
= σ1(ρ(γ))σ1(ρ(γ−1)) ≤ C2

3 e2c0d
H2 (i,γ(i)). �
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We can now prove part (1). Since B is finite, both

SB = max

{
σ1(ρ(β))

σd(ρ(β))

∣∣∣ β ∈ B
}

and b = max {dH2(i, β(i)) : β ∈ B}

are finite.

Given any γ ∈ Γ, Lemma 4.3 implies that there exists β ∈ B so that d∞((γβ)+, (γβ)−) ≥
δ. Then

1

SB

σk(ρ(γβ))

σk+1(ρ(γβ))
≤ σk(ρ(γ))

σk+1(ρ(γ))
≤ SB

σk(ρ(γβ))

σk+1(ρ(γβ))

and

|dH2(i, γ(i)) − dH2(i, γβ(i))| ≤ dH2(i, β(i)) ≤ b.

Therefore,

1

A
exp

(
1

a
dH2(i, γ(i))

)
≤ σk(ρ(γ))

σk+1(ρ(γ))
≤ A exp (a dH2(i, γ(i)))

where A = max{ 1
C1

SBecb, C2
3 SBe2c0b} and a = max{1/c, 2c0}. This proves (1).

Recall that if T ∈ SL(d, K), then

λj(T n) = lim
n→∞

(σj(T n))
1/n

and �(γ) = lim dH(i,γn(i))
n for all γ ∈ Γ. Therefore, part (2) follows immediately from 

part (1). (One may give a direct proof of (2) in the spirit of Lemma 4.4 by noting that 

there is a compact subset K̂ of H2 such that every hyperbolic element of Γ is conjugate 

to an element of Γ whose axis passes through K̂.)

Part (4) is a simple consequence of part (1) and Lemma 4.5. Recall that Xd(R) =

SL(d, R)/SO(d) and Xd(C) = SL(d, C)/SU(d). We may choose x0 to be either [SO(d)] or 

[SU(d)]. Then, after possibly scaling, we have the following formula for the distance on 

Xd(K), see for instance [9, Cor. 10.42],

dXd
(x0, g(x0)) =

√√√√
d∑

j=1

|log σj(g)|2

Therefore, applying part (1), we see that

dXd
(x0, ρ(γ)(x0)) ≥ 1√

2
log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ a√

2
dH2(i, γ(i)) − log A√

2

for all γ ∈ Γ. On the other hand, by Lemma 4.5
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dXd
(x0, ρ(γ)(x0)) ≤

√
d max {|log σj(ρ(γ))|} =

√
d max

{
log σ1(ρ(γ)), log σ1(ρ(γ)−1)

}

≤
√

d log C3 +
√

dc0dH2(i, γ(i)),

so the orbit map is a quasi-isometry, which completes the proof of part (4).

We now show that ξ is strongly dynamics preserving. Notice that this immediately 

implies that ξ is unique. Lemma 2.2 will then imply that if α ∈ Γ is parabolic, then ρ(α)

is weakly unipotent, while if γ ∈ Γ is hyperbolic, then ρ(γ) is Pk-proximal.

Fix a sequence {γn} with γn → x ∈ Λ(Γ) and γ−1
n → y ∈ Λ(Γ). For each n there 

exists βn ∈ B such that γnβn is hyperbolic and

d∞

(
(γnβn)+, (γnβn)−

)
≥ δ.

Since the set B is finite, we can divide {γn} into finitely many subsequences and only 

consider the case when βn = β for all n. Then (γnβ)+ → x and (γnβ)− → β−1(y).

Let

ρ(γnβ) = gn

(
An 0
0 Bn

)
g−1

n

be the block diagonal decomposition from Equation (4). Then by Lemma 4.4

lim
n→∞

σ1(Bn)

σk(An)
= 0,

so

g−1
n ρ(γnβ)gn(W ) → 〈e1, . . . , ek〉

for all W ∈ Grk(Kd) transverse to 〈ek+1, . . . , ed〉. Further, by construction

ξk((γnβ)+) = gn

(
〈e1, . . . , ek〉

)
and ξd−k((γnβ)−) = gn

(
〈ek+1 . . . , ed〉

)
.

So by the continuity of ξ,

ρ(γnβ)(V ) → ξk(x)

for all V transverse to ξd−k(β−1(y)). This implies that

ρ(γn)(V ) → ξk(x)

for all V transverse to ξd−k(y) = ρ(β)
(
ξd−k(β−1(y))

)
which completes the proof of 

(3). �
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5. Basic properties of cusp representations

In this section we establish some useful properties of the cusp representations associ-

ated to type preserving representations introduced in Section 3.1.

We say that a representation Ψ : SL(2, R) → SL(d, K) is Pk-proximal if Ψ(γ) is Pk-

proximal for some (any) hyperbolic element γ ∈ SL(2, R). We first observe that a cusp 

representation associated to a Pk-Anosov representation is Pk-proximal.

Proposition 5.1. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ →
SL(d, K) is Pk-Anosov. If α ∈ Γ is parabolic and Ψ : SL(2, R) → SL(d, K) is a cusp 

representation associated to α and ρ(α), then Ψ is Pk-proximal.

Proof. Let α̃ ∈ SL(2, R) be the unique unipotent lift of α. Since ρ(α) is weakly unipotent, 

the group 〈ρ(α)ss〉 is compact. Then, since Ψ(α̃n) = ρ(α)−n
ss ρ(αn), there exists L > 1

such that

1

L
σj(ρ(αn)) ≤ σj(Ψ(α̃n)) ≤ Lσj(ρ(αn))

for all j ∈ {1, . . . , d} and n ∈ Z. Then, since ρ is strongly dynamics-preserving, 

Lemma 2.2 implies that

lim
n→∞

σk(Ψ(α̃n))

σk+1(Ψ(α̃n))
≥ 1

L2
lim

n→∞

σk(ρ(αn))

σk+1(ρ(αn))
= ∞.

Now, write α̃n = �n atn
mn, where �n, mn ∈ SO(2) and at =

(
et 0
0 e−t

)
. Since {Ψ(at) :

t ∈ R} is simultaneously diagonalizable, by increasing L > 1 we may assume that

1

L
σk(Ψ(at)) ≤ λk(Ψ(at)) ≤ Lσk(Ψ(at))

for all t ∈ R. Since Ψ(SO(2)) is compact, we may increase L > 1 further and assume 

that

1

L
≤ σj(Ψ(g)) ≤ L

for all g ∈ SO(2) and j ∈ {1, . . . , d}.

Then

lim
n→∞

λk(Ψ(atn
))

λk+1(Ψ(atn
))

≥ 1

L2
lim

n→∞

σk(Ψ(atn
))

σk+1(Ψ(atn
))

≥ 1

L6
lim

n→∞

σk(Ψ(α̃n))

σk+1(Ψ(α̃n))
= ∞,

which implies that Ψ(at) is Pk-proximal for all t ∈ R −{0}. �
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Next we observe that a Pk-proximal representation is itself Pk-Anosov and admits a 

Pk-limit map, in the following sense.

Proposition 5.2. If Ψ : SL(2, R) → SL(d, K) is a Pk-proximal representation, then there 

exists a continuous, Ψ-equivariant transverse map

η = (ηk, ηd−k) : ∂ H2 → Grk(Kd) × Grd−k(Kd)

with the following properties:

(1) If ‖·‖ is a Ψ-invariant family of norms on the fibers of T 1H2 × Kd, then there exists 

B, b > 0 so that if t > 0, v ∈ T 1H2, Y ∈ ηk(v+) and Z ∈ ηd−k(v−) is non-zero, 

then

‖Y ‖φt(v)

‖Z‖φt(v)

≤ Be−bt ‖Y ‖v

‖Z‖v

. (6)

(2) If {γn} is a sequence in SL(2, R) with γn → x ∈ ∂ H2 and γ−1
n → y ∈ ∂ H2, then

Ψ(γn)(V ) → ηk(x)

locally uniformly for all V ∈ Grk(Kd) transverse to ηd−k(y).

(3) If g ∈ SL(d, K) commutes with the elements of Ψ(SL(2, R)), then g ◦ η = η.

Proof. By conjugating Ψ we can assume that

Ψ = ⊕m
i=1τdi

. (7)

Let ξdi
: ∂ H2 → F(Kdi) denote the τdi

-equivariant boundary map described in Sec-

tion 2.3.

By definition, if γ ∈ SL(2, R) is a hyperbolic element, then τdi
(γ) is diagonalizable with 

eigenvalues having pairwise distinct absolute values. Furthermore, for all k = 1, . . . , di−1, 

ξk
di

(γ+) is the direct sum of the eigenspaces of the k largest eigenvalues of τdi
(γ).

First, we construct the map η. Observe that since Ψ is Pk-proximal, Ψ(γ) is Pk-

proximal and Pd−k-proximal for every hyperbolic element γ ∈ SL(2, R). Thus, for all 

i = 1, . . . , m, there are integers ki ∈ {0, . . . , di} such that

•
∑m

i=1 ki = k, and for all hyperbolic γ ∈ SL(2, R), ⊕m
i=1ξki

di
(γ+) ∈ Grk(Kd) is the 

attracting fixed point for the action of Ψ(γ) on Grk(Kd), and

•
∑m

i=1 d −ki = d −k, and for all hyperbolic γ ∈ SL(2, R), ⊕m
i=1ξdi−ki

di
(γ−) ∈ Grd−k(Kd)

is the attracting fixed point for the action of Ψ(γ−1) on Grd−k(Kd).
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Then set

ηk := ⊕m
i=1ξki

di
: ∂ H2 → Grk(Kd)

and

ηd−k := ⊕m
i=1ξdi−ki

di
: ∂ H2 → Grd−k(Kd).

Note that this pair of maps are continuous, Ψ-equivariant, and transverse.

For every v ∈ T 1 H2, there exists a one-parameter subgroup {at}t∈R of hyperbolic 

elements in SL(2, R) so that at(v) = φt(v) for all t ∈ R. Since Ψ(a1) is Pk-proximal,

b := log

(
λk(Ψ(a1))

λk+1(Ψ(a1))

)
> 0,

so

λk(Ψ(at))

λk+1(Ψ(at))
= ebt

for all t > 0.

If X ∈ Kd, then

‖X‖φt(v) =
∥∥Ψ(at)

−1(X)
∥∥

v

so, if Y ∈ ηk(v+) and Z ∈ ηd−k(v−) are non-zero, then

‖Y ‖φt(v)

‖Z‖φt(v)

≤ λk+1(Ψ(at))

λk(Ψ(at))

‖Y ‖v

‖Z‖v

= e−bt ‖Y ‖v

‖Z‖v

which completes the proof of (1).

If {γn} is a sequence in SL(2, R) with γn → x and γ−1
n → y, one can write γn =

�n atn
mn where �n, mn ∈ SO(2), tn ≥ 0, and at =

(
et 0
0 e−t

)
. By assumption, tn → ∞, 

�n → � and mn → m with �(∞) = x and m−1(0) = y.

Notice that if W ∈ Grk(Rd) is transverse to ηd−k(0), then {Ψ(atn
)(W )} converges 

to ηk(∞) (since, by definition, ηk(∞) is the attracting k-plane of Ψ(a1) and ηd−k(0)

is the repelling (d − k)-plane). So, by equivariance, if V is transverse to ηd−k(y), then 

Ψ(mn)(V ) is transverse to ηd−k(0) = lim Ψ(mn)(ηd−k(y)) for all large enough n. Thus, 

{Ψ(atn
mn)(V )} converges to ηk(∞) locally uniformly in V . Therefore, {Ψ(γn)(V )} =

{Ψ(�n atn
mn)(V )} converges to Ψ(�)(ηk(∞)) = ηk(x) locally uniformly in V . This 

proves (2).

To prove (3), fix x ∈ ∂ H2 and a hyperbolic element γ ∈ SL(2, R) so that γ+ = x. 

Then Ψ(γ) is Pk-proximal and ηk(x) ∈ Grk(Kd) is the attracting fixed point of Ψ(γ), so 

gηk(x) = ηk(x) since g commutes with Ψ(γ). Similar reasoning shows that gηd−k(x) =

ηd−k(x). �
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The following technical result says that the image of the limit map of an Anosov 

representation is asymptotically homogeneous at a parabolic fixed point. In one of the 

arguments that follow, we need uniform control over continuous families of Anosov rep-

resentations, so we introduce a parameter u.

Proposition 5.3. Suppose that α ∈ SL(2, R) is a parabolic element, X is a closed α-

invariant subset of ∂H2 containing the fixed point α+ = α− of α, Ψ : SL(2, R) → SL(d, K)

is a Pk-proximal representation with Pk-limit map η, and � ∈ SL(d, K) is elliptic and 

commutes with the elements of Ψ(SL(2, R)).

Let U be a compact metric space and {gu}u∈U be a continuous family of elements in 

SL(d, R). Suppose

ξ = (ξk, ξd−k) : U × X → Grk(Kd) × Grd−k(Kd)

is continuous and for each u ∈ U , the map ξu := ξ(u, ·) is transverse, ξu(α+) = guη(α+)

and

ξu ◦ α = gu�Ψ(α)g−1
u ◦ ξu. (8)

If γ ∈ SL(2, R) is a hyperbolic element with attracting fixed point α+, then

lim
n→∞

(
guΨ(γ)−ng−1

u ◦ ξu ◦ γn
)

(xn) = guη(x)

if lim xn = x ∈ ∂ H2 and xn ∈ γ−n(X) for all n. Moreover, the convergence is uniform 

in u ∈ U .

Proof. Fix a distance dG on Grk(Kd) × Grd−k(Kd) induced by a Riemannian metric.

Suppose the proposition fails for a sequence {xn} ⊂ X with lim xn = x ∈ X. Then 

there exist ε > 0, {nj} converging to infinity and a sequence {uj} in U such that

dG

((
guj

Ψ(γ)−nj g−1
uj

◦ ξuj
◦ γnj

)
(xnj

), guj
η(x)

)
> ε

for all j. Passing to subsequences we may suppose that uj → u∞ ∈ U .

For notational convenience, let

ηj = guj
Ψ(γ)−nj g−1

uj
◦ ξuj

◦ γnj

for all j ∈ N. Since η is Ψ-equivariant and ξu(α+) = guη(α+) for all u ∈ U ,

guj
η(α+) = guj

Ψ(γ)−nj η(α+) = guj
Ψ(γ)−nj g−1

uj
◦ ξuj

(α+)

= guj
Ψ(γ)−nj g−1

uj
◦ ξuj

◦ γnj (α+) = ηj(α+).

So, by passing to a tail of our sequences we may assume that xnj
�= α+ for every j.
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First suppose that {yj = γnj (xnj
)} lies in a compact subset of ∂H2 −{α+}. Then x =

γ−. Since ξuj
→ ξu∞

, there exists N > 0 sufficiently large so that {g−1
uj

ξuj
(yj)}n≥N lies 

in a compact subset of flags transverse to g−1
u∞

ξu∞
(α+) = η(γ+). Hence Proposition 5.2

part (2) implies that

g−1
uj

ηj(xnj
) = Ψ(γ)−nj (g−1

uj
ξuj

(yj))

converges to η(γ−). Thus

ε ≤ lim inf
j→∞

dG

(
ηj(xnj

), guj
η(x)

)
= dG

(
gu∞

η(γ−), gu∞
η(γ−)

)
= 0

and we have a contradiction.

Now suppose that {yj} does not lie in a compact subset of ∂H2 − {α+}. We may 

assume without loss of generality that γ− = 0, γ+ = ∞ = α+, and α = u1 where

ut =

(
1 t
0 1

)
∈ SL(2, R).

Then yj ∈ R ⊂ ∂ H2 for all j. Let zj = �yj� ∈ Z and wj = yj − zj ∈ [0, 1] and set 

δj = γ−nj
uzj

= γ−nj αzj . Notice that αzj (wj) = yj , δj(wj) = xnj
, δ−

j = ∞ and δ+
j → x. 

Passing to a subsequence, we can suppose that wj → w ∈ [0, 1]. Proposition 5.2 part 

(2) then implies that Ψ(δj)(V ) converges to ηk(x) locally uniformly for all V ∈ Grk(Kd)

which are transverse to ηd−k(∞). Also,

ηk
j (xnj

) = guj
Ψ(γ−nj )g−1

uj

(
ξk

uj
(αzj (wj)

)
= guj

Ψ(γ−nj )g−1
uj

(
guj

�zj Ψ(αzj )g−1
uj

)ξk
uj

(wj)
)

= guj
�zj Ψ(γ−nj αzj )g−1

uj

(
ξk

uj
(wj)

)
= guj

�zj Ψ(δj)
(
g−1

uj
ξk

uj
(wj)

)

(where in the first line we apply assumption (8)). We may pass to a subsequence so 

that �zj → �∞ ∈ SL(d, K). Then �∞ is also elliptic and commutes with the elements of 

Ψ(SL(2, R)) and hence, by Proposition 5.2 part (3), fixes each element in the image of 

η. Then

lim
j→∞

ηk
j (xnj

) = gu∞
�∞ηk(x) = gu∞

ηk(x)

since g−1
uj

ξk
uj

(wj) → g−1
u∞

ξk
u∞

(w), g−1
u∞

ξk
u∞

(w) is transverse to ηd−k(∞) = g−1
u∞

ξk
u∞

(∞), 

and �∞ ◦ η = η.

Reversing the roles of k and d − k, we may similarly show that ηd−k
j (xnj

) →
gu∞

ηd−k(x). Hence we again have a contradiction. �

6. A dynamical characterization of linear Anosov representations

In this section, we prove Theorem 1.2. The forward implication has already been 

established as part (3) of Theorem 1.1. The reverse implication follows from the following 

more general statement.
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First, recall from Section 3 that a transverse, ρ-equivariant, continuous map ξ =

(ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd) induces a continuous decomposition of Êρ

into a pair of sub-bundles Êρ = Θ̂k ⊕ Ξ̂d−k of rank k and d − k respectively. Further, 

the flow φt induces a flow on Hom(Ξ̂d−k, Θ̂k), which we denote by φt, and any canonical 

norm on Êρ induces a canonical norm on Hom(Ξ̂d−k, Θ̂k) which is simply given by the 

associated operator norm.

Theorem 6.1. Suppose Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K)

is a representation. If there exists a ρ-equivariant, transverse, continuous, strongly dy-

namics preserving map ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd), then ρ is 

type-preserving and the flow φt on Hom(Ξ̂d−k, Θ̂k) is uniformly contracting with respect 

to any canonical norm on Hom(Ξ̂d−k, Θ̂k). In particular, ρ is Pk-Anosov and ξ is its 

Pk-Anosov limit map.

The following is an immediate corollary of Theorem 6.1 and Theorem 4.1.

Corollary 6.2. Suppose Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K)

is a Pk-Anosov representation. Then the flow φt on Hom(Ξ̂d−k, Θ̂k) is uniformly con-

tracting with respect to any canonical norm on Hom(Ξ̂d−k, Θ̂k).

As another corollary, we see that if ρ is Zariski dense, then ρ is Pk-Anosov if it admits 

a transverse limit map, which generalizes a result of Guichard and Wienhard from the 

uncusped Anosov setting [18, Theorem 4.11].

Corollary 6.3. Suppose Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, K)

is a representation.

(1) If ρ is irreducible, and there exists a ρ-equivariant, transverse, continuous, map 

ξ = (ξ1, ξd−1) : Λ(Γ) → Gr1(Kd) × Grd−1(Kd), then ρ is P1-Anosov and ξ is its 

P1-Anosov limit map.

(2) If ∧kρ : Γ → SL(∧k Kd) is irreducible (e.g. if ρ(Γ) is Zariski dense in SL(d, K)) and 

there exists a ρ-equivariant, transverse, continuous, map ξ = (ξk, ξd−k) : Λ(Γ) →
Grk(Kd) × Grd−k(Kd), then ρ is Pk-Anosov and ξ is its Pk-Anosov limit map.

Proof. (1): It is enough to show that ξ is strongly dynamics preserving. Fix an escaping 

sequence {γn} in Γ with γn → x and γ−1
n → y. Let [ρ(γn)] denote the image of ρ(γn)

in P (End(Kd)). Then it is enough to show that [ρ(γn)] converges to the element T ∈
P (End(Kd)) with ker(T ) = ξd−1(y) and Image(T ) = ξ1(x). Since P (End(Rd)) is compact 

it is enough to show that every convergent subsequence of ρ(γn) converges to T . So 

suppose that [ρ(γn)] → S in P (End(Kd)). Then

S(v) = lim
n→∞

ρ(γn)(v)
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for all v ∈ P (Kd) \ P (ker S).

We first claim that Image(S) = ξ1(x). Since ρ : Γ → SL(d, K) is irreducible, there 

exists x1, . . . , xd ∈ Λ(Γ) so that ξ(x1), . . . , ξ(xd) spans Kd. Since ∂Γ is perfect, we can 

perturb each xj and assume that

y /∈ {x1, . . . , xd}.

Then ρ(γn)
(
ξ1(xj)

)
→ ξ1(x). Since {ξ1(x1), . . . , ξ1(xd)} spans Kd, we can relabel and 

suppose that

ker S ⊕ ξ1(x1) ⊕ · · · ⊕ ξ1(xm) = Kd

where m = d − dim ker S. Then

S
(
ξ1(xj)

)
= lim

n→∞
ρ(γn)

(
ξ1(xj)

)
= ξ1(x)

for all 1 ≤ j ≤ m. Hence Image(S) = ξ1(x).

To compute the kernel, we notice that Grd−1(Kd) may be identified with P (Kd∗) by 

identifying a hyperplane Q in Kd with the projective class of linear functionals with 

kernel Q. Notice that [tρ(γn)] converges to tS in P (End(Kd∗)). Repeating the argument 

above shows that Image(tS) = ξd−1(y), so the kernel of S is ξd−1(y).

(2): One can argue similarly using the Plücker embeddings. �

Proof of Theorem 6.1. Suppose that Γ ⊂ PSL(2, R) is a geometrically finite group, ρ :

Γ → SL(d, K) is a representation and that

ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd)

is a continuous, transverse, ρ-equivariant, strongly dynamics-preserving map. Lemma 2.2

implies that ρ is type-preserving.

Let ‖·‖ be a canonical family of norms on Êρ and let C be a full collection of embedded 

cusp neighborhoods so that the restriction to the fibers over Û(Γ)C is canonical for all 

C ∈ C. We will also use ‖·‖ to denote the lift of ‖·‖ to a continuous family of norms on 

the fibers of U(Γ) × Kd.

The proof divides into two parts. We first use properties of the canonical family of 

norms to control the flow over the thin part Û(Γ)C . We then use a compactness argument 

to control the flow on the complement.

Proposition 6.4. If C ∈ C, then there exist constants bC and BC and an embedded cusp 

sub-neighborhood C ′ ⊂ C such that if v ∈ Û(Γ)C′ , t ≥ 0 and φs(v) ∈ Û(Γ)C′ for all 

s ∈ [0, t], then



30 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ BCe−bCt ‖Y ‖v

‖Z‖v

(9)

for all Y ∈ Θ̂k|v and non-zero Z ∈ Ξ̂d−k|v.

Proof. Suppose that C = 〈α〉\H. Then it suffices to find a horodisc H ′ ⊂ H and 

constants bC , BC such that: if v ∈ U(Γ)H′ , t ≥ 0 and φs(v) ∈ U(Γ)H′ for all s ∈ [0, t], 

then

‖Y ‖φt(v)

‖Z‖φt(v)

≤ BCe−bC t ‖Y ‖v

‖Z‖v

(10)

for all Y ∈ ξk(v+) and non-zero Z ∈ ξd−k(v−).

After possibly replacing C with a subcusp, there exists a cusp representation Ψ :

SL(2, R) → SL(d, K) for α and ρ(α) such that ‖·‖ on U(Γ)H coincides with a ρ(α)ss-

invariant, Ψ-equivariant family of norms ‖·‖�
v∈T 1 H

2 .

Let η be the Pk-limit map of Ψ. Proposition 5.2 implies that there exists B, b > 0

such that

‖Y ‖�
φt(v)

‖Z‖�
φt(v)

≤ Be−bt ‖Y ‖�
v

‖Z‖�
v

(11)

for all t ≥ 0, v ∈ T 1 H2, Y ∈ ηk(v+) and non-zero Z ∈ ηd−k(v−). Choose bC = b
2 and 

T > 0 so that

Be−bt < e−bCt for all t > T. (12)

We claim that there is a horodisk H ′ ⊂ H so that if v ∈ U(Γ)H′ , t ∈ [T, 2T ] and 

φs(v) ∈ U(Γ)H′ for all s ∈ [0, t], then

‖Y ‖φt(v)

‖Z‖φt(v)

≤ e−bCt ‖Y ‖v

‖Z‖v

(13)

for all Y ∈ ξk(v+) and non-zero Z ∈ ξd−k(v−). If this is not the case, then there exists

• a sequence {tn} in [T, 2T ],

• a nested sequence {Hn} of horodisks centered at the fixed point of α whose intersec-

tion is empty,

• a sequence {vn} such that φs(vn) ∈ U(Γ)Hn
for all s ∈ [0, tn],

• a sequence vectors {Yn} such that Yn ∈ ξk(v+
n ),

• a sequence of non-zero vectors {Zn} such that Zn ∈ ξd−k(v−
n ),
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such that

‖Yn‖φtn (vn)

‖Zn‖φtn (vn)

> e−bC tn
‖Yn‖vn

‖Zn‖vn

. (14)

Let

ut =

(
1 t
0 1

)
and as =

(
es 0
0 e−s

)
.

As usual, by conjugating, we can assume that Ψ = ⊕m
i=1τdi

, and α = [u1].

There is a sequence {sn} → ∞ of positive real numbers and a sequence {mn} of 

integers such that {wn := a−sn
umn

(vn)} is relatively compact in T 1 H2. By passing to 

a subsequence, we may assume that wn converges to some w∞ ∈ T 1 H2, and that

(Vn, Wn) :=

(
Ψ(a−sn

umn
)(Yn)

‖Ψ(a−sn
umn

)(Yn)‖�
wn

,
Ψ(a−sn

umn
)(Zn)

‖Ψ(a−sn
umn

)(Zn)‖�
wn

)

converges to some (V∞, W∞) ∈ Kd × Kd. By definition,

(Vn, Wn) ∈ Ψ(a−sn
umn

)
(
ξk(v+

n ) × ξd−k(v−
n )
)

= ξk
n(w+

n ) × ξd−k
n (w−

n )

where ξn = Ψ(a−sn
) ◦ ξ ◦ asn

. Proposition 5.3 (applied when U is a singleton) implies 

that limn→∞ ξn = η, so

(V∞, W∞) ∈ ηk(w+
∞) × ηd−k(w−

∞).

Since ‖·‖�
v is Ψ-equivariant, Equation (14) implies that

‖Vn‖�
φtn (wn)

‖Wn‖�
φtn (wn)

= Cn

‖Yn‖φtn (vn)

‖Zn‖φtn (vn)

> Cne−bC tn
‖Yn‖vn

‖Zn‖vn

= e−bC tn
‖Vn‖�

wn

‖Wn‖�
wn

, (15)

where Cn =
‖Ψ(a−sn umn )(Zn)‖�

wn

‖Ψ(a−sn umn )(Yn)‖�
wn

. By passing to a final subsequence, we can suppose 

that tn → t ∈ [T, 2T ]. Then taking n → ∞ in Equation (15) we obtain

‖V∞‖�
φt(w∞)

‖W∞‖�
φt(w∞)

≥ e−bCt
‖V∞‖�

w∞

‖W∞‖�
w∞

> Be−bt
‖V∞‖�

w∞

‖W∞‖�
w∞

.

Since V∞ ∈ ηk(w+
∞) and W∞ ∈ ηd−k(w−

∞), this contradicts (11), thus proving the claim.

Repeated applications of the claim imply that if v ∈ U(Γ)H′ and t ≥ T is a number 

such that φs(v) ∈ U(Γ)H′ for all s ∈ [0, t], then

‖Y ‖φt(v)

‖Z‖φt(v)

≤ e−bCt ‖Y ‖v

‖Z‖v
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for all non-zero Y ∈ ξk(v+) and Z ∈ ξd−k(v−). Hence, if we define

BC = max

{
e−bC t

‖Z‖v ‖Y ‖φt(v)

‖Z‖φt(v) ‖Y ‖v

: 0 ≤ t ≤ T, v ∈ K, Y, Z ∈ Kd −{0}
}

,

(notice that BC is finite by Lemma 3.8) then the proposition follows. �

It remains to control the behavior of the flow on the thick part. The proof of the 

following proposition is inspired by arguments of Tsouvalas [35, Theorem 1.1].

Proposition 6.5. Suppose that K̂ is a compact subset of Û(Γ), {un} is a sequence in 

K̂, Yn ∈ Θ̂k|un
, Zn ∈ Ξ̂d−k|un

and ‖Yn‖un
= ‖Zn‖un

= 1 for all n. If {tn} ⊂ R, 

lim tn = +∞ and φtn
(un) ∈ K̂ for all n, then

lim
n→∞

‖φtn
(Yn)‖φtn (un)

‖φtn
(Zn)‖φtn (un)

= 0.

Proof. We first choose a compact set K ⊂ U(Γ) so that K̂ ⊂ π(K) (where π : U(Γ) →
Û(Γ) is the quotient map). For each n, choose vn ∈ K so that π(vn) = un and γn ∈ Γ so 

that wn = γ−1
n (φtn

(vn)) ∈ K. We may assume that vn → v∞ and wn → w∞ for some 

v∞, w∞ ∈ K. Notice that γn → v+
∞ and γ−1

n → w−
∞.

Let Vn ∈ ξk(v+
n ) and Wn ∈ ξd−k(v−

n ) denote lifts of Yn and Zn respectively. Then

‖φtn
(Yn)‖φtn (un)

‖φtn
(Zn)‖φtn (un)

=
‖Vn‖φtn (vn)

‖Wn‖φtn (vn)

=

∥∥ρ(γn)−1(Vn)
∥∥

wn

‖ρ(γn)−1(Wn)‖wn

.

Also, since K is compact, there exists L so that if v ∈ K, then ‖·‖v is L-bilipschitz to 

the standard norm ‖·‖2 on Kd. So it suffices to show that

lim
n→∞

∥∥ρ(γn)−1(Vn)
∥∥

2

‖ρ(γn)−1(Wn)‖2

= 0.

Since ξ is strongly dynamics preserving, Lemma 2.2 implies that

lim
n→∞

σd−k(ρ(γn)−1)

σd−k+1(ρ(γn)−1)
= ∞, (16)

Uk(ρ(γn)) → ξk(v+
∞), and Ud−k(ρ(γn)−1) → ξd−k(w−

∞). By the ρ-equivariance of ξ, 

ρ(γn)−1(Wn) ∈ ξd−k(w−
n ), which implies that

lim
n→∞

∠(Ud−k(ρ(γn)−1), ρ(γn)−1(Wn)) = 0.

Therefore,
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lim inf
n→∞

∥∥ρ(γn)−1(Wn)
∥∥

2

σd−k(ρ(γn)−1)
≥ lim inf

n→∞
‖Wn‖2 ≥ 1

L
.

We now write Vn = V ′
n + V ′′

n , where V ′
n ∈ Uk(ρ(γn)) and V ′′

n ∈ ρ(γn)
(
Ud−k(ρ(γn)−1)

)

are orthogonal. Notice that

lim sup
n→∞

∥∥ρ(γn)−1(V ′
n)
∥∥

2

σd−k+1(ρ(γn)−1)
≤ L

so

lim
n→∞

∥∥ρ(γn)−1(V ′
n)
∥∥

2

‖ρ(γn)−1(Wn)‖2

= 0.

As such, if 
∥∥ρ(γn)−1(Vn)

∥∥
2

‖ρ(γn)−1(Wn)‖2
does not converge to 0 it must be the case that 

∥∥ρ(γn)−1(V ′′

n )
∥∥

2

‖ρ(γn)−1(Wn)‖2

does not converge to 0, and hence that

lim sup
n→∞

∥∥ρ(γn)−1(V ′′
n )
∥∥

2

‖ρ(γn)−1(V ′
n)‖2

= ∞.

We may then pass to a subsequence so that the limits

lim
n→∞

ρ(γn)−1
(

SpanK(V ′′
n )
)

= lim
n→∞

ρ(γn)−1
(

SpanK(Vn)
)

are equal and exist. At the same time,

lim
n→∞

ρ(γn)−1
(

SpanK(V ′′
n )
)

⊂ lim
n→∞

Ud−k(ρ(γn)−1) = ξd−k(w−
∞),

and

lim
n→∞

ρ(γn)−1
(

SpanK(Vn)
)

⊂ lim
n→∞

ρ(γn)−1
(
ξk(v+

n )
)

= lim
n→∞

ξk(w+
n ) = ξk(w+

∞).

This contradicts the transversality of ξ, and completes the proof. �

We now combine Proposition 6.4 and Proposition 6.5 to finish the proof of Theo-

rem 1.2.

For each C ∈ C, let C ′ ⊂ C be the embedded cusp subneighborhood given by Propo-

sition 6.4. Let C′ = {C ′ : C ∈ C} and let K̂ = Û(Γ) − Û(Γ)C′ , which is compact. Let 

b = min{bC : C ∈ C} and B = max{BC : C ∈ C}.

Proposition 6.5 implies that there exists T1 > 0 so that: if t ≥ T1, v ∈ K̂ with 

φt(v) ∈ K̂, Y ∈ Θ̂k|v, and Z ∈ Ξ̂d−k|v is non-zero, then

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ 1

2B2

‖Y ‖v

‖Z‖v

. (17)
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Moreover, since K̂ is compact, there exists R > 0 so that: if v ∈ K̂, 0 ≤ t ≤ T1, Y ∈ Θ̂k|v
and Z ∈ Ξ̂d−k|v is non-zero, then

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ Ret ‖Y ‖v

‖Z‖v

. (18)

Now choose T > 0 so that

B2ReT1(1+b)−bT ≤ 1

2
and Be−bT ≤ 1

2
.

We claim that if t ≥ T , v ∈ Û(Γ), Y ∈ Θ̂k|v and Z ∈ Ξ̂d−k|v is non-zero, then

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ 1

2

‖Y ‖v

‖Z‖v

. (19)

Once we have proven our claim, we can choose

a :=
log(2)

T
and

A := max

{
‖φt(Y )‖φt(v) ‖Z‖v

‖φt(Z)‖φt(v) ‖Y ‖v

: 0 ≤ t ≤ T, Y ∈ Θ̂k|v − 0, Z ∈ Ξ̂d−k|v − 0

}
,

(notice that A is finite by Lemma 3.8) and observe that

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ Ae−at ‖Y ‖v

‖Z‖v

for all t > 0, v ∈ Û(Γ), Y ∈ Θ̂k|v and non-zero Z ∈ Ξ̂d−k|v. Hence, we will have shown 

that ρ is Pk-Anosov.

We now establish (19). Fix v ∈ Û(Γ), t ≥ T , Y ∈ Θ̂k|v and non-zero Z ∈ Ξ̂d−k|v. If 

φs(v) /∈ K̂ for all s ∈ [0, t], then Proposition 6.4 implies that

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤ Be−bt ‖Y ‖v

‖Z‖v

≤ 1

2

‖Y ‖v

‖Z‖v

.

Otherwise let

s1 = s1(t, v) := min
{

s ∈ [0, t] : φs(v) ∈ K̂
}

and

s2 = s2(t, v) := max
{

s ∈ [0, t] : φs(v) ∈ K̂
}

.
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If s2 − s1 ≥ T1, then Proposition 6.4 and (17) give

‖φt(Y )‖φt(v)

‖φt(Z)‖φt(v)

≤
(
Be−bs1

) ( 1

2B2

)(
Be−b(t−s2)

) ‖Y ‖v

‖Z‖v

=
1

2
eb(s2−s1−t) ‖Y ‖v

‖Z‖v

≤ 1

2

‖Y ‖v

‖Z‖v

.

On the other hand, if s2 − s1 < T1, then by Proposition 6.4 and (18), we have

‖Y ‖φt(v)

‖Z‖φt(v)

≤
(
Be−bs1

) (
Res2−s1

) (
Be−b(t−s2)

) ‖Y ‖v

‖Z‖v

≤
(

B2ReT1(1+b)−bT
) ‖Y ‖v

‖Z‖v

≤ 1

2

‖Y ‖v

‖Z‖v

. �

7. Hitchin representations are Borel Anosov

In this section, we show that Hitchin representations are irreducible and Borel Anosov, 

i.e. Pk-Anosov for all k. Theorem 1.2 reduces the proof that Hitchin representations are 

Borel Anosov to the claim that their limit maps are strongly dynamics preserving.

Theorem 7.1. Suppose Γ ⊂ PSL(2, R) is a geometrically finite group and ρ : Γ → SL(d, R)

is Hitchin with continuous positive ρ-equivariant limit map ξ : Λ(Γ) → Fd. If {γn} is a 

sequence in Γ with γn → x ∈ Λ(Γ) and γ−1
n → y ∈ Λ(Γ), then

ρ(γn)(V ) → ξk(x)

for all V transverse to ξd−k(y).

Proof. Our proof relies on an observation about convergence of sequences of flags.

Definition 7.2. For any positive triple of flags (F1, F2, F3) in F(Rd), define the open set

O(F1, F2, F3) :=
{

F ∈ F(Rd) : (F1, F, F2, F3) is positive
}

. (20)

The following result is a corrected version of Lemma 3.16 in [7] (whose statement 

omits an additional assumption given here).

Lemma 7.3. Let (F+, F−) be a transverse pair of flags in F(Rd). Suppose that {F1,n}, 

{F2,n} and {F3,n} are sequences in F(Rd) such that

(1) F1,n → F + and F2,n → F +,

(2) F3,n → F −, and
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(3) (F1,n, F2,n, F3,n) is positive for all n.

If {Fn} is a sequence in F(Rd) such that Fn ∈ O(F1,n, F2,n, F3,n) for all n, then Fn →
F +.

We first suppose that x �= y. Then by passing to the tail of the sequence {γn}, we 

may assume that each γn is hyperbolic with attractor and repellor γ+
n and γ−

n in Λ(Γ). 

Then γ+
n → x, γ−

n → y, and γn(z) → x for all z ∈ Λ(Γ) − {y}.

Since Λ(Γ) is infinite, there are points a, b ∈ Λ(Γ) − {x, y} such that

• either x < a < b < y or y < b < a < x, and

• up to taking subsequences, the sequences {γn(a)} and {γn(b)} both converge mono-

tonically to x, and from the same direction.

Observe that

lim
n→∞

ξ(γn(a)) = ξ(x) = lim
n→∞

ξ(γn(b)).

Now, consider the open sets

On := O
(
ξ(a), ξ(b), ξ(γ−

n )
)

for all n. Since γ−
n → y, and either a < b < y or b < a < y, it follows that there is some 

N > 0 such that either a < b < γ−
n for all n ≥ N , or b < a < γ−

n for all n ≥ N . Lemma 

3.15 in [7] then implies that On = Om for all n, m ≥ N . Hence, if we set O := ON , then 

for all n ≥ N , we have

ρ(γn) (O) = ρ(γn) (On) = O(ξ(γn(a)), ξ(γn(b)), ξ(γ−
n )).

Since ξ(γn(a)), ξ(γn(b)) → ξ(x) and ξ(γ−
n ) → ξ(y), we may apply Lemma 7.3 to 

deduce that

lim
n→∞

ρ(γn)(F ) = ξ(x)

for all F ∈ O. Repeating the same argument with γ−1
n , we see that there exists an open 

set O′ ⊂ F(Rd) where

lim
n→∞

ρ(γ−1
n )(F ) = ξ(y)

for all F ∈ O′. Hence, we may apply Lemma 2.2 to deduce the proposition when x �= y.

Now suppose that x = y. Pick γ ∈ Γ such that z := γ−1(x) �= x. Then γnγ → x, 

(γnγ)−1 → z �= x. By the first part, ρ(γnγ)(F ) → ξ(x) for all F ∈ F(Rd) transverse to 

ξ(z). Equivalently, ρ(γn)(F ) → ξ(x) for all F ∈ F(Rd) transverse to ξ(x). �
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We recall that positive tuples of flags are in general position in the following sense.

Proposition 7.4. (Fock-Goncharov [16, Prop. 9.4], Sun-Wienhard-Zhang [34, Prop 2.21]) 

If (F1, . . . , Fk) is a positive tuple of flags, (ni)
k
i=1 ∈ Nk and n = n1 + · · · + nk ≤ d, then 

⊕k
i=1F ni

i has dimension n.

We also use the following equivalent formulation of the positivity of a quadruple of 

flags.

Lemma 7.5. A quadruple of flags (F1, F2, F3, F4) is positive if and only if there is a 

basis (b1, . . . , bd) of Rd such that bi ∈ F i
1 ∩ F d−i+1

3 for all i ∈ {1, . . . , d}, and some 

u, v ∈ U>0(b1, . . . , bd) such that u(F3) = F2 and v−1(F3) = F4.

Proof. Suppose first that (F1, F2, F3, F4) = (F1, u(F3), F3, v−1(F3)) for some basis 

(b1, . . . , bd) of Rd such that bi ∈ F i
1 ∩ F d−i+1

3 for all i ∈ {1, . . . , d}, and some 

u, v ∈ U>0(b1, . . . , bd). Then v(F1, F2, F3, F4) = (F1, vu(F3), v(F3), F3), which implies 

that v(F1, F2, F3, F4) is positive. Thus, (F1, F2, F3, F4) is positive.

Conversely, suppose that (F1, F2, F3, F4) is positive. By Proposition 7.4, F4 and F3 are 

both transverse to F1, there is a unique unipotent w ∈ SL(d, R) that fixes F1 and sends 

F4 to F3. Then w(F1, F2, F3, F4) is positive, which implies that there is a basis (b1, . . . , bd)

of Rd such that bi ∈ F i
1 ∩ F d−i+1

3 for all i ∈ {1, . . . , d}, and some u, v ∈ U>0(b1, . . . , bd)

such that

(F1, w(F2), w(F3), F3) = w(F1, F2, F3, F4) = (F1, vu(F3), v(F3), F3).

Since v is unipotent, fixes F1, and sends F3 to w(F3), it follows that v = w. Therefore,

(F1, F2, F3, F4) = v−1(F1, vu(F3), v(F3), F3) = (F1, u(F3), F3, v−1(F4)). �

Proof of Theorem 1.4. The fact that ρ is Pk-Anosov, and that x �→ ξk(x) is the Anosov 

limit map for k = 1, . . . , d − 1, follows from Theorems 1.2 and 7.1. Further, Theorem 7.1

and Lemma 2.2 imply that:

(1) If α ∈ Γ is parabolic, then ρ(α) is weakly unipotent.

(2) If γ ∈ Γ is hyperbolic, then ρ(γ) is loxodromic.

If α is parabolic, let x ∈ Λ(Γ) − {α+}, and note that (α+, α−1(x), x, α(x)) is a cycli-

cally ordered set of distinct points in Λ(Γ). Then we may apply the following lemma to 

(ξ(α+), ξ(α−1(x)), ξ(x), ξ(α(x)) to further conclude that ρ(α) = ±u for some unipotent 

u ∈ SL(d, R) with a single Jordan block.

Lemma 7.6. Let g ∈ SL(d, R) be weakly unipotent, and suppose that there are flags 

F1, F2 ∈ F(Rd) such that F1 is fixed by g and (F1, g−1(F2), F2, g(F2)) is positive. Then 
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F1 is the unique fixed flag of g, or equivalently, g = ±u for some unipotent u ∈ SL(d, R)

with a single Jordan block.

Proof. By Lemma 7.5, there is a basis (b1, . . . , bd) of Rd such that bi ∈ F i
1 ∩ F d−i+1

2

for all i ∈ {1, . . . , d}, and some u, v ∈ U>0(b1, . . . , bd) such that u(F2) = g(F2) and 

v−1(F2) = g−1(F2). Then a = u−1g and b = gv−1 both fix F1 and F2, so they are 

diagonal in the basis (b1, . . . , bd). Furthermore, since g is weakly unipotent, the diagonal 

entries of a and b are either 1 or −1.

Assume for contradiction that there is some i, j ∈ {1, . . . , d} such that the i-th diagonal 

entry of b is 1, while the j-th diagonal entry of b is −1. Since all the upper triangular 

entries of v are positive, this implies that the upper triangular entries of bv along the 

i-th row are positive, while the upper triangular entries of bv along the j-th row are 

negative. But this is impossible since ua = g = bv, and for every column of ua, the 

upper triangular entries in that column must have the same sign. As such, b = ± id. This 

implies that gss = ± id and gu = v = u.

It now suffices to show that u has a unique fixed flag in F(Rd). Observe the following 

linear algebra facts:

(1) If w is a unipotent element that is represented in a basis (e1, . . . , ed) by upper 

triangular matrix where all the upper triangular entries are positive, then the line 

spanned by e1 is the unique fixed line of w.

(2) If w ∈ U>0(b1, . . . , bd), then for all k ∈ {1, . . . , d −1}, the linear action of w on 
∧k

Rd

is represented in the basis (bi1
∧ · · · ∧ bik

)1≤i1<···<ik≤d by an upper triangular matrix 

where all the upper triangular entries are positive.

These two observations imply that the unique fixed flag of u is the flag F given by 

F k = SpanR(b1, . . . , bk) for all k ∈ {1, . . . , d − 1}. �

It only remains to show that ρ is irreducible. Suppose that ρ is not irreducible. Then 

there is a proper subspace W ⊂ Rd which is invariant under ρ(Γ). By Theorem 7.1, ρ(γ)

is loxodromic for any hyperbolic γ ∈ Γ, so either W contains the attracting fixed point 

(in P (Rd)) of ρ(γ), or W lies in the repelling hyperplane (in P (Rd)) of ρ(γ). Since ξ

is transverse, this implies that either W lies in the repelling hyperplanes of ρ(γ) for all 

hyperbolic γ ∈ Γ, or W contains the attracting fixed point of ρ(γ) for all hyperbolic γ ∈ Γ. 

However, this contradicts Proposition 7.4 in either case. Therefore, ρ is irreducible. �

8. Stability of Anosov representations

In this section, we prove Theorem 1.3, which we restate here.

Theorem 8.1. If Γ ⊂ PSL(2, R) is a geometrically finite group and ρ0 : Γ → SL(d, K) is 

Pk-Anosov, then there exists an open neighborhood O of ρ0 in Homtp(ρ0), so that
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(1) If ρ ∈ O, then ρ is Pk-Anosov.

(2) There exists α > 0 so that if ρ ∈ O, then ξρ is α-Hölder (with respect to any 

distance on Λ(Γ) induced by a Riemannian metric on ∂ H2 and any distance on 

Grk(Kd) × Grd−k(Kd) induced by a Riemannian metric).

(3) If {ρu}u∈M is a K-analytic family of representations in O and z ∈ Λ(Γ) then the 

map from M to Grk(Kd) × Grd−k(Kd) given by u �→ ξρu
(z) is K-analytic.

The proof of (1) is based on the proof of stability for Anosov diffeomorphisms on 

compact manifolds given in Shub’s book [33, Cor. 5.19]. The two key features which allow 

us to overcome the non-compactness of the base space are the smooth conjugacy of the 

flows on the cusps, see Equation (21), and uniform estimates for families of canonical 

norms, see Lemma 3.8.

Proof of Theorem 8.1:. We define

E(O) = O × U(Γ) × Kd and Ê(O) = Γ\(O × U(Γ) × Kd).

The geodesic flow on U(Γ) extends to a flow on E(O) whose action is trivial on the first 

and third factor. This in turn descends to a flow on Ê(O). As usual, we use φt to denote 

these flows. Also, notice that Ê(O)|ρ naturally identifies with Êρ.

Let ‖·‖0
be a canonical family of norms for Êρ0

and let C be a full collection of 

embedded cusp neighborhoods for Γ so that ‖·‖0
is canonical with respect to C. Suppose 

that Êρ0
= Θ̂k

ρ0
⊕ Ξ̂d−k

ρ0
is the Pk-Anosov splitting of Êρ0

.

A φt-invariant splitting of Ê(O) First, we prove that (after possibly shrinking O) there 

exists a continuous φt-invariant splitting

Ê(O) = Θ̂k ⊕ Ξ̂d−k

that restricts to the splitting Êρ0
= Θ̂k

ρ0
⊕ Ξ̂d−k

ρ0
over ρ0.

If C ∈ C and C = 〈α〉\H, then by shrinking O if necessary, we may assume that there 

is a continuous map gC : O → SL(d, K) such that

gC(ρ)ρ0(α)gC(ρ)−1 = ρ(α)

for all ρ ∈ O. Moreover, if ρ ∈ O, the bundle isomorphism

ΦH
ρ : Eρ0

|U(Γ)H
→ Eρ|U(Γ)H

given by (ρ0, v, Z) → (ρ, v, gC(ρ)(Z))

descends to a bundle isomorphism

Φ̂C
ρ : Êρ0

|Û(Γ)C
→ Êρ|Û(Γ)C
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so that if φs(Z) ∈ Êρ0
|Û(Γ)C

for all s ∈ [0, t], then

Φ̂C
ρ (φt(Z)) = φt(Φ̂

C
ρ (Z)). (21)

With this, we may extend the splitting Êρ0
= Θ̂k

ρ0
⊕ Ξ̂d−k

ρ0
to a global splitting

Ê(O) = F̂ k ⊕ Ĝd−k

by first setting

F̂ k|(ρ,v) = Φ̂C
ρ (Θ̂k

ρ0
|v) and Ĝd−k|(ρ,v) = Φ̂C

ρ (Ξ̂d−k
ρ0

|v)

for all ρ ∈ O, C ∈ C and v ∈ U(Γ)C , and then extending this globally after perhaps 

shrinking O and each C.

The flow φt does not necessarily preserve the splitting Ê(O) = F̂ k ⊕Ĝd−k. To find the 

required φt-invariant splitting, we will use the contraction mapping theorem. For that 

purpose, we extend ‖·‖0
to a canonical family of norms ‖·‖ on the fibers of Ê(O) over 

O ×Û(Γ) as follows. If C ∈ C, we define

∥∥∥Φ̂C
ρ (Z)

∥∥∥
(ρ,v)

= ‖Z‖0
(ρ0,v) for all ρ ∈ O, v ∈ Û(Γ)C and Z ∈ Êρ0

|v.

This gives us canonical norms over all C ∈ C. Then, perhaps after once more shrinking 

O and each C, we may extend this to a continuous family of norms ‖·‖ for the fibers of 

Ê(O) over O ×Û(Γ) such that the restriction to Êρ is canonical for all ρ ∈ O.

Suppose that V is a subspace of Ê(O)|(ρ,v), W is a subspace of Ê(O)|(ρ,w) and T ∈
Hom(V, W ). We define the operator norm

‖T‖(ρ,v) := max
{

‖T (Z)‖(ρ,w) : Z ∈ V, ‖Z‖(ρ,v) = 1
}

.

Then, if V, W ⊂ Ê(O) are subbundles, Q : Û(Γ) → Û(Γ) is an isomorphism, and T :

V → W is a map that restricts to a linear map T |(ρ,v) : V |(ρ,v) → W |(ρ,Q(v)) for all ρ ∈ O
and v ∈ Û(Γ), we define

‖T‖X := sup
ρ∈O,v∈X

∥∥T |(ρ,v)

∥∥
(ρ,v)

for any subset X ⊂ Û(Γ). In the case when Q = id, we may view T as an element 

of S(Hom(V, W )), the vector space of sections of the bundle Hom(V, W ). Note then 

that ‖·‖Û(Γ) defines a norm on S(Hom(V, W )) whose corresponding distance is Cauchy 

complete.

We may decompose the flow φt as

φt =

(
At Bt

Ct Dt

)
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relative to the splitting Ê(O) = F̂ k ⊕ Ĝd−k. Here, At : F̂ k → F̂ k is a map such that for 

all ρ ∈ O and v ∈ Û(Γ), At restricts to a linear map A(ρ,v,t) : F̂ k|(ρ,v) → F̂ k|(ρ,φt(v)), etc. 

In the case when this splitting happens to be φt-invariant, then Bt ≡ 0 and Ct ≡ 0.

Fix ε ∈ (0, 1/2) so that

1 + ε

(1 − ε)
≤ 2,

1

1 − ε
+

ε(1 + ε)

(1 − ε)2
≤ 2 and ε

(1 + 2ε)2(1 + 2ε2)

(1 − 2ε)2(1 − 2ε2)
≤ 1

2
. (22)

Lemma 8.2. Up to taking a subneighborhood of O, there exists T > 0 so that if t ∈ [T, 2T ], 

then At and Dt are invertible and

max
{∥∥A−1

t Bt

∥∥ ,
∥∥D−1

t Ct

∥∥ , Lt

}
< ε,

where Lt := supρ∈O,v∈Û(Γ)

(∥∥A(ρ,v,t)

∥∥
(ρ,v)

∥∥∥D−1
(ρ,v,t)

∥∥∥
(ρ,φt(v))

)
.

Proof. For a subset X ⊂ Û(Γ), define

Lt(X) := sup
ρ∈O,v∈X

(∥∥A(ρ,v,t)

∥∥
(ρ,v)

∥∥∥D−1
(ρ,v,t)

∥∥∥
(ρ,φt(v))

)
.

First notice that for all v ∈ Û(Γ), B(ρ0,v,t) = 0, C(ρ0,v,t) = 0 and both A(ρ0,v,t), 

D(ρ0,v,t) are invertible since F k ⊕ Gd−k|ρ0
= Θ̂k

ρ0
⊕ Ξ̂d−k

ρ0
is a flow invariant splitting. 

Since ρ0 is Pk-Anosov, there exist c, C > 0 such that

∥∥A(ρ0,v,t)

∥∥
(ρ0,v)

∥∥∥D−1
(ρ0,v,t)

∥∥∥
(ρ0,φt(v))

≤ Ce−ct,

for all v ∈ Û(Γ) and t > 0. Choose T so that Ce−cT < ε.

Consider the compact set

X =
{

v ∈ Û(Γ) : φt(v) /∈ Û(Γ)C for some t ∈ [0, 2T ]
}

.

By shrinking O if necessary, we can ensure that on Ê(O)|O ×X , if t ∈ [T, 2T ], then At

and Dt are invertible, and

max
{∥∥A−1

t Bt

∥∥
X

,
∥∥D−1

t Ct

∥∥
X

, Lt(X)
}

< ε.

On the other hand, if v ∈ Û(Γ) −X, then there is some C ∈ C such that φt(v) ∈ Û(Γ)C

for all t ∈ [0, 2T ]. Then by construction,

φ(ρ,v,t) = Φ̂C
ρ ◦ φ(ρ0,v,t) ◦ (Φ̂C

ρ )−1
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for all ρ ∈ O and t ∈ [0, 2T ]. Since Φ̂C
ρ is an isometry that preserves the splitting, it 

follows that on Ê(O)|O ×(Û(Γ)−X), if t ∈ [T, 2T ], then At and Dt are invertible, Bt = 0, 

Ct = 0, and

Lt

(
Û(Γ) − X

)
= sup

v∈Û(Γ)−X

∥∥A(ρ0,v,t)

∥∥
(ρ0,v)

∥∥∥D−1
(ρ0,v,t)

∥∥∥
(ρ0,φt(v))

< ε. �

Consider the bundle Hom(Ĝd−k, F̂ k) → O ×Û(Γ) with its induced operator norm ‖·‖. 

Let Rr ⊂ Hom(Ĝd−k, F̂ k) denote the ball bundle of radius r about the zero section.

Proposition 8.3. If t ∈ [T, 2T ], then there is a well-defined map ψt : R1 → R2ε given by

ψt(f) = (Bt + Atf) (Dt + Ctf)
−1

for all ρ ∈ O, v ∈ Û(Γ) and f ∈ R1|(ρ,v). Furthermore:

‖ψt(f1) − ψt(f2)‖ ≤ 2ε ‖f1 − f2‖

for all ρ ∈ O, v ∈ Û(Γ) and f1, f2 ∈ R1|(ρ,v).

Remark 8.4. One can verify that the map ψt has the defining property

Graph(ψt(f)) = φt(Graph(f))

for all t ∈ [T, 2T ], ρ ∈ O, v ∈ Û(Γ) and f ∈ R1|(ρ,v). Similarly, if Bt ≡ 0 and Ct ≡ 0, 

then

ψt(f) = AtfD−1
t = φt ◦ f ◦ φ−t

is a well defined flow on Hom(Ĝd−k, F̂ k).

Proof of Proposition 8.3 . If t ∈ [T, 2T ], then

Dt + Ctf = Dt

(
id +D−1

t Ctf
)

,

for all ρ ∈ O, v ∈ Û(Γ) and f ∈ R1|(ρ,v). By Lemma 8.2, if ‖f‖(ρ,v) < 1, then

∥∥D−1
t Ctf

∥∥
(ρ,v)

≤
∥∥D−1

t Ct

∥∥
Û(Γ)

‖f‖(ρ,v) < ε

which implies that id +D−1
t Ctf has trivial kernel for all ρ ∈ O and v ∈ Û(Γ). Hence, 

id +D−1
t Ctf is invertible. Since Lemma 8.2 also gives that Dt is invertible, it follows that

(Bt + Atf) (Dt + Ctf)
−1 ∈ Hom(Ĝd−k, F̂ k)|(ρ,φt(v))
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is a well-defined for all f ∈ R1|(ρ,v).

We first show that (Bt + Atf) (Dt + Ctf)
−1 ∈ R2ε|(ρ,φt(v)). By Lemma 8.2,

∥∥A−1
t Bt + f

∥∥
(ρ,v)

< 1 + ε

and

∥∥(id +D−1
t Ctf)−1

∥∥
(ρ,v)

<
1

1 − ε
.

Thus, by Equation (22),

∥∥∥(Bt + Atf) (Dt + Ctf)
−1
∥∥∥

(ρ,φt(v))
≤ Lt

∥∥A−1
t Bt + f

∥∥
(ρ,v)

∥∥(id +D−1
t Ctf)−1

∥∥
(ρ,v)

< ε
1 + ε

1 − ε
≤ 2ε.

Next, we prove our final claim. For any ρ ∈ O, v ∈ Û(Γ), f ∈ R1|(ρ,v) and η ∈
Hom(Ĝd−k, F̂ k)|(ρ,v),

d

ds

∣∣∣∣
s=0

(ψt)(f + sη) = Atη(Dt + Ctf)−1 − (Bt + Atf)(Dt + Ctf)−1Ctη(Dt + Ctf)−1

= At

(
η(id +D−1

t Ctf)−1

− (A−1
t Bt + f)(id +D−1

t Ctf)−1D−1
t Ctη(id +D−1

t Ctf)−1
)

D−1
t

∈ Hom(Ĝd−k, F̂ k)|(ρ,φt(v)).

Thus, by Equation (22),

∥∥∥∥
d

ds

∣∣∣∣
s=0

(ψt)(f + sη)

∥∥∥∥
(ρ,φt(v))

≤ ε

(
1

1 − ε
+

ε(1 + ε)

(1 − ε)2

)
‖η‖(ρ,v) = 2ε ‖η‖(ρ,v) . �

Let S(Rr) be the space of continuous sections of Rr → O × U(Γ). Notice that ψt

induces a map ψS
t : S(R1) → S(R2ε) given by

ψS
t (σ)(ρ, v) = ψt (σ(ρ, φ−t(v))) .

By Proposition 8.3, the map ψS
t is a contraction mapping on S(R1) for each t ∈ [T, 2T ]. 

We may now apply the contraction mapping theorem to conclude that for each t ∈ [T, 2T ]

there exists a unique ψS
t -invariant section σ(t) of the bundle R2ε.

We claim that σ(t) does not depend on t. If t1, t2 ∈ Q ∩[T, 2T ], then there exist 

sequences {nj}, {mj} with nj , mj → ∞ and njt1 = mjt2 for all j ≥ 1. Then by the 

proof of the contraction mapping theorem



44 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

σ(t1) = lim
j→∞

ψS
njt1

(
σ(t2)

)
= lim

j→∞
ψS

mjt2

(
σ(t2)

)
= σ(t2).

So σ(t) does not depend on t when t ∈ Q ∩[T, 2T ]. Then by uniqueness of invariant 

sections and the continuity of ψS
t , we see that σd−k := σ(t) does not depend on t. Then 

σd−k determines a φt-invariant (d − k)-dimensional subbundle Ξ̂d−k of Ê(O) defined by

Ξ̂d−k|(ρ,v) = Graph σd−k(ρ, v),

see Remark 8.4.

Applying a similar argument to the bundle Hom(F̂ k, Ĝd−k) we obtain, by further 

shrinking O if necessary, a φt-invariant k-dimensional subbundle Θ̂k of Ê(O).

To show that Ê(O) = Θ̂k ⊕ Ξ̂d−k, it now suffices to show that the fibers Ξ̂d−k|(ρ,v)

and Θ̂k|(ρ,v) are transverse for every (ρ, v) ∈ O ×Û(Γ). Suppose for contradiction that 

there is some non-zero Z ∈ Ξ̂d−k|(ρ,v) ∩ Θ̂k|(ρ,v) for some ρ ∈ O and v ∈ Û(Γ). We 

may write Z uniquely as Zk + Zd−k where Zk ∈ F̂ k|(ρ,v) and Zd−k ∈ Ĝd−k|(ρ,v). Since 

Ξ̂d−k corresponds to the section σd−k ∈ S(R2ε), the fact that Z ∈ Ξ̂d−k|(ρ,v) is non-zero 

implies that Zd−k �= 0 and

‖Zk‖(ρ,v)

‖Zd−k‖(ρ,v)

=

∥∥σd−k(ρ, v)(Zd−k)
∥∥

(ρ,v)

‖Zd−k‖(ρ,v)

≤
∥∥σd−k(ρ, v)

∥∥
(ρ,v)

< 2ε < 1.

For the same reasons, Zk �= 0 and

‖Zd−k‖(ρ,v)

‖Zk‖(ρ,v)

< 2ε < 1,

which is a contradiction. Thus, Θ̂k and Ξ̂d−k indeed give a φt-invariant splitting of Ê(O).

Proposition 8.5. The flow f �→ φt ◦ f ◦ φ−t on Hom(Ξ̂d−k, Θ̂k) is uniformly contracting.

Proof. We start by proving the following estimate:

‖φt(Y )‖(ρ,φt(v))

‖φt(Z)‖(ρ,φt(v))

≤ 1

2

‖Y ‖(ρ,v)

‖Z‖(ρ,v)

(23)

if ρ ∈ O, v ∈ Û(Γ), t ∈ [T, 2T ], Y ∈ Θ̂k|(ρ,v) and Z ∈ Ξ̂d−k|(ρ,v) is non-zero. Given such 

ρ, v, t, Y and Z, let

Y = Y1 + Y2 and Z = Z1 + Z2

be the decomposition relative to Ê(O) = F̂ k ⊕ Ĝd−k. Then, by the construction of Θ̂k

and Ξ̂d−k, we have ‖Y2‖(ρ,v) ≤ 2ε ‖Y1‖(ρ,v) and ‖Z1‖(ρ,v) ≤ 2ε ‖Z2‖(ρ,v). Further,
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φt(Y ) =
(

At(Y1) + Bt(Y2)
)

+
(

Ct(Y1) + Dt(Y2)
)

and since φt(Y ) ∈ Θ̂k|(ρ,φt(v))) we have

‖Ct(Y1) + Dt(Y2)‖(ρ,φt(v)) ≤ 2ε ‖At(Y1) + Bt(Y2)‖(ρ,φt(v)) .

Thus by Lemma 8.2

‖φt(Y )‖(ρ,φt(v)) ≤ (1 + 2ε) ‖At(Y1) + Bt(Y2)‖(ρ,φt(v))

= (1 + 2ε)
∥∥At

(
Y1 + A−1

t Bt(Y2)
)∥∥

(ρ,φt(v))

≤ (1 + 2ε) ‖At‖(ρ,v)

(
1 + 2ε2

)
‖Y1‖(ρ,v)

≤ (1 + 2ε)2
(
1 + 2ε2

)
‖At‖(ρ,v) ‖Y ‖(ρ,v) .

Similar reasoning shows that

‖φt(Z)‖(ρ,φt(v)) ≥ (1 − 2ε)2
(
1 − 2ε2

) 1∥∥D−1
t

∥∥
(ρ,φt(v))

‖Z‖(ρ,v) .

So by Lemma 8.2 and Equation (22),

‖φt(Y )‖(ρ,φt(v))

‖φt(Z)‖(ρ,φt(v))

≤ ε
(1 + 2ε)2(1 + 2ε2)

(1 − 2ε)2(1 − 2ε2)

‖Y ‖(ρ,v)

‖Z‖(ρ,v)

≤ 1

2

‖Y ‖(ρ,v)

‖Z‖(ρ,v)

.

This proves the estimate in Equation (23).

We then may apply Equation (23) iteratively to show that, for all n ∈ N,

‖φt(Y )‖(ρ,φt(v))

‖φt(Z)‖(ρ,φt(v))

≤
(

1

2

)n ‖Y ‖(ρ,v)

‖Z‖(ρ,v)

if ρ ∈ O, v ∈ Û(Γ), t ∈ [nT, (n + 1)T ], Y ∈ Θ̂k|(ρ,v) and Z ∈ Ξ̂d−k|(ρ,v) is non-zero.

Finally

‖φt(Y )‖(ρ,φt(v))

‖φt(Z)‖(ρ,φt(v))

≤ C0e−c0t
‖Y ‖(ρ,v)

‖Z‖(ρ,v)

for all ρ ∈ O, v ∈ Û(Γ), t ≥ 0, Y ∈ Θ̂k|(ρ,v) and non-zero Z ∈ Ξ̂d−k|(ρ,v), where c0 := log 2
T

and

C0 := 2 sup

{
ec0t

‖φt(Y )‖(ρ,φt(v))

‖Y ‖(ρ,v)

: ρ ∈ O, v ∈ U(Γ), Y ∈ Ξ̂d−k|(ρ,v) − 0, t ∈ [0, T ]

}

(notice that C0 is finite by Lemma 3.8). �
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Existence of limit maps Next, we use the φt-invariant splitting Ê(O) = Θ̂k ⊕ Ξ̂d−k to 

define limit maps

ξ = (ξk, ξd−k) : Λ(Γ) → Grk(Kd) × Grd−k(Kd).

Lift this splitting of Ê(O) to a splitting

E(O) = Θk ⊕ Ξd−k.

The flow φt on Ê(O) lifts to a flow, also denoted φt, on E(O), under which this splitting 

is invariant. Then the bundle Hom(Θ̂k, ̂Ξd−k) lifts to the bundle Hom(Θk, Ξd−k). Finally, 

we use ‖·‖ to denote the lifted norms on E(O) and Hom(Θk, Ξd−k).

By Proposition 8.5, there exists C0, c0 > 0 such that

‖f‖(ρ,φt(v)) ≤ C0e−c0t ‖f‖(ρ,v) (24)

for all f ∈ Hom(Ξd−k, Θk)|(ρ,v) = Hom(Ξd−k, Θk)|(ρ,φt(v)) and t ≥ 0.

Let

σ = (σk, σd−k) : O × U(Γ) → Grk(K) × Grd−k(Kd)

be the map so that σk(ρ, v) = Θk|(ρ,v) and σd−k(ρ, v) = Ξd−k|(ρ,v). Since σ is φt-

invariant, σk(ρ, v) and σd−k(ρ, v) depend only on ρ, v+ and v−. We now check that 

σd−k depends only on ρ and v−. Let γ ∈ Γ be a hyperbolic element, let vγ ∈ U(Γ) be a 

vector so that v+
γ = γ+ and v−

γ = γ−. Let �(γ) be the translation distance of γ on H2. 

Then φn�(γ)(vγ) = γn(vγ) for all n. Since σd−k is equivariant and φt-invariant, it follows 

that

σd−k(ρ, vγ) = σd−k(ρ, φ−�(γ)(γ(vγ))) = ρ(γ)(σd−k(ρ, vγ))

for all ρ. Furthermore, if W ⊂ Kd is a (d − k)-dimensional subspace that is transverse to 

σk(ρ, vγ), we may view W as the graph of an element fW ∈ Hom(Ξd−k, Θk)|(ρ,vγ ).

Equation (24) implies that

∥∥ρ(γ)−n(fW )
∥∥

(ρ,vγ )
= ‖fW ‖(ρ,γn(vγ)) = ‖fW ‖(ρ,φn�(γ)(vγ)) → 0,

which implies that ρ(γ)−n(W ) → σd−k(ρ, vγ). Thus, σd−k(ρ, vγ) is the repelling fixed 

point of ρ(γ) in Grd−k(Kd). Now if x ∈ Λ(Γ) \ {γ−}, then there exists v ∈ U(Γ) so that 

v+ = x, v− = γ− and

lim
t→∞

dU(Γ)

(
φ−t(vγ), φ−t(v)

)
= 0,

so γn(φ−n�(γ)(v)) → vγ . Thus,
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σd−k(ρ, vγ) = lim
n→∞

σd−k(ρ, γn(φ−n�(γ)(v)) = lim
n→∞

ρ(γ)n
(
σd−k(ρ, v)

)
.

Since σd−k(ρ, vγ) is the repelling fixed point of ρ(γ) in Grd−k(Kd), this implies that 

σd−k(ρ, v) = σd−k(ρ, vγ). Therefore, since σd−k is φt-invariant, if v− = γ−, then 

σd−k(ρ, v) is the repelling fixed point of ρ(γ). Since every point in Λ(Γ) is a limit of 

repelling fixed points of hyperbolic elements of Γ, this implies that σd−k depends only 

on ρ and v−.

One may similarly show that σk depends only on ρ and v+, so there exists

ξ = (ξk, ξd−k) : O ×Λ(Γ) → Grk(Kd) × Grd−k(Kd)

so that σ(ρ, v) = (ξk(ρ, v+), ξd−k(ρ, v−)). As such, if ρ ∈ O, then ρ is Pk-Anosov. This 

proves (1).

The limits maps are Hölder We now prove that, perhaps after shrinking our neighbor-

hood O again, that the limit maps are uniformly Hölder. It is possible to establish this 

using Shub’s Cr-Section theorem [33, Thm. 5.18], however setting up bundles with the 

correct regularity (see [33, Cor. 5.19]) and verifying the admissibility condition is some-

what involved when Û(Γ) is non-compact. Instead we provide a direct argument based 

on the proof of Lemma 4.4 in [38].

We will continue to work with E(O) and Hom(Ξd−k, Θk)|(ρ,v). For ρ ∈ O, v ∈ U(Γ)

and x ∈ Λ(Γ) − {v+}, let fρ,v,x ∈ Hom(Ξd−k, Θk)|(ρ,v) denote the unique element with

Graph(fρ,v,x) = ξd−k
ρ (x).

Notice that fρ,φt(v),x = fρ,v,x for all t ∈ R. If v ∈ U(Γ), we let v⊥ ⊂ ∂H2 denote the 

endpoints of the geodesic through the basepoint of v which is orthogonal to v. (One can 

use the orientation to canonically identify them as v⊥,+ and v⊥,− but this will not be 

needed for our purposes.)

Lemma 8.6. Up to taking a subneighborhood of O, there exists C1 > 1 so that if ρ ∈ O, 

v ∈ U(Γ) and x ∈ v⊥ ∩ Λ(Γ), then

1

C1
≤ ‖fρ,v,x‖(ρ,v) ≤ C1.

In the case when Γ is convex co-compact, the lemma is a simple consequence of 

equivariance and compactness, but in the general geometrically finite case the proof is 

somewhat involved. Delaying the proof of the lemma, we first complete the proof of part 

(2) of Theorem 8.1.

Let O′ ⊂ O be a subneighborhood of ρ0 such that the closure of O′ of O′ is a compact 

subset of O. Fix a compact set K ⊂ U(Γ) such that



48 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

Λ(Γ) = {v+ : v ∈ K}.

Let d∞ denote the distance induced by a Riemannian metric on ∂ H, and let dG denote 

the distance induced by a Riemannian metric on Grd−k(Kd). Fix δ > 0 such that: if 

v ∈ K and x ∈ Λ(Γ) − {v−} satisfies d∞(x, v−) ≤ δ, then there exists t ≥ 0 such that 

x ∈ φ−t(v)⊥ (in particular x �= v+).

Fix ρ ∈ O′ and v ∈ K. Then dG is bilipschitz to the norm ‖·‖(ρ,v) on any compact 

subset of the affine chart

Hom(Ξd−k, Θk)|(ρ,v) � {V ∈ Grd−k(Kd) : V is transverse to ξk
ρ (v+)},

where the isomorphism identifies each f ∈ Hom(Ξd−k, Θk)|(ρ,v) with its graph in 

Grd−k(Kd). By the compactness of O′ × K, there exists C2 > 0 such that: if ρ ∈ O′, 

v ∈ K and x ∈ Λ(Γ) with d∞(x, v−) ≤ δ, then

dG

(
ξd−k

ρ (x), ξd−k
ρ (v−)

)
≤ C2 ‖fρ,v,x‖(ρ,v) .

There also exists C3 > 0 such that: if v ∈ K, x ∈ Λ(Γ), d∞(x, v−) ≤ δ and x ∈ φ−t(v)⊥, 

then

1

C3
e−t ≤ d∞(x, v−) ≤ C3e−t.

Finally, let

C4 = diam
(

Grd−k(Kd), dG

)

and C = max{δ−c0C4, C0C1C2Cc0
3 }.

Now suppose x, y ∈ Λ(Γ) and ρ ∈ O′. If d∞(x, y) > δ, then

dG

(
ξd−k

ρ (x), ξd−k
ρ (y)

)
≤ C4 ≤ C4

d∞(x, y)c0

δc0
≤ Cd∞(x, y)c0 .

If d∞(x, y) ≤ δ, then there exists t ≥ 0 and v ∈ K such that y = v− and x ∈ φ−t(v)⊥. 

Then

dG

(
ξd−k

ρ (x), ξd−k
ρ (v−)

)
≤ C2 ‖fρ,v,x‖(ρ,v) ≤ C0C2e−c0t

∥∥fρ,φ−t(v),x

∥∥
(ρ,φ−t(v))

≤ C0C1C2Cc0
3 d∞(x, v−)c0 ≤ Cd∞(x, y)c0 .

Therefore, ξd−k
ρ is c0-Hölder.

One may similarly prove that, perhaps after passing to another sub-neighborhood, 

that if ρ ∈ O′, then ξk
ρ is c1-Hölder for some c1 > 0. So, (2) holds with α = min{c0, c1}.
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Proof of Lemma 8.6 Let O′ ⊂ O be a subneighborhood of ρ0 such that the closure of 

O′ of O′ is a compact subset of O. If the lemma fails for O′, then there exist sequences 

{ρm} in O′, {vm} in U(Γ) and {xm} in Λ(Γ) so that xm ∈ v⊥
m for all m and

lim
m→∞

∣∣∣log ‖fρm,vm,xm
‖(ρm,vm)

∣∣∣ = +∞. (25)

By passing to a subsequence we can suppose that ρm → ρ ∈ O. After passing to a further 

subsequence and translating by elements in Γ, either

(1) vm → v ∈ U(Γ) and xm → x ∈ Λ(Γ), or

(2) there exists an embedded cusp neighborhood C = 〈α〉 \H such that {vm} ⊂ U(Γ)H

and {vm} projects to an escaping sequence in Û(Γ).

In the first case, x ∈ v⊥ and limm→∞ ‖fρm,vm,xm
‖(ρm,vm) = ‖fρ,v,x‖(ρ,v) �= 0. Thus we 

must be in the second case.

By conjugating, we may assume that ρm(α) = ρ0(α) for all m ∈ Z+ ∪{∞}, and 

that the restriction of the canonical norm on E(O′) to each Eρm
is with respect to 

the same cusp representation Ψ for α and ρ0(α). Then there exists a ρ0(α)ss-invariant, 

Ψ-equivariant family of norms ‖·‖�
v∈T 1 H2 such that

‖·‖(ρ,v) = ‖·‖�
v (26)

for all ρ ∈ O′ and v ∈ U(Γ)H . Also, given a linear map f between subspaces of Kd, let 

‖f‖�
v denote the operator norm relative to ‖·‖�

v.

Let y ∈ Λ(Γ) be the center of H and fix a hyperbolic element γ ∈ SL(2, R) with 

attracting fixed point y. After translating each vm by a power of α and passing to a 

subsequence, we can find nm → ∞ such that γ−nm(vm) → v ∈ T 1 H2 and γ−nm(xm) →
x ∈ ∂ H2.

Let ηj : ∂ H2 → Grj(Kd) denote the boundary maps associated to Ψ for j = k, d − k, 

see Proposition 5.2. Let f̂ ∈ Hom(ηd−k(v−), ηk(v+)) denote the unique element with

Graph(f̂) = ηd−k(x).

Notice that f̂ �= 0, since ηk and ηd−k are transverse and x ∈ v⊥. By Proposition 5.3,

Ψ(γ−nm)
(

ξj
ρm

(v±
m)
)

=
(

Ψ(γ−nm) ◦ ξj
ρm

◦ γnm

)(
γ−nm(v±

m)
)

→ ηj(v±),

for j = k, d − k. Similarly, Ψ(γ−nm)
(
ξj

ρm
(x)
)

→ ηj(x), for j = k, d − k, so

Ψ(γ−nm) ◦ fρm,vm,xm
◦ Ψ(γnm) → f̂ .
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Notice, that if X ∈ Ξd−k|(ρm,vm), then Equation (26) implies that

‖fρm,vm,xm
(X)‖(ρm,vm) =

∥∥∥
(

Ψ(γ−nm) ◦ fρm,vm,xm
◦ Ψ(γnm)

)(
Ψ(γ−nm)(X)

)∥∥∥
�

γ−nm (vm)

and ‖Ψ(γ−nm)(X)‖�
γ−nm (vm) = ‖X‖(ρm,vm). Thus

lim
m→∞

‖fρm,vm,xm
‖(ρm,vm) = lim

m→∞

∥∥Ψ(γ−nm) ◦ fρm,vm,xm
◦ Ψ(γnm)

∥∥�

γ−nm (vm)
=
∥∥∥f̂
∥∥∥

�

v
�= 0

and we have a contradiction. This completes the proof of Lemma 8.6 and hence the proof 

of (2).

The limits maps vary analytically It remains to prove the analytic variation of the limit 

maps. First suppose that K = R. The general strategy is to complexify and then exploit 

the fact that locally uniform limits of complex analytic functions are complex analytic.

Suppose that h : M → Homtp(ρ0) is a real analytic map and every representation in 

h(M) is Pk-Anosov.

If ρ : Γ → SL(d, R) is Pk-Anosov, we may compose with the inclusion map ι2 :

SL(d, R) → SL(d, C) to obtain a Pk-Anosov representation ρC = ι2 ◦ ρ : Γ → SL(d, C). 

Fix generators g1, . . . gN of Γ and view Hom(Γ, SL(d, C)) as a subset of SL(d, C)N . We 

can then view h as a map h : M → SL(d, C)N . We can also realize M as a totally real 

submanifold of a complex manifold MC and then extend h to a complex analytic map 

h : MC → SL(d, C)N . Notice that h(M) and h(MC) have the same Zariski closure in 

SL(d, C)N .

We claim, after possibly shrinking MC, that h(MC) ⊂ Homtp(ρC
0 ). For any α ∈

SL(d, C), the set

{g ∈ SL(d, C) : g is conjugate to α}

is locally closed (i.e. open in its closure) in the Zariski topology, see for instance [11, 

Theorem 3.6]. This implies that Homtp(ρC
0 ) is itself a locally closed set in the Zariski 

topology on SL(d, C)N . Then since h(M) ⊂ Homtp(ρC
0 ), by shrinking MC we may assume 

that h(MC) ⊂ Homtp(ρC
0 ).

Since every representation in h(M) is Pk-Anosov, by shrinking MC again if necessary, 

we may assume that every representation in h(MC) is also Pk-Anosov. Thus, if we can 

prove that for any x ∈ Λ(Γ), the map u �→ ξk
h(u)(x) from MC to Grk(Cd) is complex 

analytic, then its restriction to M is real analytic.

If γ is a hyperbolic element and ρ ∈ h(MC), then ρ(γ) is Pk-proximal and ξk
ρ (γ+) is 

the attracting k-plane of ρ(γ). Then it follows from standard results in the perturbation 

theory of linear operators, see, for example, [22, Chapter 6], that the function from MC

to Grk(Cd) given by u �→ ξk
h(u)(γ

+) is complex analytic. If x ∈ Λ(Γ), then there exists a 

sequence {γn} of hyperbolic elements of Γ, so that γ+
n → x. Then, since the map
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(u, y) ∈ MC × Λ(Γ) �→ ξk
h(u)(y) ∈ Grk(Cd)

is continuous, the function u �→ ξk
h(u)(x) is a locally uniform limit of complex analytic 

functions, hence complex analytic. This completes the proof of (3) in the case when 

K = R.

The case when K = C case follows by simply repeating the argument in the previous 

paragraph. �

9. Positive representations in the sense of Fock-Goncharov

In Fock and Goncharov’s work [16], they define positive representations in the follow-

ing way. Suppose that Γ0 ⊂ PSL(2, R) is a discrete group and Γ0\ H2 is a non-compact, 

finite area hyperbolic surface. Recall that γ ∈ Γ0 is peripheral if it is represented by a 

curve which may be freely homotoped off of every compact subset of S = Γ\ H2. Let 

Λp(Γ0) be the set of fixed points of the peripheral elements in Γ0 (in this case, all of 

which are parabolic). Notice that Λp(Γ0) inherits two natural cyclic orders as a subset of 

∂H2. A representation ρ : Γ0 → SL(d, R) is positive if there is a positive, ρ-equivariant 

map ζ : Λp(Γ0) → F(Rd). Notice that, with Fock and Goncharov’s definition, every 

Hitchin representation of a convex cocompact, but not cocompact, Fuchsian group Γ0 is 

also a positive representation of a lattice Γ. (If Γ\H2 is homeomorphic to the interior of 

a compact surface S, then Γ is a finite area uniformization of the interior of S.) In this 

case, every peripheral element is mapped to a loxodromic element and there are many 

different positive ρ-equivariant maps from Λp(Γ) to F(Rd), corresponding to a choice of 

fixed point for the (unique) fixed point of each peripheral element of Γ.

Motivated by their definition, we define the notion of a positive type preserving repre-

sentation in the following way. Let Γ ⊂ PSL(2, R) be a geometrically finite group. Then 

γ ∈ Γ is peripheral if it is either unipotent or it is a hyperbolic element whose fixed 

points both lie in the boundary of Λ(Γ).

Definition 9.1. A representation ρ : Γ → SL(d, R) of a geometrically finite Fuchsian group 

is positive type preserving if

• ρ(γ) is weakly unipotent for every parabolic γ ∈ Γ, and

• there is a positive, ρ-equivariant map ζ : Λp(Γ) → F(Rd).

Observe that if ρ : Γ → SL(d, R) is a positive type preserving representation, then 

ρ ◦ f∗ : Γ0 → SL(d, R) is a positive representation for all homeomorphisms f : Γ0\ H2 →
Γ\ H2.

It is clear that every Hitchin representation from Γ to SL(d, R) is a positive type 

preserving representation. We show that the converse is also true.

Theorem 9.2. If Γ ⊂ PSL(2, R) is geometrically finite group, then every positive type 

preserving representation ρ : Γ → SL(d, R) is Hitchin.
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Let ρ be a positive, type preserving representation, and let ζ : Λp(Γ) → F(Rd) denote 

a positive, ρ-equivariant map. We make use of the following well-known fact which is 

implicit in Fock-Goncharov [16], see Kim-Tan-Zhang [23, Observation 3.18] for details. 

It may be viewed as a generalization of the fact that every bounded monotone sequence 

in R is convergent.

Proposition 9.3. Let {Fn} be a sequence of flags in F(Rd) and H1, H2 ∈ F(Rd) such 

that (F1, . . . , Fn, H1, H2) is positive for all n. Then the sequence {Fn} converges to a 

flag F∞ ∈ F(Rd), and (F1, . . . , Fn, F∞, H2) is positive for all n.

We fix for the remainder of the section, one of the two natural cyclic orders on ∂ H2. 

With this convention, it is natural to define one-sided convergence of sequences.

Definition 9.4. A sequence {xn} in ∂ H2 converges to x ∈ ∂ H2 in the positive direction

(respectively, in the negative direction) if {xn} converges to x, and there exists N > 0

such that

xN < xN+1 < · · · < x (respectively, xN > xN+1 > · · · > x)

For short, we write xn ↗ x (respectively, xn ↘ x) if {xn} converges to x in the positive 

direction (respectively, in the negative direction). If {xn} converges to x in either the 

positive direction or the negative direction, we say that {xn} converges monotonically

to x.

Definition 9.5. Let x ∈ Λ(Γ).

• If there are sequences in Λp(Γ) that converge to x from the positive direction (re-

spectively, from the negative direction), set

ξ+(x) := lim
y∈Λp(Γ),y↗x

ζ(y)

(
respectively, ξ−(x) := lim

y∈Λp(Γ),y↘x
ζ(y)

)
.

• If there are no sequences in Λp(Γ) that converge to x in the positive direction (re-

spectively, in the negative direction), then there necessarily are sequences in Λp(Γ)

that converge to x in the negative direction (respectively, in the positive direction). 

Thus, we may set

ξ+(x) := ξ−(x) (respectively, ξ−(x) := ξ+(x)).

Since Λp(Γ) is dense in Λ(Γ), Proposition 9.3 implies that these limit maps are well-

defined. We refer to the maps ξ+ : Λ(Γ) → F(Rd) (respectively, ξ− : Λ(Γ) → F(Rd)) as 

the plus limit map (respectively, minus limit map).
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Since ζ is ρ-equivariant, both ξ+ and ξ− are ρ-equivariant. We next check that they 

satisfy the following positivity property, which implies in particular, that they are both 

positive.

Proposition 9.6. Let x1 < x2 < · · · < xk be points in Λ(Γ), and let s1, . . . , sk ∈ {+, −}. 

Then

(ξs1
(x1), ξs2

(x2), . . . , ξsk
(xk))

is a positive tuple of flags.

Proof. For each i = 1, . . . , k, let qi, q
′
i ∈ Λp(Γ) be points satisfying the following condi-

tions:

• qi = xi if there are no sequences in Λp(Γ) that converge to xi in the positive direction,

• q′
i = xi if there are no sequences in Λp(Γ) that converge to xi in the negative direction,

• xi < q′
i < qi+1 if there is a sequence in Λp(Γ) that converges to xi in the negative 

direction, and

• q′
i−1 < qi < xi if there is a sequence in Λp(Γ) that converges to xi in the positive 

direction.

Here, arithmetic in the subscripts is done modulo k.

By the definition of ξ±, for each i = 1, . . . , k, there is a sequence (yi,n)n≥1 in Λp(Γ)

that converges monotonically to xi, and satisfies limn→∞ ζ(yi,n) = ξsi
(xi). By passing 

to the tail of the sequences (yi,n)n≥1, we may assume that for all n,

q1 < y1,n < q′
1 < q2 < y2,n < q′

2 < · · · < qk < yk,n < q′
k,

which implies that

(ζ(q1), ζ(y1,n), ζ(q′
1), ζ(q2), ζ(y2,n), ζ(q′

2), . . . , ζ(qk), ζ(yk,n), ζ(q′
k))

is a positive tuple of flags in F(Rd). Our result then follows from repeatedly applying 

Proposition 9.3. �

We next prove that ξ± satisfy an analogue of the strongly dynamics-preserving prop-

erty of Anosov limit maps. In particular, if ξ+ = ξ−, then it implies that ξ± is strongly 

dynamics-preserving. In fact, the proof mimics the proof of Theorem 7.1.

Proposition 9.7. Suppose {γn} is a sequence in Γ with γn → x ∈ Λ(Γ) and γ−1
n → y ∈

Λ(Γ). Then after passing to a subsequence, there exists s1, s2 ∈ {+, −} such that

lim
n→∞

ρ(γn)(F ) = ξs1
(x)
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for all F ∈ F(Rd) transverse to ξs2
(y).

Proof. We first suppose that x �= y. By passing to the tail of the sequence, we may 

assume that each γn is hyperbolic. Then γ+
n → x, γ−

n → y, and γn(z) → x for all 

z ∈ Λ(Γ) − {y}.

Since Λp(Γ) is infinite, there are points a, b ∈ Λp(Γ) − {x, y} such that

• either x < a < b < y or y < b < a < x, and

• up to taking subsequences, the sequences {γn(a)} and {γn(b)} both converge mono-

tonically to x, and from the same direction.

Therefore,

lim
n→∞

ζ(γn(a)) = ξs1
(x) = lim

n→∞
ζ(γn(b))

for some s1 ∈ {+, −}. For each n ≥ 1, choose a point cn ∈ Λp(Γ) \ {γ−
n } such that 

cn → y and γn(cn) → y. Passing to a further subsequence, we can assume that {γn(cn)}
converges monotonically to y. Thus,

lim
n→∞

ζ(γn(cn)) = ξs3
(y)

for some s3 ∈ {+, −}.

Now, consider the open sets (defined in Definition 7.2)

On := O
(
ζ(a), ζ(b), ζ(cn)

)

for all n. Since cn → y, and either a < b < y or b < a < y, there exists N > 0 such that 

either a < b < cn for all n ≥ N , or b < a < cn for all n ≥ N .

We may then argue, exactly as in the proof of Theorem 7.1, that there exists an open 

set O ⊂ F(Rd) so that

lim
n→∞

ρ(γn)(F ) = ξs1
(x)

for all F ∈ O. Repeating the same argument with γ−1
n , we see that there exists s2 ∈

{+, −} and an open set O′ ⊂ F(Rd) where

lim
n→∞

ρ(γ−1
n )(F ) = ξs2

(y)

for all F ∈ O′. Hence, we may apply Lemma 2.2 to deduce the proposition when x �= y.

If x = y, pick η ∈ Γ such that z := η−1(x) �= x. Then γnη → x, (γnη)−1 → z �= x. 

By the first part, there exists s1, s2 ∈ {+, −} such that ρ(γnη)(F ) → ξs1
(x) for all 

F ∈ F(Rd) transverse to ξs2
(z). Equivalently, ρ(γn)(F ) → ξs1

(x) for all F ∈ F(Rd)

transverse to ξs2
(x). �
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Given x ∈ Λ(Γ) − Λp(Γ), it will be useful to construct a sequence in Γ and a pair 

of points in Λ(Γ), so that the orbits of the points under the sequence of elements of Γ

approach x from opposite sides.

Lemma 9.8. If x ∈ Λ(Γ) −Λp(Γ), then there exists a sequence {γn} in Γ, a point y ∈ Λ(Γ), 

and points a, b ∈ Λ(Γ) − {y} so that:

(1) γn → x,

(2) γ−1
n → y,

(3) γn(a) ↗ x and γn(b) ↘ x.

Proof. Let r : R → H2 be a geodesic joining a point w ∈ Λ(Γ) − {x} to x. Since x is 

a conical limit point, there exists sequences {tn} ⊂ R and {γn} ⊂ Γ so that tn → ∞
and {dH2(r(tn), γn(r(0))} is bounded. Therefore, after passing to a subsequence, vn =

(γ−1
n ◦ r)′(tn) converges to a vector v ∈ U(Γ). Notice that γn(v+

n ) = x and γn(v−
n ) = w

for all n.

If there is a point a ∈ Λ(Γ) such that v− < a < v+, then v−
n < a < v+

n for sufficiently 

large n. It follows that w < γn(a) < x for sufficiently large n. Since γn(a) → x, it 

follows that γn(a) ↗ x. On the other hand, if there are no points a ∈ Λ(Γ) such that 

v− < a < v+, then v+ and v− are the fixed points of a hyperbolic, peripheral element. In 

particular, γ−1
n (x) �= v+ for any n. Since γ−1

n (x) → v+, this implies that γ−1
n (x) ↘ v+, 

so γn(v+) ↗ x. In either case, there is some a ∈ Λ(Γ) \ {v−} such that γn(a) ↗ x.

Similarly, we may find a point b ∈ Λ(Γ) − {v−} so that γn(b) ↘ x. �

Lemma 9.8 allows us to complete the proof of Theorem 9.2.

Proof of Theorem 9.2. We first notice that it suffices to prove that ξ+ = ξ− and 

ξ+|Λp(Γ) = ζ. Indeed, if we can do so, then we may set ξ : Λ(Γ) → F(Rd) to be the 

map given by ξ(x) := ξ±(x). Proposition 9.6 implies that ξ is positive, while Proposi-

tion 9.3 implies that ξ is continuous.

The proof proceeds in three cases. In the first case, we assume that x is not the fixed 

point of a peripheral element. If x is the fixed point of a peripheral element, then x is 

the fixed point of either a parabolic element or a peripheral hyperbolic element.

Case 1: x ∈ Λ(Γ) − Λp(Γ). Let a, b, y ∈ Λ(Γ) and {γn} be as in Lemma 9.8. By Proposi-

tion 9.7, we can pass to a subsequence so that there exists s1, s2 ∈ {+, −} so that

ρ(γn)(F ) → ξs1
(x)

for all F ∈ F(Rd) transverse to ξs2
(y). By Proposition 9.6, the flags ξ+(a) and ξ+(b) are 

both transverse to ξs2
(y). So

ξs1
(x) = lim

n→∞
ρ(γn)(ξ+(a)) = lim

n→∞
ξ+(γn(a)) = ξ+(x) (27)



56 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

and

ξs1
(x) = lim

n→∞
ρ(γn)(ξ+(b)) = lim

n→∞
ξ+(γn(b)) = ξ−(x). (28)

The second equality in (27) and (28) holds because γn ∈ Γ for all n, and the last equality 

in (27) and (28) is a consequence of Proposition 9.3. Thus ξ+(x) = ξ−(x).

Case 2: x ∈ Λp(Γ) is the fixed point of a parabolic element α ∈ Γ. As in the proof of 

Theorem 1.4, Lemma 7.6 implies that ρ(α) has a unique fixed flag in F(Rd). It follows 

that ξ+(x) = ξ−(x) = ζ(x) is this unique fixed flag.

Case 3: x ∈ Λp(Γ) is the fixed point of a hyperbolic peripheral element γ ∈ Γ. By 

replacing γ with γ−1 we can assume that x = γ+. Then either γ+ < a < γ− for all 

a ∈ Λp(Γ) − {γ+, γ−} or γ− < a < γ+ for all a ∈ Λp(Γ) − {γ+, γ−}. Also, by definition, 

ξ+(x) = ξ−(x).

We now show ξ+(x) = ζ(x). Since γn → γ+ and γ−n → γ−, Proposition 9.7 implies 

that there is an increasing sequence {mn} of integers so that

ρ(γmn)(F ) → ξ+(x)

for all F ∈ F(Rd) transverse to ξ+(γ−). It follows that ρ(γ) is loxodromic, and that 

ξ+(γ+) and ξ+(γ−) are respectively the attracting and repelling fixed flag of ρ(γ).

To finish the proof, it is sufficient to show that ζ(γ+) is also the attracting fixed flag 

of ρ(γ). Let {xn} be a sequence in Λp(Γ) that converges monotonically to γ−. Since ζ is 

positive, the tuple

(ζ(γ+), ζ(x1), . . . , ζ(xn), ζ(γ−))

is positive for all n. Since ξ+(γ−) = limn→∞ ζ(xn), Proposition 9.3 implies that

(ζ(γ+), ζ(x1), . . . , ζ(xn), ξ+(γ−))

is positive for all n. In particular, ζ(γ+) and ξ+(γ−) are transverse. Since ζ(γ+) is fixed 

by ρ(γ) and ξ+(γ−) is the repelling fixed point of ρ(γ), it follows that ζ(γ+) is the 

attracting fixed flag of ρ(γ). �

Appendix A. Constructing cusp representations

In this appendix, we prove Proposition 3.6. Suppose g ∈ SL(d, K) is weakly unipotent 

and let

u =

(
1 1
0 1

)
.
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We will construct a representation Ψ : SL(2, R) → SL(d, K) where Ψ (u) = gu and gss

commutes with the elements of Ψ(SL(2, R)).

First suppose that K = C. Then using the Jordan normal form there exist p ∈
SL(d, C), integers d1 ≥ d2 ≥ · · · ≥ dm > 0, and complex numbers λ1, . . . , λm ∈ S1 so 

that d1 + · · · + dm = d,

pgup−1 = ⊕m
j=1τdj

(u) and pgssp−1 = ⊕m
j=1λj iddj

.

It follows that Ψ defined by

Ψ(β) = p−1 (⊕m
i=1τdi

(β)) p

for all β ∈ SL(2, R) has the desired properties.

Next suppose that K = R. Given two matrices A, B we will let A ⊗ B denote the 

Kronecker product, that is if A = [aij ] is an m-by-n matrix, then

A ⊗ B =

⎛
⎝

a11B · · · a1nB
...

...
am1B · · · amnB

⎞
⎠ .

Also given θ ∈ R let

M(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.

Then using the real Jordan normal form there exist p ∈ SL(d, R), integers d1 ≥ d2 ≥
· · · ≥ dm+n > 0 and numbers λ1, . . . , λm ∈ {−1, 1}, θm+1, . . . , θm+n ∈ R so that d1 +

· · · + dm + 2dm+1 + · · · + 2dm+n = d,

pgup−1 =
[
⊕m

j=1τdj
(u)
]

⊕
[
⊕m+n

j=m+1τdj
(u) ⊗ id2

]

and

pgssp−1 =
[
⊕m

j=1λj iddj

]
⊕
[
⊕m+n

j=m+1 iddj
⊗M(θj)

]
.

By the multiplicative property of the Kronecker product

[
τdj

(β) ⊗ id2

] [
iddj

⊗M(θj)
]

=
[
iddj

⊗M(θj)
] [

τdj
(β) ⊗ id2

]
= τdj

(β) ⊗ M(θj)

for all β ∈ SL(2, R) and so it follows that Ψ defined by

Ψ(β) = p−1
([

⊕m
j=1τdj

(β)
]

⊕
[
⊕m+n

j=m+1τdj
(β) ⊗ id2

])
p

has the desired properties.
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Appendix B. Anosov representations into semisimple Lie groups

In this appendix, we develop a more general theory of Anosov representations of 

geometrically finite Fuchsian groups into a semisimple Lie group G with respect to a 

parabolic subgroup P +. We extend results of Guichard-Wienhard [18, Prop. 4.3] (see also 

Guéritaud-Guichard-Wienhard [17, Section 3]) to show that there exists an irreducible 

representation ψ : G → SL(d, R) so that a representation into G is Anosov with respect to 

P + if and only if its composition with ψ is P1-Anosov. This will allow us to immediately 

recover generalizations of all the results we obtained for linear Anosov representations.

For the rest of the section, we will assume that G is a semisimple Lie group of non-

compact type with finite center, denote its Lie algebra by g, and let ad : g → sl(g) and 

Ad : G → SL(g) be the adjoint representations.

Fix a parabolic subgroup P + ⊂ G and an opposite parabolic subgroup P − ⊂ G and 

let F± := G/P ± be the associated flag varieties. If ρ : Γ → G is a representation, we 

define the bundles

B̂±
ρ = Γ\(U(Γ) × F±) and V̂ ±

ρ = Γ\(U(Γ) × T F±),

where T F± is the tangent bundle of F±. Observe that V ±
ρ is a vector bundle over B±

ρ

of rank dim(F±).

The geodesic flow on U(Γ) extends to flows on U(Γ) × F± and U(Γ) × T F± whose 

action is trivial on the second factor. These in turn descends to flows on B̂±
ρ and V̂ ±

ρ

which covers the geodesic flow on Û(Γ). We use φt to denote all of these flows.

We say that a map

ξ = (ξ+, ξ−) : Λ(Γ) → F+ × F−

is

• transverse if whenever x �= y ∈ Λ(Γ), the pair (ξ+(x), ξ−(y)) lies in the unique open 

G-orbit in F+ × F−.

• strongly dynamics preserving if whenever {γn} is a sequence in Γ, γn → x and 

γ−1
n → y, then

ρ(γn)F → ξ+(x)

for any F ∈ F+ which is transverse to ξ−(y).

Given a transverse, ρ-equivariant, continuous map ξ we define sections

σ±
ξ : U(Γ) → B±

ρ = U(Γ) × F±
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given by σ±
ξ (v) =

(
v, ξ±(v±)

)
. Since ξ is ρ-equivariant, σ±

ξ descend to sections σ̂±
ξ :

Û(Γ) → B̂±
ρ .

Definition B.1. A representation ρ : Γ → G is P ±-Anosov if the following hold:

(1) There exists a ρ-equivariant, continuous, transverse map ξ = (ξ+, ξ−) : Λ(Γ) →
F+ × F−.

(2) For some family of norms ‖·‖ on the fibers of V̂ ±
ρ → B̂±

ρ , the pullback of the flow 

φt, also denoted φt, is uniformly expanding/contracting on (σ̂±
ξ )∗V̂ ±

ρ .

We refer to any such map ξ as the P ±-Anosov limit map for ρ.

Remark B.2. With a little more work, one can show that the pullback of the flow φt is 

uniformly expanding on (σ̂+
ξ )∗V̂ +

ρ (with respect to some norm) if an only if it is uniformly 

contracting on (σ̂−
ξ )∗V̂ −

ρ (with respect to some norm).

Remark B.3. To be precise, the flow φt is uniformly expanding on (σ̂+
ξ )∗V̂ +

ρ if there exist 

c, C > 0 such that

‖φt(Z)‖φt(σ̂+
ξ (v)) ≥ Cect ‖Z‖σ̂+

ξ (v)

for all t ≥ 0, v ∈ Û(Γ) and Z ∈ V̂ +
ρ |σ̂+

ξ (v). Likewise, the flow φt is uniformly contracting 

on (σ̂−
ξ )∗V̂ −

ρ if there exist c, C > 0 such that

‖φt(Z)‖φt(σ̂−

ξ (v)) ≤ Ce−ct ‖Z‖σ̂−

ξ (v)

for all t ≥ 0, v ∈ Û(Γ) and Z ∈ V̂ −
ρ |σ̂−

ξ (v).

Remark B.4. In the case when G = SL(d, K) and (P +, P −) = (Pk, P opp
k ) where

Pk = StabG(〈e1, . . . , ek〉) and P opp
k = StabG(〈ek+1, . . . , ed〉),

we can identify F+ = Grk(Kd) and F− = Grd−k(Kd). Then for any transverse pair 

(F, G) ∈ Grk(Kd) ×Grd−k(Kd), there is a natural identification TF Grk(Kd) � Hom(F, G)

and TG Grd−k(Kd) � Hom(G, F ). Thus, the pullback bundles (σ̂+
ξ )∗(V̂ +

ρ ) and (σ̂−
ξ )∗(V̂ −

ρ )

are canonically identified with Hom(Θ̂k, ̂Ξd−k) and Hom(Ξ̂d−k, Θ̂k) respectively, where 

Θ̂k and Ξ̂d−k are the sub-bundles of Êρ that lift to sub-bundles Θk and Ξd−k of Eρ

with the defining property Θk|v = ξ+(v+) and Ξd−k|v = ξ−(v−). Thus, in this case, 

Definition B.1 agrees with Definition 3.1, see Proposition 3.3.

If ψ : G → SL(V ) is a finite-dimensional irreducible representation, we say that ψ is 

adapted to (P +, P −) if V = L0 ⊕ W0 where L0 is a line and W0 is a hyperplane and
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P + = {g ∈ G : ψ(g)(L0) = L0} and P − = {g ∈ G : ψ(g)(W0) = W0}.

In this case, one may define embeddings ψ+ : F+ → P (V ) and ψ− : F− →
Grdim(V )−1(V ) by letting

ψ+(gP +) = ψ(g)(L0) and ψ−(gP −) = ψ(g)(W0).

The following result often allows one to reduce the general study of Anosov representa-

tions to the study of P1-Anosov representations into SL(d, R). For Anosov representations 

of word hyperbolic groups the analogous result is due to Guichard-Wienhard [18, Propo-

sition 4.3].

Theorem B.5. Let G be a semisimple Lie group with finite center and let P ± be a pair 

of opposite parabolic subgroups. Suppose that ψ : G → SL(V ) is a finite dimensional 

irreducible representation which is adapted to (P +, P −). Then a representation ρ : Γ → G

of a geometrically finite Fuchsian group Γ is P ±-Anosov if and only if ψ◦ρ is P1-Anosov.

Moreover, if ξρ = (ξ+
ρ , ξ−

ρ ) is a P ±-Anosov limit map for ρ, then ξψ◦ρ = (ψ+ ◦ξ−
ρ , ψ− ◦

ξ−
ρ ) is the P1-Anosov limit map of ψ ◦ ρ. In particular, the P ±-Anosov limit map of ρ is 

unique.

Adapted representations are not hard to construct. If n+ is the nilpotent radi-

cal of the Lie algebra of P +, and n = dim n+, then ψ(g) = ∧n Ad(g) and V =

Span{ψ(G)(∧n n+)} ⊂ ∧n g is adapted to (P +, P −), see [18, Remark 4.12]. We obtain 

the following immediate corollary.

Corollary B.6. Suppose that G is a semisimple Lie group with finite center and P ± is a 

pair of opposite parabolic subgroups. There exists a finite-dimensional irreducible repre-

sentation ψ : G → SL(V ) so that a representation ρ : Γ → G of a geometrically finite 

Fuchsian group Γ is P ±-Anosov if and only if ψ ◦ ρ is P1-Anosov.

Corollary B.6 allows us to generalize our main results about linear Anosov represen-

tations into the general setting. As in the SL(d, K) case, if ρ : Γ → G is a representation, 

let

Homtp(ρ) ⊂ Hom(Γ, G)

be the space of representations σ : Γ → G so that if α ∈ Γ is parabolic, then σ(α) is 

conjugate to ρ(α). Theorem 1.3 becomes:

Corollary B.7. Suppose that G is a semisimple Lie group with finite center, P ± is a pair 

of opposite parabolic subgroups of G and Γ is a geometrically finite Fuchsian group. If 

ρ : Γ → G is P ±-Anosov, then there exists an open neighborhood O of ρ in Homtp(ρ), so 

that
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(1) If ρ ∈ O, then ρ is P ±-Anosov.

(2) There exists α > 0 so that if ρ ∈ O, then its P ±-Anosov limit map ξρ is α-Hölder.

(3) If {ρu}u∈M is an analytic family of representations in O and z ∈ Λ(Γ), then the 

map from M to F+ × F− given by u → ξρu
(z) is analytic.

Theorem 1.2 yields:

Corollary B.8. Suppose that G is a semisimple Lie group with finite center, P ± is a pair 

of opposite parabolic subgroups of G and Γ is a geometrically finite Fuchsian group. A 

representation ρ : Γ → G is P ±-Anosov if and only if there exists a ρ-equivariant, trans-

verse, continuous, strongly dynamics preserving map ξ = (ξk, ξd−k) : Λ(Γ) → F+ × F−. 

Furthermore, ξ is the P ±-Anosov limit map.

One can also obtain analogues of parts (1) and (2) of Theorem 1.1 where the roles 

of singular values and eigenvalues are played by roots acting on the Cartan and Jordan 

projections (see [17, Section 3] for a complete discussion). Part (4) of Theorem 1.1 remains 

true if we replace Xd(K) with the symmetric space of G.

Theorem B.5 will be a consequence of Theorem 1.2 and the following dynamical 

property of Anosov representations.

Lemma B.9. Suppose ρ : Γ → G is a P ±-Anosov representation of a geometrically finite 

Fuchsian group Γ with P ±-Anosov limit map ξ = (ξ+, ξ−). If {γn} is a sequence in Γ

such that γn → x ∈ Λ(Γ) and γ−1
n → y ∈ Λ(Γ), then

lim
n→∞

ρ(γn)(F ) → ξ+(x)

for all F ∈ F+ transverse to ξ−(y).

Delaying the proof of the lemma we prove Theorem B.5.

Proof of Theorem B.5. We make repeated use of the following observation which follows 

from [17, Prop 3.5]. We sketch an alternate proof.

Observation B.10. (F, H) ∈ F+ × F− are transverse if and only if ψ+(F ) and ψ−(H)

are transverse.

Sketch of proof. Fix maximal compact subgroups K1 ⊂ G =: G1 and K2 ⊂ SL(V ) =: G2

so that ψ(K1) ⊂ K2. For j = 1, 2, we can fix Gj-invariant Riemannian metrics on 

Xj = Gj/Kj so that the map Tψ : X1 → X2 given by Tψ(gK1) = ψ(g)(K2) is a totally 

geodesic isometric embedding (see [31, Chapter 2]). Then Tψ extends to an embedding 

Tψ : X1(∞) ↪→ X2(∞) of the CAT(0)-boundaries.

Fix (F, H) = (g+P +, g−P −). Let W+, W− ⊂ X1(∞) be the interior of the Weyl faces 

associated to g+P +g−1
+ and g−P −g−1

− respectively, i.e.
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W± =
{

x ∈ X1(∞) : StabG(x) = g±P ±g−1
±

}
.

Also, let Ŵ+, Ŵ− ⊂ X2(∞) denote the interior of the Weyl faces associated to the 

parabolic subgroups ψ(g+)P1ψ(g+)−1 and ψ(g−)Pd−1ψ(g−)−1 respectively. Notice that

W± = T −1
ψ (Ŵ±)

since P + = ψ−1(P1) and P − = ψ−1(Pd−1).

Next fix a maximal flat F ⊂ X1 with W+, W− ⊂ F(∞) and fix some p ∈ F . Then let 

sp : X1 → X1 denote the involutive isometry based at p. Then F and H are transverse if 

and only if W+ = sp(W−). Since Tψ : X1 → X2 is a totally geodesic isometric embedding, 

there exists a maximal flat F̂ ⊂ X2 with Tψ(F) ⊂ F̂ . Then Ŵ+, Ŵ− ⊂ F̂(∞) and if 

sp̂ : X2 → X2 is the involutive isometry based at p̂ := Tψ(p), then ψ(F ) and ψ(H) are 

transverse if and only if Ŵ+ = sp̂(Ŵ−).

Since

Tψ ◦ sp = sp̂ ◦ Tψ

and any two distinct interiors of Weyl faces have trivial intersection:

W+ = sp(W−) =⇒ Tψ(W+) ⊂ Ŵ+ ∩ sp̂(Ŵ−) =⇒ Ŵ+ = sp̂(Ŵ−) =⇒ Tψ(sp(W−)) ⊂ Ŵ+

=⇒ sp(W−) ⊂ W+ = T −1
ψ (Ŵ+) =⇒ W+ = sp(W−).

So F and H are transverse if and only if ψ+(F ) and ψ−(H) are transverse. �

We first prove the reverse direction of Theorem B.5.

Lemma B.11. If ψ ◦ ρ is P1-Anosov, then ρ is P ±-Anosov. Moreover, if ξρ is the P ±-

Anosov limit map of ρ and ξψ◦ρ is the P1-Anosov limit map of ψ◦ρ, then ψ± ◦ξ±
ρ = ξ±

ψ◦ρ.

Proof. If γ is a hyperbolic element of Γ, then, since ψ ◦ ρ is P1-Anosov, ψ(ρ(γ)) is P1-

biproximal and ξ+
ψ◦ρ(γ+) is the attracting eigenline of ψ(ρ(γ)). Since ψ is irreducible, 

there exists F ∈ F+ such that ψ+(F ) is transverse to the repelling hyperplane of ψ(ρ(γ)), 

so

ξ+
ψ◦ρ(γ+) = lim

n→∞
(ψ ◦ ρ)(γ)n(ψ+(F )) = lim

n→∞
ψ+(ρ(γ)n(F )) ∈ ψ+(F+).

Hence, ξ+
ψ◦ρ(Λ(Γ)) ⊂ ψ+(F+) because attracting fixed points of hyperbolic elements are 

dense in Λ(Γ).

Since ψ+ is a ψ-equivariant embedding, ξ+ = ψ−1
+ ◦ξ+

ψ◦ρ is well-defined, continuous and 

ρ-equivariant. Similarly, ξ− = ψ−1
− ◦ ξ−

ψ◦ρ is well-defined, continuous and ρ-equivariant. 

Observation B.10 implies that ξ = (ξ+, ξ−) is transverse.
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We consider the vector bundles V̂ ±
ρ and V̂ ±

ψ◦ρ over B̂±
ρ and B̂±

ψ◦ρ respectively. Notice 

that the map ψ± induces a bundle embedding ι±
ρ : V̂ ±

ρ ↪→ V̂ ±
ψ◦ρ which intertwines the 

flows on the two bundles. Since ψ◦ρ is P1-Anosov, there is a continuous family of norms on 

the fibers of the bundle V̂ ±
ψ◦ρ → B̂±

ψ◦ρ such that ψt is uniformly expanding/contracting 

on the pullback bundle (σ̂±
ξψ◦ρ

)∗V̂ ±
ψ◦ρ. Equip the bundle V̂ ±

ρ → B̂±
ρ with the pullback 

of this norm via ι±
ρ . Since ι±

ρ intertwines the flows, we see that the flow is uniformly 

expanding/contracting on σ∗
ξ (V ±

ρ ) = (ι±
ρ )∗

(
(σ̂±

ξψ◦ρ
)∗V̂ ±

ψ◦ρ

)
. Therefore, ρ is P ±-Anosov 

with P ±-Anosov limit map ξ = (ξ+, ξ−). �

We now prove the forward direction of Theorem B.5.

Lemma B.12. If ρ is P ±-Anosov with P ±-Anosov limit maps ξρ, then ψ ◦ρ is P1-Anosov 

with P1-Anosov limit map (ψ+ ◦ ξ+
ρ , ψ− ◦ ξ−

ρ ).

Proof. Let η = (η+, η−) = (ψ+ ◦ ξ+
ρ , ψ− ◦ ξ−

ρ ). Then η is continuous, ψ ◦ ρ-equivariant, 

and transverse (by Observation B.10). So, by Theorem 1.2, it suffices to show that η is 

strongly dynamics-preserving.

Consider a sequence {γn} in Γ with γn → x ∈ Λ(Γ) and γ−1
n → y ∈ Λ(Γ). Then, by 

Lemma B.9,

lim
n→∞

(ψ ◦ ρ)(γn)(ψ+(F )) = η+(x)

for all F ∈ F+ transverse to η−(y). Similarly,

lim
n→∞

(ψ ◦ ρ)(γn)(ψ−(F )) = η−(x)

for all F ∈ F− transverse to η+(x).

Since ψ is irreducible, ψ+(F+) spans V and one can repeat the proof of Corollary 6.3

to show that η is strongly dynamics preserving. �

It only remains to prove Lemma B.9.

Proof of Lemma B.9. Let p± be the Lie algebra of P ±. Then there exists a Cartan 

decomposition g = k⊕ p, a Cartan subspace a ⊂ p, and an element H0 ∈ a so that

p± = g0 ⊕
⊕

α(±H0)≥0

gα

where

g = g0 ⊕
⊕

α∈Σ

gα

is the root space decomposition associated to a. Let n± =
⊕

α(±H0)>0 gα and define



64 R. Canary et al. / Advances in Mathematics 404 (2022) 108439

T : n− → F+ where T (X) = eXP +

The map T has the following properties.

Observation B.13.

(1) T (n−) = {F ∈ F+ : F is transverse to P −}.

(2) If H ∈ a, then eH ◦ T = T ◦ Ad(eH).

(3) d(T )0 : n− → TP + F+ is a linear isomorphism.

Proof. By definition, F is transverse to P − if and only if (F, P −) ∈ G · (P +, P −) if and 

only if F = gP + for some g ∈ P −. By the Langlands decomposition, P − = N−(P +∩P −)

where N− ⊂ G is the connected Lie subgroup with Lie algebra n−. Since N− is nilpotent, 

N− = en
−

. So F is transverse to P − if and only if F = eXP + for some X ∈ n−. This 

proves part (1).

Part (2) is an immediate consequence of the definition. Part (3) follows from the fact 

that g = n− ⊕ p+ (as vector spaces) and p+ is the Lie algebra of P +. �

As a consequence of (1) and (2) in Observation B.13, we have the following.

Lemma B.14. If {Hn} is a sequence in a with limn→∞ α(Hn) = −∞ for all α ∈ Σ with 

α(H0) < 0, then

lim
n→∞

eHn(F ) = P +

for all F ∈ F+ transverse to P −.

Proof. By Observation B.13 (1), F = T (X) for some X ∈ n−. Write X =
∑

α(H0)<0 Xα, 

where Xα ∈ gα. Then by Observation B.13 (2),

eHn(F ) = T

⎛
⎝Ad(eHn)

⎛
⎝ ∑

α(H0)<0

Xα

⎞
⎠
⎞
⎠ = T

⎛
⎝ ∑

α(H0)<0

ead(Hn)Xα

⎞
⎠

= T

⎛
⎝ ∑

α(H0)<0

eα(Hn)Xα

⎞
⎠ .

Since limn→∞ α(Hn) = −∞ for all α ∈ Σ with α(H0) < 0, it follows that

lim
n→∞

eHn(F ) = T (0) = P +. �

Let K ⊂ G be the maximal compact subgroup with Lie algebra k and fix a K-invariant 

Riemannian metric on F+, and let | · | denote the induced family of norms on the fibers 

of T F+.
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Let ξ = (ξ+, ξ−) be the P ±-Anosov limit map for ρ. Then let σ+
ξ (v) = (v, ξ+(v+)). 

Since ρ is Anosov, there is a ρ-equivariant family of norms on the fibers of U(Γ) ×T F± →
U(Γ) × F± and constants C, c > 0 such that

‖Z‖φ−t(σ+
ξ (v)) ≤ Ce−ct ‖Z‖σ+

ξ (v)

for all t > 0, v ∈ U(Γ) and Z ∈ Tξ+(v+) F+.

Consider an escaping sequence {γn} with γn → x and γ−1
n → y.

Case 1: If x �= y, then γn is hyperbolic when n is sufficiently large. Furthermore, we can 

find a bounded sequence {vn} in U(Γ) such that v±
n = γ±

n , and a bounded sequence {gn}
in G such that

gn(ξ+(γ+
n ), ξ−(γ−

n )) = (P +, P −).

Then

gnρ(γn)g−1
n P ± = P ± so gnρ(γn)g−1

n ∈ L := P + ∩ P −.

Notice that

g0 ⊕
⊕

α(H0)=0

gα

is a root space decomposition of the Lie algebra of L. Then, using the Cartan decompo-

sition of the reductive group L, there exist kn,1, kn,2 ∈ K ∩ L and Hn ∈ a so that

gnρ(γn)g−1
n = kn,1eHnkn,2.

Since {vn} is a bounded sequence there exists C1 > 1 such that

1

C1
|Z|ξ+(v+

n ) ≤ ‖Z‖σ+
ξ (vn) ≤ C1|Z|ξ+(v+

n )

for all n ≥ 1 and Z ∈ Tξ+(v+
n ) F+. Likewise, there exists C2 > 1 such that

1

C2
|Z|F ≤ |gn(Z)|gn(F ) ≤ C2|Z|F

for all n ≥ 1, F ∈ F+ and Z ∈ TF F+.

Notice that γ−1
n (vn) = φ−tn

(vn) for some sequence {tn} with tn → ∞. Since both 

kn,1 and kn,2 fix P+ and | · | is a K-invariant family of norms, it follows that for any 

Z ∈ TP + F+, we have
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|eHn(Z)|P + = |k−1
n,1gnρ(γn)g−1

n k−1
n,2(Z)|P + ≤ C2|ρ(γn)g−1

n k−1
n,2(Z)|ξ+(v+

n )

≤ C1C2

∥∥ρ(γn)g−1
n k−1

n,2(Z)
∥∥

σ+
ξ (vn)

= C1C2

∥∥g−1
n k−1

n,2(Z)
∥∥

φ−tn (σ+
ξ (vn))

≤ C1C2Ce−ctn
∥∥g−1

n k−1
n,2(Z)

∥∥
σ+

ξ (vn)
≤ C2

1 C2Ce−ctn |g−1
n k−1

n,2(Z)|ξ+(v+
n )

≤ C2
1 C2

2 Ce−ctn |Z|P + . (29)

By Observation B.13 (3), we know that for any α ∈ Σ such that α(H0) < 0, and any 

X ∈ gα, there is some Z ∈ TP + F+ such that d(T )0(X) = Z. Then

eHn(Z) = d(eHn ◦ T )0(X) =
d

dt

∣∣∣∣
t=0

eHn ◦ T (tX).

Then by Observation B.13 (2) (see proof of Lemma B.14),

d

dt

∣∣∣∣
t=0

eHn ◦ T (tX) =
d

dt

∣∣∣∣
t=0

T (teα(Hn)X) = eα(Hn) d

dt

∣∣∣∣
t=0

T (tX) = eα(Hn)Z.

Thus, eHn(Z) = eα(Hn)Z, so the inequality (29) implies that

lim
n→∞

α(Hn) = −∞

whenever α(H0) < 0. Hence, by Lemma B.14,

lim
n→∞

eHn(F ) = P +

for all F ∈ F+ transverse to P −. Since gn(ξ+(x), ξ−(y)) → (P +, P −), kn,jP ± = P ± and 

ρ(γn) = g−1
n kn,1eHnkn,2gn we then have

lim
n→∞

ρ(γn)(F ) = ξ+(x)

for all F ∈ G/P + transverse to ξ−(y).

Case 2: If x = y, pick β ∈ Γ so that z := β−1(x) �= x. Then γnβ → x and (γnβ)−1 → z �=
x. By the first case, ρ(γnβ)(F ) → ξ(x) for all F ∈ F+ transverse to ξ−(z) = ρ(β−1)ξ−(x). 

Equivalently, ρ(γn)(F ) → ξ+(x) for all F ∈ F+ transverse to ξ−(x). �
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