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Key Points:

e Spring enhancements of surface chlorophyll at the New England shelf break are short-
lived and thus are not visible in seasonal means.

e Surface chlorophyll enhancements are associated with offshore displacement of the upper
part of the shelf-break front in spring.

e Upfront wind stress increases before shelf-break chlorophyll enhancements, suggesting
Ekman restratification to be the driving mechanism.
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Abstract

The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported
by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB
shelf-break front have been detected in synoptic measurements, yet this feature is not present in
seasonal means. To understand why, we assess the conditions associated with enhanced surface
chlorophyll at the shelf break. We employ in-situ and remote sensing data, and a 2-dimensional
model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced
chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-
measured surface chlorophyll concentration data from 2003-2020, we constructed a daily
running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern
MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology,
it is not captured in the seasonal climatology due to its short duration of less than a week. /n-situ
measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring
when the shelf-break front slumps offshore from its steep wintertime position causing
restratification in the upper part of the water column. Several restratification mechanisms are
possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing
upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport
of the shelf water over the denser slope water. The 2-dimensional model shows that upfront
winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton

growth at the shelf-break front.

Plain-language summary
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The ocean south of New England contains high concentrations of phytoplankton that
form the base of the marine food web and provide critical support to the region’s fisheries. The
offshore edge of the relatively shallow continental shelf, the shelf break, is the boundary between
the cooler and fresher water on the continental shelf (shelf water) and the warmer and saltier
water offshore (slope water). This water boundary at the shelf break is thought to support high
chlorophyll concentrations. Enhanced shelf-break chlorophyll concentrations are not always
present, however. We use data from satellites, ships, gliders, and moorings to determine what
drives the episodically enhanced surface shelf-break chlorophyll concentrations. We find that the
shelf-break surface enhancements of chlorophyll concentrations are short-lived events, and are
associated with periods when the shelf-slope water interface slumps, as a surface layer of the
lighter shelf water moves over the denser slope water. This process creates a shallow surface
layer that has ample light to support photosynthesis. Both data and a computational model show
that eastward winds are the primary driver of the episodic frontal slumping and localized

enhanced surface chlorophyll.

1. Introduction

The Mid-Atlantic Bight (MAB) region of the U.S. northeast continental shelf is home to a
large and highly productive marine ecosystem (O’Reilly et al., 1987; O’Reilly & Busch, 1984),
and an important region for commercial fisheries (Orphanides and Magnusson, 2007, Podesta
et al., 1993). Phytoplankton concentrations and primary productivity vary substantially across the
MAB. High phytoplankton biomass is often associated with the colder, fresher shelf water, while
more oligotrophic conditions are associated with the warmer and saltier slope water offshore of

the shelf break (e.g., Xu et al., 2011; Yoder et al., 2002; Zhang et al., 2013). A persistent shelf-
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break front with isopycnals shoaling offshore (Lozier & Reed, 2005) serves as the boundary
between shelf water and slope water (e.g. Fratantoni, 2003; Linder & Gawarkiewicz, 1998). The
location and orientation of the shelf-break front can vary considerably. In winter, the vertical
structure of the front is steep with condensed isopycnals, while in summer the front is gently
sloped with strong stratification in the upper layer (Linder & Gawarkiewicz, 1998).

Sporadically enhanced chlorophyll concentrations at the shelf-break front have been
detected by satellite and shipboard measurements (Fig. 1; Marra et al., 1982; Ryan et al., 1999b).
A variety of nutrient-supplying upwelling processes have been suggested to take place at the
front, including an onshore flow driven by the along-shelf pressure gradient force (Zhang et al.,
2011), along-isopycnal upwelling driven by convergence within the bottom boundary layer
(Chapman & Lentz, 1994; Gawarkiewicz & Chapman, 1992; Linder et al., 2004), and vertical
transport induced by frontal meandering (Zhang & Gawarkiewicz, 2015). Frontal chlorophyll
enhancement is not always present, however (Hales et al., 2009), and is not visible in seasonal
chlorophyll climatologies (e.g. Zhang et al., 2013). The absence of a mean chlorophyll
enhancement at the shelf break, given the variety of potential upwelling mechanisms, has
presented a critical gap in our understanding of the bio-physical interactions governing this
economically important marine ecosystem (Sherman et al., 1996). The central question is two-
pronged: 1) what drives the enhanced surface chlorophyll when it occurs at the shelf break, and
2) why is it not detected in the seasonal means?

Here, we explore the timing and duration of chlorophyll enhancements at the New
England shelf break using satellite-based estimates of surface chlorophyll a concentrations made
from ocean color measurements. To understand the environmental conditions that give rise to

these enhancements, we use shipboard data collected in mid-to-late April 2018 and data from the
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Oceans Observatories Initiative (OOI) Coastal Pioneer Array (Gawarkiewicz & Plueddemann,
2020; Trowbridge et al., 2019), which we then test with 2-dimensional coupled physical-

biogeochemical simulations.

2. Materials and Methods
2.1. Satellite chlorophyll a

We analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 8-day
composite 1-km surface chlorophyll a data (OC3 algorithm) from 2003 to 2020 to identify times
of higher surface chlorophyll concentrations at the shelf break than neighboring slope and shelf
region. While there is frequently heavy cloud cover over the region, the 8-day composite product
can provide nearly-continuous chlorophyll data over the shelf-break area. The 8-day composite
chlorophyll fields are available daily, and are an effective 8-day moving average of chlorophyll
in each 1-km pixel. We therefore henceforth refer to the 8-day chlorophyll composites as daily
running means (DRM).

We analyze chlorophyll distributions from the Hudson Canyon to 68° W, and from a
bottom depth of 50 to 3000 m (Fig. 2). Individual ocean color images showing enhanced
chlorophyll along the entire MAB shelf break are relatively rare, likely due to cloud cover or
extensive along- and cross-front variability in chlorophyll concentrations. To account for spatial
and temporal variability and to achieve an along-shelf mean picture of the chlorophyll
distribution, we averaged chlorophyll concentrations in the along-shelf direction. As the frontal
flow in the shelf break region is often topographically steered, the averaging was carried out
using bottom depth as the cross-shelf coordinate. The procedure of the averaging is as follows: 1)

the mean cross-shelf bathymetric profile within the range of 50-3000 m was discretized into 3
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km intervals, which gives a total of 51 bottom depth bins (Fig. 2a); ii) for each day, the surface
DRM chlorophyll value at each pixel was then placed in a depth bin according to the water depth
(Fig. 2b); and iii) all chlorophyll values in each depth bin were then averaged to obtain the mean
chlorophyll concentration of that bin. The distribution of the bin-averaged chlorophyll
concentration against the mean cross-shelf distance of the depth bins gives the along-shelf-

averaged cross-shelf distribution of surface chlorophyll concentration of the 8-day window.

2.2. Shipboard data

From 16-29 April 2018, R/V Neil Armstrong cruise AR29 sampled repeatedly across the
New England shelf break along 70.83°W (Fig. 3), centered between the moorings installed at the
OOI Coastal Pioneer Array. The objective of cruise AR29 was to investigate the mechanisms
controlling primary productivity at the shelf-break front, as part of the interdisciplinary Shelf-
break Productivity Interdisciplinary Research Operation at the Pioneer Array (SPIROPA). From
3-12 April 2018, R/V Neil Armstrong cruise AR28B also conducted cross-shelf CTD transects at
70.83°W, which provided information about the conditions preceding the SPIROPA cruise.

During AR29, a Video Plankton Recorder II (VPR, from SeaScan Inc.) was towed behind
the ship for high-resolution surveys of temperature, salinity, and fluorescence across the shelf
break. The VPR consists of a towed body, and is equipped with a Seabird Electronics Inc. SBE
49 FastCat CTD, SBE 43 oxygen sensor, ECO FLNTU-4050 fluorometer, ECO BBFL2-123
ECO Triplet, Biospherical Instruments Inc. QCP-200L PAR sensor, and a synchronized video
camera and xenon strobe (Davis et al., 2005). The VPR was towed at 10 knots (5.1 m s™!),
undulating between 5 and up to 100 m with a vertical velocity of approximately 1 m s™'. Net

community production (NCP) integrated over the mixed layer was calculated for the VPR
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transect from O»/Ar measured continuously (seconds-to-minutes) by an Equilibrator Inlet Mass
Spectrometer (EIMS) from the ship's underway system (intake depth = 2.1 m; Smith et al.,
2021). We present data from VPR Tow 1 on 18 April 2018, near the beginning of the cruise.

High-resolution underway measurements of phytoplankton size structure were measured
during the VPR tow with two types of cytometers. Pico- to nanoplankton (0.5-15 um) were
measured with an Attune NXT flow cytometer (Thermo Fisher Scientific) and nano- to
microplankton (7-150 um) were observed with an Imaging FlowCytobot (IFCB, McLane
Research Laboratories). Images were captured based on the chlorophyll fluorescence signal of
each particle. The Attune collected one 0.4-ml sample approximately every 2 minutes and the
IFCB collected one 5-ml sample ca. every 26 minutes. All Attune samples within 10 minutes of
each IFCB sample were pooled and combined with the data from a single IFCB file. Differences
in sampling volume between the two instruments meant that the pooled Attune samples and the
IFCB sample had approximately the same volume. Total phytoplankton biovolume
concentrations for shelf water (salinity 32-34), frontal water (salinity 34-35), and slope water
(salinity 35-35.5), used here as a proxy of phytoplankton biomass, were calculated by integrating
over the composite particle size distributions. Biovolume concentrations from warm-core ring
water (salinity > 35.5) represent a different hydrographic regime and are not included in this
study.

Attune cell sizes were estimated from side angle light scattering, with side scattering
observations periodically normalized to the mean side scattering signal of 1 um beads (Flow
Check High Intensity Alignment Grade Particles, Polysciences). The normalized signals were
converted to cell volume based on a calibration curve generated from 12 phytoplankton cultures

ranging in size from 1 um to 20 um, which were analyzed on the Attune and independently sized
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on a bead-calibrated Coulter Multisizer II (Beckman Coulter). IFCB particle sizes were
estimated from images following the automated scheme described by Sosik & Olson, (2007) and
updated in Sosik et al. (2020), and biovolume of imaged targets was determined with the
distance map algorithm of Moberg & Sosik (2012).

On 19 April 2018, CTD Transect 5 was conducted over the locations covered by the VPR
in the previous day; we present the nutrient data for these ten stations (A5-A14) (Fig. 3). CTD
profiles were taken at each station spaced ~7 km apart, and discrete seawater samples were
collected using 24 10-L Niskin bottles mounted on the CTD rosette. The rosette was equipped
with a SeaBird 911 CTD system, a WetLabs FLNTURTD fluorometer, a BioSpherical
Instruments photosynthetically active radiation (PAR) sensor, and a WetLabs C-Star beam
transmissometer. Temperature, salinity, and fluorescence were measured on all CTD casts. The
interface between the shelf and slope waters is represented by the 34.5 isohaline, which largely
coincides with the shelf-break front during spring (Linder and Gawarkiewicz, 1998). Nitrate,
phosphate, and silicate concentrations were determined by filtering water samples through 0.4
um polycarbonate filters, which were frozen in acid-washed polyethylene bottles before being
run at the Woods Hole Oceanographic Institution Nutrient Analytical Facility.

VPR chlorophyll concentrations from fluorescence were estimated using the CTD
fluorometer-chlorophyll calibration. CTD fluorescence (Frp) was converted into chlorophyll a
concentrations (Chl-rp) using a regression between fluorescence values and extracted

chlorophyll @ measurements from Niskin bottles:

CthTD = 0'669FCTD + 0.027

(1)
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(R? =0.90, RMSE = 0.60). In turn, VPR concentrations of chlorophyll a (Chl,pg) were
determined from fluorescence by regressing the calculated chlorophyll concentrations from the
CTD cast immediately following the VPR tow (Cast 16 at Station A14, the southernmost station
of CTD Transect 5; Fig. 3) using (Chlcrp) with the fluorescence (Fypg) from the last VPR
profile with a maximum depth of at least 95 m. The least squares fit used to calculate chlorophyll

from VPR fluorescence was

Chlypgr = 0.673Fypr + 0.298
2)

(R?=0.69, RMSE = 0.13).

We also estimated the potential seasonal onset of more nutrient-limited conditions in the
MAB with surface nitrate data provided by the National Centers for Environmental Information
in the 2018 World Ocean Database (Garcia et al., 2019). We extracted all surface nitrate
measurements from 68.0 — 73°W, and 36.0 — 42.0°N where the bottom depth was between 75 m
and 1000 m, a total of 640 observations from the top 15 m from 1933 to 2012 to create a 30-day
moving median climatology of surface nitrate. Medians are used due to right-skewed
concentrations. Only concentration data that were not flagged by World Ocean Database during

quality assurances were incorporated.

2.3. OOI coastal glider data
A set of Teledyne-Webb Slocum coastal gliders deployed at the OOI Coastal Pioneer
Array monitor a broad area covering the outer continental shelf, shelf break, and Slope Sea. We

used all available April glider measurements of temperature, salinity, and chlorophyll to assess
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205 the conditions associated with higher spring chlorophyll concentrations near the shelf break
206  (7,861vertical profiles from 2014-2020). The chlorophyll products provided by OOI are

207  calculated from fluorescence (from WET Labs - ECO Puck FLBBCD-SLK fluorometers);

208  regular factory calibrations are performed on its glider fluorometers to provide consistent

209  estimates of chlorophyll concentrations. Glider temperature and salinity data are measured by
210  Sea-Bird - SBE Glider Payload CTDs (GP-CTD). The chlorophyll and density data were

211  provided by different instruments, with differing time steps, so the chlorophyll data were linearly
212 interpolated by the CTD time before analysis.

213

214 2.4. Surface winds

215 We explored the wind conditions associated with shelf-break chlorophyll enhancements
216  with in situ measured and reanalysis wind data. OOI Pioneer Array surface moorings are

217  equipped with a bulk meteorological package 3 m above the surface that record meridional and
218  zonal wind speeds. Wind speeds at offshore, central, and inshore surface moorings agree well
219  with one another during periods of overlap (Fig. S1 in the Supporting Information). To fill gaps
220  in individual mooring records, we generated a combined OOI buoy time series, using the mean
221  zonal and meridional wind speeds available for each minute among the three buoys.

222 While the local OOI buoy measurements would be the most ideal data stream for

223 comparison to MODIS chlorophyll in the Pioneer Array shelf-break area, the buoy

224 meteorological time series only extends back to 2014, while MODIS-Aqua chlorophyll data
225  extends back to 2003. Meteorological model reanalysis products, by contrast, provide wind
226  speeds covering the period of interest; the European Centre for Medium-Range Weather

227  Forecasts (ECMWF) ERAS reanalysis product extends back to 1950 (Hersbach et al., 2018). We

10
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first assessed whether the trends in OOI buoy wind speed are captured in the reanalysis before
comparing its trends to those of the MODIS shelf-break chlorophyll (section 2.1). For
comparison with OOI buoy winds (Inshore Buoy: 40.37°N, 70.88°W; Central Buoy: 40.13°N,
70.78°W; Offshore Buoy: 39.94°N, 70.88°W), ERAS winds between 39.75 and 40.25°N and
69.50 and 71.50°W (0.25 x 0.25 resolution) were spatially-averaged. There is generally good
agreement between the 10 m wind speeds in ERAS winds and the OOI buoy winds (Fig. S2 in

the Supporting Information).

2.5.2D ROMS configuration

We use a two-dimensional (2D; cross-shelf and vertical) configuration of the Regional
Ocean Model System (ROMS) of the shelf-break area coupled to a nitrogen-phytoplankton-
zooplankton-detritus (NPZD) model. The model spans 479 km in the cross-shelf direction with
an idealized bathymetry mimicking the MAB shelf and slope seas. It is initialized with a steep
front at the shelf break, using the base configuration from Zhang et al. (2011, 2013). The model
has 842 grid points in the cross-shelf direction with uniform 400 m resolution in the study region
and decreasing gradually to 2400 m in the offshore region, and 60 stretched vertical layers (Fig.
S3 in the Supporting Information). The 2-D across-shelf configuration is implemented via a 5-
point along-shelf dimension with periodic boundary conditions. We use the same NPZD model
modified from Powell et al. (2006) as used in Zhang et al. (2013), with uniform initial nitrate and
phytoplankton nitrogen concentration of 5 and 1 uM, respectively. April 2018 surface air
temperatures, longwave radiation, and shortwave radiation measured at the Central Mooring
(40.13°N, 70.78°W) of the OOI Pioneer Array (Gawarkiewicz & Plueddemann, 2020) are used to

force the model together with idealized along-shelf winds (see below).

11
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3. Results
3.1 MODIS-Aqua chlorophyll climatology

Stacking the DRM cross-shelf distributions of surface chlorophyll (section 2.1) produces
Hovmoller diagrams showing the time-evolution of the cross-shelf distribution of surface
chlorophyll concentration, for each year from 2003-2020 (Fig. 4). A DRM shelf-break surface
chlorophyll climatology was then produced with the yearly Hovmoller diagrams presented in
Fig. 4. Maximum bin-averaged chlorophyll concentrations can vary widely between years, so we
use the median DRM chlorophyll concentration in 2003-2020 in each depth bin.

Durations of shelf-break chlorophyll enhancements were determined with time series of
the mean chlorophyll concentration at the shelf, slope, and shelf break from the yearly
Hovmodller diagrams. Depth bins between the 75 and 1000 m isobaths were categorized as the
shelf-break region; those shallower were categorized as the shelf region; and those deeper were
categorized as the slope region (Fig. 2a). The periods during which the mean surface chlorophyll
was greater at the shelf break relative to both the shelf and slope are labeled as “enhancement
days”. While the DRM chlorophyll fields provide continuous coverage over the shelf-break
region, the durations of shelf-break enhancements may be underestimated (through
undersampling during an enhancement) or overestimated (through undersampling before or after
an enhancement) using the DRM fields. Moreover, the DRMs can underestimate the magnitude
of enhancements due to temporal smearing. In any case, the DRMs are a practical means to
assess spatially and temporally intermittent phenomena that are incompletely sampled due to

cloud cover.

12
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The satellite DRM chlorophyll climatology demonstrates that shelf-break chlorophyll
enhancements are typically springtime features (Fig. 5a). While climatological chlorophyll
concentrations are higher across the shelf break for most of April and May, the period when they
are enhanced relative to both the shelf and slope in the climatology is constrained to only 20 days
(21 April — 11 May; highlighted region in Fig. 5a). The climatology shows highest chlorophyll
concentrations during the inshore spring bloom beginning in mid-March, which is followed by
enhanced chlorophyll at the shelf break and in the slope sea. Accordingly, periods of enhanced
chlorophyll at the shelf break were identified in every year except 2004 and 2020 (Fig. 6a), and
many of these enhancements were concentrated within a narrow period in the spring, though
some were also detected in fall and winter (Fig. 6b). Generally, the shelf-break chlorophyll
enhancements were short-lived, typically lasting less than a week (Fig. 6¢).

We also explored whether shelf-break chlorophyll enhancements were present in seasonal
averages, and created a seasonal climatology by taking the median surface chlorophyll
concentration in winter (January — March), spring (April — June), summer (July — September),
and fall (October — December). Due to the transient quality of the surface chlorophyll
enhancements, they are not expressed in the seasonal cross-shelf chlorophyll climatology (Fig.
5b). While spring shelf-break chlorophyll enhancements are occasionally visible in the annual
seasonal means, shelf chlorophyll concentrations are also usually elevated in spring (excepting
2003, 2012, 2013, and 2017) and hence become indistinguishable from shelf-break

enhancements in the seasonal climatology (Fig. S4 in the Supporting Information).

3.2 Shipboard measurements

13
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The conditions driving ephemeral shelf-break chlorophyll enhancements are
elucidated by in-situ observations of front, shelf, and slope conditions in April 2018. On 12
April, four days before cruise AR29, the front was relatively steeply oriented (Fig. 7). Within the
first few days of AR29 (16-19 April), the near-surface expression of the front moved about ten
kilometers offshore. The front maintained this more gently sloped configuration for a few days,
until 23 April.

Elevated surface chlorophyll concentrations were measured inshore of the front during an
offshore VPR tow across the shelf break on 18 April 2018 (Fig. 8). Chlorophyll concentrations
were highest within the ~20 m layer of cooler, fresher shelf water over the denser slope water.
The shelf-slope water front was nearly horizontal beneath the chlorophyll patch, and the water
column was thus more highly stratified there than elsewhere during the tow (Fig. 8c-d). The
stratification generated by the large shelf water-slope water density gradient resulted in a shallow
mixed layer.

The emergence of enhanced chlorophyll associated with the onset of strengthened frontal
stratification suggests that photosynthesis at the front was stimulated by the increased light levels
over the shallower mixed layer (e.g. Sverdrup, 1953), not nutrients. On 19 April 2018, the 1%
light depth was between 30 m and 40 m (Fig. 7); after restratification the mixed layer shoaled to
~20 m. Nutrient concentrations were measured over CTD Transect 5, which was conducted the
day following the VPR tow along the same transect (Fig. 3). Surface nitrate was always >4 uM
(Fig. 8e), suggesting nitrate-replete conditions across the shelf break, including at the front where
chlorophyll was elevated. Historical measurements of surface nitrate in the MAB also show that
typical MAB surface nitrate concentrations are not reduced below 0.1 pM until mid-May (ca.

Julian day 134; Fig. 9). Phosphate was available in Redfield proportion to nitrate (not shown),

14
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and thus was also not limiting. Silicate concentrations were reduced to ~ 1 uM offshore of the
front (Fig. 8f), but not where elevated chlorophyll concentrations occurred. As surface nitrate
concentrations were elevated across Transect 5, the emergence of elevated chlorophyll inshore of
the front appears to be a result of the enhanced light availability associated with the more
stratified conditions at the front.

Underway measurements conducted during the VPR tow show the enhanced frontal
chlorophyll was associated with elevated NCP (Fig. 8g). NCP at the front reached 41 mmol O»
m2 d! (equivalent to 28 mmol C m d"! using stoichiometry form Anderson & Sarmiento, 1994),
over 3 times higher than inshore of the front (~12 mmol O m™ d™!). Size fractionated biovolume
from the IFCB (Fig. 8g) indicates the peak in chlorophyll at the front was associated with
nanoplankton, a size fraction too small to be imaged by the VPR. While chlorophyll and
nanoplankton biovolume were highest at the front, total plankton biovolume concentrations at
the front during the VPR tow were not higher than over the slope (Fig. S5 of the Supporting
Information), as microplankton biovolume from the IFCB increased offshore of the front (Fig.
8g). Analysis of IFCB and VPR images confirmed the microplankton offshore of the front were
dominated by diatoms (not shown) that were apparently low in fluorometric chlorophyll. The
presence of low-chlorophyll diatoms in the slope waters depleted in silicate (Fig. 8f) may reflect
a prior bloom unrelated to the enhanced chlorophyll and nanoplankton at the front. Later in the
cruise period total biovolume was enhanced at the front relative to the shelf and slope (Fig. S5 in

the Supporting Information).

3.3 OOI glider measurements

15
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We used OOI Pioneer Array glider density and chlorophyll data to explore whether a
similar frontal configuration observed during AR29 was also associated with enhanced spring
shelf-break chlorophyll concentrations in other years (2014-2020, Fig. 10a). In winter, the steep
winter front is associated with a strong horizontal density gradient, and relatively weak vertical
density gradient. As the front becomes less steep, vertical stratification increases, and a strong
vertical density gradient at the front emerges (Fig. 8c). A high horizontal density gradient thus
indicates a location near the shelf-slope front, and a high vertical density gradient indicates high
vertical stratification. We therefore interpret glider measurements with large horizontal and
vertical density gradients in the near-surface layer as a place where a steep shelf-break front
(with condensed isopycnals) has slumped to create strong near-surface stratification and thus a
shallow surface mixed layer. The front is hence likely to be in such a configuration when a
strong vertical density gradient accompanies a strong horizontal density gradient.

To assess how April chlorophyll concentrations vary with horizontal and vertical density

gradients, we categorize each glider measurement in the upper water column by both its vertical
density gradient g / 5z and horizontal density gradient 60/ Sx° with ¢ being potential density,

averaged over 1-m depth bins. We gridded glider chlorophyll and density data by depth and
distance between casts. Only glider downcasts were used because of the “V-shaped” glider
trajectories, to preserve approximately uniform horizontal spacing between casts and thus more
consistent horizontal density gradients. Approximately 93,000 bins contained observations.
While the calculated horizontal density gradients include variability due to internal waves, the

strongest horizontal density gradients at the front are unlikely to be masked by this variability.

The gridded density was then binned by the log-transformed vertical (50'/ Sz ) and horizontal

(60'/ 5y) density gradients. With the focus on surface enhancements, we analyzed binned density
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gradients over the top 30 m. Thirteen horizontal density gradient bins and 13 vertical density
gradient bins were used, for a total of 169 bins. We only analyzed chlorophyll concentrations for
density bins with more than 100 independent chlorophyll measurements. We assessed the
chlorophyll associated with each horizontal and vertical density gradient bin using two metrics:
1) the proportion of density gradient bins where the chlorophyll reaches a concentration typical
of those associated with the frontal enhancements in the binned satellite data (Fig. 4; > 2 ng/L;
“bloom bins”), and 2) the median chlorophyll concentration within each density gradient bin.
Median concentrations are used because the chlorophyll distributions within each bin are right-

skewed.

Chlorophyll concentrations greater than 2 ug L' were associated with high 50/ Sx (at the

front), and low to high g / 5z (a broad range of vertical density gradients) (Fig. 10b). The
greatest proportion of chlorophyll concentrations greater than 2 ug L' occurred within the bin
covering the highest values of 59/ sy and 6o/ 5z This high ba / 5y and ba / 5 bin was also

associated with higher median chlorophyll concentrations. Elevated chlorophyll concentrations
in April within the top 30 m were thus most likely to occur when both horizontal and vertical
density gradients were large.

The OOI glider data suggest that frontal restratification is associated with enhanced

chlorophyll at the shelf-break front. We also note that higher chlorophyll can occur at the front
(high 60/ 6x) when stratification is weak; phytoplankton blooms can also occur with the

cessation of active homogenization of deep mixed layers (e.g. Ferrari et al., 2015; Taylor &

Ferrari, 2011; Townsend et al., 1992).

3.4 Role of upfront winds
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Upfront (eastward) winds shortly preceded the highly stratified conditions associated
with enhanced shelf-break chlorophyll during AR29. On 17 April 2018, the day before VPR Tow
1, winds at the shelf break transitioned to strongly upfront (Fig. S1 of the Supporting
Information), suggesting Ekman restratification as a driving mechanism for the enhanced shelf-
break chlorophyll. Ekman restratification is triggered with wind forcing that opposes the surface
frontal current, or upfront (eastward) winds (e.g., Long et al., 2012). To determine whether
Ekman restratification is a likely driver for enhanced surface shelf-break chlorophyll for other
periods, we explore whether upfront winds (from ERAS reanalysis, section 2.4) typically occur
shortly before the “enhancement days” identified with ocean color data (section 3.1).

Using 10-m u (zonal) and v (meridional) ERAS wind speeds over the same grid points

identified as corresponding to the shelf break for the ocean color analysis in section 2.1, we

Compared the wind “upwe]]ing index” (U] = Tx/pf’ in mz) with the timing of the shelf-break

chlorophyll enhancement days identified in section 3.1. The upwelling index is a measure of
upfront vs. downfront winds (as calculated in Li et al., 2020), with 7, being the u component of
the wind stress, p the water density, and f the Coriolis parameter. As most of the shelf break in
our MODIS region is approximately zonally oriented, we use positive (negative) u wind stress as
the upfront (downfront) wind stress. We computed the average upwelling index for the 10 days
preceding the first day of the shelf-break chlorophyll enhancements.

Indeed, enhanced remotely sensed shelf-break chlorophyll concentrations tend to be
preceded by increasing upfront winds (Fig. 11). The mean upfront wind stress typically increases
in the three days preceding the enhancements of chlorophyll at the shelf break, with the mean
upwelling index one day before the frontal enhancement being significantly larger than 4 days

before (t=3.8, 95% confidence interval: 0.17-0.65 m?, p<0.01). In contrast, the mean upwelling
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index over periods longer than four days preceding the enhancements are not statistically
different from zero (t=2.3, p>0.05).

We then ran the 2-D model for two contrasting conditions: one with constant 5 m s°!
down-front winds, and the other with constant 5 m s upfront winds. Our simple 2D ROMS
model demonstrates that Ekman restratification could generate similar patterns of chlorophyll at
the front compared to those observed during AR29. In the first 3 days of the upfront wind model
run, the front restratifies, the mixed layer becomes shallow, and chlorophyll rapidly accumulates
in the shallow, stratified mixed layer (Fig. 12b). In contrast, in the downfront wind case, the
advection of denser slope water over less dense shelf water drives convective overturning on the
shelf side of the front and the water column becomes well-mixed (e.g. Thomas & Lee, 2005;
D’Asaro et al., 2011). As a consequence, frontal phytoplankton concentrations are lower than on
the shelf or the slope, as phytoplankton are diluted with vertical mixing and growth rates remain
low (Fig. 12c). Nutrient concentrations were replete in both model cases (Fig. S6 in the

Supporting Information).

4. Discussion

We demonstrate here that frontal chlorophyll enhancements detected at the New England
shelf break are transient features. Its development is triggered by the increase in stratification
resulting from the Ekman advection of less dense shelf water over denser slope water (Fig. 13).
Nutrients were replete at the shelf break at the time of the spring surface frontal chlorophyll
enhancement observed during AR29; suggesting it was driven by stratification, not nutrients.
When light availability, rather than nutrient availability, is the dominant control on

phytoplankton growth, the influence of surface mixing is likely to be of leading-order importance
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on the development of spring blooms (Hopkins et al., 2021). The patterns in density and
chlorophyll measured by OOI gliders are consistent with the hypothesis that Ekman
restratification triggers a transient chlorophyll enhancement at the front. This is consistent with
the findings of Xu et al. (2011) that interannual variability in spring bloom magnitude is
associated with factors controlling water column stability, which is supported with a model
testing the sensitivity to removing wind forcing (Xu et al., 2013). Our findings also agree with
Xu et al. (2020), who found that increased wind mixing can delay the onset of the outer shelf
spring bloom in the MAB. Given the small window during which shelf-break chlorophyll
enhancements occur, they are masked in seasonal climatologies, though they are detectable in the
DRM climatology (Fig. 5a).

While our DRM chlorophyll climatology does not fully capture the transient quality of
the shelf-break chlorophyll enhancements, which last less than a week, it agrees well with other
studies of MAB chlorophyll variability. It is consistent with Ryan et al. (1999b), who found
annual shelf-break chlorophyll enhancement during the spring transition from well-mixed to
stratified conditions. The climatology also agrees with the findings of Hales et al. (2009), who
showed that shelf-break chlorophyll enhancements were not present in June or August. The
large-scale seasonal variability in shelf and slope chlorophyll concentrations also agrees well
with other modeling and observational studies of MAB chlorophyll, exhibiting a clear fall-winter
bloom on the shelf and spring bloom in the slope (Fennel et al., 2006; Hofmann et al., 2011;
Ryan et al., 1999b; Xu et al., 2011, 2020; Yoder et al., 2001, 2002).

The chlorophyll enhancements identified were short-lived and dominated by
nanoplankton in 2018. Unlike these shelf-break enhancements, earlier-season blooms on the U.S.

Northeast Shelf are dominated by large cells (Marrec et al., 2021). Though nitrate and silicate
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concentrations are replete at the front in April 2018, microplankton biovolumes are not
enhanced. The observed enhancement of microplankton biomass offshore of the front during
AR29 was not associated with elevated chlorophyll (Fig. 8g), and may have been associated with
an earlier spring bloom on the slope, though elevated slope sea chlorophyll is not apparent in the
satellite data (Fig. 4). It is unknown why nanoplankton should outcompete diatoms at the front,
though small phytoplankton have previously been observed to dominate phytoplankton
assemblages on the restratified side of a front (Sangra et al., 2014).

For upfront winds to drive a chlorophyll enhancement at the shelf break, the following
conditions must hold: 1) nutrient concentrations must be replete at the surface, 2) the upper water
column must initially be unstratified, and 3) the upfront winds must be strong enough to drive
the movement of the front offshore, but not so strong to deepen the mixed layer. This leaves only
short periods during the year where these enhancements are possible. In addition to spring
chlorophyll enhancements, transient autumn enhancements may also be possible with upfront
winds occurring after the water column has destratified. Autumn enhancements were sometimes
detected at the shelf break in our satellite chlorophyll analysis, for example in 2010, but did not
appear in the chlorophyll climatology. While the mean winter winds in the MAB are also
upfront, the upper water column remains well-mixed due to strong winds and buoyancy-driven
mixing which prevent frontal slumping from occurring. The winter bloom on the inner shelf
where the bottom is shallower suggests that there is still enough light in the region to allow
phytoplankton to grow, presumably because the bottom depth restricts the extent of vertical
mixing. The westerly winds weaken in the spring, although they continue to fluctuate
substantially (Fig. S1 in the Supporting Information). The slumping may thus require

intermediate westerly winds fluctuating on the time scale of days.
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While Ekman restratification is an apparent trigger of enhanced surface chlorophyll at the
shelf break, a variety of alternative restratifying dynamics are also possible. As strong horizontal
density gradients adjust to geostrophic equilibrium (Ou, 1984), frontal restratification of the
surface mixed layer can result (Tandon & Garrett, 1995). For example, frontal restratification can
result from a reversal in wind direction (Dale et al., 2008) or from the rapid relaxation of winds
(Johnson et al., 2020). In our analysis the presence of increasing upfront winds preceding surface
shelf-break chlorophyll enhancements indicates Ekman restratification as the simplest
explanation for the observed restratification.

Frontal eddies may also result in frontal restratification processes with the potential to
initiate spring phytoplankton blooms, analogous to those found in the open ocean (Mahadevan
et al., 2010; Mahadevan et al., 2012). The New England shelf-break front is characterized by
abundant eddy formation from frontal meandering (Garvine et al., 1988) that has been associated
with enhanced chlorophyll (Ryan et al., 1999a). While eddies may also play an additional role,
our exploration of the relationship between shelf-break chlorophyll derived from MODIS-Aqua
to surface wind forcing, and our 2-dimensional model runs suggest that upfront winds appear to
be sufficient to drive the Ekman restratification required to stimulate shelf-break chlorophyll
enhancements. Understanding potential 3-dimensional mechanisms involved with these
enhancements will likely require exploring how chlorophyll corresponds to shelf-break eddy
activity, which is beyond the scope of this 2-dimensional study.

This study aimed to understand the mechanisms driving surface chlorophyll
enhancements observed at the shelf break, a conundrum in the literature. While the surface
chlorophyll was our focus, subsurface enhancements of chlorophyll at the front have also been

observed later in the growing season (e.g. Marra et al., 1990). Various upwelling mechanisms
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may still supply nutrients to the euphotic zone in the frontal region, supporting enhanced
subsurface biological productivity (e.g. Friedrichs et al., 2019). Such upwelling mechanisms
include frontal meandering (e.g., He et al., 2011), oscillating winds (Siedlecki et al, 2011),
upwelling from the bottom boundary layer (Gawarkiewicz and Chapman, 1992), upwelling from
the seaward side of the front (Zhang et al, 2013), and irregular topography (e.g., canyons; Hickey
& Banas, 2008). The 2D-framework used in this study also does not preclude 3D-processes at
the shelf break. In fact, it is likely that these 3D processes occur in addition to the 2D-frontal
restratification mechanism, resulting in along-shelf variability in the frontal surface chlorophyll

enhancement.

5. Conclusions

The New England shelf break is thought to be highly productive in part due to enhanced
chlorophyll detected at the shelf/slope front. Surface frontal enhancement is not discernible in
seasonal climatologies (e.g. Zhang et al., 2013) although such enhancements are occasionally
visible in synoptic images during spring. We demonstrate that frontal chlorophyll enhancement
is an ephemeral process, typically lasting only a few days. We suggest that Ekman
restratification driven by upfront winds results in the advection of the lighter shelf water over
denser slope water. This process creates a shallow mixed layer at the front which alleviates light
limitation and supports transient surface enhancements of chlorophyll at the front. Alternative
submesoscale restratifying mechanisms are not precluded by our assessment, but the presence of
intensified upfront winds preceding the shelf-break enhancements suggests Ekman

restratification as the most straightforward explanation.
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6. Data availability and acknowledgements
MODIS Aqua 8-Day 1 km composite chlorophyll concentrations were processed at the
University of Delaware and can be accessed at

http://basin.ceoe.udel.edu/erddap/griddap/MODIS AQUA 8 day.html. SPIROPA AR29 VPR

Tow 1 and CTD Transect 5 data are archived at the Biological and Chemical Oceanography

Data Management Office (BCO-DMO) project page: https://www.bco-dmo.org/project/748894.

MAB historical nitrate and nitrate + nitrite data are available from the World Ocean Database
provided by the National Centers for Environmental Information at the National Oceanic and
Atmospheric Administration. OOI glider data, and 3 m and 10 m wind speeds can be accessed at

https://ooinet.oceanobservatories.org/data_access/. ERAS reanalysis wind speed data are

available from the Copernicus Climate Change Service Climate Data Store

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-eraS-single-levels?tab=overview).
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Figure 1. Example snapshot of enhanced chlorophyll at the shelf break, depth contours at 75,
100, 200, 500, 1000, and 2000 m. The gray box indicates the geographic boundaries of the map

shown in Figure 3. Note the log color axis scale.
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Figure 2. (a) Mean cross-shelf bathymetric profile, partitioned into the 51 depth bins (equally
spaced 3 km apart), with the 75, 100, 200, 500, and 1000 m isobaths identified by vertical and
horizontal lines, and bins identified as belonging to the shelf, shelf break, and slope sections; (b)
geographic distribution of the 51 depth bins, selected by dividing the mean cross-shelf profile in
(a) into 3-km segments. Note that bins from the shelf break will cover a larger depth range than
those on the shelf or slope. For clarity a repeating color map is utilized in both (a) and (b) for

each depth bin. Note the log color axis scale in (b).
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Figure 3. Map of 18 April VPR tow (red line) and 19 April CTD Transect 5 cast locations (black

circles) overlayed on April 18 DRM chlorophyll from MODIS-Aqua. Black circles represent

Stations AS to Al4, from north to south.
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Figure 4. DRM depth-binned mean chlorophyll concentrations in the MAB region, from 2003-
2020. Depth contours at 75, 100, 200, 500, and 1000 m. Note the log color axis. White regions
indicate cloud cover. Chlorophyll data were obtained from MODIS Aqua 8-Day 1 km

composites processed at the University of Delaware.
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Figure 5. (a) DRM climatological (2003-2020) depth-binned median chlorophyll concentration
in the MAB region, with the red box indicating the period of chlorophyll enhancement at the
shelf break (21 April — 11 May); (b) The same as (a), but with seasonal climatological depth-
binned median chlorophyll concentrations. Note the different color scales. Vertical lines show

75, 100, 200, 500, and 1000 m depth contours.
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Figure 6. Histograms showing timing and duration of periods where shelf-break chlorophyll
concentrations are enhanced relative to the shelf and slope. (a) Number of enhancements per

year; (b) day of year of enhancement initiation; (c) durations of enhancements.
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Figure 8. AR29 transects 18-19 April 2018. (a) VPR temperature (°C); (b) VPR salinity; (c)
VPR potential density (kg m™); (d) VPR chlorophyll estimated from fluorescence (ug L™!); (e)
CTD Transect 5 nitrate concentrations (LM); (f) CTD Transect 5 silicate concentrations (uM);
(g) underway measurements from the VPR tow of 1) net community production (NCP, mmol O>
m d!), 2) microplankton, nanoplankton, and picoplankton biovolume (um* ml!), and 3)
underway chlorophyll (ug L™). The solid black line in the bottom left corner of (a)-(f) shows the

bottom depth.
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Atlantic Bight from 1932-2012 (640 observations, World Ocean Database).
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least 100 observations. Note the log-log axis scales.
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Figure 12. 2-D ROMS model initial condition and output. (a) Initial salinity and temperature,
with the gray boxes showing the boundaries of the output fields shown in (b) and (c); (b)
chlorophyll fields from 2-D ROMS model output with constant 5 m s upfront winds; (c) output
for constant 5 m s™! downfront winds. The thick white lines show the frontal isohaline (34.5), and
thinner white lines show isopycnals at 0.05 kg m™ intervals. Chlorophyll is calculated from

nitrogen units using the Redfield ratio (106 mol C:16 mol N), and assuming 50 g C/g Chl.
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Figure 13. Conceptual diagram of an increasing vertical density gradient as isopycnals flatten

with upfront winds, which creates a shallow, well-lit mixed layer that can support rapid

phytoplankton accumulation.
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