

1
2 **Ephemeral surface chlorophyll enhancement at the New England shelf break driven**
3 **by Ekman restratification**

4
5 **Hilde Oliver¹, Weifeng Gordon Zhang¹, Kevin M. Archibald¹, Andrew J. Hirzel¹, Walker**
6 **O. Smith^{2,3}, Jr., Heidi M. Sosik¹, Rachel H. R. Stanley⁴, and Dennis J. McGillicuddy, Jr.¹**

7 ¹Woods Hole Oceanographic Institution, Woods Hole, MA, USA

8 ²Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, USA

9 ³School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China

10 ⁴Department of Chemistry, Wellesley College, Wellesley, MA, USA

11

12 Corresponding author: Hilde Oliver (holiver@whoi.edu)

13

14 **Key Points:**

15 • Spring enhancements of surface chlorophyll at the New England shelf break are short-
16 lived and thus are not visible in seasonal means.

17 • Surface chlorophyll enhancements are associated with offshore displacement of the upper
18 part of the shelf-break front in spring.

19 • Upfront wind stress increases before shelf-break chlorophyll enhancements, suggesting
20 Ekman restratification to be the driving mechanism.

22 **Abstract**

23 The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported
24 by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB
25 shelf-break front have been detected in synoptic measurements, yet this feature is not present in
26 seasonal means. To understand why, we assess the conditions associated with enhanced surface
27 chlorophyll at the shelf break. We employ *in-situ* and remote sensing data, and a 2-dimensional
28 model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced
29 chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-
30 measured surface chlorophyll concentration data from 2003-2020, we constructed a daily
31 running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern
32 MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology,
33 it is not captured in the seasonal climatology due to its short duration of less than a week. *In-situ*
34 measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring
35 when the shelf-break front slumps offshore from its steep wintertime position causing
36 restratification in the upper part of the water column. Several restratification mechanisms are
37 possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing
38 upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport
39 of the shelf water over the denser slope water. The 2-dimensional model shows that upfront
40 winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton
41 growth at the shelf-break front.

42

43 **Plain-language summary**

44 The ocean south of New England contains high concentrations of phytoplankton that
45 form the base of the marine food web and provide critical support to the region's fisheries. The
46 offshore edge of the relatively shallow continental shelf, the shelf break, is the boundary between
47 the cooler and fresher water on the continental shelf (shelf water) and the warmer and saltier
48 water offshore (slope water). This water boundary at the shelf break is thought to support high
49 chlorophyll concentrations. Enhanced shelf-break chlorophyll concentrations are not always
50 present, however. We use data from satellites, ships, gliders, and moorings to determine what
51 drives the episodically enhanced surface shelf-break chlorophyll concentrations. We find that the
52 shelf-break surface enhancements of chlorophyll concentrations are short-lived events, and are
53 associated with periods when the shelf-slope water interface slumps, as a surface layer of the
54 lighter shelf water moves over the denser slope water. This process creates a shallow surface
55 layer that has ample light to support photosynthesis. Both data and a computational model show
56 that eastward winds are the primary driver of the episodic frontal slumping and localized
57 enhanced surface chlorophyll.

58

59 **1. Introduction**

60 The Mid-Atlantic Bight (MAB) region of the U.S. northeast continental shelf is home to a
61 large and highly productive marine ecosystem (O'Reilly et al., 1987; O'Reilly & Busch, 1984),
62 and an important region for commercial fisheries (Orphanides and Magnusson, 2007, Podestá
63 et al., 1993). Phytoplankton concentrations and primary productivity vary substantially across the
64 MAB. High phytoplankton biomass is often associated with the colder, fresher shelf water, while
65 more oligotrophic conditions are associated with the warmer and saltier slope water offshore of
66 the shelf break (e.g., Xu et al., 2011; Yoder et al., 2002; Zhang et al., 2013). A persistent shelf-

67 break front with isopycnals shoaling offshore (Lozier & Reed, 2005) serves as the boundary
68 between shelf water and slope water (e.g. Fratantoni, 2003; Linder & Gawarkiewicz, 1998). The
69 location and orientation of the shelf-break front can vary considerably. In winter, the vertical
70 structure of the front is steep with condensed isopycnals, while in summer the front is gently
71 sloped with strong stratification in the upper layer (Linder & Gawarkiewicz, 1998).

72 Sporadically enhanced chlorophyll concentrations at the shelf-break front have been
73 detected by satellite and shipboard measurements (Fig. 1; Marra et al., 1982; Ryan et al., 1999b).
74 A variety of nutrient-supplying upwelling processes have been suggested to take place at the
75 front, including an onshore flow driven by the along-shelf pressure gradient force (Zhang et al.,
76 2011), along-isopycnal upwelling driven by convergence within the bottom boundary layer
77 (Chapman & Lentz, 1994; Gawarkiewicz & Chapman, 1992; Linder et al., 2004), and vertical
78 transport induced by frontal meandering (Zhang & Gawarkiewicz, 2015). Frontal chlorophyll
79 enhancement is not always present, however (Hales et al., 2009), and is not visible in seasonal
80 chlorophyll climatologies (e.g. Zhang et al., 2013). The absence of a mean chlorophyll
81 enhancement at the shelf break, given the variety of potential upwelling mechanisms, has
82 presented a critical gap in our understanding of the bio-physical interactions governing this
83 economically important marine ecosystem (Sherman et al., 1996). The central question is two-
84 pronged: 1) what drives the enhanced surface chlorophyll when it occurs at the shelf break, and
85 2) why is it not detected in the seasonal means?

86 Here, we explore the timing and duration of chlorophyll enhancements at the New
87 England shelf break using satellite-based estimates of surface chlorophyll *a* concentrations made
88 from ocean color measurements. To understand the environmental conditions that give rise to
89 these enhancements, we use shipboard data collected in mid-to-late April 2018 and data from the

90 Oceans Observatories Initiative (OOI) Coastal Pioneer Array (Gawarkiewicz & Plueddemann,
91 2020; Trowbridge et al., 2019), which we then test with 2-dimensional coupled physical-
92 biogeochemical simulations.

93

94 **2. Materials and Methods**

95 **2.1. Satellite chlorophyll *a***

96 We analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 8-day
97 composite 1-km surface chlorophyll *a* data (OC3 algorithm) from 2003 to 2020 to identify times
98 of higher surface chlorophyll concentrations at the shelf break than neighboring slope and shelf
99 region. While there is frequently heavy cloud cover over the region, the 8-day composite product
100 can provide nearly-continuous chlorophyll data over the shelf-break area. The 8-day composite
101 chlorophyll fields are available daily, and are an effective 8-day moving average of chlorophyll
102 in each 1-km pixel. We therefore henceforth refer to the 8-day chlorophyll composites as daily
103 running means (DRM).

104 We analyze chlorophyll distributions from the Hudson Canyon to 68° W, and from a
105 bottom depth of 50 to 3000 m (Fig. 2). Individual ocean color images showing enhanced
106 chlorophyll along the entire MAB shelf break are relatively rare, likely due to cloud cover or
107 extensive along- and cross-front variability in chlorophyll concentrations. To account for spatial
108 and temporal variability and to achieve an along-shelf mean picture of the chlorophyll
109 distribution, we averaged chlorophyll concentrations in the along-shelf direction. As the frontal
110 flow in the shelf break region is often topographically steered, the averaging was carried out
111 using bottom depth as the cross-shelf coordinate. The procedure of the averaging is as follows: i)
112 the mean cross-shelf bathymetric profile within the range of 50-3000 m was discretized into 3

113 km intervals, which gives a total of 51 bottom depth bins (Fig. 2a); ii) for each day, the surface
114 DRM chlorophyll value at each pixel was then placed in a depth bin according to the water depth
115 (Fig. 2b); and iii) all chlorophyll values in each depth bin were then averaged to obtain the mean
116 chlorophyll concentration of that bin. The distribution of the bin-averaged chlorophyll
117 concentration against the mean cross-shelf distance of the depth bins gives the along-shelf-
118 averaged cross-shelf distribution of surface chlorophyll concentration of the 8-day window.

119

120 **2.2. Shipboard data**

121 From 16-29 April 2018, R/V *Neil Armstrong* cruise AR29 sampled repeatedly across the
122 New England shelf break along 70.83°W (Fig. 3), centered between the moorings installed at the
123 OOI Coastal Pioneer Array. The objective of cruise AR29 was to investigate the mechanisms
124 controlling primary productivity at the shelf-break front, as part of the interdisciplinary Shelf-
125 break Productivity Interdisciplinary Research Operation at the Pioneer Array (SPIROPA). From
126 3-12 April 2018, R/V *Neil Armstrong* cruise AR28B also conducted cross-shelf CTD transects at
127 70.83°W, which provided information about the conditions preceding the SPIROPA cruise.

128 During AR29, a Video Plankton Recorder II (VPR, from SeaScan Inc.) was towed behind
129 the ship for high-resolution surveys of temperature, salinity, and fluorescence across the shelf
130 break. The VPR consists of a towed body, and is equipped with a Seabird Electronics Inc. SBE
131 49 FastCat CTD, SBE 43 oxygen sensor, ECO FLNTU-4050 fluorometer, ECO BBFL2-123
132 ECO Triplet, Biospherical Instruments Inc. QCP-200L PAR sensor, and a synchronized video
133 camera and xenon strobe (Davis et al., 2005). The VPR was towed at 10 knots (5.1 m s^{-1}),
134 undulating between 5 and up to 100 m with a vertical velocity of approximately 1 m s^{-1} . Net
135 community production (NCP) integrated over the mixed layer was calculated for the VPR

136 transect from O₂/Ar measured continuously (seconds-to-minutes) by an Equibrator Inlet Mass
137 Spectrometer (EIMS) from the ship's underway system (intake depth = 2.1 m; Smith et al.,
138 2021). We present data from VPR Tow 1 on 18 April 2018, near the beginning of the cruise.

139 High-resolution underway measurements of phytoplankton size structure were measured
140 during the VPR tow with two types of cytometers. Pico- to nanoplankton (0.5-15 μ m) were
141 measured with an Attune NxT flow cytometer (Thermo Fisher Scientific) and nano- to
142 microplankton (7-150 μ m) were observed with an Imaging FlowCytobot (IFCB, McLane
143 Research Laboratories). Images were captured based on the chlorophyll fluorescence signal of
144 each particle. The Attune collected one 0.4-ml sample approximately every 2 minutes and the
145 IFCB collected one 5-ml sample ca. every 26 minutes. All Attune samples within 10 minutes of
146 each IFCB sample were pooled and combined with the data from a single IFCB file. Differences
147 in sampling volume between the two instruments meant that the pooled Attune samples and the
148 IFCB sample had approximately the same volume. Total phytoplankton biovolume
149 concentrations for shelf water (salinity 32-34), frontal water (salinity 34-35), and slope water
150 (salinity 35-35.5), used here as a proxy of phytoplankton biomass, were calculated by integrating
151 over the composite particle size distributions. Biovolume concentrations from warm-core ring
152 water (salinity > 35.5) represent a different hydrographic regime and are not included in this
153 study.

154 Attune cell sizes were estimated from side angle light scattering, with side scattering
155 observations periodically normalized to the mean side scattering signal of 1 μ m beads (Flow
156 Check High Intensity Alignment Grade Particles, Polysciences). The normalized signals were
157 converted to cell volume based on a calibration curve generated from 12 phytoplankton cultures
158 ranging in size from 1 μ m to 20 μ m, which were analyzed on the Attune and independently sized

159 on a bead-calibrated Coulter Multisizer II (Beckman Coulter). IFCB particle sizes were
160 estimated from images following the automated scheme described by Sosik & Olson, (2007) and
161 updated in Sosik et al. (2020), and biovolume of imaged targets was determined with the
162 distance map algorithm of Moberg & Sosik (2012).

163 On 19 April 2018, CTD Transect 5 was conducted over the locations covered by the VPR
164 in the previous day; we present the nutrient data for these ten stations (A5-A14) (Fig. 3). CTD
165 profiles were taken at each station spaced ~7 km apart, and discrete seawater samples were
166 collected using 24 10-L Niskin bottles mounted on the CTD rosette. The rosette was equipped
167 with a SeaBird 911 CTD system, a WetLabs FLNTURTD fluorometer, a BioSpherical
168 Instruments photosynthetically active radiation (PAR) sensor, and a WetLabs C-Star beam
169 transmissometer. Temperature, salinity, and fluorescence were measured on all CTD casts. The
170 interface between the shelf and slope waters is represented by the 34.5 isohaline, which largely
171 coincides with the shelf-break front during spring (Linder and Gawarkiewicz, 1998). Nitrate,
172 phosphate, and silicate concentrations were determined by filtering water samples through 0.4
173 μm polycarbonate filters, which were frozen in acid-washed polyethylene bottles before being
174 run at the Woods Hole Oceanographic Institution Nutrient Analytical Facility.

175 VPR chlorophyll concentrations from fluorescence were estimated using the CTD
176 fluorometer-chlorophyll calibration. CTD fluorescence (F_{CTD}) was converted into chlorophyll *a*
177 concentrations (Chl_{CTD}) using a regression between fluorescence values and extracted
178 chlorophyll *a* measurements from Niskin bottles:

179

$$180 \quad Chl_{CTD} = 0.669F_{CTD} + 0.027 \quad (1)$$

181

182 (R² = 0.90, RMSE = 0.60). In turn, VPR concentrations of chlorophyll *a* (Chl_{VPR}) were
183 determined from fluorescence by regressing the calculated chlorophyll concentrations from the
184 CTD cast immediately following the VPR tow (Cast 16 at Station A14, the southernmost station
185 of CTD Transect 5; Fig. 3) using (Chl_{CTD}) with the fluorescence (F_{VPR}) from the last VPR
186 profile with a maximum depth of at least 95 m. The least squares fit used to calculate chlorophyll
187 from VPR fluorescence was

188

189
$$Chl_{VPR} = 0.673F_{VPR} + 0.298 \quad (2)$$

190

191 (R² = 0.69, RMSE = 0.13).

192 We also estimated the potential seasonal onset of more nutrient-limited conditions in the
193 MAB with surface nitrate data provided by the National Centers for Environmental Information
194 in the 2018 World Ocean Database (Garcia et al., 2019). We extracted all surface nitrate
195 measurements from 68.0 – 73°W, and 36.0 – 42.0°N where the bottom depth was between 75 m
196 and 1000 m, a total of 640 observations from the top 15 m from 1933 to 2012 to create a 30-day
197 moving median climatology of surface nitrate. Medians are used due to right-skewed
198 concentrations. Only concentration data that were not flagged by World Ocean Database during
199 quality assurances were incorporated.

200

201 **2.3. OOI coastal glider data**

202 A set of Teledyne-Webb Slocum coastal gliders deployed at the OOI Coastal Pioneer
203 Array monitor a broad area covering the outer continental shelf, shelf break, and Slope Sea. We
204 used all available April glider measurements of temperature, salinity, and chlorophyll to assess

205 the conditions associated with higher spring chlorophyll concentrations near the shelf break
206 (7,861 vertical profiles from 2014-2020). The chlorophyll products provided by OOI are
207 calculated from fluorescence (from WET Labs - ECO Puck FLBBCD-SLK fluorometers);
208 regular factory calibrations are performed on its glider fluorometers to provide consistent
209 estimates of chlorophyll concentrations. Glider temperature and salinity data are measured by
210 Sea-Bird - SBE Glider Payload CTDs (GP-CTD). The chlorophyll and density data were
211 provided by different instruments, with differing time steps, so the chlorophyll data were linearly
212 interpolated by the CTD time before analysis.

213

214 **2.4. Surface winds**

215 We explored the wind conditions associated with shelf-break chlorophyll enhancements
216 with in situ measured and reanalysis wind data. OOI Pioneer Array surface moorings are
217 equipped with a bulk meteorological package 3 m above the surface that record meridional and
218 zonal wind speeds. Wind speeds at offshore, central, and inshore surface moorings agree well
219 with one another during periods of overlap (Fig. S1 in the Supporting Information). To fill gaps
220 in individual mooring records, we generated a combined OOI buoy time series, using the mean
221 zonal and meridional wind speeds available for each minute among the three buoys.

222 While the local OOI buoy measurements would be the most ideal data stream for
223 comparison to MODIS chlorophyll in the Pioneer Array shelf-break area, the buoy
224 meteorological time series only extends back to 2014, while MODIS-Aqua chlorophyll data
225 extends back to 2003. Meteorological model reanalysis products, by contrast, provide wind
226 speeds covering the period of interest; the European Centre for Medium-Range Weather
227 Forecasts (ECMWF) ERA5 reanalysis product extends back to 1950 (Hersbach et al., 2018). We

228 first assessed whether the trends in OOI buoy wind speed are captured in the reanalysis before
229 comparing its trends to those of the MODIS shelf-break chlorophyll (section 2.1). For
230 comparison with OOI buoy winds (Inshore Buoy: 40.37°N, 70.88°W; Central Buoy: 40.13°N,
231 70.78°W; Offshore Buoy: 39.94°N, 70.88°W), ERA5 winds between 39.75 and 40.25°N and
232 69.50 and 71.50°W (0.25 x 0.25 resolution) were spatially-averaged. There is generally good
233 agreement between the 10 m wind speeds in ERA5 winds and the OOI buoy winds (Fig. S2 in
234 the Supporting Information).

235

236 **2.5. 2D ROMS configuration**

237 We use a two-dimensional (2D; cross-shelf and vertical) configuration of the Regional
238 Ocean Model System (ROMS) of the shelf-break area coupled to a nitrogen-phytoplankton-
239 zooplankton-detritus (NPZD) model. The model spans 479 km in the cross-shelf direction with
240 an idealized bathymetry mimicking the MAB shelf and slope seas. It is initialized with a steep
241 front at the shelf break, using the base configuration from Zhang et al. (2011, 2013). The model
242 has 842 grid points in the cross-shelf direction with uniform 400 m resolution in the study region
243 and decreasing gradually to 2400 m in the offshore region, and 60 stretched vertical layers (Fig.
244 S3 in the Supporting Information). The 2-D across-shelf configuration is implemented via a 5-
245 point along-shelf dimension with periodic boundary conditions. We use the same NPZD model
246 modified from Powell et al. (2006) as used in Zhang et al. (2013), with uniform initial nitrate and
247 phytoplankton nitrogen concentration of 5 and 1 μM , respectively. April 2018 surface air
248 temperatures, longwave radiation, and shortwave radiation measured at the Central Mooring
249 (40.13°N, 70.78°W) of the OOI Pioneer Array (Gawarkiewicz & Plueddemann, 2020) are used to
250 force the model together with idealized along-shelf winds (see below).

251

252 **3. Results**253 **3.1 MODIS-Aqua chlorophyll climatology**

254 Stacking the DRM cross-shelf distributions of surface chlorophyll (section 2.1) produces
255 Hovmöller diagrams showing the time-evolution of the cross-shelf distribution of surface
256 chlorophyll concentration, for each year from 2003-2020 (Fig. 4). A DRM shelf-break surface
257 chlorophyll climatology was then produced with the yearly Hovmöller diagrams presented in
258 Fig. 4. Maximum bin-averaged chlorophyll concentrations can vary widely between years, so we
259 use the median DRM chlorophyll concentration in 2003-2020 in each depth bin.

260 Durations of shelf-break chlorophyll enhancements were determined with time series of
261 the mean chlorophyll concentration at the shelf, slope, and shelf break from the yearly
262 Hovmöller diagrams. Depth bins between the 75 and 1000 m isobaths were categorized as the
263 shelf-break region; those shallower were categorized as the shelf region; and those deeper were
264 categorized as the slope region (Fig. 2a). The periods during which the mean surface chlorophyll
265 was greater at the shelf break relative to both the shelf and slope are labeled as “enhancement
266 days”. While the DRM chlorophyll fields provide continuous coverage over the shelf-break
267 region, the durations of shelf-break enhancements may be underestimated (through
268 undersampling during an enhancement) or overestimated (through undersampling before or after
269 an enhancement) using the DRM fields. Moreover, the DRMs can underestimate the magnitude
270 of enhancements due to temporal smearing. In any case, the DRMs are a practical means to
271 assess spatially and temporally intermittent phenomena that are incompletely sampled due to
272 cloud cover.

273 The satellite DRM chlorophyll climatology demonstrates that shelf-break chlorophyll
274 enhancements are typically springtime features (Fig. 5a). While climatological chlorophyll
275 concentrations are higher across the shelf break for most of April and May, the period when they
276 are enhanced relative to both the shelf and slope in the climatology is constrained to only 20 days
277 (21 April – 11 May; highlighted region in Fig. 5a). The climatology shows highest chlorophyll
278 concentrations during the inshore spring bloom beginning in mid-March, which is followed by
279 enhanced chlorophyll at the shelf break and in the slope sea. Accordingly, periods of enhanced
280 chlorophyll at the shelf break were identified in every year except 2004 and 2020 (Fig. 6a), and
281 many of these enhancements were concentrated within a narrow period in the spring, though
282 some were also detected in fall and winter (Fig. 6b). Generally, the shelf-break chlorophyll
283 enhancements were short-lived, typically lasting less than a week (Fig. 6c).

284 We also explored whether shelf-break chlorophyll enhancements were present in seasonal
285 averages, and created a seasonal climatology by taking the median surface chlorophyll
286 concentration in winter (January – March), spring (April – June), summer (July – September),
287 and fall (October – December). Due to the transient quality of the surface chlorophyll
288 enhancements, they are not expressed in the seasonal cross-shelf chlorophyll climatology (Fig.
289 5b). While spring shelf-break chlorophyll enhancements are occasionally visible in the annual
290 seasonal means, shelf chlorophyll concentrations are also usually elevated in spring (excepting
291 2003, 2012, 2013, and 2017) and hence become indistinguishable from shelf-break
292 enhancements in the seasonal climatology (Fig. S4 in the Supporting Information).

293

294 **3.2 Shipboard measurements**

295 The conditions driving ephemeral shelf-break chlorophyll enhancements are
296 elucidated by *in-situ* observations of front, shelf, and slope conditions in April 2018. On 12
297 April, four days before cruise AR29, the front was relatively steeply oriented (Fig. 7). Within the
298 first few days of AR29 (16-19 April), the near-surface expression of the front moved about ten
299 kilometers offshore. The front maintained this more gently sloped configuration for a few days,
300 until 23 April.

301 Elevated surface chlorophyll concentrations were measured inshore of the front during an
302 offshore VPR tow across the shelf break on 18 April 2018 (Fig. 8). Chlorophyll concentrations
303 were highest within the ~20 m layer of cooler, fresher shelf water over the denser slope water.
304 The shelf-slope water front was nearly horizontal beneath the chlorophyll patch, and the water
305 column was thus more highly stratified there than elsewhere during the tow (Fig. 8c-d). The
306 stratification generated by the large shelf water-slope water density gradient resulted in a shallow
307 mixed layer.

308 The emergence of enhanced chlorophyll associated with the onset of strengthened frontal
309 stratification suggests that photosynthesis at the front was stimulated by the increased light levels
310 over the shallower mixed layer (e.g. Sverdrup, 1953), not nutrients. On 19 April 2018, the 1%
311 light depth was between 30 m and 40 m (Fig. 7); after restratification the mixed layer shoaled to
312 ~20 m. Nutrient concentrations were measured over CTD Transect 5, which was conducted the
313 day following the VPR tow along the same transect (Fig. 3). Surface nitrate was always $> 4 \mu\text{M}$
314 (Fig. 8e), suggesting nitrate-replete conditions across the shelf break, including at the front where
315 chlorophyll was elevated. Historical measurements of surface nitrate in the MAB also show that
316 typical MAB surface nitrate concentrations are not reduced below $0.1 \mu\text{M}$ until mid-May (ca.
317 Julian day 134; Fig. 9). Phosphate was available in Redfield proportion to nitrate (not shown),

318 and thus was also not limiting. Silicate concentrations were reduced to $\sim 1 \mu\text{M}$ offshore of the
319 front (Fig. 8f), but not where elevated chlorophyll concentrations occurred. As surface nitrate
320 concentrations were elevated across Transect 5, the emergence of elevated chlorophyll inshore of
321 the front appears to be a result of the enhanced light availability associated with the more
322 stratified conditions at the front.

323 Underway measurements conducted during the VPR tow show the enhanced frontal
324 chlorophyll was associated with elevated NCP (Fig. 8g). NCP at the front reached 41 mmol O_2
325 $\text{m}^{-2} \text{ d}^{-1}$ (equivalent to $28 \text{ mmol C m}^{-2} \text{ d}^{-1}$ using stoichiometry from Anderson & Sarmiento, 1994),
326 over 3 times higher than inshore of the front ($\sim 12 \text{ mmol O}_2 \text{ m}^{-2} \text{ d}^{-1}$). Size fractionated biovolume
327 from the IFCB (Fig. 8g) indicates the peak in chlorophyll at the front was associated with
328 nanoplankton, a size fraction too small to be imaged by the VPR. While chlorophyll and
329 nanoplankton biovolume were highest at the front, total plankton biovolume concentrations at
330 the front during the VPR tow were not higher than over the slope (Fig. S5 of the Supporting
331 Information), as microplankton biovolume from the IFCB increased offshore of the front (Fig.
332 8g). Analysis of IFCB and VPR images confirmed the microplankton offshore of the front were
333 dominated by diatoms (not shown) that were apparently low in fluorometric chlorophyll. The
334 presence of low-chlorophyll diatoms in the slope waters depleted in silicate (Fig. 8f) may reflect
335 a prior bloom unrelated to the enhanced chlorophyll and nanoplankton at the front. Later in the
336 cruise period total biovolume was enhanced at the front relative to the shelf and slope (Fig. S5 in
337 the Supporting Information).

338

339 **3.3 OOI glider measurements**

340 We used OOI Pioneer Array glider density and chlorophyll data to explore whether a
341 similar frontal configuration observed during AR29 was also associated with enhanced spring
342 shelf-break chlorophyll concentrations in other years (2014-2020, Fig. 10a). In winter, the steep
343 winter front is associated with a strong horizontal density gradient, and relatively weak vertical
344 density gradient. As the front becomes less steep, vertical stratification increases, and a strong
345 vertical density gradient at the front emerges (Fig. 8c). A high horizontal density gradient thus
346 indicates a location near the shelf-slope front, and a high vertical density gradient indicates high
347 vertical stratification. We therefore interpret glider measurements with large horizontal and
348 vertical density gradients in the near-surface layer as a place where a steep shelf-break front
349 (with condensed isopycnals) has slumped to create strong near-surface stratification and thus a
350 shallow surface mixed layer. The front is hence likely to be in such a configuration when a
351 strong vertical density gradient accompanies a strong horizontal density gradient.

352 To assess how April chlorophyll concentrations vary with horizontal and vertical density
353 gradients, we categorize each glider measurement in the upper water column by both its vertical
354 density gradient $\delta\sigma/\delta_z$ and horizontal density gradient $\delta\sigma/\delta_x$, with σ being potential density,
355 averaged over 1-m depth bins. We gridded glider chlorophyll and density data by depth and
356 distance between casts. Only glider downcasts were used because of the “V-shaped” glider
357 trajectories, to preserve approximately uniform horizontal spacing between casts and thus more
358 consistent horizontal density gradients. Approximately 93,000 bins contained observations.
359 While the calculated horizontal density gradients include variability due to internal waves, the
360 strongest horizontal density gradients at the front are unlikely to be masked by this variability.
361 The gridded density was then binned by the log-transformed vertical ($\delta\sigma/\delta_z$) and horizontal
362 ($\delta\sigma/\delta_x$) density gradients. With the focus on surface enhancements, we analyzed binned density

363 gradients over the top 30 m. Thirteen horizontal density gradient bins and 13 vertical density
364 gradient bins were used, for a total of 169 bins. We only analyzed chlorophyll concentrations for
365 density bins with more than 100 independent chlorophyll measurements. We assessed the
366 chlorophyll associated with each horizontal and vertical density gradient bin using two metrics:
367 1) the proportion of density gradient bins where the chlorophyll reaches a concentration typical
368 of those associated with the frontal enhancements in the binned satellite data (Fig. 4; $> 2 \mu\text{g/L}$;
369 “bloom bins”), and 2) the median chlorophyll concentration within each density gradient bin.
370 Median concentrations are used because the chlorophyll distributions within each bin are right-
371 skewed.

372 Chlorophyll concentrations greater than $2 \mu\text{g L}^{-1}$ were associated with high $\delta\sigma/\delta_x$ (at the
373 front), and low to high $\delta\sigma/\delta_z$ (a broad range of vertical density gradients) (Fig. 10b). The
374 greatest proportion of chlorophyll concentrations greater than $2 \mu\text{g L}^{-1}$ occurred within the bin
375 covering the highest values of $\delta\sigma/\delta_x$ and $\delta\sigma/\delta_z$. This high $\delta\sigma/\delta_x$ and $\delta\sigma/\delta_z$ bin was also
376 associated with higher median chlorophyll concentrations. Elevated chlorophyll concentrations
377 in April within the top 30 m were thus most likely to occur when both horizontal and vertical
378 density gradients were large.

379 The OOI glider data suggest that frontal restratification is associated with enhanced
380 chlorophyll at the shelf-break front. We also note that higher chlorophyll can occur at the front
381 (high $\delta\sigma/\delta_x$) when stratification is weak; phytoplankton blooms can also occur with the
382 cessation of active homogenization of deep mixed layers (e.g. Ferrari et al., 2015; Taylor &
383 Ferrari, 2011; Townsend et al., 1992).

384

385 **3.4 Role of upfront winds**

386 Upfront (eastward) winds shortly preceded the highly stratified conditions associated
387 with enhanced shelf-break chlorophyll during AR29. On 17 April 2018, the day before VPR Tow
388 1, winds at the shelf break transitioned to strongly upfront (Fig. S1 of the Supporting
389 Information), suggesting Ekman restratification as a driving mechanism for the enhanced shelf-
390 break chlorophyll. Ekman restratification is triggered with wind forcing that opposes the surface
391 frontal current, or upfront (eastward) winds (e.g., Long et al., 2012). To determine whether
392 Ekman restratification is a likely driver for enhanced surface shelf-break chlorophyll for other
393 periods, we explore whether upfront winds (from ERA5 reanalysis, section 2.4) typically occur
394 shortly before the “enhancement days” identified with ocean color data (section 3.1).

395 Using 10-m u (zonal) and v (meridional) ERA5 wind speeds over the same grid points
396 identified as corresponding to the shelf break for the ocean color analysis in section 2.1, we
397 compared the wind “upwelling index” ($UI = \tau_x / \rho f$, in m^2) with the timing of the shelf-break
398 chlorophyll enhancement days identified in section 3.1. The upwelling index is a measure of
399 upfront vs. downfront winds (as calculated in Li et al., 2020), with τ_x being the u component of
400 the wind stress, ρ the water density, and f the Coriolis parameter. As most of the shelf break in
401 our MODIS region is approximately zonally oriented, we use positive (negative) u wind stress as
402 the upfront (downfront) wind stress. We computed the average upwelling index for the 10 days
403 preceding the first day of the shelf-break chlorophyll enhancements.

404 Indeed, enhanced remotely sensed shelf-break chlorophyll concentrations tend to be
405 preceded by increasing upfront winds (Fig. 11). The mean upfront wind stress typically increases
406 in the three days preceding the enhancements of chlorophyll at the shelf break, with the mean
407 upwelling index one day before the frontal enhancement being significantly larger than 4 days
408 before ($t=3.8$, 95% confidence interval: $0.17-0.65 m^2$, $p<0.01$). In contrast, the mean upwelling

409 index over periods longer than four days preceding the enhancements are not statistically
410 different from zero ($t=2.3$, $p>0.05$).

411 We then ran the 2-D model for two contrasting conditions: one with constant 5 m s^{-1}
412 down-front winds, and the other with constant 5 m s^{-1} upfront winds. Our simple 2D ROMS
413 model demonstrates that Ekman restratification could generate similar patterns of chlorophyll at
414 the front compared to those observed during AR29. In the first 3 days of the upfront wind model
415 run, the front restratifies, the mixed layer becomes shallow, and chlorophyll rapidly accumulates
416 in the shallow, stratified mixed layer (Fig. 12b). In contrast, in the downfront wind case, the
417 advection of denser slope water over less dense shelf water drives convective overturning on the
418 shelf side of the front and the water column becomes well-mixed (e.g. Thomas & Lee, 2005;
419 D'Asaro et al., 2011). As a consequence, frontal phytoplankton concentrations are lower than on
420 the shelf or the slope, as phytoplankton are diluted with vertical mixing and growth rates remain
421 low (Fig. 12c). Nutrient concentrations were replete in both model cases (Fig. S6 in the
422 Supporting Information).

423

424 **4. Discussion**

425 We demonstrate here that frontal chlorophyll enhancements detected at the New England
426 shelf break are transient features. Its development is triggered by the increase in stratification
427 resulting from the Ekman advection of less dense shelf water over denser slope water (Fig. 13).
428 Nutrients were replete at the shelf break at the time of the spring surface frontal chlorophyll
429 enhancement observed during AR29; suggesting it was driven by stratification, not nutrients.
430 When light availability, rather than nutrient availability, is the dominant control on
431 phytoplankton growth, the influence of surface mixing is likely to be of leading-order importance

432 on the development of spring blooms (Hopkins et al., 2021). The patterns in density and
433 chlorophyll measured by OOI gliders are consistent with the hypothesis that Ekman
434 restratification triggers a transient chlorophyll enhancement at the front. This is consistent with
435 the findings of Xu et al. (2011) that interannual variability in spring bloom magnitude is
436 associated with factors controlling water column stability, which is supported with a model
437 testing the sensitivity to removing wind forcing (Xu et al., 2013). Our findings also agree with
438 Xu et al. (2020), who found that increased wind mixing can delay the onset of the outer shelf
439 spring bloom in the MAB. Given the small window during which shelf-break chlorophyll
440 enhancements occur, they are masked in seasonal climatologies, though they are detectable in the
441 DRM climatology (Fig. 5a).

442 While our DRM chlorophyll climatology does not fully capture the transient quality of
443 the shelf-break chlorophyll enhancements, which last less than a week, it agrees well with other
444 studies of MAB chlorophyll variability. It is consistent with Ryan et al. (1999b), who found
445 annual shelf-break chlorophyll enhancement during the spring transition from well-mixed to
446 stratified conditions. The climatology also agrees with the findings of Hales et al. (2009), who
447 showed that shelf-break chlorophyll enhancements were not present in June or August. The
448 large-scale seasonal variability in shelf and slope chlorophyll concentrations also agrees well
449 with other modeling and observational studies of MAB chlorophyll, exhibiting a clear fall-winter
450 bloom on the shelf and spring bloom in the slope (Fennel et al., 2006; Hofmann et al., 2011;
451 Ryan et al., 1999b; Xu et al., 2011, 2020; Yoder et al., 2001, 2002).

452 The chlorophyll enhancements identified were short-lived and dominated by
453 nanoplankton in 2018. Unlike these shelf-break enhancements, earlier-season blooms on the U.S.
454 Northeast Shelf are dominated by large cells (Marrec et al., 2021). Though nitrate and silicate

455 concentrations are replete at the front in April 2018, microplankton biovolumes are not
456 enhanced. The observed enhancement of microplankton biomass offshore of the front during
457 AR29 was not associated with elevated chlorophyll (Fig. 8g), and may have been associated with
458 an earlier spring bloom on the slope, though elevated slope sea chlorophyll is not apparent in the
459 satellite data (Fig. 4). It is unknown why nanoplankton should outcompete diatoms at the front,
460 though small phytoplankton have previously been observed to dominate phytoplankton
461 assemblages on the restratified side of a front (Sangrà et al., 2014).

462 For upfront winds to drive a chlorophyll enhancement at the shelf break, the following
463 conditions must hold: 1) nutrient concentrations must be replete at the surface, 2) the upper water
464 column must initially be unstratified, and 3) the upfront winds must be strong enough to drive
465 the movement of the front offshore, but not so strong to deepen the mixed layer. This leaves only
466 short periods during the year where these enhancements are possible. In addition to spring
467 chlorophyll enhancements, transient autumn enhancements may also be possible with upfront
468 winds occurring after the water column has destratified. Autumn enhancements were sometimes
469 detected at the shelf break in our satellite chlorophyll analysis, for example in 2010, but did not
470 appear in the chlorophyll climatology. While the mean winter winds in the MAB are also
471 upfront, the upper water column remains well-mixed due to strong winds and buoyancy-driven
472 mixing which prevent frontal slumping from occurring. The winter bloom on the inner shelf
473 where the bottom is shallower suggests that there is still enough light in the region to allow
474 phytoplankton to grow, presumably because the bottom depth restricts the extent of vertical
475 mixing. The westerly winds weaken in the spring, although they continue to fluctuate
476 substantially (Fig. S1 in the Supporting Information). The slumping may thus require
477 intermediate westerly winds fluctuating on the time scale of days.

478 While Ekman restratification is an apparent trigger of enhanced surface chlorophyll at the
479 shelf break, a variety of alternative restratifying dynamics are also possible. As strong horizontal
480 density gradients adjust to geostrophic equilibrium (Ou, 1984), frontal restratification of the
481 surface mixed layer can result (Tandon & Garrett, 1995). For example, frontal restratification can
482 result from a reversal in wind direction (Dale et al., 2008) or from the rapid relaxation of winds
483 (Johnson et al., 2020). In our analysis the presence of increasing upfront winds preceding surface
484 shelf-break chlorophyll enhancements indicates Ekman restratification as the simplest
485 explanation for the observed restratification.

486 Frontal eddies may also result in frontal restratification processes with the potential to
487 initiate spring phytoplankton blooms, analogous to those found in the open ocean (Mahadevan
488 et al., 2010; Mahadevan et al., 2012). The New England shelf-break front is characterized by
489 abundant eddy formation from frontal meandering (Garvine et al., 1988) that has been associated
490 with enhanced chlorophyll (Ryan et al., 1999a). While eddies may also play an additional role,
491 our exploration of the relationship between shelf-break chlorophyll derived from MODIS-Aqua
492 to surface wind forcing, and our 2-dimensional model runs suggest that upfront winds appear to
493 be sufficient to drive the Ekman restratification required to stimulate shelf-break chlorophyll
494 enhancements. Understanding potential 3-dimensional mechanisms involved with these
495 enhancements will likely require exploring how chlorophyll corresponds to shelf-break eddy
496 activity, which is beyond the scope of this 2-dimensional study.

497 This study aimed to understand the mechanisms driving *surface* chlorophyll
498 enhancements observed at the shelf break, a conundrum in the literature. While the surface
499 chlorophyll was our focus, subsurface enhancements of chlorophyll at the front have also been
500 observed later in the growing season (e.g. Marra et al., 1990). Various upwelling mechanisms

501 may still supply nutrients to the euphotic zone in the frontal region, supporting enhanced
502 subsurface biological productivity (e.g. Friedrichs et al., 2019). Such upwelling mechanisms
503 include frontal meandering (e.g., He et al., 2011), oscillating winds (Siedlecki et al, 2011),
504 upwelling from the bottom boundary layer (Gawarkiewicz and Chapman, 1992), upwelling from
505 the seaward side of the front (Zhang et al, 2013), and irregular topography (e.g., canyons; Hickey
506 & Banas, 2008). The 2D-framework used in this study also does not preclude 3D-processes at
507 the shelf break. In fact, it is likely that these 3D processes occur in addition to the 2D-frontal
508 restratification mechanism, resulting in along-shelf variability in the frontal surface chlorophyll
509 enhancement.

510

511 **5. Conclusions**

512 The New England shelf break is thought to be highly productive in part due to enhanced
513 chlorophyll detected at the shelf/slope front. Surface frontal enhancement is not discernible in
514 seasonal climatologies (e.g. Zhang et al., 2013) although such enhancements are occasionally
515 visible in synoptic images during spring. We demonstrate that frontal chlorophyll enhancement
516 is an ephemeral process, typically lasting only a few days. We suggest that Ekman
517 restratification driven by upfront winds results in the advection of the lighter shelf water over
518 denser slope water. This process creates a shallow mixed layer at the front which alleviates light
519 limitation and supports transient surface enhancements of chlorophyll at the front. Alternative
520 submesoscale restratifying mechanisms are not precluded by our assessment, but the presence of
521 intensified upfront winds preceding the shelf-break enhancements suggests Ekman
522 restratification as the most straightforward explanation.

523

524 **6. Data availability and acknowledgements**

525 MODIS Aqua 8-Day 1 km composite chlorophyll concentrations were processed at the
526 University of Delaware and can be accessed at
527 http://basin.ceoe.udel.edu/erddap/griddap/MODIS_AQUA_8_day.html. SPIROPA AR29 VPR
528 Tow 1 and CTD Transect 5 data are archived at the Biological and Chemical Oceanography
529 Data Management Office (BCO-DMO) project page: <https://www.bco-dmo.org/project/748894>.
530 MAB historical nitrate and nitrate + nitrite data are available from the World Ocean Database
531 provided by the National Centers for Environmental Information at the National Oceanic and
532 Atmospheric Administration. OOI glider data, and 3 m and 10 m wind speeds can be accessed at
533 https://oceanobservatories.org/data_access/. ERA5 reanalysis wind speed data are
534 available from the Copernicus Climate Change Service Climate Data Store
535 (<https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview>).

536 This research was supported by the National Science Foundation (OCE-1657803, OCE-
537 1657855, and OCE-1655686) and the Dalio Explorer Fund. Support for H. Oliver was provided
538 by the WHOI Postdoctoral Scholar program. We thank Jeff Turner and Chrissy Petitpas for their
539 work on higher trophic levels, Melissa Brennan and Josh Eaton for VPR operations, Taylor
540 Crockford for IFCB operations, Emily Peacock for IFCB image classification, Zoe Sandwith for
541 contributing to O₂/Ar data collection and analysis, and our SPIROPA colleagues and crew of the
542 *R/V Neil Armstrong* for their assistance and support at sea.

543

544 **7. References**

545 Anderson, L. A., & Sarmiento, J. L. (1994). Redfield ratios of remineralization determined by
546 nutrient data analysis. *Global Biogeochemical Cycles*, 8(1), 65–80.

547 <https://doi.org/10.1029/93GB03318>

548 Chapman, D. C., & Lentz, S. J. (1994). Trapping of a Coastal Density Front by the Bottom
549 Boundary Layer. *Journal of Physical Oceanography*, 24(7), 1464–1479.

550 [https://doi.org/10.1175/1520-0485\(1994\)024<1464:TOACDF>2.0.CO;2](https://doi.org/10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2)

551 Dale, A. C., Barth, J. A., Levine, M. D., & Austin, J. A. (2008). Observations of mixed layer
552 restratification by onshore surface transport following wind reversal in a coastal upwelling
553 region. *Journal of Geophysical Research: Oceans*, 113(1), 1–16.

554 <https://doi.org/10.1029/2007JC004128>

555 D'Asaro, E., Lee, C., Rainville, L., Harcourt, R., & Thomas, L. (2011). Enhanced turbulence and
556 energy dissipation at ocean fronts. *Science*, 332(6027), 318–322.

557 <https://doi.org/10.1126/science.1201515>

558 Davis, C. S., Thwaites, F. T., Gallager, S. M., Hu, Q., Naiman, M., Sutton, T., et al. (2005). A
559 three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and
560 hydrography. *Limnology and Oceanography: Methods*, 3, 59–74.

561 <https://doi.org/10.4319/lom.2005.3.59>

562 Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., & Haidvogel, D. (2006). Nitrogen
563 cycling in the Middle Atlantic Bight: Results from a three-dimensional model and
564 implications for the North Atlantic nitrogen budget. *Global Biogeochemical Cycles*, 20(3),
565 1–14. <https://doi.org/10.1029/2005GB002456>

566 Ferrari, R., Merrifield, S. T., & Taylor, J. R. (2015). Shutdown of convection triggers increase of
567 surface chlorophyll. *Journal of Marine Systems*, 147, 116–122.

568 <https://doi.org/10.1016/j.jmarsys.2014.02.009>

569 Fratantoni, P. S. (2003). Variability of the shelf break jet in the Middle Atlantic Bight: Internally

570 or externally forced? *Journal of Geophysical Research*, 108(C5), 3166.

571 <https://doi.org/10.1029/2002JC001326>

572 Friedrichs, M. A. M., St-Laurent, P., Xiao, Y., Hofmann, E., Hyde, K., Mannino, A., et al.

573 (2019). Ocean Circulation Causes Strong Variability in the Mid-Atlantic Bight Nitrogen

574 Budget. *Journal of Geophysical Research: Oceans*, 124(1), 113–134.

575 <https://doi.org/10.1029/2018JC014424>

576 Garcia, H., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., et al.

577 (2019). World Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate

578 and nitrate+nitrite, silicate). *NOAA Atlas NESDIS* 82, 4(July), 35.

579 Garvine, R. W., Wong, K.-C., Gawarkiewicz, G. G., McCarthy, R. K., Houghton, R. W., &

580 Aikman, F. (1988). The morphology of shelfbreak eddies. *Journal of Geophysical*
Research, 93(C12), 15593. <https://doi.org/10.1029/JC093iC12p15593>

581 Gawarkiewicz, G., & Chapman, D. C. (1992). The Role of Stratification in the Formation and

582 Maintenance of Shelf-Break Fronts. *Journal of Physical Oceanography*, 22(7), 753–772.

583 [https://doi.org/10.1175/1520-0485\(1992\)022<0753:TROSIT>2.0.CO;2](https://doi.org/10.1175/1520-0485(1992)022<0753:TROSIT>2.0.CO;2)

584 Gawarkiewicz, G., & Plueddemann, A. J. (2020). Scientific rationale and conceptual design of a

585 process-oriented shelfbreak observatory: the OOI Pioneer Array. *Journal of Operational*
Oceanography, 13(1), 19–36. <https://doi.org/10.1080/1755876X.2019.1679609>

586 Hales, B., Vaillancourt, R. D., Prieto, L., Marra, J., Houghton, R., & Hebert, D. (2009). High-

587 resolution surveys of the biogeochemistry of the New England shelfbreak front during

588 Summer, 2002. *Journal of Marine Systems*, 78(3), 426–441.

589 <https://doi.org/10.1016/j.jmarsys.2008.11.024>

590 He, R., Chen, K., Fennel, K., Gawarkiewicz, G. G., & McGillicuddy, D. J. (2011). Seasonal and

593 interannual variability of physical and biological dynamics at the shelfbreak front of the
594 Middle Atlantic Bight: Nutrient supply mechanisms. *Biogeosciences*, 8(10), 2935–2946.
595 <https://doi.org/10.5194/bg-8-2935-2011>

596 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. (2018).
597 ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change
598 Service (C3S) Climate Data Store (CDS). Accessed on 2020-12-18.
599 <https://doi.org/10.24381/cds.adbb2d47>

600 Hickey, B., & Banas, N. (2008). Why is the northern end of the California Current System so
601 productive? *Oceanography*, 21(4), 90–107. <https://doi.org/10.5670/oceanog.2008.07>

602 Hofmann, E. E., Cahill, B., Fennel, K., Friedrichs, M. A. M., Hyde, K., Lee, C., et al. (2011).
603 Modeling the dynamics of continental shelf carbon. *Annual Review of Marine Science*, 3(1),
604 93–122. <https://doi.org/10.1146/annurev-marine-120709-142740>

605 Hopkins, J. E., Palmer, M. R., Poulton, A. J., Hickman, A. E., & Sharples, J. (2021). Control of a
606 phytoplankton bloom by wind-driven vertical mixing and light availability. *Limnology and*
607 *Oceanography*, (1953), 1–24. <https://doi.org/10.1002/lno.11734>

608 Johnson, L., Lee, C. M., D'Asaro, E. A., Wenegrat, J. O., & Thomas, L. N. (2020).
609 Restratification at a California current upwelling front. Part ii: Dynamics. *Journal of*
610 *Physical Oceanography*, 50(5), 1473–1487. <https://doi.org/10.1175/JPO-D-19-0204.1>

611 Li, Y., Stumpf, R. P., McGillicuddy, D. J., & He, R. (2020). Dynamics of an intense
612 *Alexandrium catenella* red tide in the Gulf of Maine: satellite observations and numerical
613 modeling. *Harmful Algae*, 99, 101927. <https://doi.org/10.1016/j.hal.2020.101927>

614 Linder, C. A., & Gawarkiewicz, G. (1998). A climatology of the shelfbreak front in the Middle
615 Atlantic Bight. *Journal of Geophysical Research: Oceans*, 103(C9).

616 <https://doi.org/10.1029/98JC01438>

617 Linder, Christopher A., Gawarkiewicz, G. G., & Pickart, R. S. (2004). Seasonal characteristics of
618 bottom boundary layer detachment at the shelfbreak front in the Middle Atlantic Bight.
619 *Journal of Geophysical Research C: Oceans*, 109(3), 1–9.

620 <https://doi.org/10.1029/2003JC002032>

621 Long, M. C., Thomas, L. N., & Dunbar, R. B. (2012). Control of phytoplankton bloom inception
622 in the Ross Sea, Antarctica, by Ekman restratification. *Global Biogeochemical Cycles*,
623 26(1), 1–14. <https://doi.org/10.1029/2010GB003982>

624 Lozier, M. S., & Reed, M. S. C. (2005). The Influence of Topography on the Stability of
625 Shelfbreak Fronts. *Journal of Physical Oceanography*, 35(6), 1023–1036.

626 <https://doi.org/10.1175/JPO2717.1>

627 Mahadevan, A., Tandon, A., & Ferrari, R. (2010). Rapid changes in mixed layer stratification
628 driven by submesoscale instabilities and winds. *Journal of Geophysical Research: Oceans*,
629 115(3), 1–12. <https://doi.org/10.1029/2008JC005203>

630 Mahadevan, A., D'Asaro, E., Lee, C., & Perry, M. J. (2012). Eddy-driven stratification initiates
631 North Atlantic spring phytoplankton blooms. *Science*, 337(6090), 54–58.

632 <https://doi.org/10.1126/science.1218740>

633 Marra, J., Houghton, R. W., Boardman, D. C., & Neale, P. J. (1982). Variability in surface
634 chlorophyll a at a shelf-break front. *Journal of Marine Research*, 40(3), 575–591.

635 Marra, J., Houghton, R. W., & Garside, C. (1990). Phytoplankton growth at the shelf-break front
636 in the Middle Atlantic Bight. *Journal of Marine Research*, 48(4), 851–868.

637 <https://doi.org/10.1357/002224090784988665>

638 Marrec, P., McNair, H., Franzè, G., Morison, F., Strock, J. P., & Menden-Deuer, S. (2021).

639 Seasonal variability in planktonic food web structure and function of the Northeast U.S.

640 Shelf. *Limnology and Oceanography*, 1440–1458. <https://doi.org/10.1002/lo.11696>

641 Moberg, E. A., & Sosik, H. M. (2012). Distance maps to estimate cell volume from two-

642 dimensional plankton images. *Limnology and Oceanography: Methods*, 10(4), 278–288.

643 <https://doi.org/10.4319/lom.2012.10.278>

644 O'Reilly, J. E., & Busch, D. A. (1984). Phytoplankton primary production on the northwestern

645 Atlantic shelf. *Rapports et Proces-Verbaux Des Reunions*, 183, 255–268.

646 O'Reilly, J. E., Evans-Zetlin, C., & Busch, D. A. (1987). Primary production. In R. H. Backus &

647 D. W. Bourne (Eds.), *Georges Bank* (pp. 220–233). Cambridge, Mass.: MIT Press.

648 Orphanides, C. D., and G. M. Magnusson (2007), Characterization of the Northeast and Mid-

649 Atlantic bottom and mid-water trawl fisheries based on Vessel Trip Report (VTR) data,

650 Northeast Fisheries Science Center Reference Documents Rep. 07-15, 127 pp, National

651 Marine Fisheries Service, NOAA, U.S. Department of Commerce, Woods Hole, MA.

652 Ou, H. W. (1984). Geostrophic adjustment: a mechanism for frontogenesis. *Journal of Physical*

653 *Oceanography*, 14(6), 994–1000. [https://doi.org/10.1175/1520-0485\(1984\)014<0994:GAAMFF>2.0.CO;2](https://doi.org/10.1175/1520-0485(1984)014<0994:GAAMFF>2.0.CO;2)

655 Podestá, G. P., Browder, J. A., & Hoey, J. J. (1993). Exploring the association between

656 swordfish catch rates and thermal fronts on U.S. longline grounds in the western North

657 Atlantic. *Continental Shelf Research*, 13(2–3), 253–277. [https://doi.org/10.1016/0278-4343\(93\)90109-B](https://doi.org/10.1016/0278-4343(93)90109-B)

659 Powell, T. M., Lewis, C. V. W. W., Curchitser, E. N., Haidvogel, D. B., Hermann, A. J., &

660 Dobbins, E. L. (2006). Results from a three-dimensional, nested biological-physical model

661 of the California Current System and comparisons with statistics from satellite imagery.

662 *Journal of Geophysical Research: Oceans*, 111(7), 1–14.

663 <https://doi.org/10.1029/2004JC002506>

664 Redfield, A. C. (1963). The influence of organisms on the composition of sea-water. *The Sea*,

665 26–77.

666 Ryan, J. P., Yoder, J. A., Barth, J. A., & Cornillon, P. C. (1999). Chlorophyll enhancement and

667 mixing associated with meanders of the shelf break front in the Mid-Atlantic Bight. *Journal*

668 *of Geophysical Research: Oceans*, 104(C10), 23479–23493.

669 <https://doi.org/10.1029/1999jc900174>

670 Ryan, J. P., Yoder, J. A., & Cornillon, P. C. (1999). Enhanced chlorophyll at the shelfbreak of

671 the Mid-Atlantic Bight and Georges Bank during the spring transition. *Limnology and*

672 *Oceanography*, 44(1), 1–11. <https://doi.org/10.4319/lo.1999.44.1.0001>

673 Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system

674 (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model.

675 *Ocean Modelling*, 9(4), 347–404. <https://doi.org/10.1016/j.ocemod.2004.08.002>

676 Sherman, K., Jaworski, N. A., & Smayda, T. J. (1996). *The Northeast Shelf Ecosystem:*

677 *Assessment, Sustainability and Management*. Cambridge, Massachusetts, USA: Blackwell

678 Science, Inc.

679 Siedlecki, S. A., Archer, D. E., & Mahadevan, A. (2011). Nutrient exchange and ventilation of

680 benthic gases across the continental shelf break. *Journal of Geophysical Research: Oceans*,

681 116(6), 1–15. <https://doi.org/10.1029/2010JC006365>

682 Smith, W. O., Zhang, W. G., Hirzel, A., Stanley, R. M., Meyer, M. G., Sosik, H., et al. (2021). A

683 regional, early spring bloom of *Phaeocystis pouchetii* on the New England continental shelf.

684 *Journal of Geophysical Research: Oceans*, 126(2), 2020JC016856.

685 <https://doi.org/10.1029/2020JC016856>

686 Sangrà, P., García-Muñoz, C., García, C. M., Marrero-Díaz, Á., Sobrino, C., Mouriño-

687 Carballido, B., et al. (2014). Coupling between upper ocean layer variability and size-

688 fractionated phytoplankton in a non-nutrient-limited environment. *Marine Ecology*

689 *Progress Series*, 499, 35–46. <https://doi.org/10.3354/meps10668>

690 Sosik, H.M., Peacock, E., & Santos, M. (2020). Abundance and biovolume of taxonomically-

691 resolved phytoplankton and microzooplankton imaged continuously underway with an

692 Imaging FlowCytobot along the NES-LTER Transect in winter 2018 year 1.

693 <https://doi.org/https://doi.org/10.6073/pasta/74775c4af51c237f2a20e4a8c011bc53>

694 Sosik, Heidi M., & Olson, R. J. (2007). Automated taxonomic classification of phytoplankton

695 sampled with imaging-in-flow cytometry. *Limnology and Oceanography: Methods*, 5(6),

696 204–216. <https://doi.org/10.4319/lom.2007.5.204>

697 Sverdrup, H. U. (1953). On Conditions for the Vernal Blooming of Phytoplankton. *ICES Journal*

698 *of Marine Science*, 18(3), 287–295. <https://doi.org/10.1093/icesjms/18.3.287>

699 Tandon, A., & Garrett, C. (1995). Geostrophic adjustment and restratification of a mixed layer

700 with horizontal gradients above a stratified layer. *Journal of Physical Oceanography*,

701 25(10), 2229–2241. [https://doi.org/10.1175/1520-0485\(1995\)025<2229:GAAROA>2.0.CO;2](https://doi.org/10.1175/1520-0485(1995)025<2229:GAAROA>2.0.CO;2)

703 Taylor, J. R., & Ferrari, R. (2011). Shutdown of turbulent convection as a new criterion for the

704 onset of spring phytoplankton blooms. *Limnology and Oceanography*, 56(6), 2293–2307.

705 <https://doi.org/10.4319/lo.2011.56.6.2293>

706 Thomas, L. N., & Lee, C. M. (2005). Intensification of ocean fronts by down-front winds.

707 *Journal of Physical Oceanography*, 35(6), 1086–1102. <https://doi.org/10.1175/JPO2737.1>

708 Townsend, D. W., Keller, M. D., Sieracki, M. E., & Ackleson, S. G. (1992). Spring
709 phytoplankton blooms in the absence of vertical water column stratification. *Nature*,
710 360(6399), 59–62. <https://doi.org/10.1038/360059a0>

711 Trowbridge, J., Weller, R., Kelley, D., Dever, E., Plueddemann, A., Barth, J. A., & Kawka, O.
712 (2019). The ocean observatories initiative. *Frontiers in Marine Science*, 6(MAR), 1–23.
713 <https://doi.org/10.3389/fmars.2019.00074>

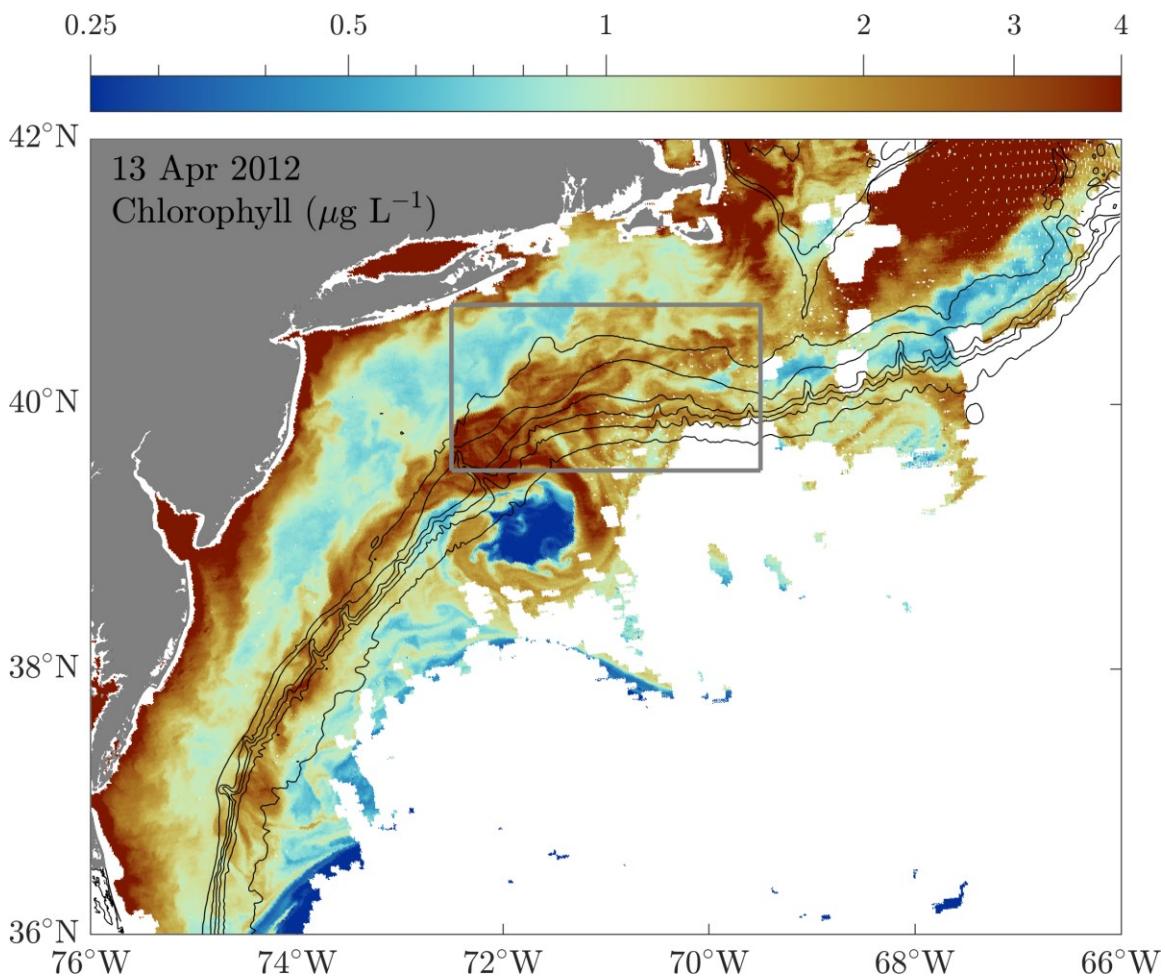
714 Xu, Y., Chant, R., Gong, D., Castelao, R., Glenn, S., & Schofield, O. (2011). Seasonal variability
715 of chlorophyll a in the Mid-Atlantic Bight. *Continental Shelf Research*, 31(16), 1640–1650.
716 <https://doi.org/10.1016/j.csr.2011.05.019>

717 Xu, Y., Cahill, B., Wilkin, J., & Schofield, O. (2013). Role of wind in regulating phytoplankton
718 blooms on the Mid-Atlantic Bight. *Continental Shelf Research*, 63, 26–35.
719 <https://doi.org/10.1016/j.csr.2012.09.011>

720 Xu, Y., Miles, T., & Schofield, O. (2020). Physical processes controlling chlorophyll-a
721 variability on the Mid-Atlantic Bight along northeast United States. *Journal of Marine
722 Systems*, 212 (August 2019). <https://doi.org/10.1016/j.jmarsys.2020.103433>

723 Yoder, J. A., O'Reilly, J. E., Barnard, A. H., Moore, T. S., & Ruhsam, C. M. (2001). Variability
724 in coastal zone color scanner (CZCS) chlorophyll imagery of ocean margin waters off the
725 US East Coast. *Continental Shelf Research*, 21(11–12), 1191–1218.
726 [https://doi.org/10.1016/S0278-4343\(01\)00009-7](https://doi.org/10.1016/S0278-4343(01)00009-7)

727 Yoder, J. A., Schollaert, S. E., & O'Reilly, J. E. (2002). Climatological phytoplankton
728 chlorophyll and sea surface temperature patterns in continental shelf and slope waters off
729 the northeast U.S. coast. *Limnology and Oceanography*, 47(3), 672–682.
730 <https://doi.org/10.4319/lo.2002.47.3.0672>

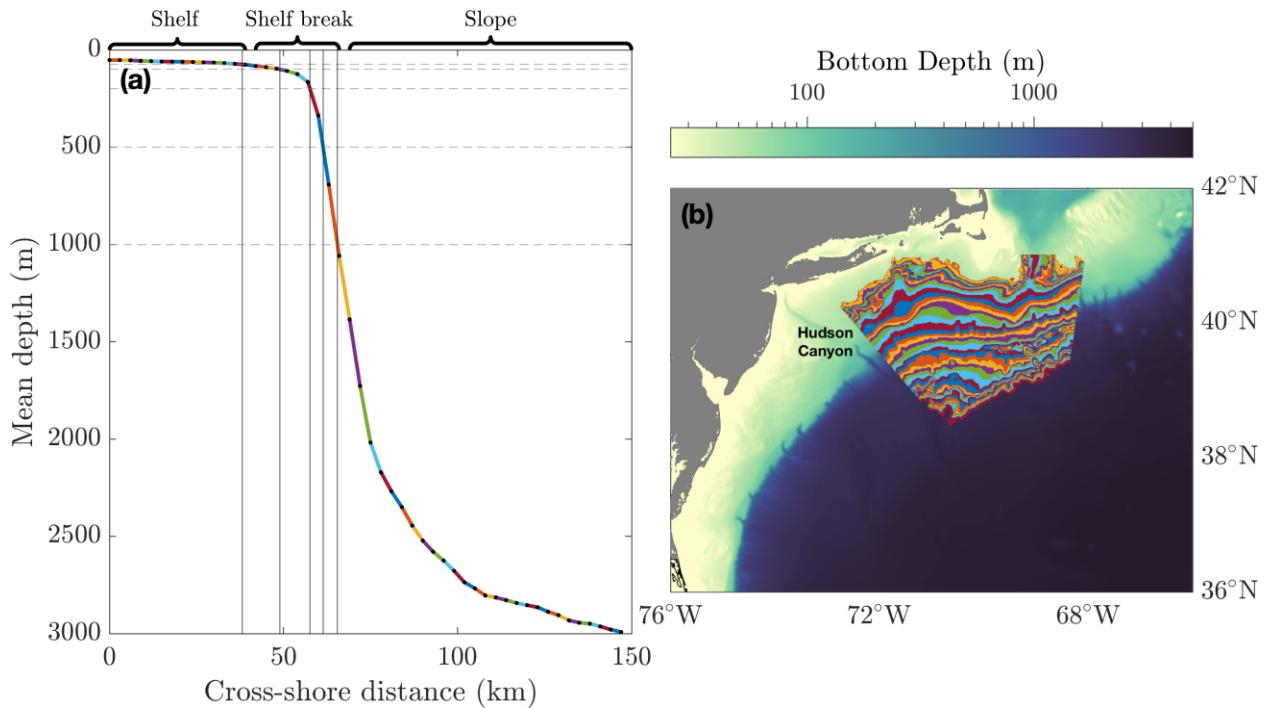

731 Zhang, W. G., & Gawarkiewicz, G. G. (2015). Length scale of the finite-amplitude meanders of
732 Shelfbreak Fronts. *Journal of Physical Oceanography*, 45(10), 2598–2620.
733 <https://doi.org/10.1175/JPO-D-14-0249.1>

734 Zhang, W. G., Gawarkiewicz, G. G., McGillicuddy, D. J., & Wilkin, J. L. (2011). Climatological
735 mean circulation at the New England shelf break. *Journal of Physical Oceanography*,
736 41(10), 1874–1893. <https://doi.org/10.1175/2011JPO4604.1>

737 Zhang, W. G., McGillicuddy, D. J., & Gawarkiewicz, G. G. (2013). Is biological productivity
738 enhanced at the New England shelfbreak front? *Journal of Geophysical Research: Oceans*,
739 118(1), 517–535. <https://doi.org/10.1002/jgrc.20068>

740

741

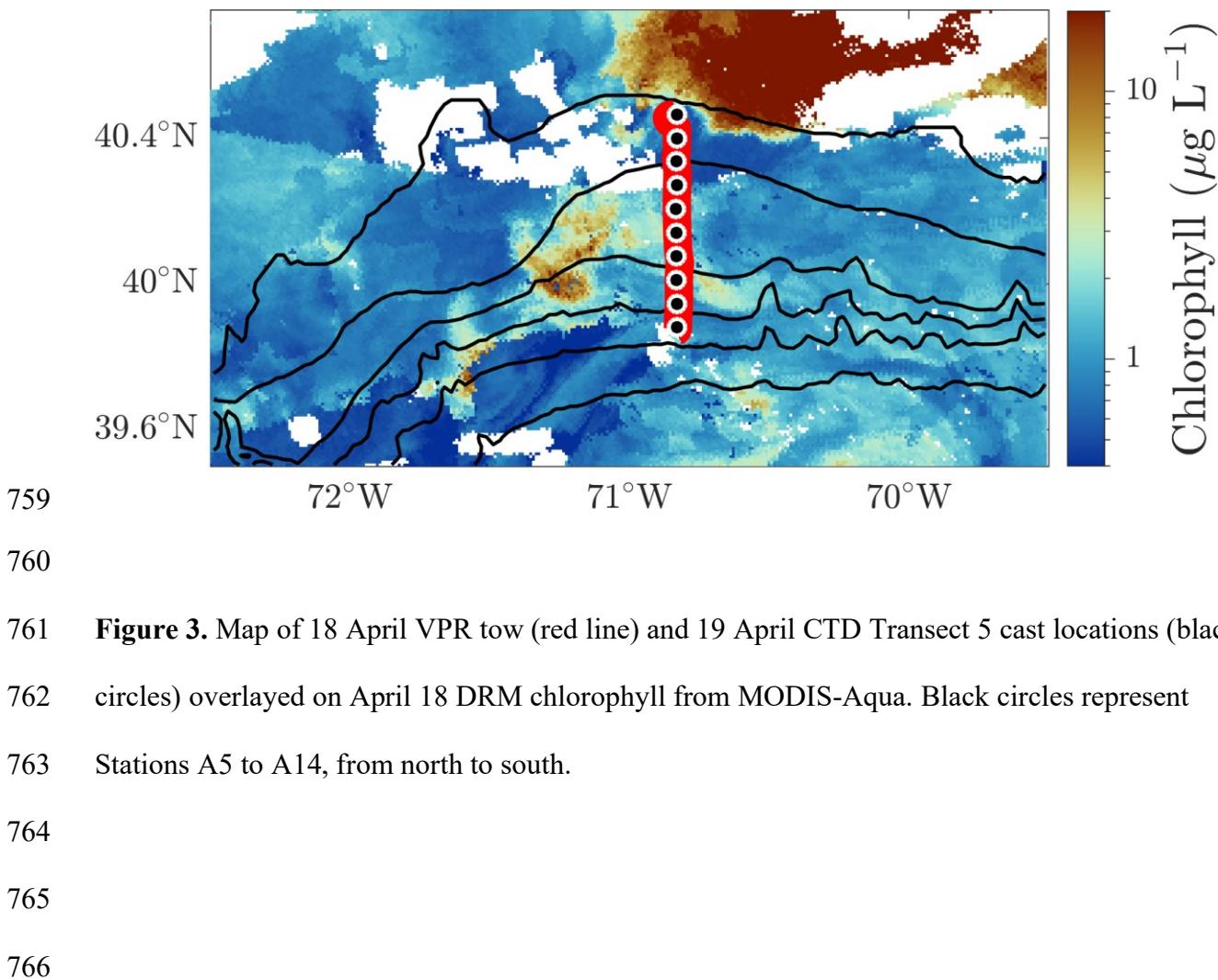

742

743

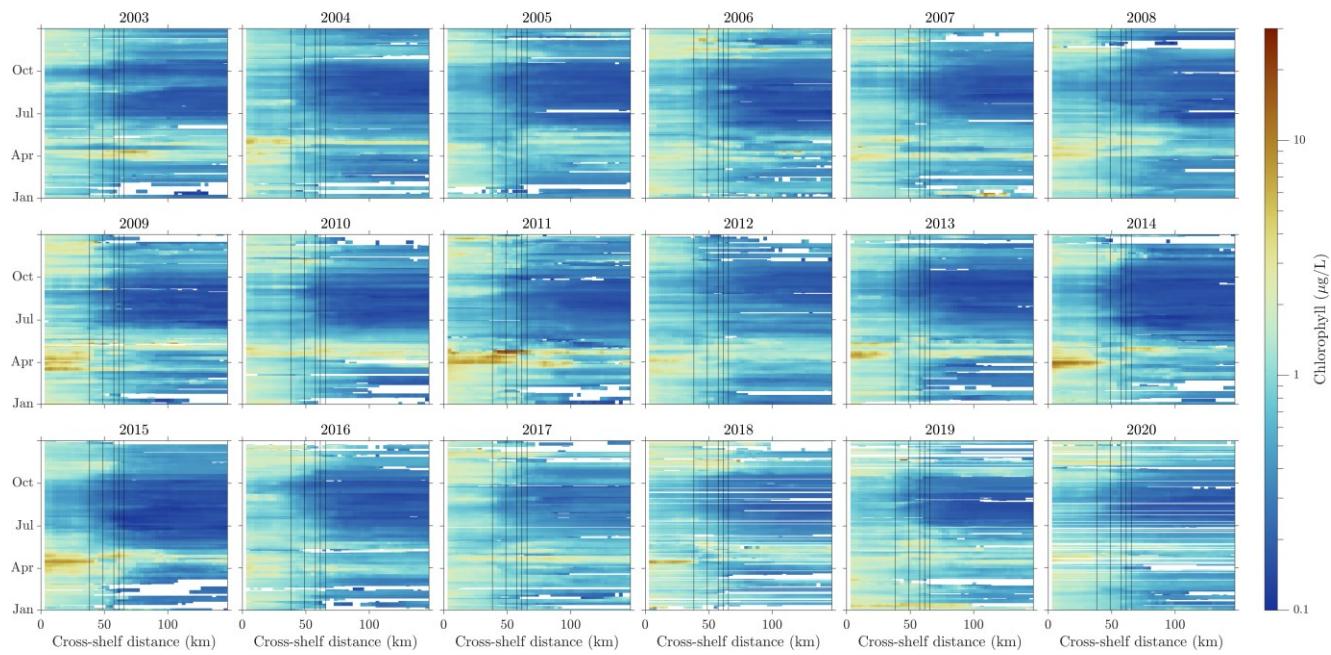
744 **Figure 1.** Example snapshot of enhanced chlorophyll at the shelf break, depth contours at 75,
745 100, 200, 500, 1000, and 2000 m. The gray box indicates the geographic boundaries of the map
746 shown in Figure 3. Note the log color axis scale.

747

748



749


750

751 **Figure 2.** (a) Mean cross-shelf bathymetric profile, partitioned into the 51 depth bins (equally
 752 spaced 3 km apart), with the 75, 100, 200, 500, and 1000 m isobaths identified by vertical and
 753 horizontal lines, and bins identified as belonging to the shelf, shelf break, and slope sections; (b)
 754 geographic distribution of the 51 depth bins, selected by dividing the mean cross-shelf profile in
 755 (a) into 3-km segments. Note that bins from the shelf break will cover a larger depth range than
 756 those on the shelf or slope. For clarity a repeating color map is utilized in both (a) and (b) for
 757 each depth bin. Note the log color axis scale in (b).

758

767

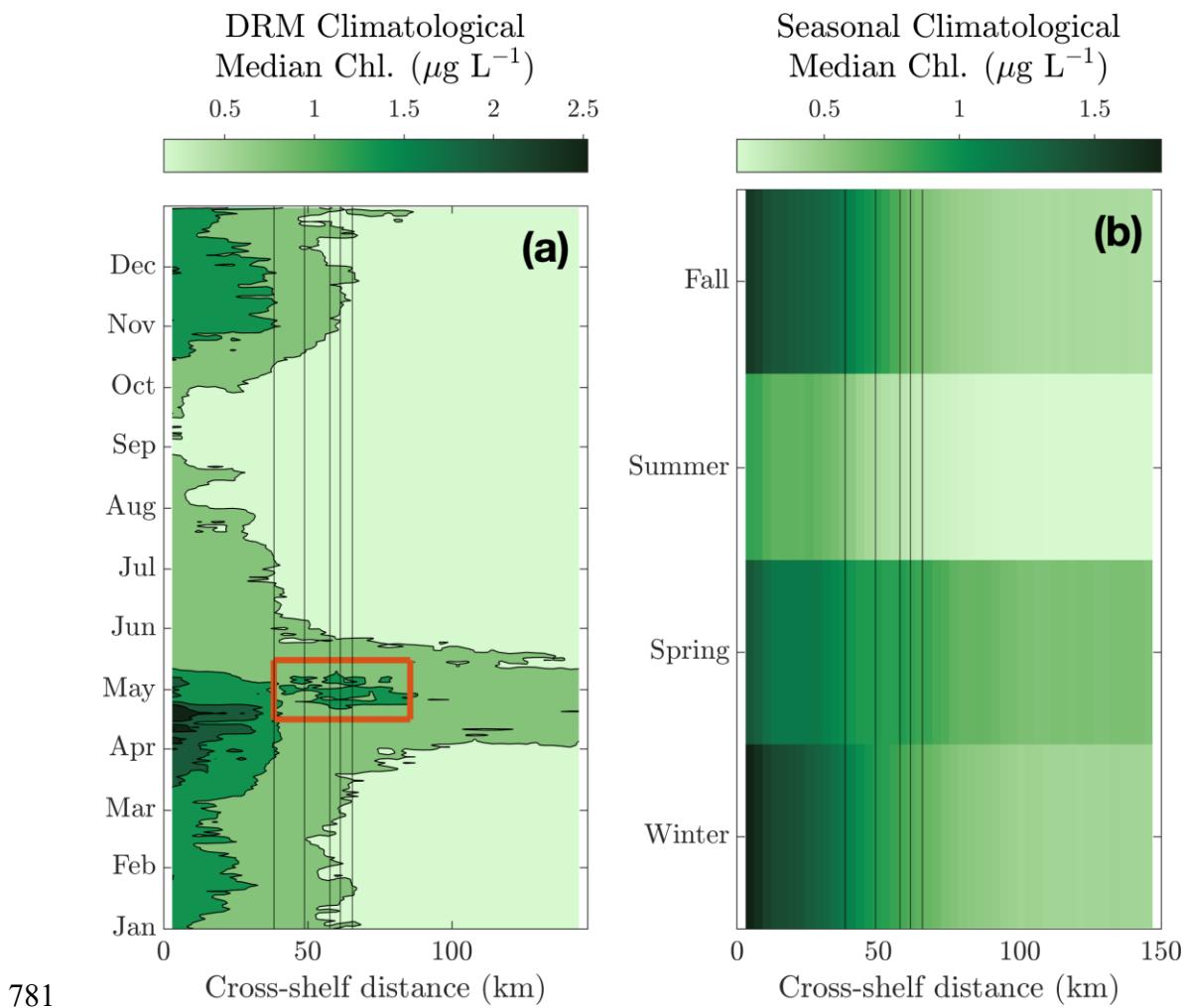
768

769

770

771 **Figure 4.** DRM depth-binned mean chlorophyll concentrations in the MAB region, from 2003-
 772 2020. Depth contours at 75, 100, 200, 500, and 1000 m. Note the log color axis. White regions
 773 indicate cloud cover. Chlorophyll data were obtained from MODIS Aqua 8-Day 1 km
 774 composites processed at the University of Delaware.

775


776

777

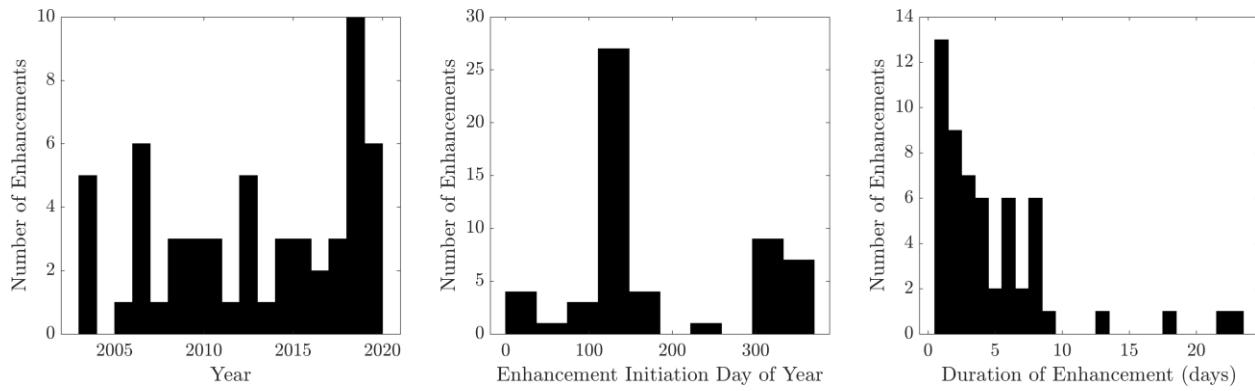
778

779

780

781 **Figure 5.** (a) DRM climatological (2003-2020) depth-binned median chlorophyll concentration
782 in the MAB region, with the red box indicating the period of chlorophyll enhancement at the
783 shelf break (21 April – 11 May); (b) The same as (a), but with seasonal climatological depth-
784 binned median chlorophyll concentrations. Note the different color scales. Vertical lines show
785 75, 100, 200, 500, and 1000 m depth contours.
786

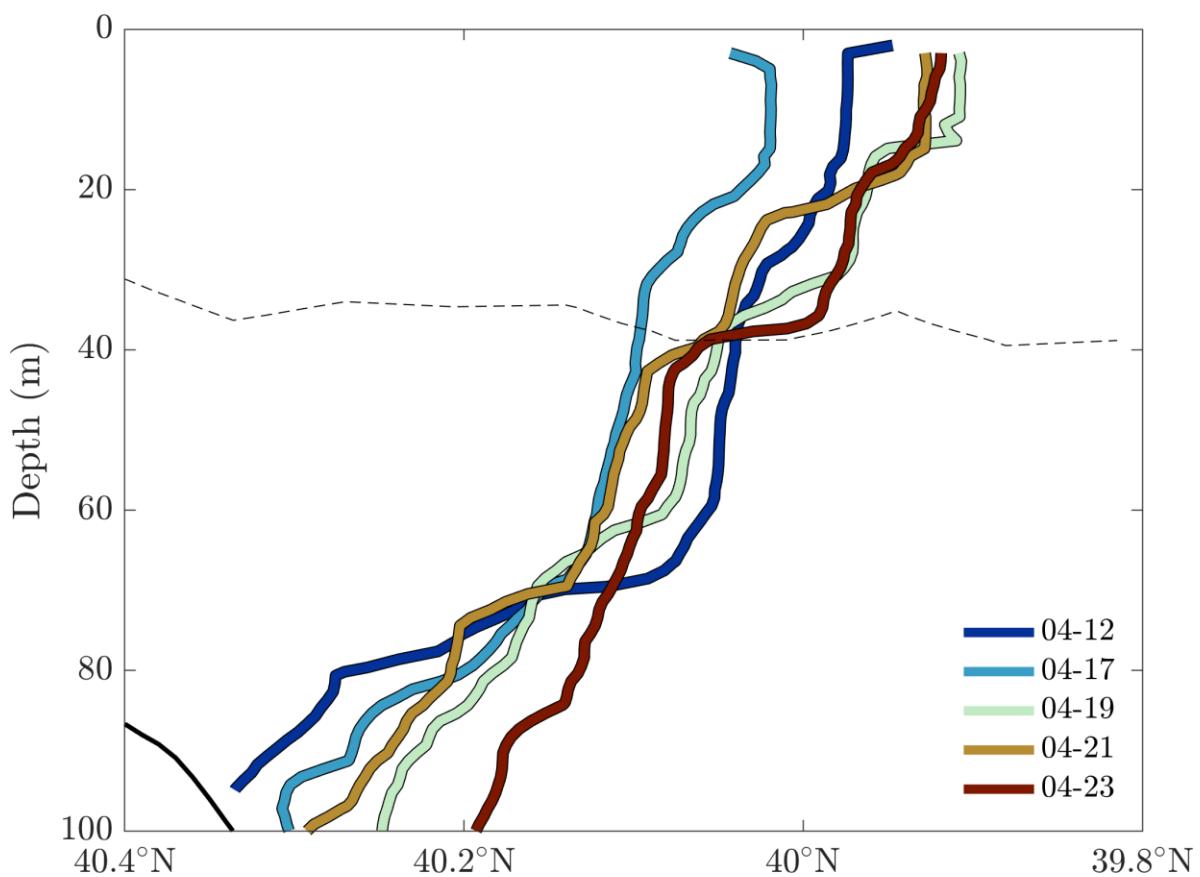
787


788

789

790

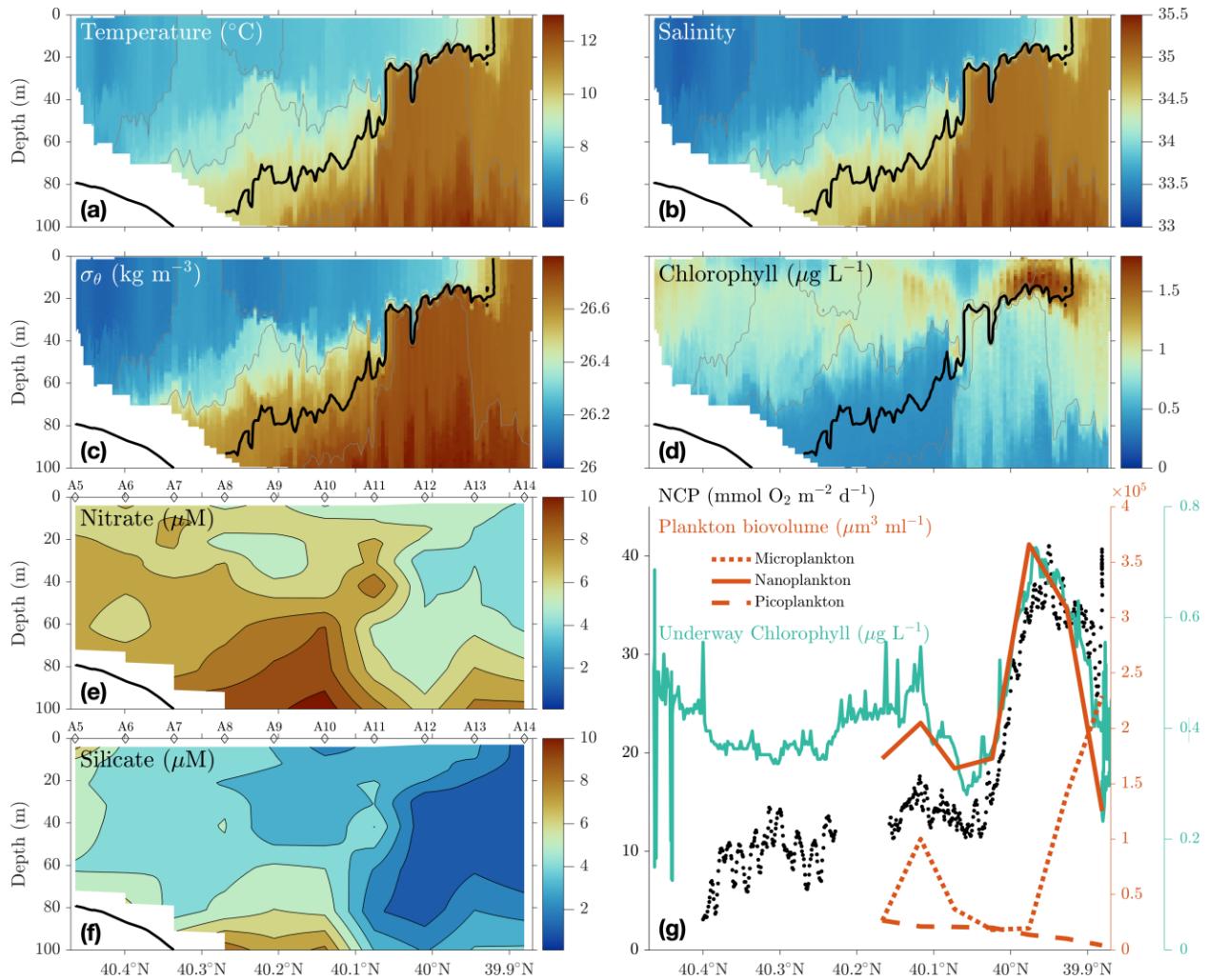
791


792

793 **Figure 6.** Histograms showing timing and duration of periods where shelf-break chlorophyll
794 concentrations are enhanced relative to the shelf and slope. (a) Number of enhancements per
795 year; (b) day of year of enhancement initiation; (c) durations of enhancements.

796

797

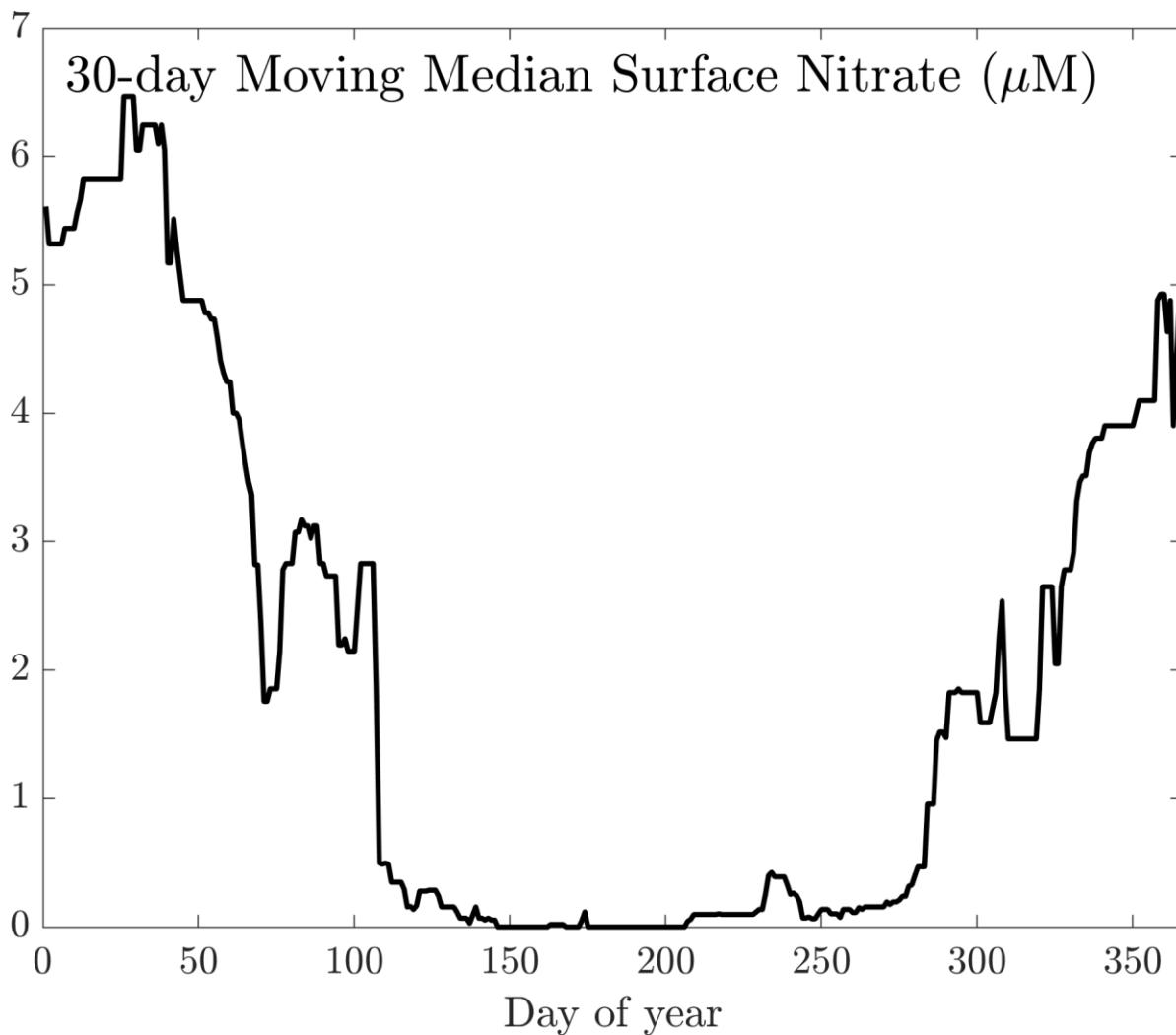

798

799 **Figure 7.** Location of the New England shelf-break front (34.5 isohaline) during in April 2018.
800 All locations were determined from AR29 cross-shelf CTD transects at 70.83°W, except 12
801 April, which was determined from a cross-shelf CTD transect at 70.83°W conducted by the R/V
802 *Neil Armstrong* during OOI cruise AR28B, which shortly preceded AR29. The solid black line in
803 the bottom left corner shows the bottom depth, and the dashed black line shows the corrected 1%
804 light depth calculated from PAR measurements from CTD casts taken on 19 April.

805

806

807

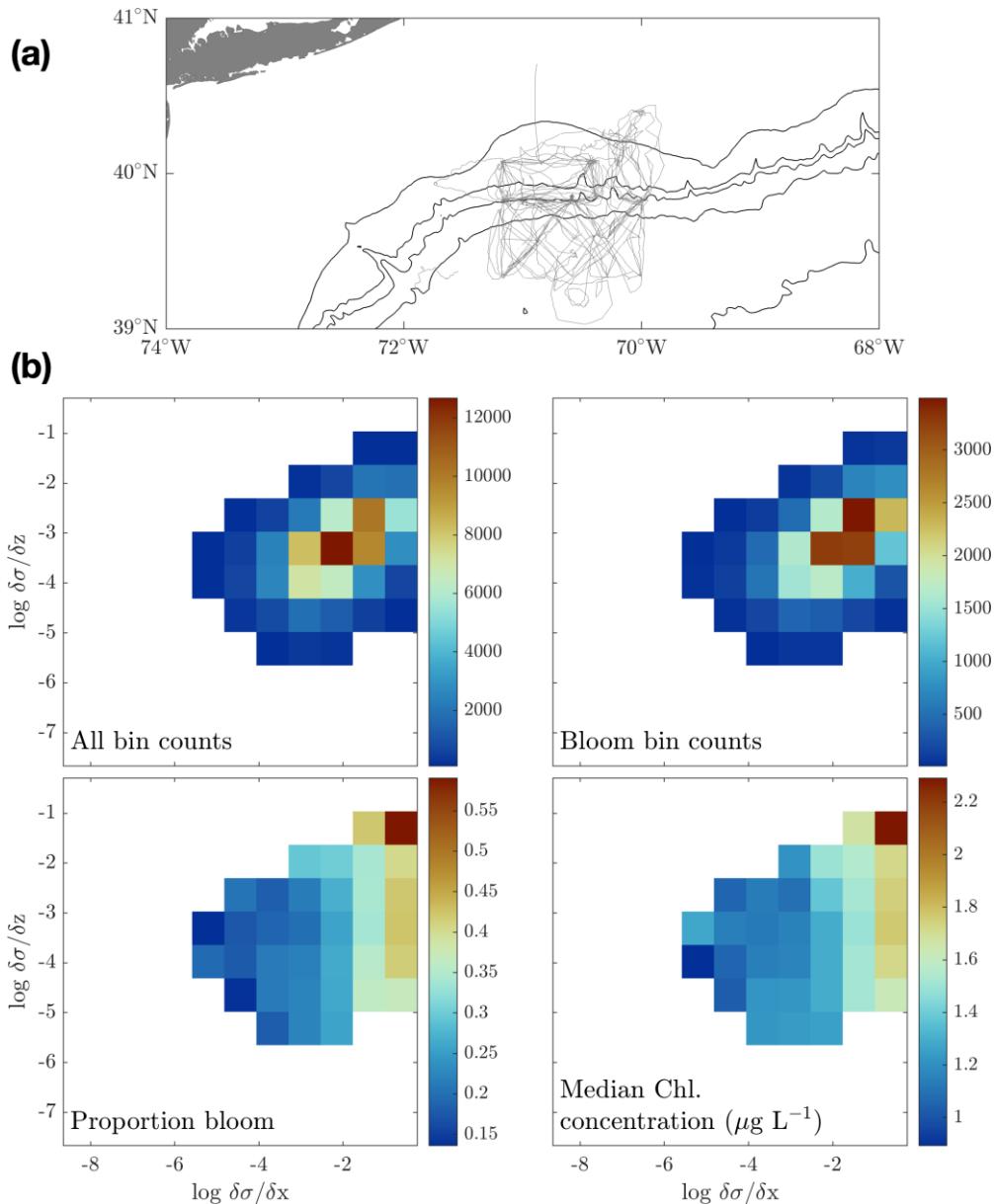


808

809

810 **Figure 8.** AR29 transects 18-19 April 2018. (a) VPR temperature ($^{\circ}\text{C}$); (b) VPR salinity; (c)
 811 VPR potential density (kg m^{-3}); (d) VPR chlorophyll estimated from fluorescence ($\mu\text{g L}^{-1}$); (e)
 812 CTD Transect 5 nitrate concentrations (μM); (f) CTD Transect 5 silicate concentrations (μM);
 813 (g) underway measurements from the VPR tow of 1) net community production (NCP, mmol O_2
 814 $\text{m}^{-2} \text{d}^{-1}$), 2) microplankton, nanoplankton, and picoplankton biovolume ($\mu\text{m}^3 \text{ml}^{-1}$), and 3)
 815 underway chlorophyll ($\mu\text{g L}^{-1}$). The solid black line in the bottom left corner of (a)-(f) shows the
 816 bottom depth.

817


818

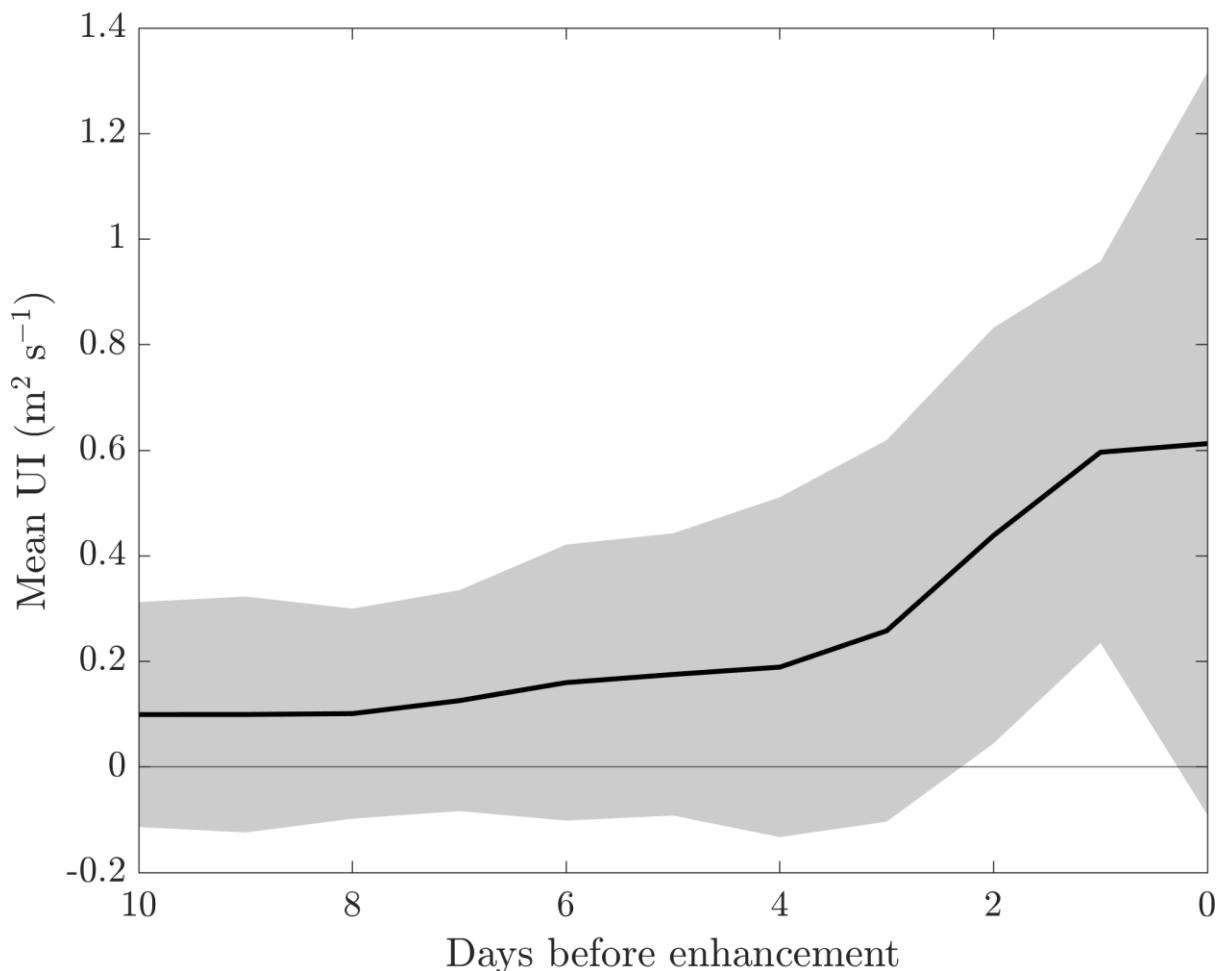
819

820 **Figure 9.** 30-day moving median of top 15 m nitrate concentrations measured in the Middle

821 Atlantic Bight from 1932-2012 (640 observations, World Ocean Database).

822

823


824

825 **Figure 10.** OOI Coastal Pioneer Array glider data from 2014-2020. (a) All April glider tracks;
 826 (b) OOI April glider chlorophyll, binned by horizontal and vertical stratification. The axis limits
 827 extend to bins where there was at least one observation; bins are only colored where there were at
 828 least 100 observations. Note the log-log axis scales.

829

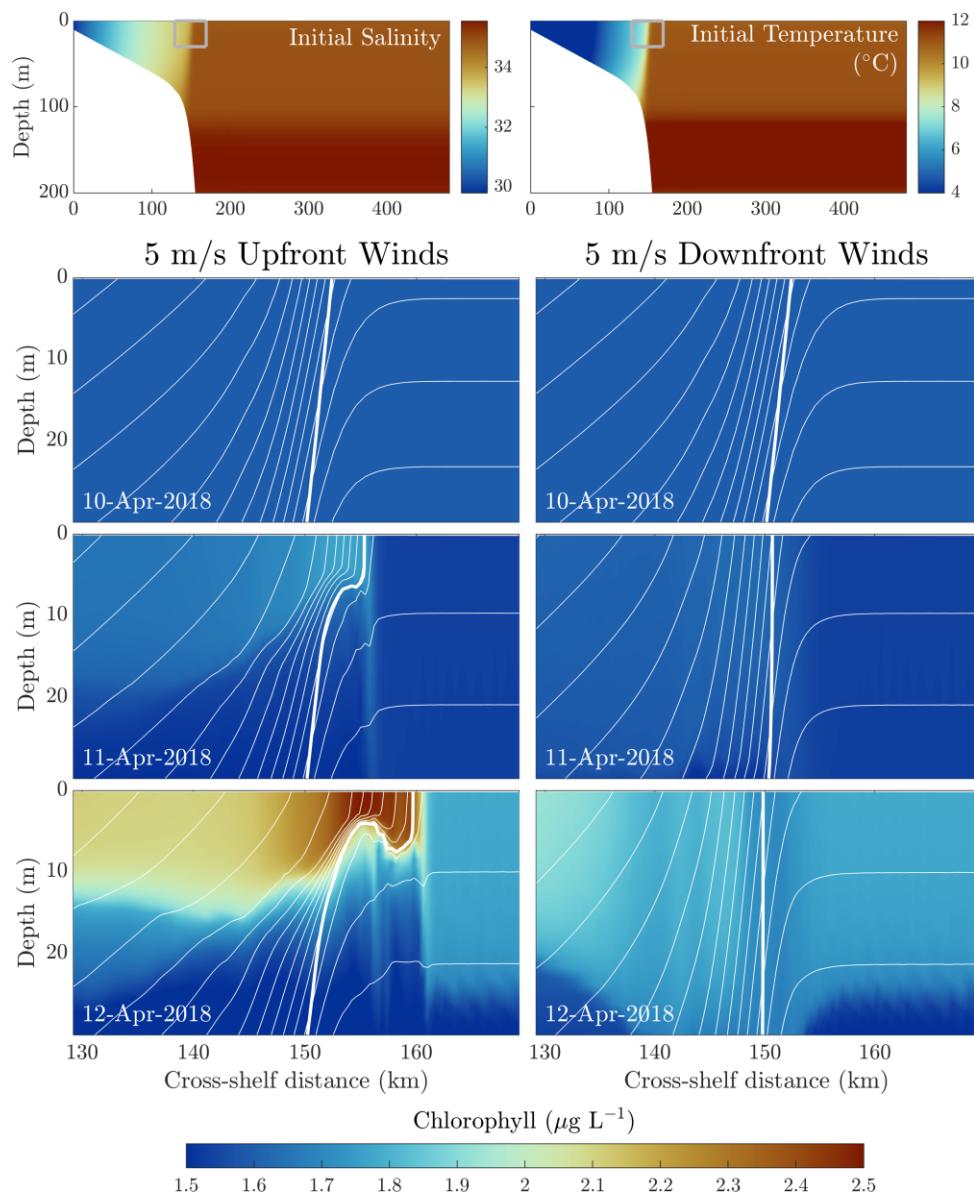
830

831

832

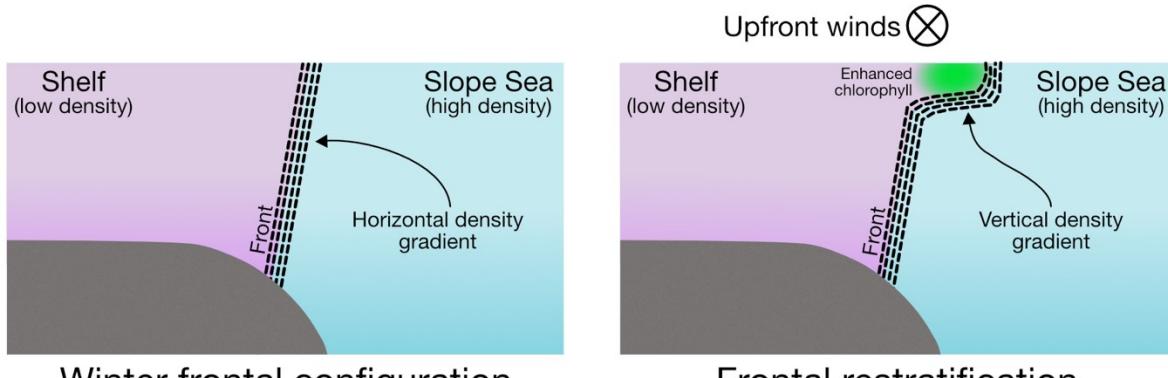
833

834 **Figure 11.** The mean (\pm standard deviation) upwelling index for n days leading up to first shelf-
835 break surface chlorophyll enhancement.


836

837

838


839

840

841

842 **Figure 12.** 2-D ROMS model initial condition and output. (a) Initial salinity and temperature, with the gray boxes showing the boundaries of the output fields shown in (b) and (c); (b) chlorophyll fields from 2-D ROMS model output with constant 5 m s^{-1} upfront winds; (c) output for constant 5 m s^{-1} downfront winds. The thick white lines show the frontal isohaline (34.5), and thinner white lines show isopycnals at 0.05 kg m^{-3} intervals. Chlorophyll is calculated from nitrogen units using the Redfield ratio (106 mol C:16 mol N), and assuming 50 g C/g Chl.

848

849

850

851 **Figure 13.** Conceptual diagram of an increasing vertical density gradient as isopycnals flatten
852 with upfront winds, which creates a shallow, well-lit mixed layer that can support rapid
853 phytoplankton accumulation.

854

855