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Abstract

We construct families of convex domains that are biholomorphic to bounded domains, but
not bounded convex domains. This is accomplished by finding an obstruction related to the
Gromov hyperbolicity of the Kobayashi metric.
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1 Introduction

In this paper we construct unbounded convex domains which are Kobayashi hyperbolic, but
not biholomorphic to bounded convex domains. This provides a partial answer to a question
asked by Forn@ss and Kim [9, Problem 14] and a negative answer to a question asked by
Bracci [6] and Pflug and Zwonek [14, Section 5].

Kobayashi hyperbolic convex domains are always biholomorphic to bounded domains
and share many complex analytic/geometric properties with bounded convex domains [2,7].
Thus there are no obvious obstructions that would prevent a given Kobayashi hyperbolic
convex domain from being biholomorphic to a bounded convex domain.

We will find such obstructions by considering the asymptotic geometry of the Kobayashi
distance K on convex domains 2. We will show that for bounded convex domains, the
Kobayashi metric is Gromov hyperbolic if and only if D x D does not “asymptotically iso-
metrically embed” into the domain. Then we will show that this equivalence fails for certain
unbounded Kobayashi hyperbolic convex domains and thus these domains cannot be biholo-
morphic to bounded convex domains.

Our main result is stated in terms of the geometry of the Hilbert metric Hc on the base
C c R? of a convex tube domain.
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Theorem1.1 Ifd > 2, C C R? is a bounded convex domain, and (C, Hc) is Gromov

hyperbolic, then 2 := C +i R? c C is not biholomorphic to a bounded convex domain in
ce.

Benoist [4] has characterized the bounded convex domains in R? with Gromov hyperbolic
Hilbert metric and from his classification we have the following corollaries.

Corollary 1.2 Ifd > 2and C C RY is a bounded strongly convex domain, then Q := C +i R?
is not biholomorphic to a bounded convex domain in ce.

Corollary 1.3 Ifd > 2and C C R? is a bounded convex domain with real analytic boundary,
then Q := C + i R? is not biholomorphic to a bounded convex domain in Ce.

To prove Theorem 1.1 we introduce the following asymptotic invariant of a Kobayashi
hyperbolic complex manifold.

Definition 1.4 Suppose M, N are Kobayashi hyperbolic complex manifolds (e.g. bounded
domains in C%). We say that M asymptotically isometrically embeds into N if there exists a
sequence of holomorphic maps f,, : M — N such that

Ky (z, w) = lim Ky (fu(2), fu(w))
n—oo
locally uniformly on M x M.

Theorem 1.1 will follow from several results about the convex domains where ID x ID does
or does not asymptotically isometrically embed.

First, using results from [17] we will show that for bounded convex domains, the Kobayashi
metric is Gromov hyperbolicif and only if D x D does not asymptotically isometrically embed
into Q.

Proposition 1.5 Suppose Q C C? is a bounded convex domain. Then the following are
equivalent:

1. (2, Kq) is Gromov hyperbolic
2. D x D does not asymptotically isometrically embed into 2.

Remark 1.6 The implication (1) = (2) holds for general complex manifolds. As we will
see below, the reverse implication fails already for unbounded Kobayashi hyperbolic convex
domains.

As an aside, we mention the following connection to finite type conditions. In the case
when @ C C¢ is a bounded convex domain with C* boundary, the Kobayashi metric is
Gromov hyperbolic if and only if d€2 has finite type in the sense of D’ Angelo [15]. Hence
we have following corollary.

Corollary 1.7 Suppose 2 C C? is a bounded convex domain with C> boundary. Then the
following are equivalent:

1. 0 has finite type in the sense of D’Angelo,
2. D x D does not asymptotically isometrically embed into 2.

Using a result of Benoist [4] we will also characterize the tube domains which admit
asymptotic isometric embeddings of D x .
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Proposition 1.8 Supposed > 2, C C R isa R-properly convex domain (i.e. every R-affine
map f : R — Qs constant), and Q := C + i RY. Then the following are equivalent:

1. (C, Hc¢) is Gromov hyperbolic,
2. D x D does not asymptotically isometrically embed into 2.

Finally, we will use the following characterization of tube domains with Gromov hyper-
bolic Kobayashi metric.

Theorem 1.9 [17, Corollary 1.13] Suppose d > 2, C C R? is a R-properly convex domain,
and Q := C + i R?. Then the following are equivalent:

1. (2, Kq) is Gromov hyperbolic,
2. (C, Hc¢) is Gromov hyperbolic and C is unbounded.

Using the above results we can prove Theorem 1.1.

Proof of Theorem 1.1 assuming Propositions 1.5 and 1.8 Suppose d > 2, C C R? is a
bounded convex domain, (C, Hc) is Gromov hyperbolic, and 2 = C + iR c 4,
Since C is bounded, Theorem 1.9 implies that (2, Kg) is not Gromov hyperbolic. Since
(C, Hc) is Gromov hyperbolic, Proposition 1.8 implies that D x D does not asymptotically
isometrically embed into 2. So €2 cannot be biholomorphic to a bounded convex domain by
Proposition 1.5. O

Remark 1.10 The proof of Theorem 1.1 only requires one part of Theorem 1.9: if C ¢ R?
is a bounded convex domain and Q := C + i R?, then (2, Kq) is not Gromov hyperbolic.
The proof of this is fairly easy, one uses standard estimates on the Kobayashi metric to show
that for any c¢p € C the map

y € RY dpye) — co+iy € (2, Kq)

is a quasi-isometric embedding (with constants depending on c(). Hence (€2, Kq) cannot be
Gromov hyperbolic. See [17, Lemma 19.4] for details.

There are some examples of tube domains with bounded bases that are biholomorphic to
bounded convex domains, for instance:

Example 1.11 Let I = (—1,1) C Rand C = I9 c R?. Then
Q=C+iR'=U+iR)?
is biholomorphic to D?.

This leads to the following conjecture, related to a question of Fornass and K.T. Kim [9,
Problem 14].

Conjecture 1.12 A tube domain with bounded convex base is biholomorphic to a bounded
convex domain if and only if it is biholomorphic to D4,

For tube domains over unbounded bases, the situation seems more mysterious. Pflug and
Zwonek [14, Example 18] proved that the tube domain = C 4 i R? over

C = {(x1,x2) G]Rzle,xz > 0 and x1xp > 1}

is biholomorphic to a bounded convex domain. This domain is non-homogeneous which
suggests that the problem of characterizing general tube domains biholomorphic to bounded
convex domains is very difficult. However, from Equation (34) in [14] and Theorem 3.1 in
[15] the Kobayashi distance on €2 is not Gromov hyperbolic. Hence it is possible that the
following conjecture is true.
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Conjecture 1.13 Suppose 2 = C +i R? is a tube domain and (2, K¢) is Gromov hyperbolic
(i.e. C is unbounded and (C, H¢) is Gromov hyperbolic). Then €2 is biholomorphic to a
bounded convex domain if and only if €2 is biholomorphic to the unit ball.

2 Preliminaries
2.1 The space of convex domains

In this section we recall some basic properties of the space of convex domains, for more
background see [12].

Let K be either the real or complex numbers. A convex subset 2 C K¢ is called K-properly
convex if every K-affine map f : K — Q is constant.

Let X;(K) be the set of all K-properly convex domains in K¢ endowed with the local
Hausdorff topology. Then let

X000 = {(©,2) € X4 x K : 2 € @} € Xy (B) x K7

When the context is clear we will write Xy, Xy o instead of X, (K), Xy o(K).

Definition 2.1 Given a subset A C X, we will let ZXd denote its closure in X .

The group Aff(K?) of affine automorphisms of K¢ acts continuously on both X, and
X4.,0- Building upon earlier work of Benzécri [3] in the K = R case, Frankel proved that the
action of Aff (Kd) on Xy o is compact.

Theorem 2.2 (Frankel [10]) There exists a compact subset K C Xg4,0 such that

Aff(K?) - K =Xq0.
We will also use the following observation.

Observation 2.3 If 2, converges to Q2 in Xz and K C € is a compact subset, then K C €2,
for n sufficiently large.

Proof See for instance [12, Proposition 3.3]. O

2.2 The Kobayashi metric

In this section we recall some basic properties of the Kobayashi distance on a C-properly
convex domain, for more background see [1].

Given adomain  C C? let Kg denote the Kobayashi (pseudo-)distance on €2. For general
unbounded domains determining whether or not K¢, is non-degenerate is very difficult, but
in the special case of convex domains we have the following result of Barth.

Theorem 2.4 (Barth [2]) Suppose Q2 is a convex domain. Then the following are equivalent:

1. Qis C-properly convex,

2. Q is biholomorphic to a bounded domain,
3. Kgq is a non-degenerate distance on <2,

4. (2, Kq) is a proper geodesic metric space.
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For convex domains, there is also a connection between the Kobayashi distance and flat
pieces in the boundary.

Proposition 2.5 Suppose Q2 is a C-properly convex domain and x,y € 09 are distinct.
Assume z,,,, wy, € Q2 are sequences such that z,, — x and w,, — y. If

liminf Kq(z, w,) < 00
m,n—o0

and L is the complex line containing x and y, then L N\ Q = () and the interior of 9Q N L in
L contains x and y.

Proof See for instance [16, Proposition 3.5]. ]
The Kobayashi distance is also well behaved with respect to the local Hausdorff topology.
Theorem 2.6 If 2, converges to Q in Xy, then
K Q= lim K Q
n—o0
uniformly on compact subsets of 2 x Q.

Proof See for instance [15, Theorem 4.1]. O

2.3 Gromov hyperbolic metric spaces

In this section we recall the definition of Gromov hyperbolic metric spaces, for more back-
ground see for instance [5].

Suppose (X, d) is a metric space. A curve ¢ : [a,b] — X is a geodesic if
d(o(t)),0(y)) = |th — 1| for all 11,1, € [a, b]. A geodesic triangle in a metric space
is a choice of three points in X and geodesic segments connecting these points. A geodesic
triangle is said to be 8-thin if any point on any of the sides of the triangle is within distance
8 of the other two sides.

Definition 2.7 A proper geodesic metric space (X, d) is called 8-hyperbolic if every geodesic
triangle is §-thin. If (X, d) is §-hyperbolic for some § > 0 then (X, d) is called Gromov
hyperbolic.

In this paper we will also use an equivalent formulation of Gromov hyperbolicity. Given
0,x,y € X the Gromov product is

1
x1y)o = E(d(o, x)+d(o,y) —d(x,y)).

Using the Gromov product it is possible to give an alternative definition of Gromov hyper-
bolicity (for a proof see for instance [5, Chapter III.H.1, Proposition 1.22]).

Theorem 2.8 A proper geodesic metric space (X, d) is Gromov hyperbolic if and only if
there exists o > 0 such that

(x[y)o = min{(x]2)o. (z|¥)o} — @

forallo,x,y,z € X.
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3 Asymptotic embeddings and analytic disks in the boundary

We say that a domain Q2 C C? has simple boundary if every holomorphic map ¢ : D — 992
is constant. In this section we establish the following characterization of convex domains
which admit an asymptotically isometrically embedding of D x D.

Theorem 3.1 Suppose Q@ C C¢ is a C-properly convex domain. Then the following are
equivalent:

—X
1. there exists D € Aff(CY) - Q ‘ with non-simple boundary,
2. D x D asymptotically isometrically embeds into Q.

The rest of the section is devoted to the proof of Theorem 3.1.

3.1 (1) implies (2)
Suppose 2 C C¢ is a C-properly convex domain and there exists

——X
D e Aff(C?) . @ "

with non-simple boundary.
Let H = {z € C : Im(z) > 0}. Then by [12, Theorem 7.4] there exists

Dy € ARCY - D AT - "
with
D> N (C? x{(0,...,0)}) = H* x{(0, ..., 0)}.

We will construct an isometric embedding of D x D into D5 and use it to show that D x D
asymptotically isometrically embeds into €2.

Lemma3.2 Ifz, w € HZ, then
KDZ((z,O,...,O), (w,o,...,O)) = Ky (2, w).

Proof By the distance non-increasing property of the Kobayashi metric, we clearly have
Kp,((2,0,..,0),@,0,...,0)) = Ky (2 w).

forall z, w € H2.

Letey, ..., eq be the standard basis of C?. By hypothesis, (Re; + Cez) N Dy = @. Then
since D; is convex, there exists a real hyperplane H suchthat HND; = Pand (Re;+Cep) C
H. Then let p : C! — C be the complex linear function with p(z,0,...,0) = z and
p Y (R) = H. Then p(D;) = H and

p ' 0)=HNiH > Ce,.
Hence
KD2<(21,12,0,...,0), (. wg,O,...,0)> > KH<p(zl,z2,O,...,0),p(w1, wz,O,...,0)>

= Ky (z1, wy)
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for all (z1, 22), (w1, wa) € H2.
Applying the same argument to the second variable shows that

Kby (21 22,0, 0), (i, w2, 0., 0)) = Kpe(zz, w2)

for all (z1, z2), (w1, w2) € H2.
Hence

Ky ((21,22,0,..,0), (w1, 0,0, 0)) = max {Kpe(z1, w), Kpa(za, wa)}
= KH2 ((Z17 22)’ (wla w2)>
for all (z1. 22). (w1, wy) € H2. .

By the previous lemma there exists a holomorphic map f : D x D — D, with
Kpxp(z, w) = Kp,(f (), f(w))
forall z, w € D x . Since
—_—Xy
Dy € Aff(CY - Q

there exist affine automorphisms A, € Aff ((Cd) with A, 2 — D;. Using Observation 2.3
and passing to a subsequence we can suppose that

fG@,-DxD) C A,Q
where r, = 1 — 1/n. Next define
fn:DxD— Q
fa@) = AL f (ra2).
Then by Theorem 2.6
Kpxp(z, w) = Kp,(f(2), f(w)) = lim Kp,(f(ra2), f(rnw))
= lim Ka,o(f(ra2), f(raw))
= lim Ko(fu(2), fu(w))

locally uniformly on D x D. Hence D x D asymptotically isometrically embeds into 2.
3.2 (2) implies (1)

We will use the following lemma.

Lemma 3.3 Suppose Q is a C-properly convex domain and ¢ : D — S is holomorphic.
Then there exists a measurable function ¢ : 31D — Q such that:

~ i . i0
= lim
w(e'”) le(re )

for almost every ¢! € 3. Moreover, if ¢1, 9> : D — Q are holomorphic and $1 = ¢>
almost everywhere, then 1 = @s.
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Lemma 3.3 is a simple consequence of Fatou’s theorem and the Luzin—Privalov radial
uniqueness theorem. Delaying the proof of the Lemma until Section 3.3 below, we prove that
(2) implies (1) in Theorem 3.1.

Suppose Q C C?is a C-properly convex domain and there exists a sequence f; :
D x D — € of holomorphic maps such that

Kpxp(z, w) = nlggo Ko(fu(2), fu(w))

locally uniformly on D x D.

Using Theorem 2.2 and passing to a subsequence, we can select affine maps A,, € Aff(C%)
such that A, (€2, f,(0)) converges to some (D, z¢) in Xy4,0. Then using Theorem 2.6 and the
Arzela—Ascoli theorem, we can pass to a subsequence so that A, f, : DxD — A,Q
converges locally uniformly to a holomorphic map f : D x D — D. Then by Theorem 2.6

Kpxp(@w) = lim Ka(fu(@). fow) = lim Ka,a(Anfu@). A fu(w))
= Kp(f (), f ()

for all z, w € D x . In particular, f is injective.

Now fix wy, wy € D distinct and consider the functions ¢1, ¢» : D — D defined by
¢;j(-) = f(-,w;). By Lemma 3.3 there exist measurable functions ’(,Fj :9D — D and a set
A C 0D of full measure such that

=~  if . i
. = lim ©;
@i rlﬂ%(re )
for j = 1,2 and ¢’? € A. Since f is an isometric embedding, we must have 0j (€% e dD
when ¢/? € A.

Since f is injective, ¢; # @o. So there exists some ¢'? € A with ) (e’?) # Pa(e'?).
However,

lim sup KD((pl(reig), ¢2(rei9)) =limsup Kpxp ((reig, wl)(reie, w2))
r/'1 r/'1
= Kp(wy, wp) < +00.

So by Proposition 2.5, if L is the complex line containing @ (¢!?), &2 (¢'?), then L N 9 D has
non-empty interior in L. Hence D has non-simple boundary.

3.3 Proof of Lemma 3.3

Suppose €2 is a C-properly convex domain and ¢ : D — €2 is holomorphic.
Againlet H = {z € C : Im(z) > 0}.

Lemma 3.4 There exists an affine map A € Aff(C?) such that AQ C H.
Proof See for instance [7, Proposition 3.5] or [10]. O

Consider the maps

f:H—>D
z—1i
f(z)_z—i-i
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and F := (f,...,f) oA : Q < D9, Notice that F extends to a locally bi-Lipschitz
homeomorphism of €2 onto its image. Moreover, if

Z ={(z1,...,2q) : zj = 1 for some j},
then

lim dgue(F(2), Z) = 0.

lzll—o00

Next consider ¢ := Fog : D — D?. Then by Fatou’s theorem, there exists a measurable
function ¢ : 8 D — D such that:
-~ 0 : i0
=1
() = lim ¢ (re™)

for almost every ¢!’ € 3 D. By modifying ¢ on a set of measure zero, we can assume that

$(0D) C F(Q) U Z.
Lemma3.5 The set B = {em : a(em) € Z} has measure zero in 0 D.

Proof Suppose for a contradiction that B has positive measure in 9 D. Let 7; : C? - Chbe
the projection onto the j coordinate. Consider the map

g:D—->C
d

2@ =[] (@) —1).
j=1

Then g is nowhere vanishing since ¢ (D) C D?. However
d
0=[] (7 @) —1) = lim g(re'?)

i r/1

j
for ¢! € B. Since B has positive measure and g is bounded, the Luzin-Privalov radial

uniqueness theorem implies that g = 0. So we have a contradiction. O

Then by modifying aon a set of measure zero, we can assume that 3(3 D) C F(R). Then
g=Flo a is well defined and satisfies the lemma.

The “moreover” part of the lemma follows from applying the dominated convergence
theorem and the Cauchy integral formula to the functions F o ¢; (or the Luzin-Privalov
radial uniqueness theorem).

4 Proof of Proposition 1.5
Proposition 1.5 is an immediate consequence of Theorem 3.1 and the following result from
[17].

Theorem 4.1 [17, Theorem 1.5] Suppose Q@ C C¢ is a bounded convex domain. Then the
Sfollowing are equivalent:

1. (2, Kq) is Gromov hyperbolic,
—X
2. every domain in Aff €. ! has simple boundary.
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5 A result of Benoist

Recall, a convex domain C C R is called strictly convex if dC does not contain any non-
trivial line segments. A result of Benoist implies the following characterization of convex
domains in R? with Gromov hyperbolic Hilbert metric.

Theorem 5.1 (Benoist [4, Proposition 1.6]) Suppose C C Risa R-properly convex domain.
Then the following are equivalent:
1. (C, Hc¢) is Gromov hyperbolic,
—X
2. every domain in Aff ®RY - C ‘ is strictly convex.

To be precise, Theorem 5.1 is stated differently than [4, Proposition 1.6], however the
proof is identical. For the reader’s convenience we provide the complete argument.

5.1 Preliminaries

We begin by recalling some basic facts about the Hilbert distance.

Suppose C € R? is a convex domain. Given x, y € C distinct let L,y be the real line
containing them and let a, b € dC U {oc} be the endpoints of C N L x,y With the ordering
a, x,y, b. Then define the Hilbert pseudo-distance between x, y to be

He(x,y) = 110g lx —blllly —all
2 " y-=>2lllx—all
where we define
lx —oo _ lly —ooll _

ly —ooll  llx — ool

In the case when C does not contain any affine real lines (i.e. C is a R-properly convex
domain), we see that Hc (x, y) > O for all x, y € C distinct.

We will use the following well known fact about geodesics in the Hilbert metric, for a
proof see [8, Proposition 2].

Proposition 5.2 IfC C RY isa R-properly convex domain and x, y € C, then the Euclidean
line segment [x, y] joining x and y can be parametrized to be a unit speed geodesic in
(C, Hc¢). Moreover, if C is strictly convex, then this is the only unit speed geodesic joining x
toy.

Using the definition of the Hilbert distance is is not difficult to observe that the Hilbert
distance is continuous on X.

Observation 5.3 If C, converges to C in X, then
HC = lim ch
n—o0
uniformly on compact subsets of C x C.

We will also use the following result of Karlsson-Noskov on the boundary of convex
domains with Gromov hyperbolic Hilbert metric.

Theorem 5.4 (Karlsson-Noskov [13]) Suppose C C RY is a R-properly convex domain. If
(C, Hc) is Gromov hyperbolic, then

1. C is strictly convex,
2. 9C is a C" hypersurface.
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5.2 Proof of Theorem 5.1

Suppose C C R is a R-properly convex domain.
(1) = (2): Suppose (C, Hc) is Gromov hyperbolic. Then by Observation 5.3 and the

Gromov product definition of Gromov hyperbolicity, every domain in Aff ®RY . C = has
Gromov hyperbolic Hilbert metric. Hence every domain in the orbit closure is strictly convex
by Theorem 5.4.

(2) = (1): We compactify R by adding the sphere at infinity, that is: a sequence x,, € R?
converges to & € S~ if ||x,|| — oo and mxn — &. Then, given x € R? and & € S9!
we can define the line segments

¢ xl=[x.8) ={x+1§5:1=0}

By assumption C is strictly convex and hence every geodesic joining two points x, y € C
parametrizes the Euclidean line segment [x, y]. Suppose (C, Hc) is not Gromov hyperbolic.
Then for each n > 0 there exist x,, y,, z, € C and u, € [x,, y,] such that

He(up, [xn, 22l U lzn, yul) > n.

Using Theorem 2.2 and passing to a subsequence we can find affine maps A, € Aff(R?)
such that A, (C, u,) converges to some (Coo, Uso) in Xy,0. Passing to further subsequences
we can assume that the sequences A,x,, A, Vn, Anzn cONVerge to Xoo, Yoo, Zoo € CooUS4!
respectively. Since

He(un, {xn, yn, 2n}) = n,

we must have X0, Yoo, Zoo € 0Co0 U et

By construction, 1 is contained in a line segment whose endpoints are x», and y,. Then,
since Uoo € Coo and X, Yoo € 0Co0 U S9-1 the points X, Yoo are distinct. Since Cw is
R-properly convex at least one of X, Yoo is finite. Then after possibly relabelling we can
assume that xoo 7 Zoo and at least one of Xeo, Zoo is finite. Then (Xoo, Zoo) C Coo. Since Cop
is strictly convex we have (X0, Zoo) C Coo-

Now fiX v € (Xo0, Z0o)- Then there exists v, € (x,, z,) with A, v, converging to v. Then

00 > He, (v, o) = lim Ha,c(Ayvp, Ayup) = lim He(vy, u,) > lim n = oo.
n—oo n—0o0 n—o0

So we have a contradiction and hence (C, Hc) is Gromov hyperbolic.

6 Proof of Proposition 1.8

Proposition 1.8 is an immediate consequence of Theorems 3.1, 5.1, and the following lemma
from [17]

Lemma 6.1 [17, Lemma 19.6] Suppose C C RY is a R-properly convex domain and Q =
C +iRY. Then

—X4(©) — X4(R)
AffC?) - @ =Aff((Cd)-<Aff(Rd)-C T 4irt),
In particular, the following are equivalent

KB
1. every domain in Aff(R%) - C is strictly convex,
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T d %a(©) .
2. every domain in Aff(C) - Q has simple boundary.

Notice that the “in particular” part is a consequence of the first claim and the following
result of Fu-Straube.

Proposition 6.2 (Fu-Straube [11, Theorem 1.1]) Suppose Q C C? is a convex domain. Then
every holomorphic map D — 0K is constant if and only if every complex affine map D — 92
is constant.

Acknowledgements This material is based upon work supported by the National Science Foundation under
grant DMS-1904099.
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