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Abstract

We construct families of convex domains that are biholomorphic to bounded domains, but
not bounded convex domains. This is accomplished by finding an obstruction related to the
Gromov hyperbolicity of the Kobayashi metric.

Keywords Kobayashi hyperbolic manifolds · Convex domains · Gromov Hyperbolic metric
spaces

1 Introduction

In this paper we construct unbounded convex domains which are Kobayashi hyperbolic, but
not biholomorphic to bounded convex domains. This provides a partial answer to a question
asked by Fornæss and Kim [9, Problem 14] and a negative answer to a question asked by
Bracci [6] and Pflug and Zwonek [14, Section 5].

Kobayashi hyperbolic convex domains are always biholomorphic to bounded domains
and share many complex analytic/geometric properties with bounded convex domains [2,7].
Thus there are no obvious obstructions that would prevent a given Kobayashi hyperbolic
convex domain from being biholomorphic to a bounded convex domain.

We will find such obstructions by considering the asymptotic geometry of the Kobayashi
distance K� on convex domains �. We will show that for bounded convex domains, the
Kobayashi metric is Gromov hyperbolic if and only if D × D does not “asymptotically iso-
metrically embed” into the domain. Then we will show that this equivalence fails for certain
unbounded Kobayashi hyperbolic convex domains and thus these domains cannot be biholo-
morphic to bounded convex domains.

Our main result is stated in terms of the geometry of the Hilbert metric HC on the base
C ⊂ R

d of a convex tube domain.
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1906 A. Zimmer

Theorem 1.1 If d ≥ 2, C ⊂ R
d is a bounded convex domain, and (C, HC ) is Gromov

hyperbolic, then � := C + i R
d ⊂ C

d is not biholomorphic to a bounded convex domain in

C
d .

Benoist [4] has characterized the bounded convex domains in R
d with Gromov hyperbolic

Hilbert metric and from his classification we have the following corollaries.

Corollary 1.2 If d ≥ 2 and C ⊂ R
d is a bounded strongly convex domain, then � := C+i R

d

is not biholomorphic to a bounded convex domain in C
d .

Corollary 1.3 If d ≥ 2 and C ⊂ R
d is a bounded convex domain with real analytic boundary,

then � := C + i R
d is not biholomorphic to a bounded convex domain in C

d .

To prove Theorem 1.1 we introduce the following asymptotic invariant of a Kobayashi
hyperbolic complex manifold.

Definition 1.4 Suppose M, N are Kobayashi hyperbolic complex manifolds (e.g. bounded
domains in C

d ). We say that M asymptotically isometrically embeds into N if there exists a
sequence of holomorphic maps fn : M → N such that

KM (z, w) = lim
n→∞

KN ( fn(z), fn(w))

locally uniformly on M × M .

Theorem 1.1 will follow from several results about the convex domains where D × D does
or does not asymptotically isometrically embed.

First, using results from [17] we will show that for bounded convex domains, the Kobayashi
metric is Gromov hyperbolic if and only if D × D does not asymptotically isometrically embed
into �.

Proposition 1.5 Suppose � ⊂ C
d is a bounded convex domain. Then the following are

equivalent:

1. (�, K�) is Gromov hyperbolic

2. D × D does not asymptotically isometrically embed into �.

Remark 1.6 The implication (1) ⇒ (2) holds for general complex manifolds. As we will
see below, the reverse implication fails already for unbounded Kobayashi hyperbolic convex
domains.

As an aside, we mention the following connection to finite type conditions. In the case
when � ⊂ C

d is a bounded convex domain with C
∞ boundary, the Kobayashi metric is

Gromov hyperbolic if and only if ∂� has finite type in the sense of D’Angelo [15]. Hence
we have following corollary.

Corollary 1.7 Suppose � ⊂ C
d is a bounded convex domain with C

∞ boundary. Then the

following are equivalent:

1. ∂� has finite type in the sense of D’Angelo,

2. D × D does not asymptotically isometrically embed into �.

Using a result of Benoist [4] we will also characterize the tube domains which admit
asymptotic isometric embeddings of D × D.
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Kobayashi hyperbolic convex domains... 1907

Proposition 1.8 Suppose d ≥ 2, C ⊂ R
d is a R-properly convex domain (i.e. every R-affine

map f : R → � is constant), and � := C + i R
d . Then the following are equivalent:

1. (C, HC ) is Gromov hyperbolic,

2. D × D does not asymptotically isometrically embed into �.

Finally, we will use the following characterization of tube domains with Gromov hyper-
bolic Kobayashi metric.

Theorem 1.9 [17, Corollary 1.13] Suppose d ≥ 2, C ⊂ R
d is a R-properly convex domain,

and � := C + i R
d . Then the following are equivalent:

1. (�, K�) is Gromov hyperbolic,

2. (C, HC ) is Gromov hyperbolic and C is unbounded.

Using the above results we can prove Theorem 1.1.

Proof of Theorem 1.1 assuming Propositions 1.5 and 1.8 Suppose d ≥ 2, C ⊂ R
d is a

bounded convex domain, (C, HC ) is Gromov hyperbolic, and � := C + i R
d ⊂ C

d .
Since C is bounded, Theorem 1.9 implies that (�, K�) is not Gromov hyperbolic. Since
(C, HC ) is Gromov hyperbolic, Proposition 1.8 implies that D × D does not asymptotically
isometrically embed into �. So � cannot be biholomorphic to a bounded convex domain by
Proposition 1.5. ��

Remark 1.10 The proof of Theorem 1.1 only requires one part of Theorem 1.9: if C ⊂ R
d

is a bounded convex domain and � := C + i R
d , then (�, K�) is not Gromov hyperbolic.

The proof of this is fairly easy, one uses standard estimates on the Kobayashi metric to show
that for any c0 ∈ C the map

y ∈ (Rd , dEuc) → c0 + iy ∈ (�, K�)

is a quasi-isometric embedding (with constants depending on c0). Hence (�, K�) cannot be
Gromov hyperbolic. See [17, Lemma 19.4] for details.

There are some examples of tube domains with bounded bases that are biholomorphic to
bounded convex domains, for instance:

Example 1.11 Let I = (−1, 1) ⊂ R and C = I d ⊂ R
d . Then

� = C + i R
d = (I + i R)d

is biholomorphic to D
d .

This leads to the following conjecture, related to a question of Fornæss and K.T. Kim [9,
Problem 14].

Conjecture 1.12 A tube domain with bounded convex base is biholomorphic to a bounded
convex domain if and only if it is biholomorphic to D

d .

For tube domains over unbounded bases, the situation seems more mysterious. Pflug and
Zwonek [14, Example 18] proved that the tube domain � = C + i R

2 over

C = {(x1, x2) ∈ R
2 : x1, x2 > 0 and x1x2 > 1}

is biholomorphic to a bounded convex domain. This domain is non-homogeneous which
suggests that the problem of characterizing general tube domains biholomorphic to bounded
convex domains is very difficult. However, from Equation (34) in [14] and Theorem 3.1 in
[15] the Kobayashi distance on � is not Gromov hyperbolic. Hence it is possible that the
following conjecture is true.

123



1908 A. Zimmer

Conjecture 1.13 Suppose � = C + i R
d is a tube domain and (�, K�) is Gromov hyperbolic

(i.e. C is unbounded and (C, HC ) is Gromov hyperbolic). Then � is biholomorphic to a
bounded convex domain if and only if � is biholomorphic to the unit ball.

2 Preliminaries

2.1 The space of convex domains

In this section we recall some basic properties of the space of convex domains, for more
background see [12].

Let K be either the real or complex numbers. A convex subset � ⊂ K
d is called K-properly

convex if every K-affine map f : K → � is constant.
Let Xd(K) be the set of all K-properly convex domains in K

d endowed with the local
Hausdorff topology. Then let

Xd,0(K) =
{
(�, z) ∈ Xd(K) × K

d : z ∈ �
}

⊂ Xd(K) × K
d .

When the context is clear we will write Xd , Xd,0 instead of Xd(K), Xd,0(K).

Definition 2.1 Given a subset A ⊂ Xd we will let A
Xd denote its closure in Xd .

The group Aff(Kd) of affine automorphisms of K
d acts continuously on both Xd and

Xd,0. Building upon earlier work of Benzécri [3] in the K = R case, Frankel proved that the
action of Aff(Kd) on Xd,0 is compact.

Theorem 2.2 (Frankel [10]) There exists a compact subset K ⊂ Xd,0 such that

Aff(Kd) · K = Xd,0 .

We will also use the following observation.

Observation 2.3 If �n converges to � in Xd and K ⊂ � is a compact subset, then K ⊂ �n

for n sufficiently large.

Proof See for instance [12, Proposition 3.3]. ��

2.2 The Kobayashi metric

In this section we recall some basic properties of the Kobayashi distance on a C-properly
convex domain, for more background see [1].

Given a domain � ⊂ C
d let K� denote the Kobayashi (pseudo-)distance on �. For general

unbounded domains determining whether or not K� is non-degenerate is very difficult, but
in the special case of convex domains we have the following result of Barth.

Theorem 2.4 (Barth [2]) Suppose � is a convex domain. Then the following are equivalent:

1. � is C-properly convex,

2. � is biholomorphic to a bounded domain,

3. K� is a non-degenerate distance on �,

4. (�, K�) is a proper geodesic metric space.
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Kobayashi hyperbolic convex domains... 1909

For convex domains, there is also a connection between the Kobayashi distance and flat
pieces in the boundary.

Proposition 2.5 Suppose � is a C-properly convex domain and x, y ∈ ∂� are distinct.

Assume zm, wn ∈ � are sequences such that zm → x and wn → y. If

lim inf
m,n→∞

K�(zm, wn) < ∞

and L is the complex line containing x and y, then L ∩ � = ∅ and the interior of ∂� ∩ L in

L contains x and y.

Proof See for instance [16, Proposition 3.5]. ��

The Kobayashi distance is also well behaved with respect to the local Hausdorff topology.

Theorem 2.6 If �n converges to � in Xd , then

K� = lim
n→∞

K�n

uniformly on compact subsets of � × �.

Proof See for instance [15, Theorem 4.1]. ��

2.3 Gromov hyperbolic metric spaces

In this section we recall the definition of Gromov hyperbolic metric spaces, for more back-
ground see for instance [5].

Suppose (X , d) is a metric space. A curve σ : [a, b] → X is a geodesic if
d(σ (t1), σ (t2)) = |t1 − t2| for all t1, t2 ∈ [a, b]. A geodesic triangle in a metric space
is a choice of three points in X and geodesic segments connecting these points. A geodesic
triangle is said to be δ-thin if any point on any of the sides of the triangle is within distance
δ of the other two sides.

Definition 2.7 A proper geodesic metric space (X , d) is called δ-hyperbolic if every geodesic
triangle is δ-thin. If (X , d) is δ-hyperbolic for some δ ≥ 0 then (X , d) is called Gromov

hyperbolic.

In this paper we will also use an equivalent formulation of Gromov hyperbolicity. Given
o, x, y ∈ X the Gromov product is

(x |y)o =
1

2
(d(o, x) + d(o, y) − d(x, y)).

Using the Gromov product it is possible to give an alternative definition of Gromov hyper-
bolicity (for a proof see for instance [5, Chapter III.H.1, Proposition 1.22]).

Theorem 2.8 A proper geodesic metric space (X , d) is Gromov hyperbolic if and only if

there exists α ≥ 0 such that

(x |y)o ≥ min{(x |z)o, (z|y)o} − α

for all o, x, y, z ∈ X.
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3 Asymptotic embeddings and analytic disks in the boundary

We say that a domain � ⊂ C
d has simple boundary if every holomorphic map ϕ : D → ∂�

is constant. In this section we establish the following characterization of convex domains
which admit an asymptotically isometrically embedding of D × D.

Theorem 3.1 Suppose � ⊂ C
d is a C-properly convex domain. Then the following are

equivalent:

1. there exists D ∈ Aff(Cd) · �
Xd

with non-simple boundary,

2. D × D asymptotically isometrically embeds into �.

The rest of the section is devoted to the proof of Theorem 3.1.

3.1 (1) implies (2)

Suppose � ⊂ C
d is a C-properly convex domain and there exists

D ∈ Aff(Cd) · �
Xd

with non-simple boundary.
Let H = {z ∈ C : Im(z) > 0}. Then by [12, Theorem 7.4] there exists

D2 ∈ Aff(Cd) · D
Xd

⊂ Aff(Cd) · �
Xd

with

D2 ∩
(
C

2 ×{(0, . . . , 0)}
)

= H
2 ×{(0, . . . , 0)}.

We will construct an isometric embedding of D × D into D2 and use it to show that D × D

asymptotically isometrically embeds into �.

Lemma 3.2 If z, w ∈ H
2, then

K D2

(
(z, 0, . . . , 0), (w, 0, . . . , 0)

)
= K

H
2(z, w).

Proof By the distance non-increasing property of the Kobayashi metric, we clearly have

K D2

(
(z, 0, . . . , 0), (w, 0, . . . , 0)

)
≤ K

H
2(z, w).

for all z, w ∈ H
2.

Let e1, . . . , ed be the standard basis of C
d . By hypothesis, (R e1 + C e2) ∩ D2 = ∅. Then

since D2 is convex, there exists a real hyperplane H such that H ∩D2 = ∅ and (R e1+C e2) ⊂

H . Then let ρ : C
d → C be the complex linear function with ρ(z, 0, . . . , 0) = z and

ρ−1(R) = H . Then ρ(D2) = H and

ρ−1(0) = H ∩ i H ⊃ C e2.

Hence

K D2

(
(z1, z2, 0, . . . , 0), (w1, w2, 0, . . . , 0)

)
≥ KH

(
ρ(z1, z2, 0, . . . , 0), ρ(w1, w2, 0, . . . , 0)

)

= KH(z1, w1)
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for all (z1, z2), (w1, w2) ∈ H
2.

Applying the same argument to the second variable shows that

K D2

(
(z1, z2, 0, . . . , 0), (w1, w2, 0, . . . , 0)

)
≥ KH(z2, w2)

for all (z1, z2), (w1, w2) ∈ H
2.

Hence

K D2

(
(z1, z2, 0, . . . , 0), (w1, w2, 0, . . . , 0)

)
≥ max {KH(z1, w1), KH(z2, w2)}

= K
H

2

(
(z1, z2), (w1, w2)

)

for all (z1, z2), (w1, w2) ∈ H
2. ��

By the previous lemma there exists a holomorphic map f : D × D → D2 with

KD × D(z, w) = K D2( f (z), f (w))

for all z, w ∈ D × D. Since

D2 ∈ Aff(Cd) · �
Xd

,

there exist affine automorphisms An ∈ Aff(Cd) with An� → D2. Using Observation 2.3
and passing to a subsequence we can suppose that

f (rn · D × D) ⊂ An�

where rn = 1 − 1/n. Next define

fn : D × D → �

fn(z) = A−1
n f (rnz).

Then by Theorem 2.6

KD × D(z, w) = K D2( f (z), f (w)) = lim
n→∞

K D2( f (rnz), f (rnw))

= lim
n→∞

K An�( f (rnz), f (rnw))

= lim
n→∞

K�( fn(z), fn(w))

locally uniformly on D × D. Hence D × D asymptotically isometrically embeds into �.

3.2 (2) implies (1)

We will use the following lemma.

Lemma 3.3 Suppose � is a C-properly convex domain and ϕ : D → � is holomorphic.

Then there exists a measurable function ϕ̂ : ∂ D → � such that:

ϕ̂(eiθ ) = lim
r↗1

ϕ(reiθ )

for almost every eiθ ∈ ∂ D. Moreover, if ϕ1, ϕ2 : D → � are holomorphic and ϕ̂1 = ϕ̂2

almost everywhere, then ϕ1 = ϕ2.
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1912 A. Zimmer

Lemma 3.3 is a simple consequence of Fatou’s theorem and the Luzin–Privalov radial
uniqueness theorem. Delaying the proof of the Lemma until Section 3.3 below, we prove that
(2) implies (1) in Theorem 3.1.

Suppose � ⊂ C
d is a C-properly convex domain and there exists a sequence fn :

D × D → � of holomorphic maps such that

KD × D(z, w) = lim
n→∞

K�( fn(z), fn(w))

locally uniformly on D × D.
Using Theorem 2.2 and passing to a subsequence, we can select affine maps An ∈ Aff(Cd)

such that An(�, fn(0)) converges to some (D, z0) in Xd,0. Then using Theorem 2.6 and the
Arzelà–Ascoli theorem, we can pass to a subsequence so that An fn : D × D → An�

converges locally uniformly to a holomorphic map f : D × D → D. Then by Theorem 2.6

KD × D(z, w) = lim
n→∞

K�( fn(z), fn(w)) = lim
n→∞

K An�(An fn(z), An fn(w))

= K D( f (z), f (w))

for all z, w ∈ D × D. In particular, f is injective.
Now fix w1, w2 ∈ D distinct and consider the functions ϕ1, ϕ2 : D → D defined by

ϕ j (·) = f (·, w j ). By Lemma 3.3 there exist measurable functions ϕ̂ j : ∂ D → D and a set
A ⊂ ∂ D of full measure such that

ϕ̂ j (e
iθ ) = lim

r↗1
ϕ j (reiθ )

for j = 1, 2 and eiθ ∈ A. Since f is an isometric embedding, we must have ϕ̂ j (e
iθ ) ∈ ∂ D

when eiθ ∈ A.
Since f is injective, ϕ1 �= ϕ2. So there exists some eiθ ∈ A with ϕ̂1(e

iθ ) �= ϕ̂2(e
iθ ).

However,

lim sup
r↗1

K D(ϕ1(reiθ ), ϕ2(reiθ )) = lim sup
r↗1

KD × D

(
(reiθ , w1)(reiθ , w2)

)

= KD(w1, w2) < +∞.

So by Proposition 2.5, if L is the complex line containing ϕ̂1(e
iθ ), ϕ̂2(e

iθ ), then L ∩ ∂ D has
non-empty interior in L . Hence D has non-simple boundary.

3.3 Proof of Lemma 3.3

Suppose � is a C-properly convex domain and ϕ : D → � is holomorphic.
Again let H = {z ∈ C : Im(z) > 0}.

Lemma 3.4 There exists an affine map A ∈ Aff(Cd) such that A� ⊂ H
d .

Proof See for instance [7, Proposition 3.5] or [10]. ��

Consider the maps

f : H → D

f (z) =
z − i

z + i
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and F := ( f , . . . , f ) ◦ A : � ↪→ D
d . Notice that F extends to a locally bi-Lipschitz

homeomorphism of � onto its image. Moreover, if

Z = {(z1, . . . , zd) : z j = 1 for some j},

then

lim
‖z‖→∞

dEuc(F(z), Z) = 0.

Next consider φ := F ◦ϕ : D → D
d . Then by Fatou’s theorem, there exists a measurable

function φ̂ : ∂ D → D
d such that:

φ̂(eiθ ) = lim
r↗1

φ(reiθ )

for almost every eiθ ∈ ∂ D. By modifying φ̂ on a set of measure zero, we can assume that
φ̂(∂ D) ⊂ F(�) ∪ Z .

Lemma 3.5 The set B =
{
eiθ : φ̂(eiθ ) ∈ Z

}
has measure zero in ∂ D.

Proof Suppose for a contradiction that B has positive measure in ∂ D. Let π j : C
d → C be

the projection onto the j th coordinate. Consider the map

g : D → C

g(z) =

d∏

j=1

(
π j (φ(z)) − 1

)
.

Then g is nowhere vanishing since φ(D) ⊂ D
d . However

0 =

d∏

j=1

(
π j (φ̂(z)) − 1

)
= lim

r↗1
g(reiθ )

for eiθ ∈ B. Since B has positive measure and g is bounded, the Luzin-Privalov radial
uniqueness theorem implies that g ≡ 0. So we have a contradiction. ��

Then by modifying φ̂ on a set of measure zero, we can assume that φ̂(∂ D) ⊂ F(�). Then
ϕ̂ := F−1 ◦ φ̂ is well defined and satisfies the lemma.

The “moreover” part of the lemma follows from applying the dominated convergence
theorem and the Cauchy integral formula to the functions F ◦ ϕ j (or the Luzin-Privalov
radial uniqueness theorem).

4 Proof of Proposition 1.5

Proposition 1.5 is an immediate consequence of Theorem 3.1 and the following result from
[17].

Theorem 4.1 [17, Theorem 1.5] Suppose � ⊂ C
d is a bounded convex domain. Then the

following are equivalent:

1. (�, K�) is Gromov hyperbolic,

2. every domain in Aff(Cd) · �
Xd

has simple boundary.
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5 A result of Benoist

Recall, a convex domain C ⊂ R
d is called strictly convex if ∂C does not contain any non-

trivial line segments. A result of Benoist implies the following characterization of convex
domains in R

d with Gromov hyperbolic Hilbert metric.

Theorem 5.1 (Benoist [4, Proposition 1.6]) Suppose C ⊂ R
d is a R-properly convex domain.

Then the following are equivalent:

1. (C, HC ) is Gromov hyperbolic,

2. every domain in Aff(Rd) · C
Xd

is strictly convex.

To be precise, Theorem 5.1 is stated differently than [4, Proposition 1.6], however the
proof is identical. For the reader’s convenience we provide the complete argument.

5.1 Preliminaries

We begin by recalling some basic facts about the Hilbert distance.
Suppose C ⊂ R

d is a convex domain. Given x, y ∈ C distinct let Lx,y be the real line
containing them and let a, b ∈ ∂C ∪ {∞} be the endpoints of C ∩ Lx,y with the ordering
a, x, y, b. Then define the Hilbert pseudo-distance between x, y to be

HC (x, y) =
1

2
log

‖x − b‖ ‖y − a‖

‖y − b‖ ‖x − a‖

where we define
‖x − ∞‖

‖y − ∞‖
=

‖y − ∞‖

‖x − ∞‖
= 1.

In the case when C does not contain any affine real lines (i.e. C is a R-properly convex
domain), we see that HC (x, y) > 0 for all x, y ∈ C distinct.

We will use the following well known fact about geodesics in the Hilbert metric, for a
proof see [8, Proposition 2].

Proposition 5.2 If C ⊂ R
d is a R-properly convex domain and x, y ∈ C, then the Euclidean

line segment [x, y] joining x and y can be parametrized to be a unit speed geodesic in

(C, HC ). Moreover, if C is strictly convex, then this is the only unit speed geodesic joining x

to y.

Using the definition of the Hilbert distance is is not difficult to observe that the Hilbert
distance is continuous on Xd .

Observation 5.3 If Cn converges to C in Xd , then

HC = lim
n→∞

HCn

uniformly on compact subsets of C × C .

We will also use the following result of Karlsson-Noskov on the boundary of convex
domains with Gromov hyperbolic Hilbert metric.

Theorem 5.4 (Karlsson-Noskov [13]) Suppose C ⊂ R
d is a R-properly convex domain. If

(C, HC ) is Gromov hyperbolic, then

1. C is strictly convex,

2. ∂C is a C1 hypersurface.
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5.2 Proof of Theorem 5.1

Suppose C ⊂ R
d is a R-properly convex domain.

(1) ⇒ (2): Suppose (C, HC ) is Gromov hyperbolic. Then by Observation 5.3 and the

Gromov product definition of Gromov hyperbolicity, every domain in Aff(Rd) · C
Xd

has
Gromov hyperbolic Hilbert metric. Hence every domain in the orbit closure is strictly convex
by Theorem 5.4.

(2) ⇒ (1): We compactify R
d by adding the sphere at infinity, that is: a sequence xn ∈ R

d

converges to ξ ∈ S
d−1 if ‖xn‖ → ∞ and 1

‖xn‖
xn → ξ . Then, given x ∈ R

d and ξ ∈ S
d−1

we can define the line segments

(ξ, x] = [x, ξ) = {x + tξ : t ≥ 0}.

By assumption C is strictly convex and hence every geodesic joining two points x, y ∈ C

parametrizes the Euclidean line segment [x, y]. Suppose (C, HC ) is not Gromov hyperbolic.
Then for each n ≥ 0 there exist xn, yn, zn ∈ C and un ∈ [xn, yn] such that

HC (un, [xn, zn] ∪ [zn, yn]) ≥ n.

Using Theorem 2.2 and passing to a subsequence we can find affine maps An ∈ Aff(Rd)

such that An(C, un) converges to some (C∞, u∞) in Xd,0. Passing to further subsequences
we can assume that the sequences An xn, An yn, Anzn converge to x∞, y∞, z∞ ∈ C∞ ∪S

d−1

respectively. Since

HC (un, {xn, yn, zn}) ≥ n,

we must have x∞, y∞, z∞ ∈ ∂C∞ ∪ S
d−1.

By construction, u∞ is contained in a line segment whose endpoints are x∞ and y∞. Then,
since u∞ ∈ C∞ and x∞, y∞ ∈ ∂C∞ ∪ S

d−1, the points x∞, y∞ are distinct. Since C∞ is
R-properly convex at least one of x∞, y∞ is finite. Then after possibly relabelling we can
assume that x∞ �= z∞ and at least one of x∞, z∞ is finite. Then (x∞, z∞) ⊂ C∞. Since C∞

is strictly convex we have (x∞, z∞) ⊂ C∞.
Now fix v ∈ (x∞, z∞). Then there exists vn ∈ (xn, zn) with Anvn converging to v. Then

∞ > HC∞(v, u∞) = lim
n→∞

HAnC (Anvn, Anun) = lim
n→∞

HC (vn, un) ≥ lim
n→∞

n = ∞.

So we have a contradiction and hence (C, HC ) is Gromov hyperbolic.

6 Proof of Proposition 1.8

Proposition 1.8 is an immediate consequence of Theorems 3.1, 5.1, and the following lemma
from [17]

Lemma 6.1 [17, Lemma 19.6] Suppose C ⊂ R
d is a R-properly convex domain and � =

C + i R
d . Then

Aff(Cd) · �
Xd (C)

= Aff(Cd) ·
(

Aff(Rd) · C
Xd (R)

+ i R
d
)
.

In particular, the following are equivalent

1. every domain in Aff(Rd) · C
Xd (R)

is strictly convex,
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2. every domain in Aff(Cd) · �
Xd (C)

has simple boundary.

Notice that the “in particular” part is a consequence of the first claim and the following
result of Fu-Straube.

Proposition 6.2 (Fu-Straube [11, Theorem 1.1]) Suppose � ⊂ C
d is a convex domain. Then

every holomorphic map D → ∂� is constant if and only if every complex affine map D → ∂�

is constant.
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