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In this paper we prove: if the complete Kähler-Einstein metric 
on a bounded convex domain (with no boundary regularity 
assumptions) is Gromov hyperbolic, then the ∂̄-Neumann 
problem satisfies a subelliptic estimate. This is accomplished 
by constructing bounded plurisubharmonic function whose 
Hessian grows at a certain rate (which implies a subelliptic 
estimate by work of Catlin and Straube). We also provide a 
characterization of Gromov hyperbolicity in terms of orbit of 
the domain under the group of affine transformations. This 
characterization allows us to construct many examples. For 
instance, if the Hilbert metric on a bounded convex domain 
is Gromov hyperbolic, then the Kähler-Einstein metric is as 
well.
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1. Introduction

Suppose that Ω ⊂ C
d is a bounded pseudoconvex domain. Then a subelliptic estimate 

of order ε > 0 holds on Ω if there exists a constant C > 0 such that

‖u‖ε ≤ C(‖∂̄u‖0 + ‖∂̄∗u‖0)

for all u ∈ L2
(0,q)(Ω) ∩dom(∂̄) ∩dom(∂̄∗) and 1 ≤ q ≤ d. Here ‖·‖s denotes the L2-Sobolev 

space norm of order s on (0, q)-forms on Ω, ∂̄∗ denotes the adjoint of ∂̄ with respect to the 

L2 inner product, and L2
(0,q)(Ω) denotes the space of (0, q)-forms with square integrable 

coefficients.

In the case when Ω is smoothly bounded, subelliptic estimates have been extensively 

studied, culminating in Catlin’s [17,18] deep work which asserts that a subelliptic esti-

mate holds on a smoothly bounded pseudoconvex domain if and only if the boundary has 

finite type in the sense of D’Angelo. For more background, see the survey papers [16,19].

In this paper we consider domains with non-smooth boundary. Previously, Henkin-

Iordan-Kohn [34] established subelliptic estimates on strongly pseudoconvex domains 

with piecewise smooth boundary and Michel-Shaw [43] established subelliptic estimates 

on strongly pseudoconvex domains with Lipschitz boundary. Straube [49] established 

subelliptic estimates on pseudoconvex domains with piecewise smooth boundary of finite 

type. Straube [49] and Harrington [33] have also established sufficient conditions for 

subelliptic estimates in terms of the existence of functions with large Hessians near the 

boundary.

We will focus our attention on convex domains. For smoothly bounded convex do-

mains, subelliptic estimates have been previously studied by Fornæss-Sibony [28] and Mc-

Neal [39,40,45]. For bounded convex domains with non-smooth boundary, Fu-Straube [29]
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established necessary and sufficient conditions for compactness of the ∂̄-Neumann prob-

lem. Convexity is a strong geometric assumption, but we will show that this special case 

already contains interesting examples with non-smooth boundary.

In the non-smooth setting, it seems difficult to develop boundary invariants that will 

imply or be implied by subelliptic estimates. Instead, we consider conditions on the 

interior geometry of a domain. In particular, every bounded pseudoconvex domain Ω

has a canonical geometry: the complete Kähler-Einstein metric gΩ with Ricci curvature 

−1 constructed by Cheng-Yau [21] when ∂Ω is C2 and Mok-Yau [44] in general. Let dΩ

denote the distance on Ω induced by this Kähler metric. In [52], we proved that when Ω

is a smoothly bounded convex domain, then ∂Ω has finite type if and only if the metric 

space (Ω, dΩ) is Gromov hyperbolic.

Combining this with Catlin’s results yields the following: when Ω is a smoothly 

bounded convex domain a subelliptic estimate holds if and only if (Ω, dΩ) is Gromov 

hyperbolic. The first main result of this paper shows that one direction of the above 

equivalence holds without any boundary regularity.

Theorem 1.1. Suppose Ω ⊂ C
d is a bounded convex domain and (Ω, dΩ) is Gromov 

hyperbolic. Then Ω satisfies a subelliptic estimate.

Remark 1.2.

(1) Unfortunately the converse to Theorem 1.1 is false, see Section 21.1.

(2) A bounded convex domain has (at least) two other natural metrics: the Kobayashi 

metric and the Bergman metric. By a result of Frankel [27] these are both bi-Lipschitz 

to the Kähler-Einstein metric and hence if one is Gromov hyperbolic, then they all 

are.

We prove Theorem 1.1 by constructing a bounded plurisubharmonic function whose 

Levi form grows at a certain rate. Such functions imply subelliptic estimates by results 

of Catlin [18] and Straube [49]. Catlin’s construction of these functions in the finite 

type case is very involved and so finding alternative approaches to constructing these 

functions seems desirable. The main idea in our construction is to show that analytic and 

algebraic arguments of McNeal [38,39] in the case of convex domains of finite type can be 

recast as geometric arguments in terms of the intrinsic metrics. Another key part in our 

construction is proving that convex domains whose Kähler-Einstein metric is Gromov 

hyperbolic must be m-convex, see Section 7. An outline of the proof of Theorem 1.1 and 

a more detailed discussion of prior work can be found in Section 10.

One motivation for Theorem 1.1 comes from the deep connections between potential 

theory and negative curvature, see for instance [1–4,50]. In particular, techniques from 

Gromov hyperbolic metric spaces have been used to develop new insights into potential 

theory on bounded domains in Rd, see for instance [1, Section 8]. Based on these results, 

it seems natural to explore connections between other analytic problems and Gromov 

hyperbolicity.
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Theorem 1.1 is a consequence of the following more general result.

Theorem 1.3 (see Section 15). Suppose Ω1, . . . , Ωm ⊂ C
d are bounded convex domains 

and each (Ωj , dΩj
) is Gromov hyperbolic. If Ω := ∩m

j=1Ωj is non-empty, then Ω satisfies 

a subelliptic estimate.

Our second main result is a necessary and sufficient condition for (Ω, dΩ) to be Gromov 

hyperbolic. To state the precise result, we need the following definitions.

Definition 1.4.

(1) A domain Ω ⊂ C
d has simple boundary if every holomorphic map D → ∂Ω is 

constant.

(2) A convex domain Ω ⊂ C
d is called C-properly convex if Ω does not contain any 

entire complex affine lines.

(3) Let Xd denote the set of all C-properly convex domains in C
d endowed with the 

local Hausdorff topology (see Section 3 for details).

(4) Let Aff(Cd) denote the group of complex affine automorphisms of Cd.

The group Aff(Cd) acts on Xd and our characterization of Gromov hyperbolicity is 

in terms of the orbit of a domain under this action.

Theorem 1.5 (see Section 9). Suppose Ω ⊂ C
d is a bounded convex domain. Then (Ω, dΩ)

is Gromov hyperbolic if and only if every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary.

Remark 1.6. Theorem 1.5 is motivated by results of Karlsson-Noskov [37] and Benoist [9]

on the Hilbert metric, see Section 17 for details.

Theorem 1.5 may seem like a very abstract characterization, but in many concrete 

cases one can use it to quickly determine if (Ω, dΩ) is Gromov hyperbolic or not. For 

instance, suppose Ω ⊂ C
d is a bounded convex domain with C∞ boundary. If ∂Ω has 

finite type in the sense of D’Angelo, then the rescaling method of Bedford-Pinchuk [13]

implies that every domain in Aff(Cd) · Ω ∩ Xd coincides, up to an affine transformation, 

either with Ω or a domain of the form

{z ∈ C
d : Im(z1) > P (z2, . . . , zd)}

where P is a “non-degenerate” real valued polynomial. This implies that every domain in 

Aff(Cd) · Ω ∩ Xd has simple boundary. Conversely, if Ω has a point ξ ∈ ∂Ω with infinite 
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type in the sense of D’Angelo, then there exists a sequence of affine maps An such that 

An(ξ) = ξ and AnΩ converges to a C-properly convex domain whose boundary contains 

an analytic disk through ξ, see [52, Lemma 6.1]. This discussion implies the following 

corollary.

Corollary 1.7 ([52, Theorem 1.1]). Suppose Ω ⊂ C
d is a bounded convex domain with 

C∞ boundary. Then (Ω, dΩ) is Gromov hyperbolic if and only if ∂Ω has finite type in the 

sense of D’Angelo.

Using Theorem 1.1 and Theorem 1.5, we can construct examples of domains which 

satisfy a subelliptic estimate and have interesting boundaries.

Example 1.8 (see Section 21.2). For any d ≥ 2, there exists a bounded convex domain 

Ω ⊂ C
d with the following properties:

(1) there exists a boundary point ξ ∈ ∂Ω where Ω is locally a cone (that is, there exists a 

convex cone C ⊂ C
d based at ξ and a neighborhood U of ξ such that C ∩U = Ω ∩ U) 

and

(2) a subelliptic estimate holds on Ω.

Example 1.9 (see Section 20). For any d ≥ 2, there exists a bounded convex domain 

Ω ⊂ C
d with the following properties:

(1) ∂Ω is C2,

(2) Ω is not strongly pseudoconvex, and every (3) ε ∈ (0, 1/2).

Example 1.10 (see Section 21.3). For any d ≥ 2 there exists a bounded convex domain 

Ω ⊂ C
d with the following properties:

(1) ∂Ω is C1,α for some α > 0 (but not C1,1),

(2) the curvature of ∂Ω is concentrated on a set of measure zero (see Definition 21.3), 

and

(3) a subelliptic estimate holds on Ω.

Informally, Condition (2) says that ∂Ω is strongly convex on a set of measure zero.

We can also use Theorem 1.5 to relate the geometry of the classical Hilbert metric to 

the geometry of the Kähler-Einstein metric. This relationship will be one of our primary 

mechanisms for constructing interesting examples.

A convex domain C ⊂ R
d is called R-properly convex if it does not contain an entire 

affine real line. Every R-properly convex domain C ⊂ R
d has a natural interior geometry: 

the Hilbert distance which we denote by HC . Recently, Benoist [7] proved that the Hilbert 
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distance on a bounded convex domain is Gromov hyperbolic if and only if the boundary 

of the domain is quasi-symmetric (see Definition 17.11).

Using Theorem 1.5 and work of Karlsson-Noskov [37] on the Hilbert metric we will 

establish the following.

Corollary 1.11 (see Section 18). Suppose Ω ⊂ C
d is a bounded convex domain. If (Ω, HΩ)

is Gromov hyperbolic, then (Ω, dΩ) is Gromov hyperbolic.

Corollary 1.11 is somewhat surprising since the metric spaces (Ω, HΩ) and (Ω, dΩ) can 

be very different. For instance, if D ⊂ C is a convex polygon, then (D, dD) is isometric 

to the real hyperbolic plane, while (D, HD) is quasi-isometric to the Euclidean plane [9]

(notice that this shows that the converse of Corollary 1.11 is false).

Using Corollary 1.11 and Benoist’s characterization of Gromov hyperbolicity for the 

Hilbert distance, we have the following example.

Example 1.12. Suppose Ω ⊂ C
d is a bounded convex domain with quasi-symmetric 

boundary (see Definition 17.11). Then (Ω, dΩ) is Gromov hyperbolic and hence a subel-

liptic estimate holds on Ω.

We can also use the proof of Theorem 1.5 to characterize the tube domains where the 

Kähler-Einstein metric is Gromov hyperbolic. A domain Ω ⊂ C
d is called a tube domain

if there exists a domain C ⊂ R
d such that Ω = C + i Rd. Bremermann [14] showed that 

a tube domain Ω = C + i Rd is pseudoconvex if and only if C is convex. Further, when C

is convex the domain Ω = C + i Rd is C-properly convex if and only if C is R-properly 

convex. Using the proof of Theorem 1.5 we prove the following.

Corollary 1.13 (see Section 19). Suppose d ≥ 2, C ⊂ R
d is an R-properly convex domain, 

and Ω = C + i Rd. Then the following are equivalent:

(1) (Ω, dΩ) is Gromov hyperbolic,

(2) (C, HC) is Gromov hyperbolic and C is unbounded.

Remark 1.14. Pflug and Zwonek previously established some necessary conditions for 

the Kähler-Einstein metric on a tube domain to be Gromov hyperbolic [47].

If (X, d) is a Gromov hyperbolic metric space, X has a natural compactification, 

denoted by X
G

, called the Gromov compactification. The Gromov boundary of X is 

∂GX := X
G \ X. See Section 2.2 for a precise definition.

In joint work with Bracci and Gaussier, we showed when Ω is convex and (Ω, dΩ)

is Gromov hyperbolic, the Gromov compactification coincides with the “Euclidean end 

compactification.”
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Definition 1.15. Given a domain Ω ⊂ C
d, let Ω

End
denote the end compactification of Ω

(in the sense of Freudenthal, see [46]). Then define ∂EndΩ := Ω
End \ Ω.

Theorem 1.16 ([10, Theorem 1.4]). Suppose Ω ⊂ C
d is a C-properly convex domain and 

(Ω, dΩ) is Gromov hyperbolic. Then the identity map Ω → Ω extends to a homeomorphism

Ω
End → Ω

G
.

Remark 1.17. To be precise, Theorem 1.4 in [10] assumes that the Kobayashi distance KΩ

is Gromov hyperbolic and shows that Ω
End

is homeomorphic to the Gromov compact-

ification of (Ω, KΩ). However, as mentioned earlier, the Kobayashi and Kähler-Einstein 

metrics are bi-Lipschitz on any C-properly convex domain [27] and the Gromov boundary 

is a quasi-isometric invariant.

Using Theorem 1.16 and facts about the geometry of Gromov hyperbolic metric 

spaces, one can establish the following results about the behavior of holomorphic maps.

Corollary 1.18 ([10, Corollary 1.6]). Suppose Ω1, Ω2 ⊂ C
d are C-properly convex do-

mains and f : Ω1 → Ω2 is a biholomorphism. If (Ω1, dΩ1
) (and hence also (Ω2, dΩ2

)) is 

Gromov hyperbolic, then f extends to a homeomorphism Ω1
End → Ω2

End
.

Corollary 1.19 ([10, Corollary 1.7]). Suppose Ω ⊂ C
d is a C-properly convex domain 

and (Ω, dΩ) is Gromov hyperbolic. If f : Ω → Ω is holomorphic, then either

(1) f has a fixed point in Ω, or

(2) there exists ξ ∈ ∂EndΩ such that

lim
n→∞

fn(z) = ξ

for all z ∈ Ω.

Theorem 1.5 provides new examples with non-smooth boundary for which these corol-

laries apply.

1.1. Outline of paper

Throughout the paper we will consider the Kobayashi metric instead of the Kähler-

Einstein metric. As mentioned in the introduction, Frankel [27] proved that the two 

metrics are bi-Lipschitz on any C-properly convex domain. Hence, if one is Gromov 

hyperbolic, then so is the other. In the convex setting, the Kobayashi metric is slightly 

easier to work with because there are very precise estimates, see for instance Lemmas 2.9

and 2.10 below. However, for general pseudoconvex domains it is not known whether or 
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not the Kobayashi metric is complete, so it seems reasonable to state all the results in 

the introduction in terms of the Kähler-Einstein metric.

The paper has four main parts:

(1) Sections 2 through 4 are mostly expository and devoted to some preliminary material.

(2) Sections 5 through 9 are devoted to the proof of Theorem 1.5. In Section 5 we recall 

some prior work and give an outline of the proof of Theorem 1.5.

(3) Sections 10 through 16 are devoted to the proof Theorem 1.3. In Section 10 we recall 

some prior work and give an outline of the proof of Theorem 1.3.

(4) In Sections 17 through 21, we construct a number of examples.

Acknowledgments
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very insightful comments. This material is based upon work supported by the National 

Science Foundation under grants DMS-1760233, DMS-2104381, and DMS-2105580.

Part 1. Preliminaries

2. Background material

2.1. Notation

(1) For z ∈ C
d let ‖z‖ be the standard Euclidean norm and dEuc(z1, z2) = ‖z1 − z2‖ be 

the standard Euclidean distance.

(2) For z0 ∈ C
d and r > 0 let

Bd(z0; r) =
{

z ∈ C
d : ‖z − z0‖ < r

}
.

Then let Bd = Bd(0; 1) and D = B1.

(3) Throughout the paper we will let Cd ∪{∞} denote the one-point compactification 

of Cd.

(4) Given an open set Ω ⊂ C
d, z ∈ Ω, and v ∈ C

d \{0} let

δΩ(z) = inf{dEuc(z, w) : w ∈ ∂Ω}

and

δΩ(z; v) = inf{dEuc(z, w) : w ∈ ∂Ω ∩ (z + C ·v)}.

2.2. Gromov hyperbolicity

In this subsection we recall the definition of Gromov hyperbolic metric spaces and 

state some of their basic properties, additional information can be found in [11] or [25].
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Given a metric space (X, d) define the Gromov product of x, y, z ∈ X to be

(x|y)z =
1

2
(d(x, z) + d(z, y) − d(x, y)) .

Definition 2.1.

(1) A metric space (X, d) is δ-hyperbolic if

(x|z)w ≥ min{(x|y)w, (y|z)w} − δ

for all x, y, z, w ∈ X.

(2) A metric space is called Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

For proper geodesic metric spaces, Gromov hyperbolicity can also be defined in terms 

of the shape of geodesic triangles.

When (X, d) is a metric space and I ⊂ R is an interval, a curve σ : I → X is a 

geodesic if

d(σ(t1), σ(t2)) = |t1 − t2|

for all t1, t2 ∈ I. We say that (X, d) is geodesic if every two points in X can be joined 

by a geodesic and proper if bounded closed sets are compact.

A geodesic triangle in a metric space is a choice of three (not necessarily distinct) 

points in X and geodesic segments connecting these points. A geodesic triangle is said 

to be δ-thin if any point on any of the sides of the triangle is within distance δ of the 

union of the other two sides.

Theorem 2.2. If (X, d) is a proper geodesic metric space, then (X, d) is Gromov hyperbolic 

if and only if there exists some δ ≥ 0 such that every geodesic triangle is δ-thin.

Proof. See for instance [11, Chapter III.H, Proposition 1.22]. �

A proper geodesic Gromov hyperbolic metric space (X, d) also has a natural boundary 

which can be described as follows. Two geodesic rays σ1, σ2 : [0, ∞) → X are asymptotic

if

sup
t≥0

d(σ1(t), σ2(t)) < ∞.

Then the Gromov boundary, denoted by ∂GX, is the set of equivalence classes of asymp-

totic geodesic rays in X.

The set X
G

= X ∪ ∂GX has a natural topology making it a compactification of X

(see for instance [11, Chapter III.H.3]). To understand this topology we introduce the 
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following notation: given a geodesic ray σ : [0, ∞) → X let [σ] denote the equivalence 

class of σ and given a geodesic segment σ : [0, R] → X define [σ] := σ(R). Now fix a 

point x0 ∈ X, then the topology on X
G

can be described as follows: ξn → ξ if and only 

if for every choice of geodesics σn with σn(0) = x0 and [σn] = ξn every subsequence 

of (σn)n≥0 has a subsequence which converges locally uniformly to a geodesic σ with 

[σ] = ξ. One can also show that this topology does not depend on the choice of x0 (again 

see [11, Chapter III.H.3]).

Remark 2.3. In some special cases, for instance when X is simply connected complete 

negatively curved Riemannian manifold, for every ξ ∈ X
G

there exists a unique geodesic 

σξ with σξ(0) = x0 and [σξ] = ξ. In this case, ξn → ξ if and only the geodesics σξn

converge locally uniformly to σξ.

Next we recall the Morse Lemma for quasi-geodesics.

Definition 2.4. Suppose (X, d) is a metric space, I ⊂ R is an interval, α ≥ 1, and β ≥ 0. 

Then a map σ : I → X is a (α, β)-quasi-geodesic if

1

α
|t − s| − β ≤ d(σ(s), σ(t)) ≤ α |t − s| + β

for all s, t ∈ I.

Quasi-geodesics in a Gromov hyperbolic metric space have the following remarkable 

property.

Theorem 2.5 (Morse lemma). For any δ > 0, α ≥ 1, and β ≥ 0 there exists M =

M(δ, α, β) > 0 with the following property: if (X, d) is a proper geodesic δ-hyperbolic 

metric space and σ1 : [a1, b1] → X, σ2 : [a2, b2] → X are (α, β)-quasi-geodesics with 

σ1(a1) = σ2(a2), σ1(b1) = σ2(b2), then

max

{
max

t∈[a1,b1]
d(σ1(t), σ2), max

t∈[a2,b2]
d(σ2(t), σ1)

}
≤ M.

Proof. For a proof see for instance [11, Chapter III.H, Theorem 1.7]. �

2.3. The Kobayashi metric

In this expository section we recall the definition of the Kobayashi metric and then 

state some of its properties.

Given a domain Ω ⊂ C
d the (infinitesimal) Kobayashi metric is the pseudo-Finsler 

metric

kΩ(x; v) = inf {|ξ| : f ∈ Hol(D, Ω), f(0) = x, d(f)0(ξ) = v} .
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By a result of Royden [48, Proposition 3] the Kobayashi metric is an upper semicontinu-

ous function on Ω × C
d. In particular, if σ : [a, b] → Ω is an absolutely continuous curve 

(as a map [a, b] → C
d), then the function

t ∈ [a, b] → kΩ(σ(t); σ′(t))

is integrable and we can define the length of σ to be

	Ω(σ) =

b∫

a

kΩ(σ(t); σ′(t))dt.

One can then define the Kobayashi pseudo-distance to be

KΩ(x, y) = inf {	Ω(σ) : σ : [a, b] → Ω is abs. cont., σ(a) = x, and σ(b) = y} .

This definition is equivalent to the standard definition using analytic chains by a result 

of Venturini [51, Theorem 3.1].

When Ω ⊂ C
d is bounded, it is easy to show that KΩ is a non-degenerate distance 

on Ω. For general domains determining whether or not KΩ is non-degenerate is very 

difficult, but in the special case of convex domains we have the following result of Barth.

Theorem 2.6 (Barth [5]). Suppose Ω is a convex domain. Then the following are equiv-

alent:

(1) Ω is C-proper,

(2) Ω is biholomorphic to a bounded domain,

(3) KΩ is a non-degenerate distance on Ω,

(4) (Ω, KΩ) is a proper geodesic metric space.

Since every C-properly convex domain is biholomorphic to a bounded domain, the 

results of Cheng-Yau [21] and Mok-Yau [44] imply that every such domain has a unique 

complete Kähler-Einstein metric with Ricci curvature −1.

Definition 2.7. When Ω ⊂ C
d is a C-properly convex domain, let gΩ be the unique com-

plete Kähler-Einstein metric on Ω with Ricci curvature −1 and let dΩ be the associated 

distance.

As mentioned in Remark 1.2, we have the following uniform relationship between the 

Kobayashi and Kähler-Einstein metrics.

Theorem 2.8 (Frankel [27]). For any d ∈ N, there exists A > 1 such that: if Ω ⊂ C
d is 

a C-properly convex domain, then
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1

A
kΩ(z; v) ≤

√
gΩ(v, v) ≤ AkΩ(z; v)

for all z ∈ Ω and v ∈ TzΩ.

We will also use the following standard estimates on the Kobayashi distance and 

metric.

Lemma 2.9 (Graham [31]). Suppose Ω ⊂ C
d is a convex domain. If z ∈ Ω and v ∈ C

d is 

non-zero, then

‖v‖
2δΩ(z; v)

≤ kΩ(z; v) ≤ ‖v‖
δΩ(z; v)

.

A proof of Lemma 2.9 can also be found in [27, Theorem 2.2].

Lemma 2.10. Suppose Ω ⊂ C
d is a convex domain and H ⊂ C

d is a complex hyperplane 

such that H ∩ Ω = ∅. Then for any z1, z2 ∈ Ω we have

KΩ(z1, z2) ≥ 1

2

∣∣∣∣log
dEuc(H, z1)

dEuc(H, z2)

∣∣∣∣ .

A proof of Lemma 2.10 can be found in [54, Lemma 4.2].

Lemma 2.11. Suppose Ω ⊂ C
d is a convex domain, z1, z2 ∈ Ω, and L is the complex 

affine line containing z1, z2. Then

KΩ(z1, z2) ≥ sup
ξ∈L\Ω∩L

1

2

∣∣∣∣log
‖z1 − ξ‖
‖z2 − ξ‖

∣∣∣∣ .

A proof of Lemma 2.11 can be found in [52, Lemma 2.6], but it also follows easily 

from Lemma 2.10.

Using Lemma 2.9 and Lemma 2.10 it is possible to prove the following.

Proposition 2.12 ([52, Theorem 3.1]). Suppose Ω ⊂ C
d is a C-properly convex domain. 

For any z0 ∈ Ω and R > 0, there exist α ≥ 1 and β ≥ 0 such that: if ξ ∈ ∂Ω ∩ Bd(0; R), 

then the curve σξ : [0, ∞) → Ω given by

σξ(t) = ξ + e−2t (z0 − ξ)

is an (α, β)-quasi-geodesic.

2.4. Geometric properties of convex domains

In this section we recall some basic geometric properties of convex domains.
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First, we have the following result about the complex geometry of the boundary of a 

convex domain.

Proposition 2.13. Suppose Ω ⊂ C
d is a convex domain. Then every holomorphic map 

D → ∂Ω is constant if and only if every complex affine map D → ∂Ω is constant.

Proof. See for instance [29, Theorem 1.1]. �

We will also use the following observation about the asymptotic geometry of a convex 

domain.

Observation 2.14. Suppose Ω ⊂ C
d is a convex domain and v ∈ C

d is non-zero. Then 

the following are equivalent:

(1) there exists a sequence zn ∈ Ω such that ‖zn‖ → ∞ and

lim
n→∞

zn

‖zn‖ =
v

‖v‖ ,

(2) z0 + R≥0 v ⊂ Ω for some z0 ∈ Ω,

(3) z + R≥0 v ⊂ Ω for all z ∈ Ω.

Proof. Clearly (3) ⇒ (2) ⇒ (1). To prove (1) ⇒ (3): suppose that zn ∈ Ω, ‖zn‖ → ∞, 

and

lim
n→∞

zn

‖zn‖ =
v

‖v‖ .

Fix some z ∈ Ω. Then by convexity [z, zn] ⊂ Ω for every n ∈ N. So z + R≥0 v ⊂ Ω. Then 

since Ω is open and convex, we see that z + R≥0 v ⊂ Ω. �

This observation motivates the following standard definition.

Definition 2.15. Suppose Ω ⊂ C
d is a convex domain. The asymptotic cone of Ω, denoted 

by AC(Ω), is the set of vectors v ∈ C
d such that z + R≥0 v ⊂ Ω for some (hence all) 

z ∈ Ω.

As the name suggests we have the following.

Observation 2.16. Suppose Ω ⊂ C
d is a convex domain. Then AC(Ω) is a convex cone 

based at 0.

Proof. This is an immediate consequence of convexity. �



14 A. Zimmer / Advances in Mathematics 402 (2022) 108334

Finally, we have the following connection between the asymptotic cone and the end 

compactification (recall, from Definition 1.15, that Ω
End

denotes the end compactification 

of Ω).

Observation 2.17. Suppose Ω ⊂ C
d is a convex domain. Then either

(1) Ω is bounded and Ω
End

= Ω,

(2) Ω
End \ Ω is a single point, or

(3) Ω
End \ Ω is two points and AC(Ω) = R ·v for some non-zero v ∈ C

d.

Proof. This is an immediate consequence of Observation 2.14. �

3. The space of convex domains

Following work of Frankel [26,27], in this section we describe some facts about the 

space of convex domains and the action of the affine group on this space.

Definition 3.1. Let Xd be the set of all non-empty C-properly convex domains in Cd and 

let Xd,0 be the set of pairs (Ω, z) where Ω ∈ Xd and z ∈ Ω.

Remark 3.2. The motivation for only considering C-properly convex domains comes from 

Theorem 2.6.

We now describe a natural topology on the sets Xd and Xd,0. Given two non-empty 

compact sets A, B ⊂ C
d, the Hausdorff distance between them is

dH(A, B) = max

{
max
a∈A

min
b∈B

‖a − b‖ , max
b∈B

min
a∈A

‖b − a‖
}

.

We also define

dH(A, ∅) = dH(∅, A) =

{
∞ if A 
= ∅
0 if A = ∅

.

The Hausdorff distance is a complete metric on the set of non-empty compact subsets 

in Cd. To consider general closed sets, we introduce the local Hausdorff pseudo-distances

between two non-empty closed sets A, B ⊂ C
d by defining

d
(R)
H (A, B) = dH

(
A ∩ Bd(0; R), B ∩ Bd(0; R)

)

for R > 0. Since an open convex set is determined by its closure, we can define a topology 

on Xd and Xd,0 using these pseudo-distances:
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(1) A sequence Ωn ∈ Xd converges to Ω ∈ Xd if there exists some R0 ≥ 0 such that 

d
(R)
H (Ωn, Ω) → 0 for all R ≥ R0,

(2) A sequence (Ωn, zn) ∈ Xd,0 converges to (Ω, z) ∈ Xd,0 if Ωn converges to Ω in Xd

and zn converges to z in Cd.

We will frequently use the following basic properties of this notion of convergence.

Proposition 3.3. Suppose that Ωn converges to Ω in Xd.

(1) For any compact set K ⊂ Ω, there exists some N ≥ 0 such that K ⊂ Ωn for all 

n ≥ N .

(2) If zn ∈ Ωn and limn→∞ zn = z, then z ∈ Ω.

(3) If zn ∈ C
d \Ωn and limn→∞ zn = z, then z ∈ C

d \Ω.

Proof. A proof Part (1) can be found in [52, Lemma 4.4]. Parts (2) and (3) follow 

immediately from the definition. �

The Kobayashi distance also behaves as one would hope under this notion of conver-

gence.

Proposition 3.4. Suppose that a sequence Ωn converges to Ω in Xd. Then

lim
n→∞

KΩn
= KΩ

and the convergence is uniform on compact subsets of Ω × Ω.

Proof. See for instance [52, Theorem 4.1]. �

We will frequently use the following observation.

Observation 3.5. Suppose Ωn converges to Ω in Xd and σn : [0, Tn] → Ωn is a sequence 

of geodesics where

lim
n→∞

σn(0) = z0 ∈ Ω

and T = limn→∞ Tn ∈ [0, ∞]. Then there exists a subsequence σnj
which converges 

locally uniformly to a geodesic σ : [0, T ] ∩ R → Ω. In particular, if T < ∞, then

lim
n→∞

σnj
(Tnj

) = σ(T ) ∈ Ω.

Proof. Fix R > 0 and let B = {z ∈ Ω : KΩ(z, z0) ≤ R + 1}. Then B is compact and 

so Proposition 3.3 implies that B ⊂ Ωn for n sufficiently large. Further, Proposition 3.4

implies that KΩn
(σn(0), ∂B) > R for n sufficiently large. So
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σn([0, Tn] ∩ [0, R]) ⊂ B

for n sufficiently large. Then Proposition 3.4 and the Arzelà-Ascoli theorem imply that 

σn|[0,Tn]∩[0,R] has a convergent subsequence and the limit is a geodesic in Ω.

Since R > 0 was arbitrary, there exists a subsequence σnj
which converges locally 

uniformly to a geodesic σ : [0, T ] ∩ R → Ω. �

Next let Aff(Cd) be the group of complex affine isomorphisms of Cd. Then Aff(Cd)

acts on Xd and Xd,0. Remarkably, the action of Aff(Cd) on Xd,0 is co-compact.

Theorem 3.6 (Frankel [27]). The group Aff(Cd) acts co-compactly on Xd,0, that is there 

exists a compact set K ⊂ Xd,0 such that Aff(Cd) · K = Xd,0.

Suppose Ω ⊂ C
d is a C-properly convex domain and zn ∈ Ω is a sequence. Then 

Theorem 3.6 implies that there exists a sequence of affine maps An ∈ Aff(Cd) such that

{An(Ω, zn) : n ∈ N}

is relatively compact in Xd,0. So there exist nj → ∞ such that Anj
(Ω, znj

) converges 

to some (U, u) in Xd,0. The next result shows that the domain U only depends on the 

choice of znj
.

Proposition 3.7. Suppose (Ωn, zn) ∈ Xd,0, An ∈ Aff(Cd), and Bn ∈ Aff(Cd) are such 

that

lim
n→∞

An(Ωn, zn) = (U1, u1) and lim
n→∞

Bn(Ωn, zn) = (U2, u2)

in Xd,0. Then there exist nj → ∞ such that

Bnj
A−1

nj

converges to some T ∈ Aff(Cd) and

T (U1, u1) = (U2, u2) .

Proof. The map Tn = BnA−1
n : C

d → C
d induces an isometry

(AnΩn, KAnΩ) → (BnΩn, KBnΩ)

with Tn(Anzn) = Bnzn. Then by Proposition 3.4 and the Arzelà-Ascoli theorem (see 

the proof of Observation 3.5), we can pass to a subsequence so that Tn converges locally 

uniformly to an isometry

T : (U1, KU1
) → (U2, KU2

)
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with T (u1) = u2. Then T , being a limit of affine maps of Cd, is affine. Since T is an 

isometry, it is a bijection U1 → U2. Then since T is injective on U1, we have T ∈ Aff(Cd)

and since T is onto we have T (U1, u1) = (U2, u2). �

4. Normalizing maps

The main result of this section is Theorem 4.3 where we construct affine maps which 

“normalize” the following data: a C-properly convex domain Ω and some z0 ∈ Ω, ξ ∈ ∂Ω, 

q ∈ [z0, ξ). The results in this section are refinements of various arguments in [26,27].

Definition 4.1. For r ∈ (0, 1] let Kd(r) ⊂ Xd denote the set of C-properly convex domains 

Ω ⊂ C
d where

(1) r D ·e1 ⊂ Ω and D ·ej ⊂ Ω for j = 2, . . . , d

(2) ej ∈ ∂Ω and

(ej + SpanC{ej+1, . . . , ed}) ∩ Ω = ∅

for j = 1, . . . , d.

We first verify that these sets are compact in Xd.

Proposition 4.2. For any r ∈ (0, 1], the set Kd(r) is compact in Xd.

Proof. Suppose Ωn is a sequence in Kd(r). For each R > 0, the set

{
K ⊂ Bd(0; R) : K is compact

}

is compact in the Hausdorff topology, see for instance [42, Proposition 3.6, Theorem 4.2]. 

So we can find nested subsequences

(n1,j)∞
j=1 ⊃ (n2,j)∞

j=1 ⊃ . . .

such that

lim
j→∞

Ωnm,j
∩ Bd(0; m) = Cm

where Cm is a closed convex domain. Since the sequences are nested,

C1 ⊂ C2 ⊂ . . .

So C := ∪∞
m=1Cm is convex and Cm = C ∩ Bd(0; m) for every m ≥ 1.
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Let Ω∞ denote the interior of C. Since

ConvHull {r D ·e1, D ·e2, . . . , D ·ed} ⊂ Ωn

for every n ≥ 1, we see that

ConvHull {r D ·e1, D ·e2, . . . , D ·ed} ⊂ C.

So C has non-empty interior. So Ω∞ is non-empty and hence Ω∞ = C. Then, by defini-

tion, Ωnm,m
converges to Ω∞ in the local Hausdorff topology.

We claim that Ω∞ ∈ Kd(r). Since each Ωn is in Kd(r), Proposition 3.3 Parts (2) and 

(3) imply that

(1) r D ·e1 ⊂ Ω∞ and D ·ej ⊂ Ω∞ for j = 2, . . . , d

(2) ej ∈ ∂Ω∞ and

(ej + SpanC{ej+1, . . . , ed}) ∩ Ω∞ = ∅

for j = 1, . . . , d.

So we just have to show that Ω∞ ∈ Xd. Since 0 ∈ Ω∞, using Observation 2.14 it is 

enough to show: if C ·v ⊂ Ω∞ for some v ∈ C
d, then v = 0. So suppose that C ·v ⊂ Ω∞. 

Since

(e1 + SpanC{e2, . . . , ed}) ∩ Ω∞ = ∅

we must have v1 = 0. Then since

(e2 + SpanC{e3, . . . , ed}) ∩ Ω∞ = ∅

we must have v2 = 0. Repeating the same argument shows that v3 = v4 = · · · = vd = 0. 

So v = 0 and hence Ω∞ ∈ Xd. �

Theorem 4.3. If Ω ⊂ C
d is a C-properly convex domain, z0 ∈ Ω, ξ ∈ ∂Ω, H is a 

supporting complex hyperplane of Ω at ξ, q ∈ (ξ, z0], and

r :=
δΩ(z0)

‖ξ − z0‖ ,

then there exists an affine map A with the following properties:

(1) AΩ ∈ Kd(r),

(2) A(q) = 0,

(3) A(ξ) = e1,
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(4) A(H) = e1 + SpanC{e2, . . . , ed}, and

(5) if δH = max{δΩ(q; v) : v ∈ −ξ + H non-zero}, then

‖A(z1) − A(z2)‖ ≥ r√
2δH

‖z1 − z2‖

for all z1, z2 ∈ C
d.

Remark 4.4. Notice that −ξ + H is the complex hyperplane through 0 which is parallel 

to H.

Proof. By translating Ω we can assume that q = 0.

Since Ω contains the convex hull of Bd(z0; δΩ(z0)) and ξ we see that:

δΩ(0) ≥ δΩ(z0)

‖z0 − ξ‖ ‖0 − ξ‖ = r ‖ξ‖ . (1)

We select points x1, . . . , xd ∈ ∂Ω and complex linear subspaces

P1 ⊃ P2 ⊃ · · · ⊃ Pd = {0}

with dimC Pj = d − j using the following procedure. First let x1 = ξ and P1 = −ξ + H. 

Then assuming x1, . . . , xj−1 and P1, . . . , Pj−1 have already been selected, let xj be a 

point in Pj−1 ∩ ∂Ω closest to q = 0 and let Pj be the orthogonal complement of C ·xj in 

Pj−1. Then define

τj = ‖xj‖ .

We claim that

(xj + Pj) ∩ Ω = ∅ (2)

for all 1 ≤ j ≤ d. Since x1 = ξ and P1 = −ξ + H, this clearly holds when j = 1. Suppose 

j > 1. Then, since Pj−1 ∩ Ω is convex and xj ∈ ∂(Pj−1 ∩ Ω), there exists a codimension 

one complex linear subspace Hj ⊂ Pj−1 such that (xj + Hj) ∩ Ω = ∅. But by our choice 

of xj we have

Bd(0; τj) ∩ Pj−1 ⊂ Ω

and ‖xj‖ = τj . So xj + Hj must be tangent to ∂ Bd(0; τj) at xj . Hence Hj = Pj and so 

(xj + Pj) ∩ Ω = ∅.

We next claim that Pj = SpanC{xj+1, . . . , xd} for all 1 ≤ j ≤ d. By construction

Pj = C ·xj+1 + Pj+1
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where P0 := C
d. Thus

Pj = C ·xj+1 + Pj+1 = C ·xj+1 + C ·xj+2 + Pj+2

= · · · = C ·xj+1 + · · · + C ·xd = SpanC{xj+1, . . . , xd}. (3)

Combining Equations (2) and (3) yields

Ω ∩ (xj + SpanC{xj+1, . . . , xd}) = ∅ (4)

for all 1 ≤ j ≤ d.

Next let Λ ∈ GLd(C) be the diagonal matrix

⎛
⎜⎝

τ−1
1

. . .

τ−1
d

⎞
⎟⎠ .

Then let U ∈ GLd(C) be the linear map such that

ΛU(xj) = ej

for all 1 ≤ j ≤ d. Notice that Equation (3) with j = 0 implies that x1, . . . , xd is a basis 

and so U is uniquely defined. Finally, let A = ΛU .

By construction we have A(0) = 0 (that is, A(q) = 0), A(ξ) = e1, and

A(H) = A(x1 + P1) = e1 + SpanC{e2, . . . , ed}.

We claim that AΩ ∈ Kd(r). Since τ1 = ‖ξ‖, Equation (1) implies that

r D ·e1 ⊂ AΩ.

Further, for j ≥ 2 we have

D ·ej ⊂ AΩ

since xj is a closest point to q = 0 in Pj−1 ∩ ∂Ω. Equation (4) and the definition of A

imply that ej ∈ ∂AΩ and

AΩ ∩ (ej + SpanC{ej+1, . . . , ed}) = ∅. (5)

So AΩ ∈ Kd(r).

Notice that

‖A(z1) − A(z2)‖ = ‖ΛU(z1 − z2)‖ ≥ 1

‖U−1‖ max τj
‖z1 − z2‖
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for any z1, z2 ∈ C
d. Further,

τ1 = ‖ξ‖ ≤ 1

r
δΩ(0) ≤ 1

r
δH

and

τj = δΩ(0; xj) ≤ δH

for j ≥ 2. So

‖A(z1) − A(z2)‖ ≥ r

δH ‖U−1‖ ‖z1 − z2‖

for any z1, z2 ∈ C
d. Thus we just have to bound 

∥∥U−1
∥∥ from above. Now

U−1(ej) =
xj

τj

for all 1 ≤ j ≤ d and by construction x2, . . . , xd are pairwise orthogonal. Hence

∥∥U−1v
∥∥ ≤ |v1|

∥∥∥∥
x1

τ1

∥∥∥∥+

∥∥∥∥∥∥

d∑

j=2

vj
xj

τj

∥∥∥∥∥∥
= |v1| +

√√√√
d∑

j=2

|vj |2 ≤
√

2 ‖v‖ .

Thus

‖A(z1) − A(z2)‖ ≥ r√
2δH

‖z1 − z2‖

for all z1, z2 ∈ C
d. �

Using Theorem 4.3 we can provide a proof of Theorem 3.6.

Corollary 4.5. Define

Kd,0 := {(Ω, 0) : Ω ∈ Kd(1)}.

Then Kd,0 is a compact subset of Xd,0 and Aff(Cd) · Kd,0 = Xd,0.

Proof. Since Kd(1) is a compact subset of Xd, we see that Kd,0 is a compact subset of 

Xd,0. Now fix some (Ω, q) ∈ Xd,0. Then apply Theorem 4.3 with z0 = q and ξ ∈ ∂Ω such 

that ‖q − ξ‖ = δΩ(q). Then

‖ξ − z0‖ = δΩ(z0),
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and so there exists an affine map A ∈ Aff(Cd) such that AΩ ∈ Kd(1) and A(q) = 0. 

So A(Ω, q) ∈ Kd,0. Then since (Ω, q) ∈ Xd,0 was arbitrary we see that Aff(Cd) · Kd,0 =

Xd,0. �

The following “extension” result will allow us to reduce many arguments to the d = 2

case.

Proposition 4.6. Suppose Ω ⊂ C
d is a C-properly convex domain. If 1 ≤ m ≤ d and

Ω ∩ SpanC{e1, . . . , em} ∈ Km(r),

then there exists A ∈ GLd(C) such that AΩ ∈ Kd(r) and A|SpanC{e1,...,em} = id.

Proof. We will select points x1, . . . , xd ∈ ∂Ω and complex linear subspaces P1, . . . , Pd ⊂
C

d with

(1) P1 ⊃ P2 ⊃ · · · ⊃ Pd = {0},

(2) dimC Pj = d − j for 1 ≤ j ≤ d, and

(3) SpanC{ej+1, . . . , em} ⊂ Pj for 1 ≤ j ≤ m − 1.

First for 1 ≤ j ≤ m, let xj = ej . Then we select P1, . . . , Pm sequentially as follows. 

Since Ω is convex and

(e1 + SpanC{e2, . . . , em}) ∩ Ω = ∅,

there exists a complex linear subspace P1 such that dimC P1 = d − 1,

SpanC{e2, . . . , em} ⊂ P1,

and

(e1 + P1) ∩ Ω = ∅.

Then assuming 1 ≤ j ≤ m − 1 and we have already selected P1, . . . , Pj , we select Pj+1

as follows. Since Ω ∩ Pj is convex,

SpanC{ej+1, . . . , em} ⊂ Pj ,

and

(ej+1 + SpanC{ej+2, . . . , em}) ∩ Ω = ∅,

there exists a codimension one complex linear subspace Pj+1 ⊂ Pj such that
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SpanC{ej+2, . . . , em} ⊂ Pj+1

and (ej+1 + Pj+1) ∩ Ω = ∅.

Next we select xm+1, . . . , xd and Pm+1, . . . , Pd. Supposing j ≥ m and that x1, . . . , xj

and P1, . . . , Pj have already been selected, we pick xj+1 and Pj+1 as follows: let xj+1

be a point in Pj ∩ ∂Ω closest to 0 and let Pj+1 be a (d − j − 1)-dimensional complex 

subspace such that Pj+1 ⊂ Pj and (xj+1 + Pj+1) ∩ Ω = ∅. Since Pj ∩ Ω is convex and 

xj+1 ∈ ∂(Pj ∩ Ω), such a subspace exists.

Now let A ∈ GLd(C) be the complex linear map with A(xj) = ej for 1 ≤ j ≤ d. 

Since x1, . . . , xd is a basis of Cd, the linear map A is well defined. Since xj = ej when 

1 ≤ j ≤ m we see that A|SpanC{e1,...,em} = id. Arguing as in the proof of Theorem 4.3

shows that AΩ ∈ Kd(r). �

Part 2. Necessary and sufficient conditions for Gromov hyperbolicity

5. Prior work and outline of the proof of Theorem 1.5

In this section we recall some prior results concerning the Gromov hyperbolicity of 

the Kobayashi metric. Then we give an outline of the proof of Theorem 1.5.

In [52], we established the following necessary conditions.

Theorem 5.1 ([52]). Suppose Ω is a C-properly convex domain and (Ω, KΩ) is Gromov 

hyperbolic, then:

(1) Ω has simple boundary,

(2) if D ∈ Aff(Cd) · Ω ∩ Xd, then (D, KD) is Gromov hyperbolic, and

(3) every domain in Aff(Cd) · Ω ∩ Xd has simple boundary.

Proof. Part (1) is [52, Theorem 1.6] and Part (2) is [52, Theorem 1.8]. Part (3) is an 

immediate consequence of Parts (1) and (2). �

In [52] we also established a sufficient condition for the Kobayashi metric to be Gromov 

hyperbolic, however the result requires several definitions to state.

Definition 5.2. Given a curve σ : R → C
d the forward accumulation set of σ is

σ(∞) :=
{

z ∈ C
d ∪{∞} : there exist tn → ∞ with σ(tn) → z

}

and the backward accumulation set of σ is

σ(−∞) :=
{

z ∈ C
d ∪{∞} : there exist tn → −∞ with σ(tn) → z

}
.
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Definition 5.3. Suppose Ω ⊂ C
d is a domain. We say geodesics in (Ω, KΩ) are well-

behaved if

σ(∞) ∩ σ(−∞) = ∅

for every geodesic line σ : R → Ω.

Definition 5.4. Suppose Ωn converges to Ω in Xd. We say Ωn is a visibility sequence if 

for every sequence σn : [an, bn] → Ωn of geodesics with

lim
n→∞

σn(an) = ξ ∈ C
d ∪{∞},

lim
n→∞

σn(bn) = η ∈ C
d ∪{∞},

and ξ 
= η, then there exist sequences nj → ∞ and Tj ∈ [anj
, bnj

] such that σnj
(Tj)

converges to a point in Ω.

Remark 5.5. Informally the visibility condition says that geodesic segments between 

distinct points “bend” into the domain.

Theorem 5.6 ([52, Theorem 8.3]). Suppose Ω is a C-properly convex domain. Assume 

for any sequence un ∈ Ω there exist nj → ∞ and Aj ∈ Aff(Cd) so that

(1) Aj(Ω, unj
) converges to some (Ω∞, u∞) in Xd,0,

(2) geodesics in (Ω∞, KΩ∞
) are well behaved, and

(3) AjΩ is a visibility sequence.

Then (Ω, KΩ) is Gromov hyperbolic.

Theorem 8.3 in [52] is formulated in a different way, so we will provide the argument. 

But first a lemma.

Lemma 5.7. Assume that Ωn is a visibility sequence converging to some Ω∞ in Xd and 

σn : [0, Tn] → Ωn is a sequence of geodesics which converges locally uniformly to a 

geodesic σ : [0, ∞) → Ω∞. Then

lim
t→∞

σ(t) = lim
n→∞

σn(Tn) ∈ C
d ∪{∞} (6)

(in particular, the two limits exist).

Proof. Suppose for a contradiction that Equation (6) is false. Then there exist sm → ∞, 

nm → ∞, and η, ξ ∈ C
d ∪{∞} such that σ(sm) → η, σnm

(Tnm
) → ξ, and η 
= ξ. Since 

sm, Tnm
→ ∞, Proposition 3.4 implies that η, ξ ∈ ∂Ω∞ ∪ {∞}.
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Since σn converges locally uniformly to σ we can pick s′
n so that σn(s′

n) → η. Since 

η ∈ ∂Ω∞ ∪ {∞}, Observation 3.5 implies that s′
n → ∞.

Let am = min{s′
nm

, Tnm
} and bm = max{s′

nm
, Tnm

}. Since Ωn is a visibility sequence 

we can pass to another subsequence and find Sm ∈ [am, bm] so that σnm
(Sm) converges 

to a point z∞ ∈ Ω∞. Notice that Sm → ∞ since am → ∞. But then by Proposition 3.4

∞ > KΩ∞
(z∞, σ(0)) = lim

m→∞
KΩnm

(σnm
(Sm), σnm

(0)) = lim
m→∞

Sm = ∞.

So we have a contradiction. �

Proof of Theorem 5.6. Suppose for a contradiction that (Ω, KΩ) is not Gromov hyper-

bolic. Then by Theorem 2.2, for every n ∈ N there exists a geodesic triangle with vertices 

xn, yn, zn ∈ Ω and edges σxnyn
, σynzn

, σznxn
such that

KΩ(un, σynzn
∪ σznxn

) > n

for some un in the geodesic σxnyn
. Notice that

KΩ(un, {xn, yn, zn}) > n. (7)

After possibly passing to a subsequence, there exist affine maps An ∈ Aff(Cd) such 

that

(1) An(Ω, un) converges to some (Ω∞, u∞) in Xd,0,

(2) geodesics in (Ω∞, KΩ∞
) are well behaved, and

(3) AnΩ is a visibility sequence.

By passing to another subsequence we can suppose that Anxn, Anyn, Anzn converge to 

x∞, y∞, z∞ in Cd ∪{∞}.

We can parameterize σxnyn
: [an, bn] → Ω so that σxnyn

(0) = un. Notice that Equa-

tion (7) implies that

lim
n→∞

an = lim
n→∞

−KΩ(xn, un) = −∞

and

lim
n→∞

bn = lim
n→∞

KΩ(un, yn) = ∞.

Observation 3.5 implies that we can pass to a subsequence so that Anσxnyn
converges 

to a geodesic σxy : R → Ω∞ with σxy(0) = u∞.

By Lemma 5.7

lim
t→−∞

σxy(t) = lim
n→∞

Anxn = x∞
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and

lim
t→∞

σxy(t) = lim
n→∞

Anyn = y∞.

Since geodesics in (Ω∞, KΩ∞
) are well behaved, we have x∞ 
= y∞. So by possibly rela-

beling xn and yn, we may assume that z∞ 
= x∞. Then since AnΩ is a visibility sequence, 

we can pass to a subsequence and reparametrize σznxn
to assume that Anσznxn

(0) con-

verges to a point w∞ ∈ Ω∞. Then by Proposition 3.4

KΩ∞
(u∞, w∞) = lim

n→∞
KAnΩ(Anun, Anσznxn

(0)) = lim
n→∞

KΩ(un, σznxn
(0))

≥ lim
n→∞

KΩ(un, σznxn
) ≥ lim

n→∞
n = ∞.

So we have a contradiction. �

5.1. A sufficient condition for visibility

Motivated by work of Mercer, in [52] we established a sufficient condition for a se-

quence of convex domains to be a visibility sequence.

Definition 5.8 (Mercer [41, Definition 2.7]). For m ≥ 1, a bounded convex domain Ω is 

called m-convex if there exists C > 0 such that

δΩ(z; v) ≤ CδΩ(z)1/m (8)

for all z ∈ Ω and non-zero v ∈ C
d.

Remark 5.9. When d = 1, any convex domain is 1-convex since δΩ(z; v) = δΩ(z) for 

every z ∈ Ω and non-zero v ∈ C. When d ≥ 2, any m that satisfies Equation (8) has to 

be at least two: by Alexandrov’s theorem ∂Ω contains a C2 point ξ and

δΩ(ξ + tnξ; v) ≈ t1/2 ≈ δΩ(ξ + tnξ)1/2

if t > 0 is sufficiently small, nξ is the inward pointing unit normal vector of ∂Ω at ξ, and 

ξ + C ·v is tangent to ∂Ω at ξ.

When Ω is a smoothly bounded convex domain, it is easy to show that Ω is m-

convex for some m if and only if ∂Ω has finite type in the sense of D’Angelo, see for 

instance [52, Section 9]. Thus, for convex domains m-convexity can be viewed as a low 

regularity analogue of finite type.

For m-convex domains, Mercer proved a type of visibility result for complex geodesics, 

see [41, Lemma 3.3]. Motivated by this result we established the following visibility result 

for sequences of domains.
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Proposition 5.10 ([52, Proposition 7.8]). Suppose Ωn converges to Ω in Xd. Assume for 

any R > 0 there exist C, N > 0 and m ≥ 1 such that

δΩn
(z; v) ≤ CδΩn

(z)1/m

for all n ≥ N , z ∈ Bd(0; R) ∩Ωn, and v ∈ C
d non-zero. Then Ωn is a visibility sequence.

The proof in [52, Proposition 7.8] is somewhat indirect: first a visibility result for 

complex geodesics is established and then this is used to establish a visibility result for 

geodesics. A more direct argument can be found in [53, Proposition 4.5.10].

5.2. Outline of the proof of Theorem 1.5

Theorem 5.1 provides one direction of the desired equivalence, so we only have to 

consider the case when Ω ⊂ C
d is a bounded convex domain and every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary.

We will use Theorem 5.6 to show that (Ω, KΩ) is Gromov hyperbolic. Here is the 

sketch of the argument: fix a sequence un ∈ Ω. Then by Theorem 3.6 we can find a 

sequence of affine maps An such that {An(Ω, un) : n ∈ N} is relatively compact in 

Xd,0. Then by passing to a subsequence we can suppose that An(Ω, un) converges to 

some (Ω∞, u∞) ∈ Xd,0. To apply Theorem 5.6, we need to show that AnΩ is a visibility 

sequence and geodesics in Ω∞ are well behaved. This will be accomplished as follows:

(1) In Section 6, we prove general results which imply that AnΩ satisfies the hypothesis 

of Proposition 5.10 and hence is a visibility sequence.

(2) In Section 7, we discuss the general relationship between m-convexity and Gromov 

hyperbolicity. This is not necessary for the proof of Theorem 1.5, but clarifies the 

relationship between the two definitions.

(3) In Section 8, we prove general results which will imply that geodesics in Ω∞ are well 

behaved.

(4) In Section 9, we prove a generalization of Theorem 1.5.

6. Local m-convexity

In this section we establish the following sufficient condition for a local m-convexity 

condition to hold.

Theorem 6.1. Suppose K ⊂ Xd is a compact set and every domain in

Aff(Cd) · K ∩ Xd
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has simple boundary. Then for any R > 0 there exist C > 0 and m ≥ 1 such that

δΩ(z; v) ≤ CδΩ(z)1/m

for all Ω ∈ K, z ∈ Bd(0; R) ∩ Ω, and v ∈ C
d non-zero.

Before proving the theorem, we state and prove two corollaries.

Corollary 6.2. Suppose Ω is a C-properly convex domain and every domain in Aff(Cd) · Ω

∩ Xd has simple boundary. Then for any R > 0 there exist C > 0 and m ≥ 1 such that

δΩ(z; v) ≤ CδΩ(z)1/m

for all z ∈ Bd(0; R) ∩ Ω and v ∈ C
d non-zero.

Proof of Corollary 6.2. Simply apply Theorem 6.1 to K := {Ω}. �

Corollary 6.3. Suppose Ω is a C-properly convex domain and every domain in Aff(Cd) · Ω

∩ Xd has simple boundary. If An ∈ Aff(Cd) is a sequence of affine maps such that AnΩ

converges to some Ω∞ in Xd, then the sequence AnΩ is a visibility sequence.

Proof. Since AnΩ converges to Ω∞, the set K = {AnΩ : n ≥ 1} ∪ {Ω∞} is compact in 

Xd. Further,

Aff(Cd) · Ω∞ ∩ Xd ⊂ Aff(Cd) · Ω ∩ Xd

and so

Aff(Cd) · K ∩ Xd = Aff(Cd) · Ω ∩ Xd .

So Theorem 6.1 implies that for any R > 0 there exist C > 0 and m ≥ 1 such that

δAnΩ(z; v) ≤ CδAnΩ(z)1/m

for all n ≥ 1, z ∈ Bd(0; R) ∩AnΩ, and v ∈ C
d non-zero. Then AnΩ is a visibility sequence 

by Proposition 5.10. �

The rest of the section is devoted to the proof of Theorem 6.1. So fix a compact set 

K ⊂ Xd where every domain in Aff(Cd) · K ∩ Xd has simple boundary.

Lemma 6.4. Without loss of generality we can assume that 0 ∈ Ω for every Ω ∈ K.
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Proof. We first claim that there exists r > 0 such that: for every Ω ∈ K there exists 

z ∈ Ω with ‖z‖ ≤ r and δΩ(z) ≥ 1/r. Suppose not, then for every n ∈ N there exists 

Ωn ∈ K with

{z ∈ Ωn : ‖z‖ ≤ n and δΩn
(z) ≥ 1/n} = ∅.

Since K is compact, we can pass to a subsequence and suppose that Ωn converges to 

some Ω∞ in Xd.

Fix some u ∈ Ω∞. Then let r0 = max{‖u‖ , 2
δΩ(u)}. Then Bd(u; 2/r0) ⊂ Ω∞ and so by 

Proposition 3.3 part (1) there exists N > 0 such that Bd(u; 1/r0) ⊂ Ωn for every n ≥ N . 

Thus

u ∈ {z ∈ Ωn : ‖z‖ ≤ n and δΩn
(z) ≥ 1/n}

when n ≥ max{r0, N} and so we have a contradiction. Hence there exists some r > 0

with the desired property.

Next let K0 denote the set of domains of the form −z + Ω where Ω ∈ K, z ∈ Ω, 

‖z‖ ≤ r, and δΩ(z) ≥ 1/r. Then K0 is compact in Xd and 0 ∈ Ω for every Ω ∈ K0. 

Further K0 ⊂ Aff(Cd) · K and so

Aff(Cd) · K0 ∩ Xd = Aff(Cd) · K ∩ Xd .

Hence K0 satisfies the hypothesis of Theorem 6.1. Finally, since every domain in K is a 

bounded translate of a domain in K0, if Theorem 6.1 is true for K0 it is also true for 

K. �

Using Lemma 6.4, we may assume that 0 ∈ Ω for every Ω ∈ K. Then, since K is 

compact, there exists δ0 > 0 such that

Bd(0; δ0) ⊂ Ω

for every Ω ∈ K.

Next for Ω ∈ K and z ∈ Ω \ {0}, define πΩ(z) ∈ ∂Ω ∪ {∞} as follows: if

Ω ∩ R≥0 ·z = R≥0 ·z,

then let πΩ(z) = ∞. Otherwise, let

{πΩ(z)} = ∂Ω ∩ R≥0 ·z.

For the rest of section fix R > 0. Then for Ω ∈ K let

Ω(R) := {z ∈ Ω \ {0} : ‖z‖ ≤ R and ‖πΩ(z)‖ ≤ R + 1} .
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Also for z ∈ Ω(R), let TΩ(z) ⊂ C
d denote the set of unit vectors v ∈ C

d where

(πΩ(z) + C ·v) ∩ Ω = ∅.

Notice that, since Ω is convex, the set TΩ(z) consists of a union of complex hyperplanes 

intersected with the unit sphere.

Define

r0 :=
δ0

R + 1
.

Lemma 6.5. If Ω ∈ K and z ∈ Ω(R), then

δΩ(z) ≥ r0 ‖πΩ(z) − z‖ .

Proof. Notice that Ω contains the convex hull of Bd(0; δ0) and πΩ(z). �

We first establish the theorem for certain base points and directions.

Lemma 6.6. There exist C0 > 0 and m ≥ 1 such that: if Ω ∈ K, then

δΩ(z; v) ≤ C0δΩ(z)1/m

for all z ∈ Ω(R) and v ∈ TΩ(z).

Proof. For Ω ∈ K and z ∈ Ω(R) define rΩ(z) := ‖πΩ(z) − z‖. By the estimate in 

Lemma 6.5 it is enough to prove that there exist C > 0 and m ≥ 1 such that

δΩ(z; v) ≤ CrΩ(z)1/m

for all Ω ∈ K, z ∈ Ω(R), and v ∈ TΩ(z).

Suppose for a contradiction that such C > 0, m ≥ 1 do not exist. Then for each 

m ∈ N we can find Ωm ∈ K, zm ∈ Ω
(R)
m , and vm ∈ TΩm

(zm) such that

δΩm
(zm; vm) = CmrΩm

(zm)1/m

and Cm ≥ m. Since K is compact in Xd we have

M := sup
{

δΩ(z; v) : Ω ∈ K, z ∈ Ω ∩ Bd(0; R), v ∈ C
d \{0}

}
< ∞.

Then, since Cm ≥ m, we must have

lim
m→∞

rΩm
(zm) ≤ lim

m→∞

(
M

Cm

)m

= 0. (9)
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Since Ωm is convex, the function fm : [0, 1] → R defined by

fm(t) =
‖πΩm

(zm) − tzm‖1/m

δΩm
(tzm; vm)

is continuous. Let tm ∈ [0, 1] be a minimum point of f . Notice that fm(1) = 1
Cm

≤ 1
m

and

fm(0) =
‖πΩm

(zm)‖1/m

δΩm
(0; vm)

≥ δ
1/m
0

M
.

So for m sufficiently large, fm(1) < fm(0) and hence tm ∈ (0, 1]. So after possibly passing 

to a tail of the sequence, replacing zm with tmzm, and increasing Cm, we can assume 

that each zm has the following extremal property:

δΩm
(tzm; vm) ≤ CmrΩm

(tzm)1/m (10)

for all t ∈ (0, 1]. Finally, by replacing vm by some eiθmvm where θm ∈ R, we can assume 

that

zm + CmrΩm
(zm)1/mvm ∈ ∂Ωm.

Notice that vm is still contained in TΩm
(zm).

Let

am := πΩm
(zm) ∈ ∂Ωm

and

bm := zm + CmrΩm
(zm)1/mvm ∈ ∂Ωm.

Then let Bm ∈ Aff(Cd) be an affine map such that Bm(zm) = 0, Bm(am) = e1, and 

Bm(bm) = e2. By Lemma 6.5, we see that

r0 D ·e1 ⊂ BmΩm

and since vm ∈ TΩm
(zm) we see that

BmΩm ∩ (e1 + C ·e2) = ∅.

By construction e2 = Bm(bm) ∈ ∂BmΩm and since δΩm
(zm; vm) = ‖bm − zm‖ we see 

that

D ·e2 ⊂ BmΩm.
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Thus

BmΩm ∩ SpanC{e1, e2} ∈ K2(r0).

So by Proposition 4.6, we can assume that BmΩm ∈ Kd(r0). Then, since Kd(r0) is 

compact, we can pass to a subsequence so that BmΩm converges to some D1 in Xd.

Next define

C :=
⋃

−∞<t<1

B1

(
t; r0 |t − 1|

)
⊂ C .

Then C is a convex open cone in C based at 1.

Claim 1. C × {(0, . . . , 0)} ⊂ D1.

Proof of Claim 1. Since

Bm(am + λzm) =

(
1 +

λ

rΩm
(zm)

)
e1 for all λ ∈ C,

Lemma 6.5 implies

C × {(0, . . . , 0)} ∩ Bd

(
0;

‖πΩm
(zm)‖

rΩm
(zm)

)
⊂ BmΩm.

So it suffices to show that

lim
m→∞

‖πΩm
(zm)‖

rΩm
(zm)

= ∞.

Using the fact that δΩm
(0) ≥ δ0, we have

lim inf
m→∞

‖πΩ(zm)‖ ≥ lim inf
m→∞

δΩm
(0) ≥ δ0. (11)

Then combining Equations (9) and (11) yields

lim
m→∞

‖πΩm
(zm)‖

rΩm
(zm)

= ∞.

This proves Claim 1. �

Claim 2. R≤0 ·e1 + D ·e2 ⊂ D1.

Proof of Claim 2. By Claim 1 we have

R≤0 ·e1 ⊂ D1.
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Since D1 ∈ Kd(r0) we have D ·e2 ⊂ D1. So by Observation 2.14

R≤0 ·e1 + D ·e2 ⊂ D1.

This proves Claim 2. �

Claim 3. For each t ≥ 0 there exists some λt ∈ ∂ D such that

−te1 + λte2 ∈ ∂D1.

Proof of Claim 3. Since D1 ∈ Kd(r0), we have e2 ∈ ∂D1 and so the claim is true when 

t = 0. Next fix t > 0. Then for m sufficiently large

B−1
m (−te1) ∈ (0, zm)

and

rΩm
(B−1

m (−te1)) = (1 + t)rΩm
(zm).

Then by Equation (10)

δΩm
(B−1

m (−te1); vm) ≤ CmrΩm
(B−1

m (−te1))1/m = Cm(1 + t)1/mrΩm
(zm)1/m.

Then

δBmΩm
(−te1; e2) =

1

CmrΩ(zm)1/m
δΩm

(B−1
m (−te1); vm) ≤ (1 + t)1/m.

So

δD1
(−te1; e2) = lim

m→∞
δBmΩ(−te1; e2) ≤ lim

m→∞
(1 + t)1/m = 1.

By Claim 2, we have δD1
(−te1; e2) ≥ 1 and so we must have

δD1
(−te1; e2) = 1.

This proves Claim 3. �

Now for each k ∈ N, let Ak ∈ Aff(C2) be the affine map

Ak(z) = e1 +

(
1

k+1 0

0 λ−1
k

)
(z − e1).

Claim 4. For all k ≥ 0,

Ak(D1 ∩ SpanC{e1, e2}) ∈ K2(r0).
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Proof of Claim 4. Let Uk := Ak(D1 ∩ SpanC{e1, e2}).

Since Ak(e1 + C ·e2) = e1 + C ·e2 and D1 ∈ Kd(r0), we see that e1 ∈ ∂Uk and 

(e1 + C ·e2) ∩ Uk = ∅. By Claim 3, −ke1 + λke2 ∈ ∂D1 and so

e2 = Ak(−ke1 + λke2) ∈ ∂Uk.

By Claim 2 and 3, δD1
(−ke1; e2) = 1 and so

D ·e2 = Ak(−ke1 + D ·e2) ⊂ Uk.

Finally, by Claim 1

C × {0} = Ak (C × {0}) ⊂ Uk

and so r0 D ·e1 ⊂ Uk. Thus Uk ∈ K2(r0). �

Now using Proposition 4.6 we can extend Ak to an affine automorphism of Cd such 

that AkD1 ∈ Kd(r0). Then by passing to a subsequence we can suppose that AkD1

converges to some D2 in Xd. Now since each AkD1 is in Kd(r0) we see that

(e1 + SpanC{e2, . . . , ed}) ∩ D2 = ∅. (12)

Further,

(
1 − 1

k + 1

)
e1 + D ·e2 = Ak(D ·e2) ⊂ AkD1

and so e1 + D ·e2 ⊂ D2. Then Equation (12) implies that e1 + D ·e2 ⊂ ∂D2. But

D2 ⊂ Aff(Cd) · D1 ∩ Xd ⊂ Aff(Cd) · K ∩ Xd

which contradicts the assumption that every domain in Aff(Cd) · K ∩ Xd has simple 

boundary. �

Lemma 6.7. There exists C1 > 0 such that: if Ω ∈ K, then

δΩ(z; v) ≤ C1δΩ(z)1/m

for all z ∈ Ω(R) and v ∈ C
d non-zero.

Proof. Define

M1 := sup
{

δΩ(0; v) : Ω ∈ Kd(r0), v ∈ C
d \{0}

}
< ∞
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(recall that r0 = δ0/(R + 1)). We claim that

C1 :=

√
2M1C0

r0

suffices.

Fix Ω ∈ K, z ∈ Ω(R), and v ∈ C
d non-zero. Let ξ = πΩ(z) and H be a supporting 

hyperplane of Ω at ξ. Notice that

r0 ‖ξ − 0‖ ≤ r0(R + 1) = δ0 ≤ δΩ(0).

So by Theorem 4.3, there exists an affine map A such that AΩ ∈ Kd(r0), A(z) = 0, and 

if δH = max{δΩ(z; v) : v ∈ −ξ + H non-zero}, then

‖A(z1) − A(z2)‖ ≥ r0√
2δH

‖z1 − z2‖ (13)

for all z1, z2 ∈ C
d.

By the previous Lemma

δH ≤ C0δΩ(z)1/m.

Suppose A(·) = b + g(·) where g ∈ GLd(C) and b ∈ C
d. Then Equation (13) implies

δΩ(z; v) ≤
√

2δH

r0
δAΩ(0; g(v)) ≤

√
2

r0
C0δΩ(z)1/mM1 = C1δΩ(z)1/m. �

Lemma 6.8. There exists C2 > 0 such that: if Ω ∈ K, then

δΩ(z; v) ≤ C2δΩ(z)1/m

for all z ∈ Ω ∩ Bd(0; R) and v ∈ C
d non-zero.

Proof. Let

M2 := sup
{

δΩ(z; v) : Ω ∈ K, z ∈ Ω ∩ Bd(0; R), v ∈ C
d \{0}

}
< ∞.

We claim that

C2 = max

{
C1,

M2

r
1/m
0

}

suffices.

Fix Ω ∈ K, z ∈ Ω ∩ Bd(0; R), and v ∈ C
d non-zero. By the last lemma we only have 

to consider the case when z /∈ Ω(R). We consider two cases.
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Case 1. z = 0. Then

δΩ(0; v) ≤ M2 ≤ M2

δ
1/m
0

δΩ(0)1/m ≤ C2δΩ(0)1/m

since r0 = δ0/(R + 1) < δ0.

Case 2. ‖πΩ(z)‖ > R + 1. Since Ω contains the convex hull of Bd(0; δ0) and πΩ(z),

δΩ(z) ≥ δ0

R + 1
= r0.

Then

δΩ(z; v) ≤ M2 ≤ M2

r
1/m
0

δΩ(z)1/m ≤ C2δΩ(z)1/m. �

This completes the proof of Theorem 6.1.

7. m-Convexity versus Gromov hyperbolicity

As mentioned in Section 5.1, for smoothly bounded convex domains it is easy to show 

that Ω is m-convex for some m if and only if ∂Ω has finite type. In particular, we have 

the following equivalences.

Theorem 7.1 ([52, Theorem 1.1]). Suppose Ω is a bounded convex domain with C∞

boundary. Then the following are equivalent:

(1) ∂Ω has finite type in the sense of D’Angelo,

(2) (Ω, KΩ) is Gromov hyperbolic,

(3) Ω is m-convex for some m ≥ 1.

In the non-smooth case, Gromov hyperbolicity implies “local” m-convexity.

Corollary 7.2. Suppose Ω is a C-properly convex domain and (Ω, KΩ) is Gromov hyper-

bolic. Then for any R > 0 there exist C > 0 and m ≥ 1 such that

δΩ(z; v) ≤ CδΩ(z)1/m

for all z ∈ Bd(0; R) ∩ Ω and v ∈ C
d non-zero.

Proof of Corollary 7.2. This is a consequence of Theorem 5.1 and Corollary 6.2. �

However, as the next example shows, m-convexity does not, in general, imply Gromov 

hyperbolicity.
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Example 7.3. Let Ω1, . . . , Ωd be bounded strongly convex domains with C∞ boundaries 

such that: 0 ∈ ∂Ωj , the real hyperplane

{(z1, . . . , zd) ∈ C
d : Re(zj) = 0}

is tangent to Ωj at 0, and

Ωj ⊂ {(z1, . . . , zd) ∈ C
d : Re(zj) > 0}.

Define Ω = ∩d
j=1Ωj . Since each Ωj has smooth boundary, we see that

(ε, . . . , ε) ∈ Ω

for ε > 0 sufficiently small. So Ω is non-empty. Further, since each Ωj is strongly convex, 

there exists C > 0 such that

δΩj
(z; v) ≤ CδΩj

(z)1/2

for all 1 ≤ j ≤ d, z ∈ Ωj , and v ∈ C
d non-zero. Then for z ∈ Ω and v ∈ C

d non-zero

δΩ(z; v) = min
1≤j≤d

δΩj
(z; v) ≤ min

1≤j≤d
CδΩj

(z)1/2 = CδΩ(z)1/2.

So Ω is 2-convex. However n · Ω converges in the local Hausdorff topology to

D = {(z1, . . . , zd) ∈ C
d : Re(z1) > 0, . . . , Re(zd) > 0}.

Since D does not have simple boundary, Theorem 5.1 implies that (Ω, KΩ) is not Gromov 

hyperbolic.

8. The behavior of geodesics in a fixed domain

In this section we study the asymptotic behavior of geodesics in a fixed convex domain. 

Recall, from Definition 1.15, that Ω
End

denotes the end compactification of Ω.

We first establish the following visibility result.

Proposition 8.1. Suppose Ω is a C-properly convex domain and every domain in 

Aff(Cd) · Ω∩Xd has simple boundary. Assume σn : [an, bn] → Ω is a sequence of geodesics 

such that

lim
n→∞

σn(an) = ξ ∈ Ω
End

and
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lim
n→∞

σn(bn) = η ∈ Ω
End

.

If ξ 
= η, then exist sequences nj → ∞ and Tj ∈ [anj
, bnj

] such that σnj
(Tj) converges to 

a point in Ω.

Remark 8.2.

(1) Informally this proposition says that geodesics joining two distinct points in Ω
End

“bend” into the domain.

(2) Notice that in Definition 5.4 we consider the one point compactification of Cd while 

in Proposition 8.1 we consider the end compactification of Ω.

Proof. By Corollary 6.3 the constant sequence Ω, Ω, . . . is a visibility sequence. Up to 

relabeling ξ and η it is enough to consider two cases:

Case 1. ξ ∈ C
d. In this case, the Proposition follows immediately from applying the 

visibility property to the geodesics σn.

Case 2. ξ, η /∈ C
d. Then there exists R > 0 such that σn(an) and σn(bn) are in different 

connected components of Ω\ Bd(0; R) for n sufficiently large. So there exist a′
n ∈ [an, bn]

such that ‖σn(a′
n)‖ ≤ R when n is sufficiently large. Passing to a subsequence, we can 

assume that σn(a′
n) → ξ′ ∈ C

d. Then we can apply the visibility property to the sequence 

of geodesics σn|[a′

n,bn]. �

Proposition 8.3. Suppose Ω is a C-properly convex domain and every domain in 

Aff(Cd) · Ω ∩ Xd has simple boundary. If σ : [0, ∞) → Ω is a geodesic ray, then

lim
t→∞

σ(t)

exists in ∂EndΩ.

Proof. Suppose not, then there exist sequences an → ∞ and bn → ∞ such that

lim
n→∞

σn(an) = ξ ∈ ∂EndΩ

and

lim
n→∞

σn(bn) = η ∈ ∂EndΩ,

but ξ 
= η. By passing to subsequences we can suppose that an ≤ bn for all n. Then by 

Proposition 8.1 and passing to a subsequence there exist Tn ∈ [an, bn] such that σ(Tn)

converges to some z∞ ∈ Ω. Then
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∞ > KΩ(σ(0), z∞) = lim
n→∞

KΩ(σ(0), σ(Tn)) ≥ lim
n→∞

an = ∞

and we have a contradiction. �

The final result of this section requires a definition. First recall, from Definition 2.15, 

that AC(Ω) is the asymptotic cone of Ω.

Definition 8.4.

(1) A real linear subspace V ⊂ C
d is totally real if V ∩ iV = {0}.

(2) When Ω is a C-properly convex domain, AC(Ω) is totally real if

SpanR AC(Ω)

is totally real.

Proposition 8.5. Suppose Ω is a C-properly convex domain and every domain in 

Aff(Cd) · Ω ∩ Xd has simple boundary. Further assume that

(1) Ω is bounded or

(2) Ω is unbounded and AC(Ω) is not totally real.

If σ : R → Ω is a geodesic, then

lim
t→∞

σ(t) 
= lim
t→−∞

σ(t)

in ∂EndΩ.

Remark 8.6.

(1) If B = {x ∈ R
d : ‖x‖ < 1} and Ω = B +i Rd, then one can show that every domain 

in Aff(Cd) · Ω ∩ Xd has simple boundary, but there exists a geodesic σ : R → Ω with

lim
t→∞

σ(t) = lim
t→−∞

σ(t) ∈ ∂EndΩ.

Thus some extra assumption is necessary when Ω is unbounded.

(2) When Ω is unbounded and AC(Ω) is not totally real, then Ω
End

is simply the one-

point compactification of Ω (see Observation 2.17).

Proof. By Proposition 8.3 both limits exist. Suppose for a contradiction that

ξ := lim
t→∞

σ(t) = lim
t→−∞

σ(t) ∈ ∂EndΩ.
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Case 1. ξ ∈ C
d. Fix some z0 ∈ Ω and let zn ∈ [z0, ξ) be a sequence converging to ξ. By 

Theorem 4.3, there exist r > 0 and affine maps An ∈ Aff(Cd) such that AnΩ ∈ Kd(r), 

An(zn) = 0, and An(ξ) = e1. Since Kd(r) is compact, we can pass to a subsequence and 

assume that AnΩ converges to some Ω∞ in Xd. By Corollary 6.3, the sequence AnΩ is 

a visibility sequence.

Consider the geodesics γ1,n : [0, ∞) → AnΩ and γ2,n : [0, ∞) → AnΩ given by 

γ1,n(t) = Anσ(t) and γ2,n(t) = Anσ(−t). Since Ω has simple boundary and zn → ξ ∈ ∂Ω, 

we see that

lim
n→∞

max
{

δΩ(zn; v) : v ∈ C
d, ‖v‖ = 1

}
= 0.

So by Theorem 4.3 part (5),

lim
n→∞

‖Anσ(0)‖ = lim
n→∞

‖Anσ(0) − 0‖ = lim
n→∞

‖Anσ(0) − Anzn‖

≥ r√
2

‖σ(0) − ξ‖ lim
n→∞

1

max{δΩ(zn; v) : ‖v‖ = 1} = ∞.

So

lim
n→∞

‖γj,n(0)‖ = lim
n→∞

‖Anσ(0)‖ = ∞.

Further, for any n we have

lim
t→∞

γj,n(t) = An(ξ) = e1.

So we can find b1,n, b2,n → ∞ such that

lim
n→∞

γj,n(bj,n) = e1.

Since AnΩ is a visibility sequence, after passing to a subsequence there exist Tj,n ∈
[0, bj,n] so that limn→∞ γj,n(Tj,n) = zj ∈ Ω∞. Notice that since limn→∞ ‖γj,n(0)‖ = ∞, 

the “in particular” part of Observation 3.5 implies that

lim
n→∞

T1,n = lim
n→∞

T2,n = ∞.

But then Proposition 3.4 implies

∞ > KΩ∞
(z1, z2) = lim

n→∞
KAnΩ(γ1,n(T1,n), γ2,n(T2,n))

= lim
n→∞

KΩ(σ(T1,n), σ(−T2,n)) = lim
n→∞

T1,n + T2,n = ∞

and we have a contradiction.
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Case 2. ξ /∈ C
d. Then Ω is unbounded and so AC(Ω) is not totally real. This implies 

that there exists a complex line L such that L ∩ AC(Ω) has non-empty interior in L. By 

applying an affine transformation to Ω we can assume that L = C ·e1, σ(0) = 0, e1 ∈ ∂Ω, 

and

{(x + iy, 0, . . . , 0) : x < 1 − α |y|} ⊂ C ·e1 ∩ Ω

for some α > 0.

Let An ∈ Aff(Cd) be an affine map such that

An(ze1) =

(
1 +

1

n
(z − 1)

)
e1.

Then e1 = An(e1) ∈ ∂AnΩ and

{(x + iy, 0, . . . , 0) : x < 1 − α |y|} ⊂ C ·e1 ∩ AnΩ.

So there exists some r > 0 such that AnΩ ∩ C ·e1 ∈ K1(r) for all n. Then using Proposi-

tion 4.6 we can assume that AnΩ ∈ Kd(r) for all n. Since Kd(r) is compact, we can pass 

to a subsequence and assume that AnΩ converges to some Ω∞ in Xd. By Corollary 6.3, 

the sequence AnΩ is a visibility sequence.

Consider the geodesics γ1,n : [0, ∞) → AnΩ and γ2,n : [0, ∞) → AnΩ given by 

γ1,n(t) = Anσ(t) and γ2,n(t) = Anσ(−t). By construction

lim
n→∞

γj,n(0) = lim
n→∞

An(0) = lim
n→∞

(
1 − 1

n

)
e1 = e1

and

lim
t→∞

‖γj,n(t)‖ = ∞

for every n. Since AnΩ is a visibility sequence, after passing to a subsequence there 

exist T1,n, T2,n ∈ [0, ∞) so that limn→∞ γj,n(Tj,n) = zj ∈ Ω∞. Notice that since 

limn→∞ γj,n(0) = e1 ∈ ∂Ω∞, the “in particular” part of Observation 3.5 implies that

lim
n→∞

T1,n = lim
n→∞

T2,n = ∞.

But then Proposition 3.4 implies

∞ > KΩ∞
(z1, z2) = lim

n→∞
KAnΩ(γ1,n(T1,n), γ2,n(−T2,n))

= lim
n→∞

KΩ(σ(T1,n), σ(−T2,n)) = lim
n→∞

T1,n + T2,n = ∞

and we have a contradiction. �
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9. Proof of Theorem 1.5

In this section we establish Theorem 1.5 by proving the following stronger result.

Theorem 9.1. Suppose Ω is C-properly convex and either

(1) Ω is bounded or

(2) Ω is unbounded and AC(Ω) is not totally real (see Definition 8.4).

Then (Ω, KΩ) is Gromov hyperbolic if and only if every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary.

Remark 9.2. If B = {x ∈ R
d : ‖x‖ < 1} and Ω = B +i Rd, then one can show that every 

domain in Aff(Cd) · Ω ∩ Xd has simple boundary. However, B is bounded and so (Ω, KΩ)

is not Gromov hyperbolic by Corollary 1.13. Thus some extra assumption is necessary 

when Ω is unbounded.

We need one lemma.

Lemma 9.3. Suppose Ω is C-properly convex and either

(1) Ω is bounded or

(2) Ω is unbounded and AC(Ω) is not totally real.

If D ∈ Aff(Cd) · Ω ∩ Xd, then either

(1) D is bounded or

(2) D is unbounded and AC(D) is not totally real.

Proof. Suppose that D ∈ Aff(Cd) · Ω ∩ Xd. Then there is a sequence An ∈ Aff(Cd) such 

that AnΩ → D. We break the proof into two cases.

Case 1. Ω is unbounded. Then AC(Ω) is not totally real. Then, since AC(Ω) is convex, 

there exists a complex line L through 0 such that C := L ∩ AC(Ω) is a convex cone with 

non-empty interior in L.

Suppose that An(·) = bn+gn(·) for some bn ∈ C
d and gn ∈ GLd(C). Then AC(AnΩ) =

gnAC(Ω). Since gn ∈ GLd(C) and C is a one-dimensional cone, there exists a unitary 

matrix un ∈ U(d) such that gnC = unC. By passing to a subsequence we can suppose 

that un → u ∈ U(d). Then uC ⊂ AC(D). So D is unbounded and AC(D) is not totally 

real.
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Case 2. Ω is bounded. Now fix some z ∈ D. Then by passing to a tail of (An)n∈N , we 

can assume that z ∈ AnΩ for all n. So if zn := A−1
n z, then An(Ω, zn) converges to (D, z)

in Xd,0. By passing to a subsequence we can suppose that zn → z′ ∈ Ω. Now we consider 

two cases based on the location of z′.

Case 2(a). z′ ∈ Ω. Then (Ω, zn) converges to (Ω, z′) in Xd,0 and so by Proposition 3.7

(D, z) = T (Ω, z′)

for some T ∈ Aff(Cd). Then D = TΩ and so D is bounded.

Case 2(b). z′ ∈ ∂Ω. Fix some z0 ∈ Ω. For each n, let Ln denote the complex line 

containing z0 and zn. Let ξn ∈ ∂Ω be the point of intersection with the ray z0 +R>0(zn −
z0). Since Ω contains the convex hull of Bd(z0; δΩ(z0)) and ξn, there exist some r > 0

and θ ∈ (0, π/2], which are independent of n, such that

Cn := {z ∈ Ln : ‖z − ξn‖ < r,∠(z − ξn, zn − ξn) < θ} ⊂ Ω.

Next let Bn ∈ Aff(Cd) be an affine map such that Bn(ξn) = e1 and Bn(zn) = 0. 

Then, since Cn ⊂ Ω, we see that

{
ze1 : |z − 1| <

r

rn
, ∠(z − 1, −1) < θ

}
⊂ BnΩ

where rn = ‖zn − ξn‖. In particular, there exists some ε > 0, which is independent of n, 

such that

BnΩ ∩ C ·e1 ∈ K1(ε).

But then, using Proposition 4.6, we can assume that BnΩ ∈ Kd(ε). Then by passing to 

a subsequence we can suppose that Bn(Ω, zn) = (BnΩ, 0) converges to some (D′, 0) in 

Xd,0. Then by Proposition 3.7 there exists some T ∈ Aff(Cd) such that D = TD′. Finally 

since rn → 0 we see that

{ze1 : ∠(z − 1, −1) < θ} ⊂ D′.

So AC(D′), and hence AC(D), is not totally real. �

Proof of Theorem 9.1. If (Ω, KΩ) is Gromov hyperbolic, then Theorem 5.1 implies that 

every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary.
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Next suppose that every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary. We will use Theorem 5.6 to deduce that (Ω, KΩ) is Gromov hy-

perbolic. Fix a sequence un ∈ Ω. By Theorem 3.6 there exist sequences nk → ∞ and 

Ak ∈ Aff(Cd) such that Ak(Ω, unk
) converges to some (Ω∞, u∞) in Xd,0. By Lemma 9.3

either

(1) Ω∞ is bounded or

(2) Ω∞ is unbounded and AC(Ω∞) is not totally real.

Then Observation 2.17 implies that Ω
End

∞ coincides with either Ω∞ or the one point 

compactification of Ω∞. In either case we have an embedding Ω
End

∞ ↪→ C
d ∪{∞}. Then, 

since

Aff(Cd) · Ω∞ ∩ Xd ⊂ Aff(Cd) · Ω ∩ Xd,

Proposition 8.5 implies that geodesics in (Ω∞, KΩ∞
) are well behaved. Further, Corol-

lary 6.3 implies that AkΩ is a visibility sequence.

Then since un ∈ Ω was an arbitrary sequence, Theorem 5.6 implies that (Ω, KΩ) is 

Gromov hyperbolic. �

Part 3. Subelliptic estimates

10. Prior work and the outline of the proof of Theorem 1.3

We will use the following result of Straube in the proof of Theorem 1.3.

Theorem 10.1 (Straube [49]). Suppose Ω is a bounded pseudoconvex domain in Cd and 

∂Ω is the graph of a Lipschitz function near some ξ ∈ ∂Ω. Assume that there exist 

C0 > 0, m > 2, a neighborhood U of ξ in Cd, and a bounded plurisubharmonic function 

G : U ∩ Ω → R such that

i∂∂̄G(z) ≥ C0

δΩ(z)2/m
i∂∂̄ ‖z‖2

on U ∩ Ω

as currents. Then there exists a neighborhood V of ξ and there exists a constant C1 > 0

such that

‖u‖ 1
m ,V ∩Ω ≤ C1(‖∂̄u‖0 + ‖∂̄∗u‖0)

for all u ∈ L2
(0,q)(Ω) ∩ dom(∂̄) ∩ dom(∂̄∗) and 1 ≤ q ≤ d.
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Remark 10.2. For smoothly bounded pseudoconvex domains, Theorem 10.1 is due to 

Catlin [18, Theorem 2.2].

In the case of smoothly bounded convex domains with finite type in the sense of 

D’Angelo, McNeal [39] constructed functions satisfying the hypotheses of Theorem 10.1

(see [40,45] for some corrections). We will construct such functions using a similar ap-

proach, however McNeal’s work relies heavily on the smoothness of the boundary and 

in particular on properties of families of convex polynomials with bounded degree. In 

our proof, we replace McNeal’s algebraic and analytic arguments with metric space ar-

guments using the Gromov hyperbolicity assumption. Throughout the argument we also 

use the geometric estimates established in Section 6.

The proof of Theorem 1.3 has the following outline:

(1) In Section 11, we recall the construction of “visual metrics” on the Gromov boundary 

of a Gromov hyperbolic metric space.

(2) In Section 12, we study how visual metrics behave under the normalizing maps 

defined in Section 4.

(3) In Section 13, we construct well behaved plurisubharmonic functions on normalized 

domains.

(4) In Section 14, we use the results from the previous two sections to construct functions 

satisfying the hypothesis of Theorem 10.1.

(5) In Section 15, we prove Theorem 1.3.

(6) In Section 16, we explain the order of subelliptic estimate obtained by our argument.

The visual metric is analogous to the metric considered by McNeal in [39, Section 5]. 

The normalizing maps are analogous to the “polydisk coordinates” considered by McNeal 

in [39, Section 3]. The constructions in Sections 13 and 14 are analogous to McNeal’s 

constructions in [39, Propositions 3.1, 3.2].

11. Visual metrics

Suppose (X, d) is a proper geodesic Gromov hyperbolic metric space. As in Section 2.2, 

let ∂GX be the Gromov boundary of X and let X
G

= X ∪ ∂GX denote the Gromov 

compactification. In this expository section we recall the construction of visual metrics 

on X
G

.

Theorem 11.1. There exist C > 1 and λ > 0 such that: For every x0 ∈ X there exists a 

function

dx0
: X

G × X
G → [0, ∞)

with the following properties
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(1) dx0
(x, y) = dx0

(y, x) for all x, y ∈ X
G

,

(2) dx0
(x, y) ≤ dx0

(x, z) + dx0
(z, y) for all x, y, z ∈ X

G
, and

(3) for all x, y ∈ X
G

1

C
e−λd(x0,γx,y) ≤ dx0

(x, y) ≤ Ce−λd(x0,γx,y)

where γx,y is any geodesic in (X, d) joining x to y.

Moreover, dx0
restricts to a metric on ∂GX which generates the standard topology.

Remark 11.2.

(1) The function dx0
restricted to ∂GX is often called a visual metric.

(2) By definition, if γ : [0, ∞) → X is a geodesic ray, then

lim
t→∞

γ(t) ∈ ∂GX

exists and equals the equivalence class of γ. So in condition (3), if x ∈ ∂GX, then 

x = limt→−∞ γx,y(t). Likewise, if y ∈ ∂GX, then y = limt→∞ γx,y(t).

(3) Condition (3) implies that dx0
(x, x) = 0 if and only if x ∈ ∂GX. Thus dx0

is not a 

metric on all of X
G

. To obtain a metric, one could define

dx0
(x, y) = min{λd(x, y), dx0

(x, y)}

where d(x, y) := ∞ when x or y is in ∂GX. For a proof that this works see for 

instance [25, Section 3.6.3].

(4) If (X, d) is δ-hyperbolic (in the sense of Definition 2.1), then any 0 < λ ≤ 1
δ log(2)

satisfies Theorem 11.1, see the proof of Proposition 3.6.8 in [25].

We will sketch the standard construction of dx0
. For more details and proofs, see for 

instance [25, Section 3.6.2].

Recall that the Gromov product of x, y, z ∈ X is defined to be

(x|y)z =
1

2
(d(x, z) + d(y, z) − d(x, y)) .

In a δ-hyperbolic metric space, the Gromov product is, up to a bounded additive error, 

an easy to understand geometric quantity.

Observation 11.3. Suppose γ : [a, b] → X is a geodesic with γ(a) = x and γ(b) = y, then

d(z, γ) − 2δ ≤ (x|y)z ≤ d(z, γ).



A. Zimmer / Advances in Mathematics 402 (2022) 108334 47

Remark 11.4. The upper bound on (x|y)z holds for any metric space.

Proof. The second inequality follows from the triangle inequality. To prove the first, pick 

w in the image of γ such that (x|z)w = (y|z)w. Notice that (x|y)w = 0. Since (X, d) is 

δ-hyperbolic

(x|z)w = (y|z)w = min{(x|z)w, (y|z)w} ≤ δ + (x|y)w = δ.

A calculation shows that

d(z, w) = (x|y)z + (x|z)w + (y|z)w − (x|y)w

= (x|y)z + (x|z)w + (y|z)w

and so

d(z, γ) ≤ d(z, w) = (x|y)z + (x|z)w + (y|z)w ≤ (x|y)z + 2δ. �

Next we extend the Gromov product by taking limits. For x0 ∈ X and (x, y) ∈
X

G × X
G − X × X we define

(x|y)x0
:=

⎧
⎪⎪⎨
⎪⎪⎩

lim infxn→x(xn|y)x0
if x ∈ ∂GX, y ∈ X

lim infyn→y(x|yn)x0
if x ∈ X, y ∈ ∂GX

lim infxn→x,yn→y(xn|yn)x0
if x, y ∈ ∂GX

.

This extension has the following properties.

Proposition 11.5. Assume x0 ∈ X.

(1) If x, y ∈ X
G

, then (x|y)x0
= ∞ if and only if x ∈ ∂GX and x = y.

(2) If x ∈ ∂GX, then the sets

Un(x, x0) =
{

y ∈ X
G

: (x|y)x0
> n
}

n = 1, 2, . . .

form a neighborhood basis of x.

(3) If x, y ∈ X and z ∈ X
G

, then

|(x|z)x0
− (y|z)x0

| ≤ d(x, y).

Proof. Parts (1) and (2) follow from the standard model of the Gromov boundary as 

equivalence classes of escaping sequences, see [25, Section 3.4.2] or [36, Section 2]. Part 

(3) follows from the triangle inequality. �
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For λ > 0 sufficiently small define ρx0
: X

G × X
G → [0, ∞) by

ρx0
(x, y) = exp (−λ(x|y)x0

) .

Finally the function dx0
is defined by

dx0
(x, y) = inf

⎧
⎨
⎩

N∑

j=1

ρx0
(xj , xj+1) : N > 0; x1, . . . , xN+1 ∈ X

G
; x1 = x, xN+1 = y

⎫
⎬
⎭ .

Miraculously, this yields a function which satisfies Theorem 11.1, see [25, Section 3.6.2]

for details.

We end this discussion with some observations.

Observation 11.6. If (xn, yn) → (x, y) in X
G × X

G
, then

dx0
(x, y) = lim

n→∞
dx0

(xn, yn).

Proof. Notice that

|dx0
(xn, yn) − dx0

(x, y)| ≤ |dx0
(xn, yn) − dx0

(xn, y)| + |dx0
(xn, y) − dx0

(x, y)| .

We first prove that |dx0
(xn, yn) − dx0

(xn, y)| converges to zero.

Case 1. Assume y ∈ X. Then we can assume that yn ∈ X for all n. By the mean value 

theorem and Proposition 11.5 part (3), we have

|ρx0
(z, yn) − ρx0

(z, y)| ≤ |(z|yn)x0
− (z|y)x0

| ≤ d(yn, y)

for all z ∈ X
G

. Thus

lim
n→∞

|dx0
(xn, yn) − dx0

(xn, y)| ≤ lim
n→∞

d(yn, y) = 0.

Case 2. Assume y ∈ X
G

. Let C > 1, λ > 0 be the constants from Theorem 11.1. Then

lim
n→∞

|dx0
(xn, yn) − dx0

(xn, y)| ≤ lim
n→∞

dx0
(yn, y) ≤ lim

n→∞
Ce−λ(yn|y)x0 = 0

by Proposition 11.5 part (2).

Thus in all cases

lim
n→∞

|dx0
(xn, yn) − dx0

(xn, y)| = 0.

The same argument shows that



A. Zimmer / Advances in Mathematics 402 (2022) 108334 49

lim
n→∞

|dx0
(xn, y) − dx0

(x, y)| = 0

and hence the proof is complete. �

As an immediate corollary we obtain:

Observation 11.7. If ξ ∈ ∂GX and r > 0, then the set

Vx0
(ξ; r) :=

{
x ∈ X

G
: dx0

(ξ, x) < r
}

is an open neighborhood of ξ in X
G

.

12. Visual metrics and normalizing maps

For the rest of the section, let Ω ⊂ C
d be a C-properly convex domain with Gromov 

hyperbolic Kobayashi metric. Then fix some z0 ∈ Ω and some R > ‖z0‖.

Let dz0
denote the function constructed in Theorem 11.1 for the metric space (Ω, KΩ). 

Using Theorem 1.16 we can view dz0
as a function on Ω

End × Ω
End

. Let Cv > 1 and 

λ > 0 be constants such that: for all x, y ∈ Ω
End

1

Cv
exp
(

− λKΩ(z0, γx,y)
)

≤ dz0
(x, y) ≤ Cv exp

(
− λKΩ(z0, γx,y)

)

when γx,y is a geodesic in (Ω, KΩ) joining x to y. Then for ξ ∈ ∂Ω
End

and r > 0 define

Vz0
(ξ; r) :=

{
z ∈ Ω

End
: dz0

(ξ, z) < r
}

.

The goal of this section is to relate these sets to the normalizing maps constructed in 

Section 4. To that end, we make the following definitions.

Definition 12.1. For ξ ∈ ∂Ω and ε ∈ (0, 1), let qξ,ε ∈ [z0, ξ) denote the unique point where

KΩ(qξ,ε, z0) =
1

λ
log

1

ε

and

KΩ(q′, z0) >
1

λ
log

1

ε

for every q′ ∈ (qξ,ε, ξ). Then let Aξ,ε denote an affine map satisfying Theorem 4.3 with 

Aξ,ε(qξ,ε) = 0 and Aξ,ε(ξ) = e1.
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In this section we will establish the following four propositions about these normalizing 

maps and their relationship with the visual metric. We will list the propositions in order 

of importance, but prove them in a different order.

Proposition 12.2. There exist ε0 ∈ (0, 1] and an increasing function τ : (0, ∞) → (0, ∞)

with

lim
r↘0

τ(r) = 0

such that: if ξ ∈ ∂Ω ∩ Bd(0; R), r > 0, and ε ∈ (0, ε0/r) ∩ (0, 1), then

Ω ∩ A−1
ξ,ε Bd(e1; r) ⊂ Vz0

(ξ; τ(r)ε)

and

Vz0
(ξ; rε) ⊂ Ω ∩ A−1

ξ,ε Bd(e1; τ(r))

for every r > 0.

Proposition 12.3. There exists L ≥ 1 such that: If S ≥ 1, ξ ∈ ∂Ω ∩ Bd(0; R), and 

ε ∈
(
0, ε0

S

)
, then

Vz0
(ξ; Sε) ⊂ ξ + Lτ(S)

(
Vz0

(ξ; ε) − ξ
)

.

Proof of Proposition 12.3 assuming Proposition 12.2. Fix r ∈ (0, τ(1)] with τ(r) ≤ 1. 

Notice that r ≤ 1: if τ(1) ≤ 1, then r ≤ τ(1) ≤ 1 and if τ(1) > 1, then r < 1 since 

τ(r) ≤ 1 and τ is increasing. Then let L = 1
r .

Fix S ≥ 1 and ε ∈
(
0, ε0

S

)
. Since τ(S)

r ≥ τ(1)
r ≥ 1, Ω is convex, and ξ ∈ Ω, we have

Ω ⊂ ξ +
τ(S)

r

(
Ω − ξ

)
.

Since r ≤ 1 ≤ S, we have ε ∈
(
0, ε0

r

)
. Then

Vz0
(ξ; Sε) ⊂ Ω ∩ A−1

ξ,ε Bd(e1; τ(S)) ⊂ ξ +
τ(S)

r

(
Ω ∩ A−1

ξ,ε Bd(e1; r) − ξ
)

⊂ ξ +
τ(S)

r

(
Vz0

(ξ; τ(r)ε) − ξ
)

⊂ ξ +
τ(S)

r

(
Vz0

(ξ; ε) − ξ
)

. �

Proposition 12.4. There exist α ≥ 1, B ≥ 1 such that: if ξ ∈ ∂Ω ∩Bd(0; R) and ε ∈ (0, 1), 

then

1

B
ε2/λ ≤ δΩ(qξ,ε) ≤ Bε2/(αλ).
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Moreover, if q ∈ [z0, ξ), then

q ∈ Vz0

(
ξ; B ‖q − ξ‖λ/2

)
.

Remark 12.5. In the special case when ∂Ω is a C2 hypersurface, one can choose α = 1.

Proposition 12.6. There exist r0 ∈ (0, 1), m1 > 0, C0 > 0 such that: if ξ ∈ ∂Ω ∩ Bd(0; R)

and ε ∈ (0, 1), then

Aξ,εΩ ∈ Kd(r0)

and

‖Aξ,ε(z1) − Aξ,ε(z2)‖ ≥ C0

ε1/m1
‖z1 − z2‖

for all z1, z2 ∈ C
d.

Proposition 12.3 should be compared to [39, Proposition 2.5] and Proposition 12.6

should be compared to [39, Equation (2.7)].

12.1. Proof of Proposition 12.4

Let δ0 := δΩ(z0). If ξ ∈ ∂Ω ∩ Bd(0; R) and q ∈ [z0, ξ), then

δ0

2R
‖q − ξ‖ ≤ δΩ(q) ≤ ‖q − ξ‖ (14)

since Ω contains the convex hull of Bd(z0; δ0) and ξ.

By Proposition 2.12 there exist α0 ≥ 1, β0 ≥ 0 such that: if ξ ∈ ∂Ω ∩ Bd(0; R), then 

the curve σξ : [0, ∞) → Ω given by

σξ(t) = ξ + e−2t (z0 − ξ)

is an (α0, β0)-quasi-geodesic.

Lemma 12.7. There exist α ≥ 1, β > 0 such that: if ξ ∈ ∂Ω ∩ Bd(0; R) and q ∈ [z0, ξ), 

then

−β +
1

2
log

1

δΩ(q)
≤ KΩ(q, z0) ≤ β +

α

2
log

1

δΩ(q)
.

Remark 12.8. The proof below shows that α = α0 satisfies the lemma, however this may 

not be the optimal choice.



52 A. Zimmer / Advances in Mathematics 402 (2022) 108334

Proof. Fix ξ ∈ ∂Ω ∩ Bd(0; R) and q ∈ [z0, ξ). Then q = σξ(t) where

t =
1

2
log

‖z0 − ξ‖
‖q − ξ‖ .

So

KΩ(z0, q) = KΩ(σξ(0), σξ(t)) ≤ α0t + β0 ≤ β0 +
α0

2
log(2R) +

α0

2
log

1

‖q − ξ‖ .

Thus Equation (14) implies that

KΩ(z0, q) ≤ β0 +
α0

2
log(2R) +

α0

2
log

1

δΩ(q)
.

For the lower bound, Lemma 2.11 and Equation (14) imply

KΩ(z0, q) ≥ 1

2
log

‖z0 − ξ‖
‖q − ξ‖ ≥ 1

2
log

δ2
0

2R
+

1

2
log

1

δΩ(q)
.

So α = α0 and

β = max

{
−1

2
log

δ2
0

2R
, β0 +

α0

2
log(2R)

}

suffice. �

Proof of Proposition 12.4. Since

KΩ(qξ,ε, z0) =
1

λ
log

1

ε
,

the last lemma implies that

e−2βε2/λ ≤ δΩ(qξ,ε) ≤ e2β/αε2/(αλ).

This proves the first part of the Proposition.

Now fix some q ∈ [z0, ξ). Then q = σξ(t0) where

t0 =
1

2
log

‖z0 − ξ‖
‖q − ξ‖ .

Fix a sequence t0 < t1 < t2 < . . . converging to ∞ and for each n let γn : [0, bn] → Ω be 

a geodesic joining q = σξ(t0) to σξ(tn). Then by Theorem 2.5 there exists M > 0, which 

does depend on q, such that



A. Zimmer / Advances in Mathematics 402 (2022) 108334 53

max

{
max

t∈[t0,tn]
KΩ (σξ(t), γn) , max

t∈[0,bn]
KΩ

(
γn(t), σξ|[t0,tn]

)}
≤ M (15)

for all n ≥ 1.

Using the Arzelà-Ascoli theorem and passing to a subsequence we can suppose that 

γn converges to a geodesic ray γ : [0, ∞) → Ω. By the definition of the Gromov boundary 

and Theorem 1.16, we have

lim
t→∞

γ(t) = ξ.

Equation (15) implies that

max

{
sup
t≥t0

KΩ(σξ(t), γ), sup
t≥0

KΩ

(
γ(t), σξ|[t0,∞)

)}
≤ M.

Hence

KΩ(z0, γ) ≥ −M + KΩ

(
z0, σξ|[t0,∞)

)
.

But by Lemma 2.11

KΩ(z0, σξ(t)) ≥ 1

2
log

‖z0 − ξ‖
‖σξ(t) − ξ‖ = t

for all t ≥ 0. And so

KΩ(z0, γ) ≥ −M + t0 = −M +
1

2
log

‖z0 − ξ‖
‖q − ξ‖

≥ −M +
1

2
log δ0 +

1

2
log

1

‖q − ξ‖ .

Then

dz0
(q, ξ) ≤ Cv exp (−λKΩ(z0, γ)) ≤ Cv exp (λM) δ

−λ/2
0 ‖q − ξ‖λ/2

.

Thus B = max
{

e2β , Cv exp (λM) δ
−λ/2
0

}
suffices. �

12.2. Proof of Proposition 12.6

Fix some ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, 1). Then

r0 ‖ξ − z0‖ ≤ δΩ(z0)

where r0 := δΩ(z0)/(2R). So Aξ,εΩ ∈ Kd(r0) by Theorem 4.3 part (1).
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By Corollary 7.2, there exist m0 > 0 and c0 > 0 such that

δΩ(z; v) ≤ c0δΩ(z)1/m0

for every z ∈ Ω ∩ Bd(0; R) and v ∈ C
d non-zero. Since qξ,ε ∈ (z0, ξ) and z0, ξ ∈ Bd(0; R)

we see that qξ,ε ∈ Bd(0; R). So by Theorem 4.3 part (5)

‖A(z1) − A(z2)‖ ≥ r0√
2c0δΩ(qξ,ε)1/m0

‖z1 − z2‖

for all z1, z2 ∈ C
d. Hence by Proposition 12.4

‖A(z1) − A(z2)‖ ≥ r0√
2c0δΩ(qξ,ε)1/m0

‖z1 − z2‖ ≥ r0√
2c0B1/m0ε2/(αλm0)

‖z1 − z2‖

for all z1, z2 ∈ C
d. So C0 = r0√

2c0B1/m0
and

m1 =
αλm0

2
(16)

suffice.

12.3. Proof of Proposition 12.2

We begin by defining ε0 ∈ (0, 1]. If Ω is bounded, let ε0 = 1. If Ω is unbounded, define 

ε0 to be the minimum of 1 and

1

2
min

{
dz0

(ξ, η) : ξ ∈ ∂Ω ∩ Bd(0; R), η ∈ Ω
End \ C

d
}

(notice that this number exists by Proposition 11.6). Then

Vz0
(ξ, ε0) ⊂ Ω ⊂ C

d (17)

for all ξ ∈ ∂Ω ∩ Bd(0; R).

The proposition will follow from a series of lemmas.

Lemma 12.9. For any r > 0 there exists D1(r) < ∞ such that: if ξ ∈ ∂Ω ∩ Bd(0; R), 

ε ∈ (0, 1), and γ : [a, b] → Ω is a geodesic with γ(a), γ(b) ∈ A−1
ξ,ε Bd(e1; r), then

γ ⊂ A−1
ξ,ε Bd(e1; D1(r)).

Remark 12.10. This lemma says that a geodesic segment that starts and ends close to 

e1 in Aξ,εΩ stays close to e1.
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Proof. Suppose for a contradiction that such a D1(r) does not exist for some r > 0. Then 

for each n ∈ N there exist ξn ∈ ∂Ω ∩ Bd(0; R), εn ∈ (0, 1), a geodesic γn : [an, bn] → Ω, 

and tn ∈ [an, bn] where γn(an), γn(bn) ∈ A−1
ξn,εn

Bd(e1; r) and

n ≤ ‖Aξn,εn
γn(tn) − e1‖ .

By Proposition 12.6 each Ωn := Aξn,εn
Ω is in Kd(r0), so by passing to a subsequence we 

can suppose that Ωn converges to some Ω∞ ∈ Kd(r0). Then Corollary 6.3 implies that 

Ωn is a visibility sequence.

Consider the geodesics γ̂n,1 := Aξn,εn
γn|[an,tn] and γ̂n,2 := Aξn,εn

γn|[tn,bn]. Notice that 

γ̂n,1(an), ̂γn,2(bn) ∈ Bd(e1; r) and

‖γ̂n,1(tn)‖ = ‖γ̂n,2(tn)‖ = ‖Aξn,εn
γn(tn)‖ ≥ n − 1.

So using the fact that Ωn is a visibility sequence, we can pass to subsequences and find 

Tn,1 ∈ [an, tn] and Tn,2 ∈ [tn, bn] such that γ̂n,1(Tn,1) → z1 ∈ Ω∞ and γ̂n,2(Tn,2) → z2 ∈
Ω∞. Since

lim
n→∞

‖γ̂n,2(tn)‖ = ∞,

the “in particular” part of Observation 3.5 implies that

lim
n→∞

Tn,2 − Tn,1 ≥ lim
n→∞

Tn,2 − tn = ∞.

Then Proposition 3.4 implies that

∞ > KΩ∞
(z1, z2) = lim

n→∞
KΩn

(γ̂n,1(Tn,1), γ̂n,2(Tn,2)) = lim
n→∞

KΩ(γn(Tn,1), γn(Tn,2))

= lim
n→∞

Tn,2 − Tn,1 = ∞.

So we have a contradiction. �

Lemma 12.11. We can assume that D1 is an increasing function with

lim
r↘0

D1(r) = 0.

Proof. For r > 0 fixed, let D̃1(r) be the infimum of all numbers satisfying Lemma 12.9. 

Notice that D̃1(r) itself may not satisfy the lemma and so we define D1(r) := r + D̃1(r). 

Then, by definition, D̃1 is non-decreasing and so D1 is increasing. Further, D1 satisfies 

Lemma 12.9.

Suppose that limr↘0 D1(r) does not equal zero. Then there exists D0 > 0 such that: 

for each n ∈ N there exist ξn ∈ ∂Ω ∩ Bd(0; R), εn ∈ (0, 1), a geodesic γn : [an, bn] → Ω, 

and tn ∈ [an, bn] where γn(an), γn(bn) ∈ A−1
ξn,εn

Bd(e1; 1/n) and
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D0 ≤ ‖Aξn,εn
γn(tn) − e1‖ .

By definition

‖Aξn,εn
γn(tn) − e1‖ ≤ D1(1/n) ≤ D1(1).

Now Ωn := Aξn,εn
Ω is in Kd(r0), so by passing to a subsequence we can suppose that 

Ωn converges to some Ω∞ ∈ Kd(r0). Then Corollary 6.3 implies that Ωn is a visibility 

sequence. By passing to another subsequence we can suppose that

lim
n→∞

Aξn,εn
γn(tn) = η ∈ Ω∞ ∩ Bd(e1; D1(1)) \ Bd(e1; D0).

We divide the proof into two cases based on the location of η.

Case 1. η ∈ ∂Ω∞. Consider the geodesics γ̂n,1 := Aξn,εn
γn|[an,tn] and γ̂n,2 :=

Aξn,εn
γn|[tn,bn]. Notice that

lim
n→∞

γ̂n,1(an) = e1 = lim
n→∞

γ̂n,2(bn)

and

lim
j→∞

γ̂n,1(tn) = η = lim
n→∞

γ̂n,2(tn).

Since ‖η − e1‖ ≥ D0 and Ωn is a visibility sequence, we can pass to a subsequence and 

find Tn,1 ∈ [an, tn] and Tn,2 ∈ [tn, bn] such that γ̂n,1(Tn,1) → z1 ∈ Ω∞ and γ̂n,2(Tn,2) →
z2 ∈ Ω∞. Since η ∈ ∂Ω∞, the “in particular” part of Observation 3.5 implies that

lim
n→∞

Tn,2 − Tn,1 ≥ lim
n→∞

Tn,2 − tn = ∞.

Then Proposition 3.4 implies

∞ > KΩ∞
(z1, z2) = lim

n→∞
KΩj

(γ̂n,1(Tn,1), γ̂n,2(Tn,2)) = lim
n→∞

KΩ(γn(Tn,1), γn(Tn,2))

= lim
n→∞

Tn,2 − Tn,1 = ∞.

So we have a contradiction.

Case 2. η ∈ Ω∞. Using Observation 3.5, Lemma 5.7, and passing to a subsequence, we 

can assume that the geodesics Aξn,εn
γn(· + tn) converges locally uniformly to a geodesic 

γ̂ : R → Ω∞ where

lim
t→−∞

γ̂(t) = lim
n→∞

Aξn,εn
γn(an) = e1
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and

lim
t→∞

γ̂(t) = lim
n→∞

Aξn,εn
γn(bn) = e1.

Since

Ω∞ ∈ Aff(Cd) · Ω ∩ Xd,

Theorem 5.1 implies that (Ω∞, KΩ∞
) is Gromov hyperbolic. However, then by Theo-

rem 1.16 and the definition of the Gromov boundary the geodesic rays t → γ̂(t) and 

t → γ̂(−t) are in the same equivalence class. But then

∞ > lim sup
t→∞

KΩ∞
(γ̂(t), γ̂(−t)) = lim sup

t→∞
2t = ∞.

So we have a contradiction.

Thus limr↘0 D1(r) = 0. �

Lemma 12.12. For any r > 0 there exists D2(r) < ∞ such that: if ξ ∈ ∂Ω ∩ Bd(0; R), 

ε ∈ (0, 1), and γ : [a, b] → Ω is a geodesic with γ(a) ∈ A−1
ξ,ε Bd(e1; r) and γ(b) /∈

A−1
ξ,ε Bd(e1; 2r), then

KΩ(qξ,ε, γ) ≤ D2(r).

Remark 12.13. This lemma says that a geodesic in Aξ,εΩ that starts close to e1 and ends 

far from e1 must pass close to 0 = Aξ,ε(qξ,ε).

Proof. Suppose for a contradiction that such a D2(r) does not exist for some r > 0. Then 

for each n ∈ N there exist ξn ∈ ∂Ω ∩Bd(0; R), εn ∈ (0, 1), and a geodesic γn : [an, bn] → Ω

where γn(an) ∈ A−1
ξn,εn

Bd(e1; r), γn(bn) /∈ A−1
ξ,εn

Bd(e1; 2r), and

KΩ(qξn,εn
, γn) ≥ n.

By Proposition 12.6 each Ωn := Aξn,εn
Ω is in Kd(r0), so by passing to a subsequence we 

can suppose that Ωn converges to some Ω∞ ∈ Kd(r0). Then Corollary 6.3 implies that 

Ωn is a visibility sequence.

Consider the geodesics γ̂n := Aξn,εn
γn. Then γ̂n(an) ∈ Bd(e1; r) and γ̂n(bn) /∈

Bd(e1; 2r). So

‖γ̂n(an) − γ̂n(bn)‖ > r.

Since Ωn is a visibility sequence, we can pass to a subsequence and find Tn ∈ [an, bn]

such that γ̂n(Tn) → z ∈ Ω∞. Then
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∞ > KΩ∞
(0, z) = lim

n→∞
KΩn

(0, γ̂n(Tn)) = lim
n→∞

KΩ(qξn,εn
, γn(Tn))

≥ lim
n→∞

KΩ(qξn,εn
, γn) = ∞.

So we have a contradiction. Hence for each r > 0, there exists some D2(r) > 0 with the 

desired property. �

Lemma 12.14. For any r > 0 there exists D3(r) < ∞ such that: if ξ ∈ ∂Ω ∩ Bd(0; R), 

ε ∈ (0, 1), and γ : [a, b] → Ω is a geodesic with γ(a) ∈ A−1
ξ,ε Bd(e1; r) and γ(b) = z0, then

KΩ(qξ,ε, γ) ≤ D3(r).

Moreover, we can assume that D3 is an increasing function.

Remark 12.15. This lemma is similar to Lemma 12.12, however the increasing condition 

on D3 (which may not hold for D2) will be important for later estimates.

Proof. Define D̃3(r) ∈ (0, ∞] to be the smallest number satisfying the first part of the 

lemma (since the inequality is not strict, there does indeed exist a smallest number).

We claim that D̃3(r) < ∞ for every r > 0. Suppose that ξ ∈ ∂Ω ∩ Bd(0; R), ε ∈ (0, 1), 

and γ : [a, b] → Ω is a geodesic with γ(a) ∈ A−1
ξ,ε Bd(e1; r) and γ(b) = z0.

If z0 /∈ A−1
ξ,ε Bd(e1; 2r), then

KΩ(qξ,ε, γ) ≤ D2(r)

by Lemma 12.12.

Next consider the case when z0 ∈ A−1
ξ,ε Bd(e1; 2r). Since Aξ,ε(qξ,ε) = 0, Aξ,ε(ξ) = e1, 

and qξ,ε ∈ (z0, ξ) we see that

2r + 1 ≥ ‖Aξ,ε(z0)‖ =
1

‖qξ,ε − ξ‖ ‖qξ,ε − z0‖ ≥ 1

‖qξ,ε − ξ‖ (‖ξ − z0‖ − ‖ξ − qξ,ε‖) .

So

‖qξ,ε − ξ‖ ≥ 1

2r + 2
‖ξ − z0‖ ≥ δΩ(z0)

2r + 2
.

Then by Lemma 12.7

KΩ(qξ,ε, γ) ≤ KΩ(qξ,ε, z0) ≤ β +
α

2
log

1

‖qξ,ε − ξ‖ ≤ β +
α

2
log

2r + 2

δΩ(z0)
.

Thus

D̃3(r) ≤ max

{
β +

α

2
log

2r + 2

δΩ(z0)
, D2(r)

}

is finite.
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Finally, by definition D̃3 is non-decreasing and so D3(r) := D̃3(r) + r is increasing 

and satisfies the lemma. �

For r > 0, let τ̃1(r) ∈ (0, ∞] be the infimum of all numbers τ > 0 such that

Ω ∩ A−1
ξ,ε B(e1; r) ⊂ Vz0

(ξ; τε)

for all ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, 1). Then define τ1(r) := r + τ̃1(r). Notice that

Ω ∩ A−1
ξ,ε B(e1; r) ⊂ Vz0

(ξ; τ1(r)ε)

for all ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, 1).

Lemma 12.16. τ1(r) < ∞ for every r > 0, τ1 is increasing, and limr↘0 τ1(r) = 0.

Proof. We first prove that τ1(r) < ∞ for every r > 0. Fix r > 0, ξ ∈ ∂Ω ∩ Bd(0; R), 

ε ∈ (0, 1), and y ∈ Ω ∩ A−1
ξ,ε Bd(e1; r). Let γ : (−∞, b) → Ω be a geodesic such that

lim
t→−∞

γ(t) = ξ and lim
t→b

γ(t) = y

(notice that b < ∞ when y ∈ Ω and b = ∞ when y ∈ ∂Ω). Then by Lemma 12.9

γ ⊂ A−1
ξ,ε Bd(e1; D1(r)).

Let T = KΩ(z0, γ). Then there exists a geodesic σ : [0, T ] → Ω with σ(0) = z0 and 

σ(T ) ∈ γ. Then

σ(T ) ∈ γ ⊂ A−1
ξ,ε Bd(e1; D1(r)). (18)

Hence, if D4(r) = D3(D1(r)), then by Lemma 12.14

KΩ(σ(t0), qξ,ε) ≤ D4(r)

for some t0 ∈ [0, T ]. Then

KΩ(z0, γ) = KΩ(z0, σ(t0)) + KΩ(σ(t0), σ(T ))

≥ KΩ(z0, qξ,ε) + KΩ(qξ,ε, σ(T )) − 2D4(r)

=
1

λ
log

1

ε
+ KΩ(qξ,ε, σ(T )) − 2D4(r).

Thus

dz0
(ξ, y) ≤ Cv exp (−λKΩ(z0, γ)) ≤ Cvε exp (2λD4(r)) exp (−λKΩ(qξ,ε, σ(T ))) .
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Next consider the complex hyperplane H := e1+SpanC{e2, . . . , ed}. Then H∩Aξ,εΩ =

∅ since Aξ,εΩ ∈ Kd(r0). Then Lemma 2.10 and Equation (18) imply that

KΩ(qξ,ε, σ(T )) = KAξ,εΩ(Aξ,εqξ,ε, Aξ,εσ(T )) ≥ 1

2
log

dEuc(0, H)

dEuc(Aξ,εσ(T ), H)
≥ 1

2
log

1

D1(r)
.

Then,

dz0
(ξ, y) ≤ Cvε exp (2λD4(r)) D1(r)λ/2.

Since ξ ∈ ∂Ω ∩ Bd(0; R), ε ∈ (0, 1), and y ∈ Ω ∩ A−1
ξ,ε Bd(e1; r) were arbitrary we have

τ1(r) ≤ r + Cv exp (2λD4(r)) D1(r)λ/2 < ∞.

This proves the first assertion.

By definition, τ̃1 is non-decreasing and so τ1 is increasing. Thus the second assertion 

is true.

To prove the last assertion, first notice that D4 is increasing by Lemmas 12.14

and 12.11. Then Lemma 12.11 implies that

lim
r↘0

τ1(r) ≤ Cv exp (2λD4(1)) lim
r↘0

D1(r)λ/2 = 0. �

Next for r > 0 let τ2(r) ∈ (0, ∞] be the smallest number such that

Vz0
(ξ; rε) ⊂ Ω ∩ A−1

ξ,ε Bd(e1; τ2(r))

for all ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, ε0/r) ∩ (0, 1). Observation 11.7 and Equation (17)

imply that Vz0
(ξ; rε) is an open set in Ω and hence τ2(r) exists.

Lemma 12.17. limr↘0 τ2(r) = 0.

Proof. Suppose not, then there exists τ0 > 0 such that: for every n ∈ N there exist 

ξn ∈ ∂Ω ∩ Bd(0; R), εn ∈ (0, 1), and yn ∈ Vz0
(ξn; 1

n εn) with

τ0 ≤ ‖Aξn,εn
yn − e1‖ .

Let γn : (−∞, bn) → Ω be a geodesic with

lim
t→−∞

γn(t) = ξn and lim
t→bn

γn(t) = yn

(notice that bn < ∞ when yn ∈ Ω and bn = ∞ when yn ∈ ∂Ω). By Lemma 12.12, there 

exists tn ∈ (−∞, bn) such that

KΩ(qξn,εn
, γn(tn)) ≤ D2(τ0/2).
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Then

KΩ(z0, γn) ≤ KΩ(z0, qξn,εn
) + KΩ(qξn,εn

, γn(tn)) ≤ 1

λ
log

1

εn
+ D2(τ0/2).

So

1

n
εn ≥ dz0

(ξn, yn) ≥ 1

Cv
exp(−λKΩ(z0, γn))

≥ 1

Cv
exp(−λD2(τ0/2))εn.

Then sending n → ∞ yields a contradiction. Thus limr↘0 τ2(r) = 0. �

Lemma 12.18. For any r > 0, sups∈(0,r] τ2(s) < ∞.

Proof. Suppose for a contradiction that sups∈(0,r] τ2(s) = ∞ for some r > 0. Then for 

every n ∈ N there exist sn ∈ (0, r], ξn ∈ ∂Ω ∩ Bd(0; R), εn ∈ (0, ε0/sn) ∩ (0, 1), and

yn ∈ Vz0
(ξn; snεn) \ A−1

ξn,εn
Bd(e1; n + 1).

Notice that yn ∈ Ω ⊂ C
d by our choice of ε0, see Equation (17). Also

‖Aξn,εn
yn‖ ≥ ‖Aξn,εn

yn − e1‖ − ‖e1‖ ≥ n.

By passing to a subsequence we can suppose that sn → s∞, εn → ε∞, and Ωn :=

Aξn,εn
Ω converges to some Ω∞ in Kd(r0). By Lemma 12.17 we must have s∞ 
= 0 and 

so

ε∞ ≤ ε0

s∞
.

Also, Corollary 6.3 implies that Ωn is a visibility sequence.

We consider two cases.

Case 1. ε∞ > 0. Then

sup
n∈N

KΩ(z0, qξn,εn
) = sup

n∈N

1

λ
log

1

εn
< ∞.

So we can pass to a subsequence such that qξn,εn
→ q ∈ Ω. Then (Ω, qξn,εn

) → (Ω, q)

and Aξn,εn
(Ω, qξn,εn

) → (Ω∞, 0). So by Proposition 3.7, we can pass to a subsequence 

where Aξn,εn
→ A ∈ Aff(Cd). Then

lim
n→∞

‖yn‖ = lim
n→∞

∥∥A−1Aξn,εn
yn

∥∥ = ∞.
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By passing to another subsequence we can suppose that ξn → ξ ∈ ∂Ω ∩ Bd(0; R) and 

yn → η ∈ Ω
End \ C

d. Then Proposition 11.6 implies that

dz0
(η, ξ) = lim

n→∞
dz0

(yn, ξn) ≤ s∞ε∞ ≤ ε0

which contradicts the definition of ε0, see Equation (17).

Case 2. ε∞ = 0. Then

lim
n→∞

‖ξn − qξn,εn
‖ = 0. (19)

We first show that Ω∞ is one-ended. By construction Aξn,εn
(z0) = tne1 for some tn ≤ 0. 

Since z0, qξn,εn
, and ξn are co-linear

−tn = |tn| = ‖Aξn,εn
(z0) − Aξn,εn

(qξn,εn
)‖ =

‖z0 − qξn,εn
‖

‖ξn − qξn,εn
‖ .

Then, since

lim inf
n→∞

‖z0 − qξn,εn
‖ ≥ lim inf

n→∞
‖z0 − ξn‖ − ‖ξn − qξn,εn

‖

= lim inf
n→∞

‖z0 − ξn‖ ≥ δΩ(z0),

Equation (19) implies that tn → −∞. So −e1 ∈ AC(Ω∞). Since Ω∞ ∈ Kd(r0), we have

(
e1 + SpanC{e2, . . . , ed}

)
∩ Ω∞ = ∅

and so e1 /∈ AC(Ω∞). Thus Ω∞ is one-ended by Observation 2.17.

Now let γn : (−∞, bn) → Ω be a geodesic with

lim
t→−∞

γn(t) = ξ and lim
t→bn

γn(t) = yn

(notice that bn < ∞ when yn ∈ Ω and bn = ∞ when yn ∈ ∂Ω). Next consider the 

geodesics γ̂n = Aξn,εn
γn : (−∞, bn) → Ωn. Since Ωn is a visibility sequence, after passing 

to a subsequence there exists a sequence Tn ∈ (−∞, bn) such that γ̂n(Tn) converges to a 

point in Ω∞. Passing to a further subsequence, we can assume that

b := lim
n→∞

bn − Tn ∈ [0, ∞]

exists and, by Observation 3.5, that γ̂n(· + Tn) converges locally uniformly to a geodesic 

γ̂ : (−∞, b] ∩ R → Ω∞. Since

lim
n→∞

‖Aξn,εn
yn‖ = ∞,
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the “in particular” part of Observation 3.5 implies that b = ∞. Then, by Lemma 5.7

lim
t→∞

‖γ̂(t)‖ = lim
n→∞

‖Aξn,εn
yn‖ = ∞.

Next let σn : [0, cn] → Ω be a sequence of geodesics with σn(cn) = z0 and σn(0) =

qξn,εn
. Notice that

cn = KΩ(qξn,εn
, z0) =

1

λ
log

1

εn
→ ∞.

Consider the geodesic σ̂n = Aξn,εn
σn : [0, cn] → Ωn. Then σ̂n(0) = 0, so using Obser-

vation 3.5 we can pass to a subsequence such that σ̂n converges locally uniformly to a 

geodesic σ̂ : [0, ∞) → Ω∞. By Lemma 5.7

lim
t→∞

‖σ̂(t)‖ = lim
n→∞

‖σ̂n(cn)‖ = lim
n→∞

‖Aξn,εn
z0‖ = lim

n→∞
|tn| = ∞.

Since

Ω∞ ∈ Aff(Cd) · Ω ∩ Xd,

Theorem 5.1 implies that (Ω∞, KΩ∞
) is Gromov hyperbolic. Then, since Ω∞ is one-

ended, Theorem 1.16 implies that γ̂|[0,∞) and σ̂ are in the same equivalence class of rays 

in ∂GΩ∞. So

M := sup
t≥0

KΩ∞
(σ̂(t), γ̂(t)) < ∞.

Now fix some

T > M + 1 +
1

λ
log(rCv).

Notice that T +Tn < bn for n sufficiently large since b = ∞. Then for n sufficiently large, 

Proposition 3.4 implies that

KΩ(σn(T ),γn(T + Tn)) = KΩn
(σ̂n(T ), γ̂n(T + Tn))

≤ 1 + KΩ∞
(σ̂(T ), γ̂(T )) ≤ 1 + M.

Then for n sufficiently large

KΩ(z0, γn) ≤ KΩ(z0, γn(T + Tn)) ≤ KΩ(z0, σn(T )) + KΩ(σn(T ), γn(T + Tn))

≤ cn − T + 1 + M =
1

λ
log

1

εn
− T + 1 + M

and
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dz0
(ξn, yn) ≥ 1

Cv
exp(−λKΩ(z0, γn)) ≥ εn

Cv
exp(λT − λM − λ)

> rεn.

Thus yn /∈ Vz0
(ξn; rεn) for n sufficiently large and hence we have a contradiction. �

Finally we can finish the proof of Proposition 12.2 by setting

τ(r) = τ1(r) + sup
s∈(0,r]

τ2(s).

13. Plurisubharmonic functions on normalized domains

In this section we construct special plurisubharmonic functions on normalized do-

mains. This construction is similar to the proof of [39, Proposition 3.1].

Proposition 13.1. For any d ∈ N and a, r > 0 there exist C, b > 0 such that: if Ω ∈ Kd(r), 

then there exists a C∞ plurisubharmonic function F : Ω → [0, 1] with

i∂∂̄F (z) ≥ Ci∂∂̄ ‖z‖2
on Bd(e1; a) ∩ Ω

and

supp(F ) ⊂ Bd(e1; b) ∩ Ω.

The rest of the section is devoted to the proof of the Proposition.

Definition 13.2. Given Ω ∈ Kd(r) we say that a list of vectors (v1, . . . , vd) is Ω-supporting

if

ej + SpanC{ej+1, . . . , ed} ⊂ {z ∈ C
d : Re 〈z, vj〉 = 1}

and

Ω ⊂ {z ∈ C
d : Re 〈z, vj〉 < 1}

for all j ∈ {1, . . . , d}.

Lemma 13.3. If Ω ∈ Kd(r), then there exists a list of Ω-supporting vectors.

Proof. Since Ω is convex and

(ej + SpanC{ej+1, . . . , ed}) ∩ Ω = ∅

there exists a real hyperplane Hj such that Hj ∩ Ω = ∅ and
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ej + SpanC{ej+1, . . . , ed} ⊂ Hj .

Since 0 ∈ Ω, for each j we can pick vj ∈ C
d such that Hj = {z ∈ C

d : Re 〈z, vj〉 = 1}
and Ω ⊂ {z ∈ C

d : Re 〈z, vj〉 < 1}. �

Lemma 13.4. If Ω ∈ Kd(r) and (v1, . . . , vd) is Ω-supporting, then

(1) 1 ≤ |v1,1| ≤ r−1,

(2) vj,j = 1 when j > 1,

(3) vj,� = 0 when 	 > j,

(4) |vj,1| ≤ r−1 for 1 ≤ j ≤ d,

(5) |vj,�| ≤ 1 for 1 < 	 ≤ j.

In particular,

‖vj‖ ≤
√

r−2 + (j − 1)

for 1 ≤ j ≤ d.

Proof. Since

r D ·e1 ⊂ Ω ⊂ {z ∈ C
d : Re 〈z, vj〉 < 1}

we must have |vj,1| ≤ r−1 for 1 ≤ j ≤ d. This proves (4).

When 1 < 	 ≤ d,

D ·e� ⊂ Ω ⊂ {z ∈ C
d : Re 〈z, vj〉 < 1}

and so |vj,�| ≤ 1. This proves (5).

Since

ej + SpanC{ej+1, . . . , ed} ⊂ {z ∈ C
d : Re 〈z, vj〉 = 1}

we must have Re(vj,j) = 1 and vj,� = 0 when 	 > j. This proves (3) and when combined 

with (5) (respectively (4)) implies (2) (respectively (1)). �

Lemma 13.5. For any d ∈ N, r ∈ (0, 1], and a > 0 there exist α, b, C > 0 with the 

following property: If Ω ∈ Kd(r), (v1, . . . , vd) is Ω-supporting, and h : Ω → (−∞, 1) is 

defined by

h(z) =
1

d

d∑

j=1

e2Re〈z,vj〉−2 +

d∑

j=1

ln

∣∣∣∣
1

2 − 〈z, vj〉

∣∣∣∣ ,

then
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(1) −α ≤ h(z) on Bd(e1; a) ∩ Ω,

(2) h(z) ≤ −2α on Ω \ Bd(e1; b),

(3) h is strictly plurisubharmonic on Ω, and

(4) i∂∂̄h(z) ≥ Ci∂∂̄ ‖z‖2
on Bd(e1; a) ∩ Ω.

Proof. If Ω ∈ Kd(r) and (v1, . . . , vd) is Ω-supporting, then

2Re 〈z, vj〉 − 2 < 0 and

∣∣∣∣
1

2 − 〈z, vj〉

∣∣∣∣ ≤ 1

2 − Re 〈z, vj〉 < 1

for all 1 ≤ j ≤ d and z ∈ Ω. So h does indeed map Ω into (−∞, 1).

The existence of some α > 0 satisfying Part (1) follows from Lemma 13.4.

Lemma 13.4 also implies that there exists ε > 0 such that: if Ω ∈ Kd(r) and (v1, . . . , vd)

is Ω-supporting, then

max
1≤j≤d

|〈z, vj〉| ≥ ε ‖z‖ (20)

for all z ∈ C
d. Hence, if Ω ∈ Kd(r), (v1, . . . , vd) is Ω-supporting, and z ∈ Ω then

d∑

j=1

ln

∣∣∣∣
1

2 − 〈z, vj〉

∣∣∣∣ < ln
1

2 + ε ‖z‖ .

So there exists some b > 0 satisfying Part (2).

Next we show that any such h is strictly plurisubharmonic. Suppose Ω ∈ Kd(r) and 

(v1, . . . , vd) is Ω-supporting. Fix some X ∈ C
d. The second sum in the definition of h is 

pluriharmonic on Ω, so

d∑

j,k=1

∂2h(z)

∂zj∂z̄k
XjX̄k =

1

d

d∑

j=1

e2Re〈z,vj〉−2 |〈X, vj〉|2 .

Then using Equation (20)

d∑

j,k=1

∂2h(z)

∂zj∂z̄k
XjX̄k ≥ e−2(1+‖z‖)

d

d∑

j=1

|〈X, vj〉|2 ≥ e−2(1+‖z‖)

d
ε2 ‖X‖2

> 0. (21)

Hence h is strictly plurisubharmonic on Ω.

Finally, Equation (21) implies that there exists some C satisfying part (4). �

Proof of Proposition 13.1. Let χ : R → [0, ∞) be a convex C∞ function such that

(1) χ(x) = 0 on (−∞, −2α],

(2) χ′(x) > 0 and χ′′(x) > 0 on (−2α, ∞), and
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(3) χ(1) = 1.

Let κ := min{χ′′(r) : r ∈ [−α, 1]}.

Suppose Ω ∈ Kd(r), (v1, . . . , vd) is Ω-supporting, and let h : Ω → R be the function 

from the last lemma. Then define F : Ω → [0, 1] by F = χ ◦ h. Then by construction 

supp(F ) ⊂ Bd(e1; b) ∩ Ω. Moreover

i∂∂̄F (z) = (χ′′ ◦ h)(z)i∂∂̄h(z) + (χ′ ◦ h(z))2i∂h ∧ ∂̄h

and so F is plurisubharmonic on Ω. Finally, when z ∈ Ω ∩ Bd(e1; a) we have

i∂∂̄F (z) ≥ (χ′′ ◦ h)(z)i∂∂̄h(z) ≥ κCi∂∂̄ ‖z‖2

where C > 0 is the constant in the last lemma. �

14. Plurisubharmonic functions on convex domains

In this section we construct functions satisfying the hypothesis of Theorem 10.1. This 

construction uses ideas from the proofs of [39, Propositions 3.1, 3.2] and [49, Theorem 

2].

Theorem 14.1. Suppose Ω ⊂ C
d is a C-properly convex domain and (Ω, KΩ) is Gromov 

hyperbolic. If ξ0 ∈ ∂Ω, then there exist C > 0, m2 > 2, a neighborhood U of ξ0, and a 

bounded continuous plurisubharmonic function G : U ∩ Ω → [0, 1] such that

i∂∂̄G(z) ≥ 1

δΩ(z)2/m2
i∂∂̄ ‖z‖2

on U ∩ Ω.

For the rest of the section fix Ω ⊂ C
d a C-properly convex domain where (Ω, KΩ) is 

Gromov hyperbolic. Then fix some z0 ∈ Ω and ξ0 ∈ ∂Ω. Finally, fix some R > 0 with 

z0, ξ0 ∈ Bd(0; R).

As in Section 12, let dz0
denote the function constructed in Theorem 11.1 for the metric 

space (Ω, KΩ). Using Theorem 1.16 we can view dz0
as a function on Ω

End × Ω
End

. Let 

Cv > 1 and λ > 0 be constants such that: for all x, y ∈ Ω
End

1

Cv
exp
(

− λKΩ(z0, γx,y)
)

≤ dz0
(x, y) ≤ Cv exp

(
− λKΩ(z0, γx,y)

)

when γx,y is a geodesic in (Ω, KΩ) joining x to y. As before, for ξ ∈ Ω
End

and r > 0

define

Vz0
(ξ; r) :=

{
z ∈ Ω

End
: dz0

(ξ, z) < r
}

.
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Lemma 14.2. There exist c1, ε1 ∈ (0, 1) and m1 > 0 such that: For any ξ ∈ ∂Ω ∩ Bd(0; R)

and ε ∈ (0, ε1) there is a smooth plurisubharmonic function Fξ,ε : Ω → [0, 1] with

i∂∂̄Fξ,ε(z) ≥ c1

ε2/m1
i∂∂̄ ‖z‖2

on Vz0
(ξ; 2ε) ∩ Ω

and

supp(Fξ,ε) ⊂ Vz0

(
ξ;

ε

c1

)
.

Remark 14.3. The m1 in Lemma 14.2 can be taken to be the m1 from Proposition 12.6.

Proof. For ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, 1), let Aξ,ε ∈ Aff(Cd) be the affine map from 

Definition 12.1. By Proposition 12.6 there exist r0, C0, m1 > 0 (which do not depend on 

ξ or ε) such that Aξ,εΩ ∈ Kd(r0) and

‖Aξ,ε(z1) − Aξ,ε(z2)‖ ≥ C0

ε1/m1
‖z1 − z2‖ (22)

for all z1, z2 ∈ C
d. Then let ε0 ∈ (0, 1] and τ : (0, ∞) → (0, ∞) be the constant and func-

tion from Proposition 12.2. Also, let C1 > 0, b > 1 be the constants in Proposition 13.1

associated to r = r0 and a = τ(2). Finally let

ε1 =
ε0

max{2, b} .

Fix ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, ε1). By Proposition 13.1 there exists a smooth 

plurisubharmonic function F : Aξ,εΩ → [0, 1] such that

i∂∂̄F (z) ≥ C1i∂∂̄ ‖z‖2
on Bd(e1; τ(2)) ∩ Aξ,εΩ

and

supp(F ) ⊂ Bd(e1; b) ∩ Aξ,εΩ.

Then define Fξ,ε = F ◦ Aξ,ε : Ω → [0, 1]. Then

supp(Fξ,ε) ⊂ Ω ∩ A−1
ξ,ε Bd(e1; b) ⊂ Vz0

(ξ; τ(b)ε).

Moreover, if Aξ,ε(·) = b0 + g(·) where z0 ∈ C
d and g ∈ GLd(C), then Equation (22)

implies that

‖gz‖ ≥ C0

ε1/m1
‖z‖

for all z ∈ C
d.
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Since ε < ε0

2 , Proposition 12.2 implies

Vz0
(ξ; 2ε) ⊂ Ω ∩ A−1

ξ,ε Bd(e1; τ(2)).

So if z ∈ Vz0
(ξ; 2ε) ∩ Ω and X ∈ C

d, we have

i∂∂̄Fξ,ε(z)(X, X̄) = i∂∂̄F (Aξ,εz)(gX, gX) ≥ C1 ‖gX‖2

≥ C1C2
0

ε2/m1
‖X‖2

.

Hence c1 = min
{

C1C2
0 , 1

τ(b)

}
satisfies the lemma. �

Next define

Vε := ∪ {Vz0
(ξ; ε) : ξ ∈ ∂Ω ∩ Bd(0; R)} .

Lemma 14.4. There exist c2 ∈ (0, 1) and ε2 ∈ (0, ε1) such that: for any ε ∈ (0, ε2) there 

is a plurisubharmonic function Fε : Ω → [0, 1] with

i∂∂̄Fε(z) ≥ c2

ε2/m1
i∂∂̄ ‖z‖2

on Vε ∩ Ω.

Proof. By Proposition 12.3 there exist ε2 ∈ (0, ε1) and M > 0 such that

Vz0

(
ξ;

2ε

c1
+

ε

2

)
⊂ ξ + M ·

(
Vz0

(
ξ;

ε

2

)
− ξ
)

for all ξ ∈ ∂Ω ∩ Bd(0; R) and ε ∈ (0, ε2).

Fix ε ∈ (0, ε2). Let {ξj : j ∈ J} ⊂ ∂Ω ∩ Bd(0; R) be a maximal set such that the sets 

Vz0
(ξj ; ε/2) are pairwise disjoint. We claim that

Vε ⊂ ∪j∈J Vz0
(ξj ; 2ε).

If not, there exist ξ ∈ ∂Ω ∩ Bd(0; R) and z ∈ Vz0
(ξ; ε) such that

dz0
(z, ξj) > 2ε

for all j ∈ J . Then

dz0
(ξ, ξj) ≥ min

j=1,...,n
dz0

(z, ξj) − dz0
(z, ξ) > ε

for all j ∈ J . Hence Vz0
(ξ; ε/2) is disjoint from each Vz0

(ξj ; ε/2). This contradicts the 

maximality.
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Claim. If z ∈ Ω, then

0 ≤ #

{
j : z ∈ Vz0

(
ξj ;

ε

c1

)}
≤ M2d.

Proof of Claim. This is just the proof of the Claim on page 124 in [39]: Suppose that

z ∈ ∩�
k=1Vz0

(
ξjk

;
ε

c1

)

and

μ
(

Vz0

(
ξj1

;
ε

2

))
≤ · · · ≤ μ

(
Vz0

(
ξj�

;
ε

2

))

where μ is the Lebesgue measure on Cd (recall that these sets are open in Ω by Obser-

vation 11.7). Then

μ
(

Vz0

(
ξj1

;
ε

2

))
≤ 1

	

�∑

k=1

μ
(

Vz0

(
ξjk

;
ε

2

))
=

1

	
μ
(

∪�
k=1Vz0

(
ξjk

;
ε

2

))

≤ 1

	
μ

(
Vz0

(
ξj1

;
2ε

c1
+

ε

2

))
≤ M2d

	
μ
(

Vz0

(
ξj1

;
ε

2

))
.

So 	 ≤ M2d. �

Now by the previous lemma, for each j ∈ J there exists Fj : Ω → [0, 1] such that

i∂∂̄Fj(z) ≥ c1

ε2/m1
i∂∂̄ ‖z‖2

on Vz0
(ξj ; 2ε) ∩ Ω

and

supp(Fj) ⊂ Vz0

(
ξj ;

ε

c1

)
.

Finally we define

Fε =
1

M2d

∑

j∈J

Fj .

Then Fε is a smooth plurisubharmonic function, maps into [0, 1], and

i∂∂̄Fε(z) ≥ c2

ε2/m1
i∂∂̄ ‖z‖2

on Vε

where c2 = c1M−2d. �
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For δ > 0 define

Sδ := {z ∈ Ω : ∃ξ ∈ ∂Ω ∩ Bd(0; R) such that z ∈ [z0, ξ) and ‖z − ξ‖ < δ}.

Lemma 14.5. There exist B > 0 and a neighborhood U of ξ0 such that

(1) Sδ ⊂ VBδλ/2 for all δ > 0,

(2) if z ∈ U ∩ Ω and δΩ(z) ≤ δ, then z ∈ SBδ.

Proof. By Proposition 12.4 there exists B0 ≥ 1 such that: if q ∈ [z0, ξ), then

q ∈ Vz0

(
ξ; B0 ‖q − ξ‖λ/2

)
.

So

Sδ ⊂ VB0δλ/2

for all δ > 0.

Let δ0 := δΩ(z0) and pick U a sufficiently small neighborhood of ξ0 such that: if 

z ∈ U ∩ Ω, then there exists some ξ ∈ ∂Ω ∩ Bd(0; R) with z ∈ [z0, ξ).

Fix δ > 0 and z ∈ U ∩ Ω with δΩ(z) ≤ δ. Then there exists ξ ∈ ∂Ω ∩ Bd(0; R) with 

z ∈ [z0, ξ). Since Ω contains the convex hull of Bd(z0; δ0) and ξ, we have

δ0

2R
‖z − ξ‖ ≤ δΩ(z) ≤ δ.

So z ∈ SB1δ where B1 = 2R
δ0

.

Then B = max{B0, B1} satisfies the conclusion of the lemma. �

Proof of Theorem 14.1. Define

δ1 =
1

B2/λ
ε

2/λ
2 .

By Lemmas 14.4 and 14.5, for each δ ∈ (0, δ1) there exists a smooth plurisubharmonic 

function Fδ : Ω → [0, 1] such that

i∂∂̄Fδ(z) ≥ c3

δ2/�
i∂∂̄ ‖z‖2

on Sδ

where c3 = c2B−2/m1 and 	 = 2m1/λ.

Now we use the argument on page 464 in [49]: Pick k0 ∈ N such that 2−k0 < δ1. Then 

pick any

m2 > max

{
2m1

λ
, 2

}
(23)
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and define

F (z) =

∞∑

k=k0

2−2k(1/�−1/m2)F2−k .

Since each F2−k is bounded in absolute value by 1, the sum is uniformly convergent. 

Thus F is a bounded continuous function. Since each F2−k is plurisubharmonic, F is as 

well. By decreasing U , we can assume that: if z ∈ U ∩ Ω, then BδΩ(z) < 2−k0 . Now fix 

some z ∈ U ∩ Ω. Then there exists some K ≥ k0 such that

1

2K+1
≤ BδΩ(z) ≤ 1

2K
.

Then z ∈ S2−k for all k0 ≤ k ≤ K. Hence there exists c4 > 0 (independent of z) such 

that

i∂∂̄F (z) ≥
K∑

k=k0

c322k/�

22k(1/�−1/m2)
i∂∂̄ ‖z‖2

≥ c422(K+1)/m2i∂∂̄ ‖z‖2 ≥ c4

B2/m2δΩ(z)2/m2
i∂∂̄ ‖z‖2

.

Then let G = 1∑
∞

k=k0
2−2k(1/�−1/m2) F . �

Remark 14.6. When d ≥ 2, we always have max
{

2m1

λ , 2
}

= 2m1

λ in Equation (23). To 

see this, first observe that Equation (16) implies that

m1 =
αλm0

2

where α ≥ 1 is the constant in Lemma 12.7 and m0 > 0 is the constant from Corollary 7.2. 

Remark 5.9 implies that m0 ≥ 2. Thus

2m1

λ
=

2

λ

αλm0

2
= αm0 ≥ 2.

15. Proof of Theorem 1.3

In this section we prove the following strengthening of Theorem 1.3.

Theorem 15.1. Suppose Ω1, . . . , Ωn ⊂ C
d are C-properly convex domains and each 

(Ωj , dΩj
) is Gromov hyperbolic. If Ω := ∩n

j=1Ωj is bounded and non-empty, then Ω

satisfies a subelliptic estimate.

For the rest of the section fix Ω = ∩n
j=1Ωj as in the statement of Theorem 15.1.
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Lemma 15.2. For every ξ ∈ ∂Ω, there is a neighborhood W of ξ, C > 0, m > 2, and a 

bounded continuous plurisubharmonic function G : W ∩ Ω → [0, 1] such that

i∂∂̄G(z) ≥ C

δΩ(z)2/m
i∂∂̄ ‖z‖2

on W ∩ Ω.

Proof. By relabeling we can suppose that ξ ∈ ∂Ωj for 1 ≤ j ≤ 	 and ξ ∈ Ωj for 

	 + 1 ≤ j ≤ n. Then there exists a neighborhood U0 of ξ such that: if z ∈ U0 ∩ Ω, then

δΩ(z) = min
1≤j≤�

δΩj
(z).

By Theorem 14.1, for each 1 ≤ j ≤ 	, there exist constants Cj > 0, mj > 2, a neighbor-

hood Uj of ξ, and a bounded continuous plurisubharmonic function Gj : Uj ∩Ωj → [0, 1]

such that

i∂∂̄Gj(z) ≥ Cj

δΩj
(z)2/mj

i∂∂̄ ‖z‖2
on Uj ∩ Ωj .

Then G = 1
�

∑�
j=1 Gj satisfies the conclusion of the lemma with W = ∩�

j=0Uj , C =
1
� min1≤j≤� Cj , and m = max1≤j≤� mj . �

So by Straube’s theorem (Theorem 10.1 above) for each ξ ∈ ∂Ω there exist constants 

Cξ > 0, mξ > 2 and a neighborhood Vξ of ξ in Cd such that

‖u‖ 1
mξ

,Vξ∩Ω ≤ Cξ(‖∂̄u‖0 + ‖∂̄∗u‖0)

for all u ∈ L2
(0,q)(Ω) ∩dom(∂̄) ∩dom(∂̄∗). Since ∂Ω is compact, we can find ξ1, . . . , ξN ∈ ∂Ω

such that if Vj := Vξj
, then

∂Ω ⊂ ∪1≤j≤N Vj .

Let Cj = Cξj
and m = max1≤j≤N mξj

.

Next fix a relatively compact open set V0 ⊂ Ω where Ω ⊂ ∪N
j=0Vj . Using standard 

interior estimates, see for instance Proposition 5.1.1 and Equation (4.4.6) in [20], we 

have the following estimate.

Lemma 15.3. There exists C0 > 0 such that:

‖u‖ 1
m ,V0

≤ C0(‖∂̄u‖0 + ‖∂̄∗u‖0)

for every u ∈ L2
(0,q)(Ω) ∩ dom(∂̄) ∩ dom(∂̄∗).

Let V = ∪N
j=0Vj . Then let χ0, . . . , χN be a smooth partition of unity subordinate to 

the open cover V = ∪N
j=0Vj , that is:
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(1) each χj : V → [0, 1] is smooth and supp(χj) ⊂ Vj ,

(2)
∑N

j=0 χj = 1 on V.

Since Ω ⊂ V, there exists some constant B > 0 such that: if 0 ≤ j ≤ N and u|Vj∩Ω ∈
W

2,1/m
0,q (Vj ∩ Ω), then

‖χju‖ 1
m ,Ω ≤ B ‖u‖ 1

m ,Vj∩Ω .

Finally, if u ∈ L2
(0,q)(Ω) ∩ dom(∂̄) ∩ dom(∂̄∗), then

‖u‖ 1
m

≤
N∑

j=0

‖χju‖ 1
m

≤ B
N∑

j=0

‖u‖ 1
m ,Vj∩Ω ≤ B

(
max

0≤j≤N
Cj

)
(N + 1)

(
‖∂̄u‖0 + ‖∂̄∗u‖0

)
.

16. The order of subelliptic estimate

In this section we describe the order of subelliptic estimate obtained by our argument 

in the special case of a bounded convex domain with Gromov hyperbolic Kobayashi 

metric.

For a bounded convex domain Ω ⊂ C
d, define

m
(Ω) := inf{m ≥ 1 : Ω is m-convex} ∈ [1, ∞].

By Remark 5.9, if d = 1, then m
(Ω) = 1 and if d ≥ 2, then m
(Ω) ≥ 2. Further, by 

Corollary 7.2, if (Ω, KΩ) is Gromov hyperbolic, then m
(Ω) < ∞.

We say that a bounded convex domain Ω ⊂ C
d is α-regular if for any z0 ∈ Ω there 

exists some B = B(α, z0) > 0 such that

KΩ(q, z0) ≤ B +
α

2
log

1

δΩ(q)

for all q ∈ Ω. Then define

α
(Ω) := inf{α > 0 : Ω is α-regular} ∈ [1, ∞)

Lemma 2.10 implies that α
(Ω) ≥ 1 and Proposition 2.12 implies that α
(Ω) < ∞.

Theorem 16.1. Suppose d ≥ 2, Ω ⊂ C
d is a bounded convex domain, and (Ω, KΩ) is 

Gromov hyperbolic. If

ε <
1

α
(Ω)m
(Ω)
,

then a subelliptic estimate of order ε holds on Ω.
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Before proving Theorem 16.1 we calculate α
 and m
 for some classes of domains.

Proposition 16.2. Suppose Ω ⊂ C
d is a bounded convex domain and ∂Ω is C1. If ε > 0

and z0 ∈ Ω, then there exists B = B(ε, z0) > 0 such that

KΩ(q, z0) ≤ B +
1 + ε

2
log

1

δΩ(q)

for all q ∈ Ω. In particular, α
(Ω) = 1.

Proof. For ξ ∈ ∂Ω let nξ ∈ C
d denote the inward pointing unit normal vector of ∂Ω at 

ξ.

Fix ε > 0. Since ∂Ω is C1, there exists t0 = t0(ε) > 0 such that

δΩ(ξ + tnξ) ≥ 1

1 + ε
t

for all ξ ∈ ∂Ω and t ∈ (0, t0).

For ξ ∈ ∂Ω let γξ : [0, ∞) → Ω denote the curve

γξ(t) = ξ + t0e−2tnξ.

Then for 0 ≤ t we have

KΩ(γξ(t), γξ(0)) ≤
t∫

0

kΩ(γξ(r); γ′
ξ(r))dr ≤

t∫

0

∥∥∥γ′
ξ(r)
∥∥∥

δΩ(γξ(r))
dr

≤ (1 + ε)

t∫

0

dr = (1 + ε)t.

Now fix q ∈ Ω. Then q = ξ + δΩ(q)nξ where ξ ∈ ∂Ω is a point in ∂Ω closest to q. If 

δΩ(q) ≥ t0, then

KΩ(q, z0) ≤ B0 +
1 + ε

2
log

1

δΩ(q)

where

B0 =
1 + ε

2
log

1

t0
+ max{KΩ(z, z0) : z ∈ Ω and δΩ(z) ≥ t0}.

If δΩ(q) ≤ t0, then q = γξ(t) where t = 1
2 log t0

δΩ(q) ≥ 0. Then



76 A. Zimmer / Advances in Mathematics 402 (2022) 108334

KΩ(q, z0) ≤ KΩ(q, γξ(0)) + KΩ(γξ(0), z0)

≤ B1 +
1 + ε

2
log

1

δΩ(q)

where

B1 =
1 + ε

2
log t0 + max{KΩ(γξ(0), z0) : ξ ∈ ∂Ω}.

Since B = max{B1, B2} does not depend on q this completes the proof. �

Next we compute m
(Ω) in the special case when ∂Ω is C∞. To do this we need to 

define the line type at a boundary point. Given a function f : C → R with f(0) = 0 let 

ν(f) denote the order of vanishing of f at 0. Suppose that D ⊂ C
d is a domain with C∞

boundary and

D = {z ∈ C
d : r(z) < 0}

where r is a C∞ function with ∇r 
= 0 near ∂D. The line type of a boundary point

ξ ∈ ∂D is defined to be

	(D, ξ) = sup{ν(r ◦ ψ)| ψ : C → C
d is a non-constant complex affine map

with ψ(0) = ξ}.

Notice that ν(r ◦ ψ) ≥ 2 if and only if ψ(C) is tangent to D. McNeal [38] proved that if 

D is convex then ξ ∈ ∂Ω has finite line type if and only if it has finite type in the sense 

of D’Angelo (also see [15]).

Proposition 16.3. Suppose d ≥ 2, Ω ⊂ C
d is a bounded convex domain, and ∂Ω is C∞. 

Then

m
(Ω) = max
ξ∈∂Ω

	(Ω, ξ).

Proof. This is a straightforward calculation, see for instance [52, Section 9]. �

16.1. Proof of Theorem 16.1

This is simply a matter of tracking the constants in the proof of Theorem 1.3.

Fix

ε <
1

α
(Ω)m
(Ω)

and let m := ε−1. Then there exist m0 ≥ 2, α ≥ 1, and z0 ∈ Ω such that
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(1) m > m0α,

(2) Ω is m0-convex,

(3) Ω is α-regular.

Fix z0 ∈ Ω and let λ be the constant associated to dz0
in Sections 12 and 14.

Notice that, by definition, α satisfies Lemma 12.7 and so by Equation (16)

m1 :=
αλm0

2

satisfies the conclusion of Proposition 12.6. Hence m1 also satisfies the conclusion of 

Lemmas 14.2 and 14.4 (see Remark 14.3). Then by Equation (23) and Remark 14.6, any

m2 >
2m1

λ
= αm0

satisfies the conclusion of Theorem 14.1. In particular, m does. Then Straube’s theorem 

(Theorem 10.1 above) implies that a local subelliptic estimate of order ε = 1
m holds at 

every boundary point. Then by the “local to global” proof in Section 15 we see that a 

subelliptic estimate of order ε = 1
m holds on Ω.

Part 4. Examples

17. The Hilbert distance

In this expository section we recall the definition of the Hilbert distance and then 

state some of its properties.

Suppose Ω ⊂ R
d is a convex domain. Given x, y ∈ Ω distinct let Lx,y be the real line 

containing them and let a, b ∈ ∂Ω ∪ {∞} be the endpoints of Ω ∩ Lx,y with the ordering 

a, x, y, b. Then define the Hilbert pseudo-distance between x, y to be

HΩ(x, y) =
1

2
log

‖x − b‖ ‖y − a‖
‖y − b‖ ‖x − a‖

where we define

‖x − ∞‖
‖y − ∞‖ =

‖y − ∞‖
‖x − ∞‖ = 1.

In the case when Ω does not contain any affine real lines, we see that HΩ(x, y) > 0 for 

all x, y ∈ Ω distinct. This motivates the following definition.

Definition 17.1. A convex domain Ω ⊂ R
d is called R-properly convex if Ω does not 

contain any affine real lines.
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Theorem 17.2.

(1) If Ω ⊂ R
d is a R-properly convex domain, then (Ω, HΩ) is a proper geodesic metric 

space. For x, y ∈ Ω distinct, there exists a geodesic line γ : R → Ω whose image is 

Lx,y ∩ Ω.

(2) If Ω ⊂ R
d is a convex domain and V ⊂ R

d is an affine subspace intersecting Ω, then

HΩ(x, y) = HΩ∩V (x, y)

for all x, y ∈ Ω ∩ V .

(3) If Ω ⊂ R
d is a convex domain and A ∈ Aff(Rd) is an affine automorphism of Rd, 

then

HΩ(x, y) = HAΩ(Ax, Ay)

for all x, y ∈ Ω.

Properties (2) and (3) in Theorem 17.2 are immediate from the definition and a proof 

of Property (1) can be found in [12, Section 28].

We also can define an infinitesimal Hilbert pseudo-metric. Given x ∈ Ω and a non-zero 

v ∈ R
d let a, b ∈ ∂Ω ∪ {∞} be the endpoints of Ω ∩ (x + R ·v). Then define the Hilbert 

norm of v at x to be

hΩ(x; v) =
‖v‖
2

(
1

‖x − a‖ +
1

‖x − b‖

)
.

Given a piecewise C1 curve σ : [0, 1] → Ω we define the Hilbert length of σ to be

	H,Ω(σ) :=

1∫

0

hΩ(σ(t); σ′(t))dt.

It is fairly straightforward to establish the following.

Proposition 17.3. If Ω ⊂ R
d is a properly convex domain, then

HΩ(x, y) = inf
{

	H,Ω(σ) : σ : [0, 1] → Ω is piecewise C1, σ(0) = x, σ(1) = y
}

.

We will also use the following result of Karlsson and Noskov.

Theorem 17.4 (Karlsson-Noskov [37]). Suppose Ω ⊂ R
d is a R-properly convex domain. 

If (Ω, HΩ) is Gromov hyperbolic, then

(1) Ω is strictly convex (that is, ∂Ω does not contain any line segments of positive length),

(2) ∂Ω is a C1 hypersurface.
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Next we consider the space of R-properly convex domains.

Definition 17.5.

(1) Let Yd denote the space of R-properly convex domains in Rd endowed with the local 

Hausdorff topology.

(2) Let Y d,0 = {(Ω, x) : Ω ∈ Yd, x ∈ Ω} ⊂ Yd × R
d.

As in the complex case, the group Aff(Rd) acts co-compactly on Yd,0.

Theorem 17.6 (Benzécri [6]). The group Aff(Rd) acts co-compactly on Yd,0, that is, there 

exists a compact set K ⊂ Y d,0 such that Aff(Rd) · K = Y d,0.

Remark 17.7. To be precise, Benzécri established a real projective variant of the above 

result which easily implies Theorem 17.6. A direct proof can also be found in [27].

Using the definition of the Hilbert distance it is not difficult to observe that the Hilbert 

distance is continuous on Yd.

Observation 17.8. Suppose Ωn ⊂ R
d is a sequence of convex domains converging to a 

convex domain Ω in the local Hausdorff topology. Then

HΩ = lim
n→∞

HΩn

locally uniformly on Ω × Ω.

As a consequence of Theorem 17.4 and Observation 17.8 we have the following.

Corollary 17.9. Suppose Ω ⊂ R
d is a R-properly convex domain and (Ω, HΩ) is Gromov 

hyperbolic. Then

(1) if D ∈ Aff(Rd) · Ω ∩ Y d, then (D, HD) is Gromov hyperbolic,

(2) every domain in Aff(Rd) · Ω ∩ Y d is strictly convex,

(3) every domain in Aff(Rd) · Ω ∩ Y d has C1 boundary.

Recently, Benoist completely characterized the convex domains which have Gromov 

hyperbolic Hilbert metric in terms of the derivatives of local defining functions. To state 

his result we need some definitions.

Definition 17.10. Suppose U ⊂ R
d is an open set and F : U → R is a C1 function. Then 

for x, x + h ∈ U define

Dx(h) := F (x + h) − F (x) − F ′(x) · h.
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Then F is said to be quasi-symmetric if there exists H ≥ 1 so that

Dx(h) ≤ HDx(−h)

whenever x, x + h, x − h ∈ U .

Definition 17.11. Suppose Ω ⊂ R
d is a bounded convex domain. Then Ω is said to have 

quasi-symmetric boundary if its boundary is C1 and is everywhere locally the graph of 

a quasi-symmetric function.

Theorem 17.12 (Benoist [7, Theorem 1.4]). Suppose Ω ⊂ R
d is a bounded convex domain. 

Then the following are equivalent:

(1) (Ω, HΩ) is Gromov hyperbolic,

(2) Ω has quasi-symmetric boundary.

18. Proof of Corollary 1.11

In this section we prove Corollary 1.11. For the rest of the section suppose that 

Ω ⊂ C
d is a bounded convex domain and (Ω, HΩ) is Gromov hyperbolic. Suppose for a 

contradiction that (Ω, KΩ) is not Gromov hyperbolic.

Since (Ω, KΩ) is not Gromov hyperbolic, Theorem 1.5 implies that there exist affine 

maps An ∈ Aff(Cd) such that AnΩ → Ω∞ in Xd and ∂Ω∞ has non-simple boundary. 

Then by Proposition 2.13, ∂Ω∞ contains an affine disk. Then without loss of generality 

we can assume that 0 ∈ Ω∞ and e1 + D ·e2 ⊂ ∂Ω∞. Pick λ ∈ C such that −λe2 ∈ ∂Ω∞
and ‖0 − λe2‖ = δΩ∞

(0; e2). By rotating Ω∞ we can assume, in addition, that λ ∈ R>0.

Let V = SpanR{e1, e2} and C = V ∩ Ω∞.

Claim. C is a R-properly convex domain in V and (C, HC) is not Gromov hyperbolic.

Proof of Claim. By construction e1 + [−1, 1] · e2 ⊂ ∂C which implies by convexity that

(e1 + R ·e2) ∩ C = ∅. (24)

Further λe2 ∈ ∂C. We claim that C is R-properly convex. Suppose that a + R ·v ⊂ C for 

some a, v ∈ SpanR{e1, e2}. Since 0 ∈ C, the real analogue of Observation 2.14 implies 

that R ·v ⊂ C. If v = v1e1 + v2e2, then Equation (24) implies that v1 = 0. Then, 

since λe2 ∈ ∂C, we must have v2 = 0. So v = 0 and hence C is R-properly convex. 

Finally, since e1 + [−1, 1] · e2 ⊂ ∂C, Theorem 17.4 implies that (C, HC) is not Gromov 

hyperbolic. �

For a convex domain D ⊂ C
d and x, y, z ∈ D define the Gromov product associated 

to HD by
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(x|y)H,D
z :=

1

2
(HD(x, z) + HD(y, z) − HD(x, y)) .

Since (Ω, HΩ) is Gromov hyperbolic, there exists δ > 0 such that

(x|z)H,Ω
w ≥ min

{
(x|y)H,Ω

w , (y|z)H,Ω
w

}
− δ

for every x, y, z, w ∈ Ω. So by Theorem 17.2 part (3) and Observation 17.8

(x|z)H,Ω∞

w ≥ min
{

(x|y)H,Ω∞

w , (y|z)H,Ω∞

w

}
− δ

for every x, y, z, w ∈ Ω∞ (notice that Ω∞ may not be R-properly convex and so HΩ∞

may not be a distance on Ω∞, but this doesn’t matter). So by Theorem 17.2 part (2)

(x|z)H,C
w ≥ min

{
(x|y)H,C

w , (y|z)H,C
w

}
− δ

for every x, y, z, w ∈ C. But then (C, HC) is Gromov hyperbolic which contradicts the 

claim.

19. Tube domains

In this section we establish Corollary 1.13 by proving Propositions 19.1 and 19.5

below.

Proposition 19.1. Suppose d ≥ 2, C ⊂ R
d is a R-properly convex domain, and Ω =

C + i Rd. If (Ω, KΩ) is Gromov hyperbolic, then (C, HC) is Gromov hyperbolic and C is 

unbounded.

Before proving the proposition we establish two lemmas.

Lemma 19.2. Suppose C ⊂ R
d is a R-properly convex domain and Ω = C + i Rd. Then

KΩ(c1, c2) ≤ HC(c1, c2) ≤ 2KΩ(c1, c2)

for all c1, c2 ∈ C.

Remark 19.3. When C is bounded, Pflug and Zwonek [47, Proposition 15] proved that 

KΩ(c1, c2) ≤ HC(c1, c2) for c1, c2 ∈ C.

Proof. Using Proposition 3.4 and Observation 17.8 it suffices to prove the lemma in the 

case when C is bounded. Then by a result of Pflug and Zwonek [47, Proposition 15] we 

have

KΩ(c1, c2) ≤ HC(c1, c2)

for all c1, c2 ∈ C.
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For c ∈ C and v ∈ R
d non-zero define

δC(c; v) = min{‖ξ − c‖ : ξ ∈ (c + R ·v) ∩ ∂C}

and define δC(c; 0) = ∞. Then, by definition,

‖v‖
2δC(c; v)

≤ hC(c; v) ≤ ‖v‖
δC(c; v)

(25)

for all c ∈ C and v ∈ R
d. Then let P : R

d +i Rd → R
d be the projection P (x + iy) = x. 

Notice that

δΩ(z; v) ≤ δC(P (z); P (v)) (26)

for all z ∈ Ω and non-zero v ∈ C
d.

Fix c1, c2 ∈ C and let σ : [0, 1] → Ω be a piecewise C1 curve with σ(0) = c1 and 

σ(1) = c2. Then by Equation (25), Equation (26), and Lemma 2.9

	H,C(P ◦ σ) =

1∫

0

hC(Pσ(t); Pσ′(t))dt ≤
1∫

0

‖P (σ′(t))‖
δC(P (σ(t)); P (σ′(t)))

dt

≤
1∫

0

‖σ′(t)‖
δΩ(σ(t); σ′(t))

dt ≤ 2

1∫

0

kΩ(σ(t); σ′(t))dt = 2	Ω(σ).

So

HC(c1, c2) ≤ 2	Ω(σ).

Then taking the infimum over all such curves we see that

HC(c1, c2) ≤ 2KΩ(c1, c2). �

Lemma 19.4. Suppose C ⊂ R
d is a bounded convex domain and Ω = C + i Rd. If c0 ∈ C, 

then there exists A = A(c0) ≥ 1 such that

1

A
‖y1 − y2‖ ≤ KΩ(c0 + iy1, c0 + iy2) ≤ A ‖y1 − y2‖

for all y1, y2 ∈ R
d.

Proof. Since C is bounded, there exists A1 > 0 such that

δΩ(z; v) ≤ A1
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for all z ∈ C and v ∈ C
d non-zero. Since Ω is invariant under translations of the form 

z → z + iy with y ∈ R
d, this implies that

δΩ(z; v) ≤ A1

for all z ∈ Ω and v ∈ C
d non-zero. Then by Lemma 2.9

KΩ(z1, z2) ≥ 1

2A1
‖z1 − z2‖

for all z1, z2 ∈ Ω.

Next, since Ω is invariant under translations of the form z → z + iy with y ∈ R
d, we 

see that

δΩ(c0 + iy) = δΩ(c0)

for every y ∈ R
d. Now fix y1, y2 ∈ R

d and define σ : [0, 1] → Ω by σ(t) = (1 − t)(c0 +

iy1) + t(c0 + iy2). Then Lemma 2.9 implies that

KΩ(c0 + iy1, c0 + iy2) ≤
1∫

0

kΩ(σ(t); σ′(t))dt ≤
1∫

0

‖y2 − y1‖
δΩ(c0)

dt =
‖y2 − y1‖

δΩ(c0)
.

So the Lemma is true with

A := max{2A1, δΩ(c0)−1}. �

Proof of Proposition 19.1. By Lemma 19.2, the inclusion map (C, HC) ↪→ (Ω, KΩ) is a 

quasi-isometric embedding. Then (C, HC) is Gromov hyperbolic, see [11, Chapter III.H, 

Theorem 1.9].

If C is bounded and c0 ∈ C, then Lemma 19.4 implies that the map

y ∈ (Rd, dEuc) → c0 + iy ∈ (Ω, KΩ)

is an quasi-isometric embedding. But since (Ω, KΩ) is Gromov hyperbolic and d ≥ 2, 

this is impossible. So C must be unbounded. �

Proposition 19.5. Suppose C ⊂ R
d is a R-properly convex domain and Ω = C + i Rd. If 

(C, HC) is Gromov hyperbolic and C is unbounded, then (Ω, KΩ) is Gromov hyperbolic.

We will need one lemma before proving the proposition.

Lemma 19.6. Suppose C ⊂ R
d is a R-properly convex domain and Ω = C + i Rd. Then

Aff(Cd) · Ω ∩ Xd = Aff(Cd) ·
(

Aff(Rd) · C ∩ Y d +i R
d
)

.
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In particular, the following are equivalent

(1) every domain in Aff(Rd) · C ∩ Y d is strictly convex

(2) every domain in Aff(Cd) · Ω ∩ Xd has simple boundary.

Proof. Since every map A ∈ Aff(Rd) extends to a map in Aff(Cd) we see that

Aff(Cd) ·
(

Aff(Rd) · C ∩ Y d +i R
d
)

⊂ Aff(Cd) · Ω ∩ Xd .

For the other inclusion, suppose that An ∈ Aff(Cd) and AnΩ converges to some D
in Xd. Fix some z0 ∈ D. Then, after passing to a subsequence, we can suppose that 

z0 ∈ AnΩ for all n. Let zn = A−1
n z0. Then An(Ω, zn) → (D, z0) in Xd,0.

Suppose zn = xn + iyn ∈ R
d +i Rd. Then let Tn ∈ Aff(Cd) denote the translation 

Tn(z) = z − iyn. Next, by Theorem 17.6, we can pass to a subsequence and find Bn ∈
Aff(Rd) such that Bn(C, xn) converges to some (C∞, x∞) in Y d,0. Then extending each 

Bn to an affine automorphism of Cd,

BnTn(Ω, zn) → (C∞ + i R
d, x∞)

in Xd,0. But then, by Proposition 3.7, there exists some A ∈ Aff(Cd) such that

D = A(C∞ + i R
d) ∈ Aff(Cd) ·

(
Aff(Rd) · C ∩ Y d +i R

d
)

.

Thus

Aff(Cd) · Ω ∩ Xd ⊂ Aff(Cd) ·
(

Aff(Rd) · C ∩ Y d +i R
d
)

.

Finally, the in particular part follows from the main assertion and Proposi-

tion 2.13. �

Proof of Proposition 19.5. By Corollary 17.9, every domain in Aff(Rd) · C∩Y d is strictly 

convex. So by Lemma 19.6 every domain in Aff(Cd) · Ω ∩ Xd has simple boundary. Since 

C is unbounded, AC(Ω) is not totally real and hence (Ω, KΩ) is Gromov hyperbolic by 

Theorem 9.1. �

20. The squeezing function

In this section we construct Example 1.9 by showing that an example of Fornæss 

and Wold satisfies all the desired conditions. Their example was constructed to be a 

counterexample to a natural question concerning the squeezing function.

Given a domain Ω ⊂ C
d biholomorphic to a bounded domain, let sΩ : Ω → (0, 1]

denote the squeezing function on Ω, that is
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sΩ(z) = sup{r : there exists a holomorphic embedding

f : Ω ↪→ Bd with f(z) = 0 and r Bd ⊂ f(Ω)}.

The quantity sΩ(z) can be seen as a measure of how close the complex geometry of Ω at 

z is to the complex geometry of the unit ball.

For strongly pseudoconvex domains, Diederich, Fornæss, and Wold [22, Theorem 1.1]

and Deng, Guan, and Zhang [24, Theorem 1.1] proved the following.

Theorem 20.1 ([22,24]). If Ω ⊂ C
d is a bounded strongly pseudoconvex domain with C2

boundary, then limz→∂Ω sΩ(z) = 1.

Based on the above theorem, it seems natural to ask if the converse holds.

Question. (Fornæss and Wold [30, Question 4.2]) Suppose Ω ⊂ C
d is a bounded pseudo-

convex domain with Ck boundary for some k > 2. If limz→∂Ω sΩ(z) = 1, is Ω strongly 

pseudoconvex?

In the convex case the answer is yes when k > 2 [57] and no when k = 2.

Example 20.2 (Fornæss and Wold [30]). For any d ≥ 2 there exists a bounded con-

vex domain Ω ⊂ C
d with C2 boundary such that Ω is not strongly pseudoconvex and 

limz→∂Ω sΩ(z) = 1.

The next theorem shows that the domains in Example 20.2 satisfy the claims in 

Example 1.9.

Theorem 20.3. Suppose d ≥ 2, Ω ⊂ C
d is a bounded convex domain, ∂Ω is C1, and 

limz→∂Ω sΩ(z) = 1. Then a subelliptic estimate of order ε holds for every ε ∈ (0, 1/2).

The theorem will require several lemmas.

Lemma 20.4. Suppose Ω ⊂ C
d is a bounded convex domain and limz→∂Ω sΩ(z) = 1. If 

zn ∈ Ω is a sequence with

lim
n→∞

dEuc(zn, ∂Ω) = 0

and An ∈ Aff(Cd) are affine maps such that An(Ω, zn) converges to (U , u) in Xd,0, then 

U is biholomorphic to Bd.

Proof. The function

(D, z) ∈ Xd,0 → sD(z)



86 A. Zimmer / Advances in Mathematics 402 (2022) 108334

is upper semi-continuous (see for instance [56, Proposition 7.1]). So

1 ≥ sU (u) ≥ lim
n→∞

sAnΩ(Anzn) = lim
n→∞

sΩ(zn) = 1.

Hence sU (u) = 1. Then by [23, Theorem 2.1], U is biholomorphic to Bd. �

The proof of the next lemma uses the following result.

Proposition 20.5 ([57, Proposition 2.1]). Suppose Ω ⊂ C
d is a convex domain with

(1) Ω ∩ (e1 + SpanC{e2, . . . , ed}) = ∅,

(2) Ω ∩ C ·e1 = {(z, 0, . . . , 0) ∈ C
d : Re(z) < 1}, and

(3) Ω is biholomorphic to Bd.

If v ∈ SpanC{e2, . . . , ed}, then

1

2
= lim

t→∞
1

t
log δΩ(−ete1; v).

Remark 20.6. The theorem says that Ω asymptotically “looks” like the domain

⎧
⎨
⎩(z1, . . . , zd) : Re(z1) < 1 −

d∑

j=2

|zj |2
⎫
⎬
⎭

which is biholomorphic to Bd.

Lemma 20.7. Suppose Ω ⊂ C
d is a bounded convex domain, ∂Ω is C1, and limz→∂Ω sΩ(z)

= 1. Then Ω is (2 + a)-convex for every a > 0.

Proof. Without loss of generality we may assume 0 ∈ Ω. Then, as in Section 6, for 

z ∈ Ω \ {0} let πΩ(z) ∈ ∂Ω be defined by

{πΩ(z)} = ∂Ω ∩ R>0 ·z.

Also, for z ∈ Ω \{0} let rΩ(z) = ‖z − πΩ(z)‖ and let TΩ(z) denote the set of unit vectors 

v ∈ C
d where

(πΩ(z) + C ·v) ∩ Ω = ∅.

Since Ω is convex and ∂Ω is C1, the set TΩ(z) coincides with a complex hyperplane 

intersected with the unit sphere. Also, if z ∈ Ω \ {0}, then Ω contains the convex hull of 

Bd(0; δΩ(0)) and πΩ(z). Hence
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rΩ(z) ≤ ‖πΩ(z)‖
δΩ(0)

δΩ(z) ≤ maxw∈∂Ω ‖w‖
δΩ(0)

δΩ(z) (27)

for all z ∈ Ω \ {0}.

Fix a > 0. We claim that Ω is (2 + a)-convex. Using Equation (27) and the proof of 

Lemma 6.7, it is enough to show that there exists C > 0 such that

δΩ(z; v) ≤ CrΩ(z)1/(2+a)

for every z ∈ Ω \ {0} and v ∈ TΩ(z). Suppose not, then there are sequences zm ∈ Ω \ {0}
and vm ∈ TΩ(zm) such that

δΩ(zm; vm) = CmrΩ(zm)1/(2+a)

and Cm ≥ m.

Since Ω is bounded, the quantity

M := sup
{

δΩ(z; v) : z ∈ Ω, v ∈ C
d \{0}

}

is finite. Then, since Cm ≥ m, we must have

lim
m→∞

rΩ(zm) = 0. (28)

Since Ωm is convex, the function fm : [0, 1] → R defined by

fm(t) =
‖πΩ(zm) − tzm‖1/(2+a)

δΩ(tzm; vm)

is continuous. Let tm ∈ [0, 1] be a minimum point of fm. Notice that fm(1) = 1
Cm

≤ 1
m

and

fm(0) =
‖πΩ(zm)‖1/(2+a)

δΩ(0; vm)
≥ δΩ(0)1/(2+a)

M
.

So for m sufficiently large, fm(1) < fm(0) and hence tm ∈ (0, 1]. So after possibly passing 

to a tail of the sequence, replacing zm with tmzm, and increasing Cm, we can further 

assume that each zm has the following extremal property:

δΩ(tzm; vm) ≤ CmrΩ(tzm)1/(2+a) (29)

for all t ∈ (0, 1]. Finally, by replacing vm by some eiθmvm where θm ∈ R, we can assume 

that

zm + CmrΩ(zm)1/(2+a)vm ∈ ∂Ω.
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Notice that vm is still contained in TΩ(zm).

Let

am := πΩ(zm) ∈ ∂Ω

and

bm := zm + CmrΩ(zm)1/(1+a)vm ∈ ∂Ω.

Then let Bm ∈ Aff(Cd) be an affine map such that Bm(zm) = 0, Bm(am) = e1, and 

Bm(bm) = e2.

For r > 0 and θ ∈ (0, π/2) let

C(r, θ) = {x + iy ∈ C : −r < x < 1, |y| < tan(θ)(1 − x)}.

Then C(r, θ) ⊂ C is a truncated cone based at 1 in C. Since ∂Ω is C1 and zm converges 

towards the boundary, there exist sequences rm → ∞ and θm → π/2 such that

C(rm, θm) · e1 ⊂ BmΩ. (30)

In particular, there exists some r ∈ (0, 1) such that

r D ·e1 ⊂ BmΩ

for all m. Further, since vm ∈ TΩ(zm), we see that

BmΩ ∩ (e1 + C ·e2) = ∅.

By construction e2 = Bm(bm) ∈ ∂BmΩ and since δΩ(zm; vm) = ‖bm − zm‖ we see that

D ·e2 ⊂ BmΩ.

Thus

BmΩ ∩ SpanC{e1, e2} ∈ K2(r).

So by Proposition 4.6, we can assume that BmΩ ∈ Kd(r). Then, since Kd(r) is compact, 

we can pass to a subsequence so that Bm(Ω, zm) → (D, 0) in Xd,0.

Lemma 20.4 implies that D is biholomorphic to Bd. We will use Proposition 20.5 to 

derive a contradiction. First, since D ∈ Kd(r) we have

D ∩ (e1 + SpanC{e2, . . . , ed}) = ∅.

Next, Equation (30) implies that
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{(z, 0, . . . , 0) ∈ C
d : Re(z) < 1} ⊂ D.

Then, since e1 ∈ ∂D and D is convex, we must have

{(z, 0, . . . , 0) ∈ C
d : Re(z) < 1} = D ∩ C ·e1.

Finally we obtain a contradiction by verifying the following claim.

Claim. δD(−te1; e2) ≤ (1 + t)1/(2+a) for every t > 0.

Proof of Claim. Fix t > 0. Then for m sufficiently large

B−1
m (−te1) ∈ (0, zm)

and

rΩ(B−1
m (−te1)) = (1 + t)rΩ(zm).

Then by Equation (29)

δΩ(B−1
m (−te1); vm) ≤ Cm(1 + t)1/(2+a)rΩ(zm)1/(2+a).

Then

δBmΩ(−te1; e2) =
1

CmrΩ(zm)1/(2+a)
δΩ(B−1

m (−te1); vm) ≤ (1 + t)1/(2+a).

So

δD(−te1; e2) = lim
m→∞

δBmΩ(−te1; e2) ≤ (1 + t)1/(2+a).

This proves the claim. �

Now we have a contradiction: Proposition 20.5 implies that

1

2
= lim

t→∞
1

t
log δD(−ete1; e2),

while the claim implies that this limit is bounded above by 1
2+a < 1

2 . �

Lemma 20.8. Suppose Ω ⊂ C
d is a bounded convex domain and limz→∂Ω sΩ(z) = 1. Then 

(Ω, KΩ) is Gromov hyperbolic.
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Proof. Using Theorem 1.5 we need to show that every domain in

Aff(Cd) · Ω ∩ Xd

has simple boundary.

If

D ∈ Aff(Cd) · Ω ∩ Xd − Aff(Cd) · Ω,

then D is biholomorphic to Bd by Lemma 20.4. So, in this case, (D, KD) is Gromov 

hyperbolic and hence D has simple boundary by Theorem 1.5. So it suffices to show that 

Ω has simple boundary. However, if Ω has non-simple boundary, then there exists some

D′ ∈ Aff(Cd) · Ω ∩ Xd − Aff(Cd) · Ω,

with non-simple boundary, see for instance [32, Proposition A.9], and we just showed 

that this is impossible. �

Proof of Theorem 20.3. Since (Ω, KΩ) is Gromov hyperbolic, Theorem 16.1 says that a 

subelliptic estimate of order ε holds for all

ε <
1

α
(Ω)m
(Ω)
.

Further m
(Ω) = 2 by Lemma 20.7 and α
(Ω) = 1 by Proposition 16.2. �

21. Miscellaneous examples

21.1. The failure of the converse to Theorem 1.1

In Example 7.3 we constructed strongly convex domains Ω1, . . . , Ωd such that

Ω := ∩d
j=1Ωj

is non-empty and (Ω, dΩ) is not Gromov hyperbolic. However, each (Ωj , dΩj
) is Gromov 

hyperbolic by Corollary 1.7 and so Ω satisfies a subelliptic estimate by Theorem 1.3.

21.2. Example 1.8

In [55, Theorem 1.8] we proved that the Kobayashi metric on the convex cone

C = {(z0, z) ∈ C × C
d : Im(z0) > ‖z‖}

is Gromov hyperbolic. Then by Theorem 15.1 a subelliptic estimate holds on
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Ω = Bd+1(0; r) ∩ C

for any r > 0.

21.3. Example 1.10

To construct Example 1.10 we need to recall some facts about convex divisible domains 

in P (Rd).

Definition 21.1.

(1) A domain Ω ⊂ P (Rd) is properly convex if there exists an affine chart of P (Rd)

which contains Ω as a bounded convex domain.

(2) Two domains Ω1, Ω2 ⊂ P (Rd) are projectively equivalent if there exists some g ∈
PGLd(R) such that gΩ1 = Ω2.

(3) The projective automorphism group of a domain Ω ⊂ P (Rd) is

AutP (Ω) = {g ∈ PGLd(R) : gΩ = Ω}.

(4) A properly convex domain Ω ⊂ P (Rd) is called divisible if there exists a discrete 

group Γ ≤ AutP (Ω) which acts properly discontinuously, freely, and co-compactly 

on Ω.

Given a properly convex domain Ω ⊂ P (Rd), one can define the Hilbert distance on 

Ω by fixing an affine chart that contains Ω as a bounded convex domain and taking the 

Hilbert metric there. Using the projective invariance of the cross ratio, one can show 

that this definition does not depend on the choice of affine chart.

The fundamental example of a properly convex divisible domain is the unit ball

B =

{
[1 : x1 : · · · : xd−1] ∈ P (Rd) :

d−1∑

i=1

x2
i < 1

}
.

Then (B, HB) is the Klein-Beltrami model of real hyperbolic (d − 1)-space and any 

real hyperbolic manifold can be identified with a quotient Γ\ B for some discrete group 

Γ ≤ AutP (B) which acts properly discontinuously on B. Since compact real hyperbolic 

manifolds exist in any dimension, this implies that B is divisible.

It turns out that B is not the only example of a properly convex divisible domain.

Theorem 21.2 (Benoist [8, Corollary 2.10], Kapovich [35]). For any d ≥ 3 there exists a 

properly convex divisible domain Ω ⊂ P (Rd) such that Ω is not projectively equivalent to 

B and (Ω, HΩ) is Gromov hyperbolic.
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Benoist [8] proved a number of results about these domains. To state his results we 

need one definition.

Definition 21.3. Suppose Ω ⊂ R
d is a bounded convex domain with C1 boundary. For 

x ∈ ∂Ω, let nΩ(x) be the inward pointing unit normal vector at x. Then the curvature 

of ∂Ω is concentrated on a set of measure zero if the pull back of the Lebesgue measure 

on Sd−1 under nΩ is singular to the volume induced by some (hence any) Riemannian 

metric on ∂Ω.

Theorem 21.4 (Benoist [8, Theorem 1.1, Theorem 1.2, Theorem 1.3]). Suppose Ω ⊂
P (Rd) is a properly convex divisible domain with (Ω, HΩ) Gromov hyperbolic. If Ω is not 

projectively equivalent to B, then

(1) ∂Ω is C1,α for some α > 0 but not C1,1,

(2) Ω is strictly convex, and

(3) the curvature of ∂Ω is concentrated on a set of measure zero

Then the existence of Example 1.10 follows from the previous two theorems.
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