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1. Introduction

Suppose that Q Cc C 4 is a bounded pseudoconvex domain. Then a subelliptic estimate
of order € > 0 holds on € if there exists a constant C' > 0 such that

lull. < C([19ullo + [|0%ullo)

for all u € L%O q)(Q)ﬂdom(g)Odom(é*) and 1 < ¢ < d. Here |-, denotes the L2-Sobolev

space norm of order s on (0, ¢)-forms on €, 0* denotes the adjoint of 0 with respect to the
L? inner product, and L%O, q)(Q) denotes the space of (0, ¢)-forms with square integrable
coefficients.

In the case when 2 is smoothly bounded, subelliptic estimates have been extensively
studied, culminating in Catlin’s [17,18] deep work which asserts that a subelliptic esti-
mate holds on a smoothly bounded pseudoconvex domain if and only if the boundary has
finite type in the sense of D’Angelo. For more background, see the survey papers [16,19].

In this paper we consider domains with non-smooth boundary. Previously, Henkin-
Tordan-Kohn [34] established subelliptic estimates on strongly pseudoconvex domains
with piecewise smooth boundary and Michel-Shaw [43] established subelliptic estimates
on strongly pseudoconvex domains with Lipschitz boundary. Straube [49] established
subelliptic estimates on pseudoconvex domains with piecewise smooth boundary of finite
type. Straube [49] and Harrington [33] have also established sufficient conditions for
subelliptic estimates in terms of the existence of functions with large Hessians near the
boundary.

We will focus our attention on convex domains. For smoothly bounded convex do-
mains, subelliptic estimates have been previously studied by Fornzess-Sibony [28] and Mec-
Neal [39,40,45]. For bounded convex domains with non-smooth boundary, Fu-Straube [29]
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established necessary and sufficient conditions for compactness of the d-Neumann prob-
lem. Convexity is a strong geometric assumption, but we will show that this special case
already contains interesting examples with non-smooth boundary.

In the non-smooth setting, it seems difficult to develop boundary invariants that will
imply or be implied by subelliptic estimates. Instead, we consider conditions on the
interior geometry of a domain. In particular, every bounded pseudoconvex domain {2
has a canonical geometry: the complete Kéhler-Einstein metric g with Ricci curvature
—1 constructed by Cheng-Yau [21] when 92 is C? and Mok-Yau [44] in general. Let dg
denote the distance on ) induced by this Kéhler metric. In [52], we proved that when
is a smoothly bounded convex domain, then 92 has finite type if and only if the metric
space (2, dq) is Gromov hyperbolic.

Combining this with Catlin’s results yields the following: when € is a smoothly
bounded convex domain a subelliptic estimate holds if and only if (2,dq) is Gromov
hyperbolic. The first main result of this paper shows that one direction of the above
equivalence holds without any boundary regularity.

Theorem 1.1. Suppose Q@ C C?¢ is a bounded conver domain and (Q,dq) is Gromov
hyperbolic. Then Q) satisfies a subelliptic estimate.

Remark 1.2.

(1) Unfortunately the converse to Theorem 1.1 is false, see Section 21.1.

(2) A bounded convex domain has (at least) two other natural metrics: the Kobayashi
metric and the Bergman metric. By a result of Frankel [27] these are both bi-Lipschitz
to the Kéhler-Einstein metric and hence if one is Gromov hyperbolic, then they all
are.

We prove Theorem 1.1 by constructing a bounded plurisubharmonic function whose
Levi form grows at a certain rate. Such functions imply subelliptic estimates by results
of Catlin [18] and Straube [49]. Catlin’s construction of these functions in the finite
type case is very involved and so finding alternative approaches to constructing these
functions seems desirable. The main idea in our construction is to show that analytic and
algebraic arguments of McNeal [38,39] in the case of convex domains of finite type can be
recast as geometric arguments in terms of the intrinsic metrics. Another key part in our
construction is proving that convex domains whose Kéhler-Einstein metric is Gromov
hyperbolic must be m-convex, see Section 7. An outline of the proof of Theorem 1.1 and
a more detailed discussion of prior work can be found in Section 10.

One motivation for Theorem 1.1 comes from the deep connections between potential
theory and negative curvature, see for instance [1-4,50]. In particular, techniques from
Gromov hyperbolic metric spaces have been used to develop new insights into potential
theory on bounded domains in R?, see for instance [1, Section 8]. Based on these results,
it seems natural to explore connections between other analytic problems and Gromov
hyperbolicity.
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Theorem 1.1 is a consequence of the following more general result.

Theorem 1.3 (see Section 15). Suppose Q1,...,Q, C C? are bounded conver domains
and each (5, dq;) is Gromov hyperbolic. If ) := N7L1€2; is non-empty, then € satisfies
a subelliptic estimate.

Our second main result is a necessary and sufficient condition for (€2, dg) to be Gromov
hyperbolic. To state the precise result, we need the following definitions.

Definition 1.4.

(1) A domain Q C C? has simple boundary if every holomorphic map D — 99 is
constant.

(2) A convex domain §2 C C? is called C-properly convez if Q does not contain any
entire complex affine lines.

(3) Let X4 denote the set of all C-properly convex domains in C? endowed with the
local Hausdorff topology (see Section 3 for details).

(4) Let Aff(C?%) denote the group of complex affine automorphisms of C*.

The group Aff(C d) acts on Xy and our characterization of Gromov hyperbolicity is
in terms of the orbit of a domain under this action.

Theorem 1.5 (see Section 9). Suppose Q C C% is a bounded convex domain. Then (2, dg)
is Gromov hyperbolic if and only if every domain in

AfF(CH) - QN Xy
has simple boundary.

Remark 1.6. Theorem 1.5 is motivated by results of Karlsson-Noskov [37] and Benoist [9]
on the Hilbert metric, see Section 17 for details.

Theorem 1.5 may seem like a very abstract characterization, but in many concrete
cases one can use it to quickly determine if (€, dq) is Gromov hyperbolic or not. For
instance, suppose  C C? is a bounded convex domain with C* boundary. If 99 has
finite type in the sense of D’Angelo, then the rescaling method of Bedford-Pinchuk [13]
implies that every domain in Aff (Cd) - 2N Xy coincides, up to an affine transformation,
either with Q or a domain of the form

{z€C?:1m(21) > P(22,...,2a)}

where P is a “non-degenerate” real valued polynomial. This implies that every domain in
Aff ((Cd) - 2N Xy has simple boundary. Conversely, if €2 has a point £ € 92 with infinite
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type in the sense of D’Angelo, then there exists a sequence of affine maps A,, such that
A, (&) = € and A, Q) converges to a C-properly convex domain whose boundary contains
an analytic disk through &, see [52, Lemma 6.1]. This discussion implies the following
corollary.

Corollary 1.7 (/52, Theorem 1.1]). Suppose Q@ C C% is a bounded convex domain with
C boundary. Then (2, dq) is Gromov hyperbolic if and only if OQ has finite type in the
sense of D’Angelo.

Using Theorem 1.1 and Theorem 1.5, we can construct examples of domains which
satisfy a subelliptic estimate and have interesting boundaries.

Example 1.8 (see Section 21.2). For any d > 2, there exists a bounded convex domain
Q) ¢ C? with the following properties:

(1) there exists a boundary point £ € 9Q where 2 is locally a cone (that is, there exists a
convex cone C C C? based at € and a neighborhood U of € such that CNU = QN U)
and

(2) a subelliptic estimate holds on 2.

Example 1.9 (see Section 20). For any d > 2, there exists a bounded convex domain
Q c C?% with the following properties:

(1) 99 is C?,
(2) € is not strongly pseudoconvex, and every (3) € € (0,1/2).

Example 1.10 (see Section 21.3). For any d > 2 there exists a bounded convex domain
Q c C? with the following properties:

(1) 99 is C1* for some o > 0 (but not C+1),

(2) the curvature of 0 is concentrated on a set of measure zero (see Definition 21.3),
and

(3) a subelliptic estimate holds on €.

Informally, Condition (2) says that 0 is strongly convex on a set of measure zero.

We can also use Theorem 1.5 to relate the geometry of the classical Hilbert metric to
the geometry of the Kéhler-Einstein metric. This relationship will be one of our primary
mechanisms for constructing interesting examples.

A convex domain C' C R? is called R-properly convex if it does not contain an entire
affine real line. Every R-properly convex domain C' C R< has a natural interior geometry:
the Hilbert distance which we denote by H¢. Recently, Benoist [7] proved that the Hilbert
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distance on a bounded convex domain is Gromov hyperbolic if and only if the boundary
of the domain is quasi-symmetric (see Definition 17.11).

Using Theorem 1.5 and work of Karlsson-Noskov [37] on the Hilbert metric we will
establish the following.

Corollary 1.11 (see Section 18). Suppose Q@ C C% is a bounded convex domain. If (Q, Hg)
is Gromov hyperbolic, then (2, dq) is Gromov hyperbolic.

Corollary 1.11 is somewhat surprising since the metric spaces (€2, Hg) and (€2, dg) can
be very different. For instance, if D C C is a convex polygon, then (D,dp) is isometric
to the real hyperbolic plane, while (D, Hp) is quasi-isometric to the Euclidean plane [9]
(notice that this shows that the converse of Corollary 1.11 is false).

Using Corollary 1.11 and Benoist’s characterization of Gromov hyperbolicity for the
Hilbert distance, we have the following example.

Example 1.12. Suppose 2 C C? is a bounded convex domain with quasi-symmetric
boundary (see Definition 17.11). Then (2, dq) is Gromov hyperbolic and hence a subel-
liptic estimate holds on €.

‘We can also use the proof of Theorem 1.5 to characterize the tube domains where the
Kihler-Einstein metric is Gromov hyperbolic. A domain Q € C? is called a tube domain
if there exists a domain C' ¢ R such that Q = C' + i R%. Bremermann [14] showed that
a tube domain Q = C +iR? is pseudoconvex if and only if C'is convex. Further, when C'
is convex the domain Q = C + iR is C-properly convex if and only if C' is R-properly
convex. Using the proof of Theorem 1.5 we prove the following.

Corollary 1.13 (see Section 19). Suppose d > 2, C' C R? is an R-properly convexr domain,
and Q = C +iR?. Then the following are equivalent:

(1) (Q,dq) is Gromov hyperbolic,
(2) (C,H¢) is Gromov hyperbolic and C' is unbounded.

Remark 1.14. Pflug and Zwonek previously established some necessary conditions for
the Kahler-Einstein metric on a tube domain to be Gromov hyperbolic [47].

If (X,d) is a Gromov hyperbolic metric space, X has a natural compactification,
denoted by YG, called the Gromov compactification. The Gromov boundary of X is
0gX = YG \ X. See Section 2.2 for a precise definition.

In joint work with Bracci and Gaussier, we showed when  is convex and (£2,dgq)
is Gromov hyperbolic, the Gromov compactification coincides with the “Euclidean end
compactification.”
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Definition 1.15. Given a domain  c C?, let Q"™ denote the end compactification of
(in the sense of Freudenthal, see [46]). Then define Og,qf := [Vl \ Q.

Theorem 1.16 (/10, Theorem 1.4]). Suppose 2 C C? is a C-properly conver domain and
(Q,dq) is Gromov hyperbolic. Then the identity map Q — Q extends to a homeomorphism

—End —G
0" -0,

Remark 1.17. To be precise, Theorem 1.4 in [10] assumes that the Kobayashi distance Kg
is Gromov hyperbolic and shows that ﬁEnd is homeomorphic to the Gromov compact-
ification of (€, Kq). However, as mentioned earlier, the Kobayashi and Kéhler-Einstein
metrics are bi-Lipschitz on any C-properly convex domain [27] and the Gromov boundary
is a quasi-isometric invariant.

Using Theorem 1.16 and facts about the geometry of Gromov hyperbolic metric
spaces, one can establish the following results about the behavior of holomorphic maps.

Corollary 1.18 (/10, Corollary 1.6]). Suppose Q1,Qs C C? are C-properly convez do-
mains and f: Q1 — Qg is a biholomorphism. If (Q1,dq,) (and hence also (Qa,dq,)) is

—Fnd  —=FEnd
Gromov hyperbolic, then f extends to a homeomorphism QlEn — QgEn

Corollary 1.19 ([10, Corollary 1.7]). Suppose Q C C? is a C-properly convex domain
and (Q,dq) is Gromov hyperbolic. If f : Q — Q is holomorphic, then either

(1) f has a fized point in Q, or
(2) there exists & € Ognafd such that

lim f*(z) =¢

n—oo

for all z € Q.

Theorem 1.5 provides new examples with non-smooth boundary for which these corol-
laries apply.

1.1. OQutline of paper

Throughout the paper we will consider the Kobayashi metric instead of the Kéhler-
Einstein metric. As mentioned in the introduction, Frankel [27] proved that the two
metrics are bi-Lipschitz on any C-properly convex domain. Hence, if one is Gromov
hyperbolic, then so is the other. In the convex setting, the Kobayashi metric is slightly
easier to work with because there are very precise estimates, see for instance Lemmas 2.9
and 2.10 below. However, for general pseudoconvex domains it is not known whether or
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not the Kobayashi metric is complete, so it seems reasonable to state all the results in
the introduction in terms of the Kéahler-Einstein metric.
The paper has four main parts:

(1) Sections 2 through 4 are mostly expository and devoted to some preliminary material.

(2) Sections 5 through 9 are devoted to the proof of Theorem 1.5. In Section 5 we recall
some prior work and give an outline of the proof of Theorem 1.5.

(3) Sections 10 through 16 are devoted to the proof Theorem 1.3. In Section 10 we recall
some prior work and give an outline of the proof of Theorem 1.3.

(4) In Sections 17 through 21, we construct a number of examples.
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Part 1. Preliminaries

2. Background material

2.1. Notation

(1) For z € C% let ||z|| be the standard Euclidean norm and dgyc(21,22) = ||z1 — 22| be

the standard Euclidean distance.
(2) For z € C% and r > 0 let

Ba(zo;7) = {z €C%: ||z -zl < r} :

Then let By = B;(0;1) and D = B;.
(3) Throughout the paper we will let C? U{co} denote the one-point compactification

of C%.
(4) Given an open set Q ¢ C%, z € Q, and v € C*\{0} let

da(z) = inf{dguc(z,w) : w € IN}
and
da(z;v) = inf{dguc(z,w) : w € 902N (2 + C -v)}.

2.2. Gromov hyperbolicity

In this subsection we recall the definition of Gromov hyperbolic metric spaces and
state some of their basic properties, additional information can be found in [11] or [25].
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Given a metric space (X, d) define the Gromov product of x,y,z € X to be

(x‘y)z = (d(l‘, Z) + d(Zay) - d(.’E,y)) :

DN | =

Definition 2.1.
(1) A metric space (X, d) is d-hyperbolic if

(z]2)w > min{(z]y)w, (Y2)w} — 0

for all z,y, z,w € X.
(2) A metric space is called Gromov hyperbolic if it is d-hyperbolic for some § > 0.

For proper geodesic metric spaces, Gromov hyperbolicity can also be defined in terms
of the shape of geodesic triangles.

When (X,d) is a metric space and I C R is an interval, a curve 0 : I — X is a
geodesic if

d(o(t1), 0(t2)) = [t — L2

for all ¢1,t2 € I. We say that (X,d) is geodesic if every two points in X can be joined
by a geodesic and proper if bounded closed sets are compact.

A geodesic triangle in a metric space is a choice of three (not necessarily distinct)
points in X and geodesic segments connecting these points. A geodesic triangle is said
to be §-thin if any point on any of the sides of the triangle is within distance § of the
union of the other two sides.

Theorem 2.2. If (X, d) is a proper geodesic metric space, then (X, d) is Gromov hyperbolic
if and only if there exists some § > 0 such that every geodesic triangle is §-thin.

Proof. See for instance [11, Chapter III.H, Proposition 1.22]. O

A proper geodesic Gromov hyperbolic metric space (X, d) also has a natural boundary
which can be described as follows. Two geodesic rays 01,02 : [0,00) — X are asymptotic
if

il;%) d(o1(t),02(t)) < 0.

Then the Gromov boundary, denoted by dg X, is the set of equivalence classes of asymp-
totic geodesic rays in X.

The set X = X U 0z X has a natural topology making it a compactification of X
(see for instance [11, Chapter II1.H.3]). To understand this topology we introduce the
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following notation: given a geodesic ray o : [0,00) — X let [o] denote the equivalence
class of o and given a geodesic segment o : [0, R] — X define [o] := o(R). Now fix a
point zg € X, then the topology on YG can be described as follows: &, — £ if and only
if for every choice of geodesics o, with 0,(0) = xg and [0,] = &, every subsequence
of (op)n>0 has a subsequence which converges locally uniformly to a geodesic o with
[c] = &. One can also show that this topology does not depend on the choice of z( (again
see [11, Chapter III.H.3]).

Remark 2.3. In some special cases, for instance when X is simply connected complete
negatively curved Riemannian manifold, for every ¢ € X there exists a unique geodesic
oe with 0¢(0) = z¢ and [o¢] = £. In this case, §, — ¢ if and only the geodesics o¢,
converge locally uniformly to o¢.

Next we recall the Morse Lemma for quasi-geodesics.

Definition 2.4. Suppose (X, d) is a metric space, I C R is an interval, « > 1, and g > 0.
Then a map o : I — X is a («, 8)-quasi-geodesic if

1
S t—sl=pF<dofs)olt) <alt—s/+5
for all s,t € I.

Quasi-geodesics in a Gromov hyperbolic metric space have the following remarkable
property.

Theorem 2.5 (Morse lemma). For any § > 0, o > 1, and 8 > 0 there exists M =
M6, a, ) > 0 with the following property: if (X,d) is a proper geodesic 0-hyperbolic
metric space and o1 : [a1,b1] = X, oo : [ag,bo] = X are (o, 8)-quasi-geodesics with
0'1(0,1) = 0’2((12), Ul(bl) = Ug(bg), then

max{ max d(o1(t),02), max d(og(t),gl)}gM.
te[al,bl] tE[a27b2]

Proof. For a proof see for instance [11, Chapter III.H, Theorem 1.7]. O
2.3. The Kobayashi metric

In this expository section we recall the definition of the Kobayashi metric and then
state some of its properties.

Civen a domain Q C C the (infinitesimal) Kobayashi metric is the pseudo-Finsler
metric

ko(z;v) = inf {[¢] : f € Hol(D, ), f(0) =z, d(f)o(§) = v}
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By a result of Royden [48, Proposition 3] the Kobayashi metric is an upper semicontinu-
ous function on Q x C¢. In particular, if o : [a,b] — Q is an absolutely continuous curve
(as a map [a,b] — C?), then the function

t € la,b] = kq(o(t);o'(t))

is integrable and we can define the length of o to be

b

lo(o) = /kg(a(t);al(t))dt.

a

One can then define the Kobayashi pseudo-distance to be

Kq(z,y) = inf {lq(0) : o: [a,b] = Q is abs. cont., o(a) =z, and o(b) = y}.

This definition is equivalent to the standard definition using analytic chains by a result
of Venturini [51, Theorem 3.1].

When Q c C? is bounded, it is easy to show that Kq is a non-degenerate distance
on ). For general domains determining whether or not Kq is non-degenerate is very
difficult, but in the special case of convex domains we have the following result of Barth.

Theorem 2.6 (Barth [5]). Suppose Q is a convex domain. Then the following are equiv-
alent:

(1) Q is C-proper,

(2) Q is biholomorphic to a bounded domain,
(3) Kq is a non-degenerate distance on €,
(4) (2, Kq) is a proper geodesic metric space.

Since every C-properly convex domain is biholomorphic to a bounded domain, the
results of Cheng-Yau [21] and Mok-Yau [44] imply that every such domain has a unique
complete Kéhler-Einstein metric with Ricci curvature —1.

Definition 2.7. When Q ¢ C? is a C-properly convex domain, let g be the unique com-
plete Kéhler-Einstein metric on Q with Ricci curvature —1 and let dg be the associated
distance.

As mentioned in Remark 1.2, we have the following uniform relationship between the
Kobayashi and Kéhler-Einstein metrics.

Theorem 2.8 (Frankel [27]). For any d € N, there exists A > 1 such that: if @ ¢ C% is
a C-properly convexr domain, then
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1
Zka(zv) < Vga(v,v) < Aka(z;0)
forall z € Q and v € T, Q).

We will also use the following standard estimates on the Kobayashi distance and
metric.

Lemma 2.9 (Graham [91]). Suppose Q € C? is a convex domain. If z € Q and v € C% is
non-zero, then

[[v]]
— < ) < —.
200(z;v) — ka(zv) < da(z;v)

A proof of Lemma 2.9 can also be found in [27, Theorem 2.2].

Lemma 2.10. Suppose Q2 C C¢ is a convex domain and H C C? is a complex hyperplane
such that HNQ = 0. Then for any z1, 22 € Q0 we have

dEuc(H7 Zl)
dEuc(H, 22)

1
Kq(z1,22) > B ‘log

A proof of Lemma 2.10 can be found in [54, Lemma 4.2].

Lemma 2.11. Suppose Q2 C C? is a convex domain, z1,2z0 € Q, and L is the complex
affine line containing z1,z2. Then

1
Kq(z1,22) > sup =
ceINQNL 2

A proof of Lemma 2.11 can be found in [52, Lemma 2.6], but it also follows easily
from Lemma 2.10.
Using Lemma 2.9 and Lemma 2.10 it is possible to prove the following.

Proposition 2.12 (/52, Theorem 3.1]). Suppose Q2 C C? is a C-properly convex domain.

For any zo € Q and R > 0, there exist « > 1 and 8 > 0 such that: if £ € 02N B4(0; R),
then the curve o¢ : [0,00) —  given by

ge(t) =€ +e (20 =€)
is an (o, B)-quasi-geodesic.
2.4. Geometric properties of convexr domains

In this section we recall some basic geometric properties of convex domains.
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First, we have the following result about the complex geometry of the boundary of a
convex domain.

Proposition 2.13. Suppose Q C C? is a convex domain. Then every holomorphic map
D — 09 is constant if and only if every complex affine map D — OS2 is constant.

Proof. See for instance [29, Theorem 1.1]. O

We will also use the following observation about the asymptotic geometry of a convex
domain.

Observation 2.14. Suppose Q C C¢ is a convex domain and v € C¢ is non-zero. Then
the following are equivalent:

(1) there exists a sequence z, € Q such that ||z,|| — oo and

) Zn v
lim —— = —,
n=oo [|zn||  [|v]]

(2) zo +R>ov C Q for some zp € €2,
(3) z+Rsov CQ forall z € Q2.

Proof. Clearly (3) = (2) = (1). To prove (1) = (3): suppose that z, € €, ||z,| — oo,
and

Zn v

im — = —.
n=oo [[zn][ o]

Fix some z € . Then by convexity [z, 2,] C  for every n € N. So z+ Rx>qv C Q. Then
since 2 is open and convex, we see that z + R>ov C . O

This observation motivates the following standard definition.
Definition 2.15. Suppose 2 C C% is a convex domain. The asymptotic cone of 2, denoted
by AC(f), is the set of vectors v € C% such that z + Rsgv C Q for some (hence all)
z €.

As the name suggests we have the following.

Observation 2.16. Suppose Q@ C C¢ is a convex domain. Then AC() is a convex cone
based at 0.

Proof. This is an immediate consequence of convexity. O
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Finally, we have the following connection between the asymptotic cone and the end
—FEnd
compactification (recall, from Definition 1.15, that € " denotes the end compactification
of Q).

Observation 2.17. Suppose Q C C? is a convex domain. Then either

(1) Q is bounded and Q™ = Q,
2 Q7N Q is a single point, or
(2) gle point,
(3) o \ Q is two points and AC(Q) = R -v for some non-zero v € C%,
Proof. This is an immediate consequence of Observation 2.14. O

3. The space of convex domains

Following work of Frankel [26,27], in this section we describe some facts about the
space of convex domains and the action of the affine group on this space.

Definition 3.1. Let X; be the set of all non-empty C-properly convex domains in C? and
let X4, be the set of pairs (€2, z) where Q € Xy and z € Q.

Remark 3.2. The motivation for only considering C-properly convex domains comes from
Theorem 2.6.

We now describe a natural topology on the sets X4 and Xy . Given two non-empty
compact sets A, B C C% the Hausdorff distance between them is

dr (A, B) = max {maxmin |la — b , max min ||b — a||} .
acA beB beB acA

We also define

oo if A#(
dp(A,0) =dy (0, A) = :
#(A,0) = diy (0, 4) {0 i

The Hausdorff distance is a complete metric on the set of non-empty compact subsets
in C¢. To consider general closed sets, we introduce the local Hausdor(f pseudo-distances
between two non-empty closed sets A, B € C¢ by defining

dii (A, B) = di (ANB4(0; R), B Ba(0; F) )

for R > 0. Since an open convex set is determined by its closure, we can define a topology
on X4 and Xg4,0 using these pseudo-distances:



A. Zimmer / Advances in Mathematics 402 (2022) 10833/ 15

(1) A sequence Q, € X, converges to 2 € X, if there exists some Ry > 0 such that
d(€,,,Q) — 0 for all R > Ry,

(2) A sequence (Qy,z,) € Xq,0 converges to (2,2) € Xy if Q, converges to  in Xy
and z, converges to z in C*.

We will frequently use the following basic properties of this notion of convergence.

Proposition 3.3. Suppose that €, converges to Q) in Xq.

(1) For any compact set K C S, there exists some N > 0 such that K C Q, for all
n>N.

(2) If z, € Q,, and lim,, o0 2, = 2, then z € Q.

(8) If z, € (Cd\Qn and lim,,_,oo 2, = 2, then z € (Cd\Q.

Proof. A proof Part (1) can be found in [52, Lemma 4.4]. Parts (2) and (3) follow
immediately from the definition. 0O

The Kobayashi distance also behaves as one would hope under this notion of conver-
gence.

Proposition 3.4. Suppose that a sequence 2, converges to §2 in Xy4. Then

lim Kﬂn = KQ

n—oo

and the convergence is uniform on compact subsets of €1 x €.
Proof. See for instance [52, Theorem 4.1]. O
We will frequently use the following observation.

Observation 3.5. Suppose Q,, converges to Q in Xg4 and oy, : [0,T,] = Q, is a sequence
of geodesics where

lim 0,(0) =z €

n—oo
and T = lim, 00 T, € [0,00]. Then there exists a subsequence on; which converges
locally uniformly to a geodesic o : [0, T)NR — Q. In particular, if T < oo, then

nh~>nc}o on,;(Tn,) = o(T) € Q.

Proof. Fix R > 0 and let B = {z € Q : Kq(z,20) < R+ 1}. Then B is compact and

so Proposition 3.3 implies that B C §2,, for n sufficiently large. Further, Proposition 3.4
implies that Kq,  (0,(0),0B) > R for n sufficiently large. So
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on([0,T,) N[0, R]) C B

for n sufficiently large. Then Proposition 3.4 and the Arzela-Ascoli theorem imply that
onljo,1,]n0, 7 has a convergent subsequence and the limit is a geodesic in €2.

Since R > 0 was arbitrary, there exists a subsequence o, which converges locally
uniformly to a geodesic o : [0,T]NR — Q. O

Next let Aff(C%) be the group of complex affine isomorphisms of C?. Then Aff(C%)
acts on Xy and X4 . Remarkably, the action of Aff(C d) on X is co-compact.

Theorem 3.6 (Frankel [27]). The group Aff(C?) acts co-compactly on X, that is there
exists a compact set K C Xq such that AF(C?) - K = X.

Suppose © € C? is a C-properly convex domain and z, € Q is a sequence. Then
Theorem 3.6 implies that there exists a sequence of affine maps A,, € Aff(C d) such that

{4,(Q,2,) :ne N}

is relatively compact in Xg. So there exist n; — oo such that A, (€2, z,,) converges

to some (U, u) in Xg0. The next result shows that the domain U only depends on the
choice of Zn,; -

Proposition 3.7. Suppose (Qn, 2z,) € Xao, A, € Aff(C?Y), and B, € Aff(C?) are such
that

1i_>m An(Qn, zn) = (Ur,u1) and li_{n B, (Qn, 2n) = (Us, ug)

in Xq,0. Then there exist nj — oo such that

B, Al

3J j
converges to some T € Aff(C?) and
T (Ur,ur) = (U2, uz2) .
Proof. The map T, = B,A;!: C? = € induces an isometry
(AnQn7 KAHQ) — (BnQ’ru KBnQ)

with T, (Anz,) = Bnzn,. Then by Proposition 3.4 and the Arzela-Ascoli theorem (see
the proof of Observation 3.5), we can pass to a subsequence so that T, converges locally
uniformly to an isometry

T: (U, Ky,) = (U2, Ky,)
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with T(u1) = ug. Then T, being a limit of affine maps of C?, is affine. Since T is an
isometry, it is a bijection U; — Us. Then since T is injective on Uy, we have T € Aff((Cd)
and since T is onto we have T(Uy,uy) = (Uz,u2). O

4. Normalizing maps

The main result of this section is Theorem 4.3 where we construct affine maps which
“normalize” the following data: a C-properly convex domain €2 and some zg € Q, £ € 012,
q € [20,&). The results in this section are refinements of various arguments in [26,27].

Definition 4.1. For r € (0, 1] let K4(r) C X4 denote the set of C-properly convex domains
Q c €% where

(1) rD-eg CcQandD-e; CQforj=2,...,d
(2) e; € 0 and

(ej + Spanc{eji1,...,ea}) N =10
forj=1,...,d.
We first verify that these sets are compact in Xg.
Proposition 4.2. For any r € (0,1], the set Ky(r) is compact in Xg.

Proof. Suppose 2, is a sequence in K,4(r). For each R > 0, the set
{K CBy4(O;R) : K is compact}

is compact in the Hausdorff topology, see for instance [42, Proposition 3.6, Theorem 4.2].
So we can find nested subsequences

(n1,5)721 D (n2,5)521 D ..
such that
thlgo ﬁnm,j n w =Ch
where C,, is a closed convex domain. Since the sequences are nested,

CicCycC...

So C':=UX2_,C,, is convex and C,,, = C NB4(0;m) for every m > 1.
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Let Q. denote the interior of C. Since
ConvHull {r D -e1,D -e3,...,D-eq} C Qp
for every n > 1, we see that
ConvHull {r D -e1,D -eq,...,D-e4} C C.

So C has non-empty interior. So €. is non-empty and hence Qn, = C. Then, by defini-
tion, 2y, . converges to {0, in the local Hausdorff topology.

We claim that Q. € Kg(r). Since each Q,, is in K4(r), Proposition 3.3 Parts (2) and
(3) imply that

(1) rD-e1 C Qo and D -e; C Qo for j =2,...,d
(2) ej € 00 and

(ej + Spanc{eji1, ... eq}) N Qoo =0

forj=1,...,d.

So we just have to show that 1, € X,. Since 0 € ., using Observation 2.14 it is
enough to show: if C -v C 2, for some v € (Cd, then v = 0. So suppose that C -v C Q.
Since

(e1 + Spanc{ea,...,eq}) N Qo =10
we must have v; = 0. Then since
(e2 + Spanc{es,...,eq}) N Qo =0

we must have vo = 0. Repeating the same argument shows that v3 =vy =--- = v = 0.
Sov =0 and hence Q,, € X,;. O

Theorem 4.3. If ) C C? is a C-properly conver domain, zg € Q, £ € 09, H is a
supporting complex hyperplane of Q at &, q € (&, 2], and

_ dalzo)
T

then there exists an affine map A with the following properties:

(]) AQ e Kd(r),
(2) A(q) =0,
(8) A(E) = e,
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(4) A(H) = e; + Spanc{es,...,eq}, and
(5) if 6y = max{da(q;v) : v € =€ + H non-zero}, then

[A(z1) — A(z)] = lz1 = 22|l

_r
V26
for all z1, 29 € ce.

Remark 4.4. Notice that —¢ + H is the complex hyperplane through 0 which is parallel
to H.

Proof. By translating 2 we can assume that ¢ = 0.
Since Q contains the convex hull of B4(zo; da(20)) and € we see that:

59(20)
60(0) = T 10 =&ll =7 &l - (1)
|20 = £
We select points x1,...,zq € 9 and complex linear subspaces

PD>DP,D>---DP;={0}

with dimc P; = d — j using the following procedure. First let 1 = ¢ and P, = —§+ H.
Then assuming zi,...,2;-1 and Pi,...,P;_; have already been selected, let x; be a
point in P;_; NJQ closest to ¢ = 0 and let P; be the orthogonal complement of C -x; in
P;_;. Then define

75 = [lz;]]-
We claim that
(CCj-i-Pj)ﬂQ:@ (2)

for all 1 < j < d. Since z1 = £ and P, = —{ + H, this clearly holds when j = 1. Suppose
j > 1. Then, since Pj_1 NQ is convex and z; € 9(P;_1 N ), there exists a codimension
one complex linear subspace H; C P;_1 such that (xz; + H;) N Q = (). But by our choice

of z; we have

Bd(O;Tj) N Pj,1 cQ
and ||z;|| = 7. So z; + H; must be tangent to 9B4(0; 7;) at x;. Hence H; = P; and so
(z; + Pj)NQ=0.

We next claim that P; = Spanc{z;4+1,...,2q} for all 1 < j < d. By construction

Py =C-zjp1+ P



20 A. Zimmer / Advances in Mathematics 402 (2022) 10833/

where Py := C%. Thus

Pj =C Tj41 +Pj+1 =C ‘Tjt1 + C *Lj42 + Pj+2
=--.=C-wj;1+---+C-zg =Spanc{zji1,...,2q}. (3)

Combining Equations (2) and (3) yields
QN (x; + Spanc{zjt1,...,zqa}) =0 (4)

forall1 <j<d.
Next let A € GL4(C) be the diagonal matrix
Tfl

Tq !
Then let U € GL4(C) be the linear map such that
AU(z;j) = ¢;

for all 1 < j < d. Notice that Equation (3) with j = 0 implies that z,..., 24 is a basis
and so U is uniquely defined. Finally, let A = AU.
By construction we have A(0) = 0 (that is, A(q) = 0), A(¢) = ey, and

A(H) = A(x1 + P1) = e1 + Spanc{ea, ..., eq}.
We claim that A2 € K4(r). Since 71 = ||£]|, Equation (1) implies that
rD-eq C AQ.
Further, for j > 2 we have
D-e; C AQ

since z; is a closest point to ¢ = 0 in P;_; N 0Q. Equation (4) and the definition of A
imply that e; € 0AQ and

AQ N (ej + Spanc{ejt1,...,eq}) = 0. (5)

So AQ € Ky(r).
Notice that

1

U1 maxT;
| j

[A(21) — A(z2)|| = [AU (21 — 22)|| > 21 — 22|
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for any z1, 2, € C% Further,
1 1
71 = [l§ll £ ~0a(0) < —dn
r r
and
Tj = (SQ(O;.’I}J‘) S (SH
for j > 2. So

[A(z1) — A(z)] =

LT [
— ||21 — 22
S lU]

for any 21,29 € C?. Thus we just have to bound HU’1 H from above. Now

oy
U™ ey) ==
Tj

for all 1 < 5 < d and by construction zo, ...,z are pairwise orthogonal. Hence

[T ]| < o]

d

d

Iy xZ, 2

2 [ ] =ttty Sl < vl
i=2 '

J j=2

Thus

[A(21) — A(22)

|21 — 22l

|2 o

T V28
for all z1, 29 € ct o

Using Theorem 4.3 we can provide a proof of Theorem 3.6.
Corollary 4.5. Define
Kao = {(2,0): Q € Ky(1)}.

Then Kg0 is a compact subset of Xq,0 and Aff((Cd) Kao0 =Xq,0.
Proof. Since K4(1) is a compact subset of X4, we see that Ky is a compact subset of
Xq4,0- Now fix some (€2, ¢) € Xg4,0. Then apply Theorem 4.3 with zy = g and £ € 9 such

that ||¢ — &|| = da(q). Then

1€ = 20l = da(20),
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and so there exists an affine map A € Aff(C?%) such that AQ € K4(1) and A(q) = 0.
So A(9,q) € Kg0. Then since (Q,q) € Xq,0 was arbitrary we see that Aff(C?) - Ky =
Xd,O' Od

The following “extension” result will allow us to reduce many arguments to the d = 2
case.

Proposition 4.6. Suppose Q C C? is a C-properly convex domain. If 1 < m < d and
QN Spanc{el,...,em} € Kpn(r),
then there exists A € GL4(C) such that AQ € K4(r) and Alspanc{e,,...,ep} = id-

Proof. We will select points x1,...,zq € 0F2 and complex linear subspaces Py, ..., Py C
C? with

(1) P> P,D---D P;={0},

(2) dimg Pj=d—jfor1<j<d, and

(3) Spanc{ejt1,...,em} C Pjfor1 <j<m-—1

First for 1 < j < m, let ; = e;. Then we select Pi,..., P, sequentially as follows.
Since 2 is convex and

(e1 + Spanc{ea,...,em}) N =0,
there exists a complex linear subspace P; such that dim¢ P, =d — 1,
Spanc{es,...,enm} C Py,
and
(e1+P)NQ=0.

Then assuming 1 < j < m — 1 and we have already selected Pi,..., P;, we select P
as follows. Since 2 N P; is convex,

Spanc{eji1,...,em} C P;,
and
(ej+1 + Spanc{ejta,...,em}) N =0,

there exists a codimension one complex linear subspace P;;1 C P; such that
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Spanc{ejt2,...,em} C Pjj1
and (€j+1 + Pj+1) NQ=0.
Next we select Zp41,...,2q and Ppi1,..., Py. Supposing j > m and that x1,...,z;
and P,..., P; have already been selected, we pick ;41 and P;1; as follows: let x;11

be a point in P; N 9N closest to 0 and let Pj4q be a (d — j — 1)-dimensional complex
subspace such that Pjy; C P; and (z;41 + Pj11) N Q = (. Since P; N Q is convex and
zj41 € 0(P; NQ), such a subspace exists.

Now let A € GL4(C) be the complex linear map with A(z;) = e; for 1 < j < d.
Since x1,...,xq is a basis of (Cd, the linear map A is well defined. Since x; = e; when
1 < j < m we see that Alspanc{e,
shows that AQ € K4(r). O

em} = id. Arguing as in the proof of Theorem 4.3

.....

Part 2. Necessary and sufficient conditions for Gromov hyperbolicity
5. Prior work and outline of the proof of Theorem 1.5

In this section we recall some prior results concerning the Gromov hyperbolicity of
the Kobayashi metric. Then we give an outline of the proof of Theorem 1.5.
In [52], we established the following necessary conditions.

Theorem 5.1 (/52]). Suppose Q is a C-properly convex domain and (Q, Kq) is Gromov
hyperbolic, then:

(1) Q has simple boundary,
(2) if D € AF(CY) - QN Xy, then (D, Kp) is Gromov hyperbolic, and
(3) every domain in AfF(C?) - QN Xy has simple boundary.

Proof. Part (1) is [52, Theorem 1.6] and Part (2) is [52, Theorem 1.8]. Part (3) is an
immediate consequence of Parts (1) and (2). O

In [52] we also established a sufficient condition for the Kobayashi metric to be Gromov
hyperbolic, however the result requires several definitions to state.

Definition 5.2. Given a curve o : R — C% the forward accumulation set of o is
o(00) := {z € C4U{oo} : there exist t, — co with o(t,) — z}
and the backward accumulation set of o is

o(—00) := {z € C?U{oo} : there exist t, — —oco with o(t,) — z} .
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Definition 5.3. Suppose @ € C? is a domain. We say geodesics in (Q,Kq) are well-
behaved if

og(co)Nao(—o0) =10
for every geodesic line o : R — Q.

Definition 5.4. Suppose §2,, converges to 2 in X;. We say Q,, is a visibility sequence if
for every sequence oy, : [an, by] = O, of geodesics with

lim o, (ay) = & € C4U{c0},

n—oo

lim o, (b,) =n e C?U{oo},

n—oo
and £ # 1), then there exist sequences n; — oo and T € [ay,,by,] such that o, (T})
converges to a point in ).

Remark 5.5. Informally the visibility condition says that geodesic segments between
distinct points “bend” into the domain.

Theorem 5.6 ([52, Theorem 8.3]). Suppose Q is a C-properly convex domain. Assume
for any sequence u, € § there exist n; — oo and A; € Aff((Cd) so that

(1) Aj(Q,un;) converges to some (oo, Uso) 1 Xa,0,
(2) geodesics in (N0, Kq. ) are well behaved, and
(8) A;Q is a visibility sequence.

Then (Q, Kq) is Gromov hyperbolic.

Theorem 8.3 in [52] is formulated in a different way, so we will provide the argument.
But first a lemma.

Lemma 5.7. Assume that ), is a visibility sequence converging to some Qs in Xgq and
on ¢ [0,Tn] = Q, is a sequence of geodesics which converges locally uniformly to a
geodesic o : [0,00) = Q. Then

lim o(t) = lim 0,(T;) € C?U{o0} (6)

t—o0

(in particular, the two limits exist).

Proof. Suppose for a contradiction that Equation (6) is false. Then there exist s,, — 0o,
Ny — 00, and 7,€ € C*U{oo} such that o(s,,) —= 1, o, (Th,) — &, and 5 # €. Since
Sms Tn,, — 00, Proposition 3.4 implies that 7, & € 0Qs U {o0}.
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Since o, converges locally uniformly to o we can pick s), so that o, (s],) — 7. Since
1 € 9o U {0}, Observation 3.5 implies that s, — oco.

Let ap, = min{s;, ,T,, } and b,, = max{s;, ,T,, }. Since Q, is a visibility sequence
we can pass to another subsequence and find S, € [am, bn] so that o, (S,,) converges
to a point z € . Notice that S, — oo since a,,, — oco. But then by Proposition 3.4

00 > Ko, (200,0(0)) = lim Ko, (04, (Sm),0n,,(0)) = lim S, = ococ.

m—0o0 m—»o0

So we have a contradiction. O

Proof of Theorem 5.6. Suppose for a contradiction that (2, Kq) is not Gromov hyper-
bolic. Then by Theorem 2.2, for every n € N there exists a geodesic triangle with vertices
T, Yn, 2n € Q and edges 04,,y,., Oy, 2> Oz, SUch that

Ka(un,0y, 2, U Orpzy) >N

for some u,, in the geodesic oy, ,, . Notice that

KQ(una{xmynazn}) > n. (7)

After possibly passing to a subsequence, there exist affine maps A, € Aff (Cd) such
that

(1) An(Q,uy) converges to some (Qo, Uso) in Xq o,
(2) geodesics in (0, Ko ) are well behaved, and
(3) A, is a visibility sequence.

By passing to another subsequence we can suppose that A,x,, AnYn, Anz, converge to
Too, Yoos Zoo NN (CdU{oo}.

We can parameterize o [an,bn] = Q so that o, ,, (0) = u,. Notice that Equa-

n¥n
tion (7) implies that

lim a, = lim —Kq(2,,u,) = —00
n—oo n—oo

and

n—oo n—oo
Observation 3.5 implies that we can pass to a subsequence so that A,0,,,, converges
to a geodesic 04y 1 R — Qoo with 04,(0) = U
By Lemma 5.7

lim o0,y(t) = lim Ay, =2
t——o0 n—00
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and

li = lim A = Yoo-
Hmm oey() = lim Ann = Yoo
Since geodesics in (oo, K ) are well behaved, we have o, # Yoo. So by possibly rela-
beling x,, and y,,, we may assume that z,, 7# 2. Then since A, is a visibility sequence,
we can pass to a subsequence and reparametrize o, _, to assume that A,o, . (0) con-
verges to a point weo € oo. Then by Proposition 3.4

KQOO (uoo’ woo) = nh—>néo KAnQ(Anuna Anaznxn (0)) = nh—{go Ko (una Ozpan (0))

> lim Kq(up,0., 4,) > lim n=co.
n— 00 o n— 00

So we have a contradiction. 0O
5.1. A sufficient condition for visibility

Motivated by work of Mercer, in [52] we established a sufficient condition for a se-
quence of convex domains to be a visibility sequence.

Definition 5.8 (Mercer [/1, Definition 2.7]). For m > 1, a bounded convex domain 2 is
called m-convez if there exists C' > 0 such that

da(z;v) < C(?Q(z)l/m (8)
for all z € Q and non-zero v € C.

Remark 5.9. When d = 1, any convex domain is 1-convex since dq(z;v) = dq(z) for
every z € Q and non-zero v € C. When d > 2, any m that satisfies Equation (8) has to
be at least two: by Alexandrov’s theorem OS2 contains a C? point & and

I (€ +tng;v) = /2 ~ da(€+ tn§)1/2

if ¢ > 0 is sufficiently small, n¢ is the inward pointing unit normal vector of 92 at &, and
&+ C -v is tangent to 0f2 at &.

When 2 is a smoothly bounded convex domain, it is easy to show that € is m-
convex for some m if and only if 02 has finite type in the sense of D’Angelo, see for
instance [52, Section 9]. Thus, for convex domains m-convexity can be viewed as a low
regularity analogue of finite type.

For m-convex domains, Mercer proved a type of visibility result for complex geodesics,
see [11, Lemma 3.3]. Motivated by this result we established the following visibility result
for sequences of domains.
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Proposition 5.10 (/52, Proposition 7.8]). Suppose Q,, converges to Q in Xy4. Assume for
any R > 0 there exist C,N >0 and m > 1 such that

ba, (z;0) < Céqg, (2)/™
foralln> N, z € B4(0; R)NQy, and v € C? non-zero. Then Q,, is a visibility sequence.

The proof in [52, Proposition 7.8] is somewhat indirect: first a visibility result for
complex geodesics is established and then this is used to establish a visibility result for
geodesics. A more direct argument can be found in [53, Proposition 4.5.10].

5.2. Qutline of the proof of Theorem 1.5

Theorem 5.1 provides one direction of the desired equivalence, so we only have to
consider the case when Q C C? is a bounded convex domain and every domain in

AfF(CT - QN Xy

has simple boundary.

We will use Theorem 5.6 to show that (2, Kq) is Gromov hyperbolic. Here is the
sketch of the argument: fix a sequence u,, € 2. Then by Theorem 3.6 we can find a
sequence of affine maps A, such that {A,(Q,u,) : n € N} is relatively compact in
Xg4,0. Then by passing to a subsequence we can suppose that A, (9, u,) converges to
some (oo, Uoo) € Xg,0. To apply Theorem 5.6, we need to show that A4, is a visibility
sequence and geodesics in ), are well behaved. This will be accomplished as follows:

(1) In Section 6, we prove general results which imply that A4, satisfies the hypothesis
of Proposition 5.10 and hence is a visibility sequence.

(2) In Section 7, we discuss the general relationship between m-convexity and Gromov
hyperbolicity. This is not necessary for the proof of Theorem 1.5, but clarifies the
relationship between the two definitions.

(3) In Section 8, we prove general results which will imply that geodesics in Q. are well
behaved.

(4) In Section 9, we prove a generalization of Theorem 1.5.

6. Local m-convexity

In this section we establish the following sufficient condition for a local m-convexity
condition to hold.

Theorem 6.1. Suppose K C Xy is a compact set and every domain in

AfF(CY - KNXy
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has simple boundary. Then for any R > 0 there exist C > 0 and m > 1 such that
da(z;v) < C(Sg(z)l/m
forallQ ek, zeBy(0; R)NQ, and v € C? non-zero.
Before proving the theorem, we state and prove two corollaries.

Corollary 6.2. Suppose ) is a C-properly convexr domain and every domain in AH((Cd) -Q
N Xy has simple boundary. Then for any R > 0 there exist C > 0 and m > 1 such that

da(z;v) < Cég(z)l/m
for all z € B4(0; R) N Q and v € C* non-zero.
Proof of Corollary 6.2. Simply apply Theorem 6.1 to K := {Q}. O
Corollary 6.3. Suppose Q) is a C-properly convexr domain and every domain in m
N Xy has simple boundary. If A,, € Aff(Cd) is a sequence of affine maps such that A,

converges to some Qs in Xgq, then the sequence A,$ is a visibility sequence.

Proof. Since A, converges to Q, the set £ = {A4,2:n > 1} U{Q} is compact in
Xg4. Further,

AFF(CY) - Qo NXq C AF(CT) - QN X,
and so
AfF(CY) - LN Xy = AF(CY) - QN Xy
So Theorem 6.1 implies that for any R > 0 there exist C > 0 and m > 1 such that
0a.a(z;0) < Cog a(z)V/™

forallm > 1,z € B4(0; R)NA,Q,and v € C? non-zero. Then A, is a visibility sequence
by Proposition 5.10. O

The rest of the section is devoted to the proof of Theorem 6.1. So fix a compact set
K c X4 where every domain in Aff(C?) - K N X4 has simple boundary.

Lemma 6.4. Without loss of generality we can assume that 0 € Q for every € K.
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Proof. We first claim that there exists » > 0 such that: for every Q € K there exists
z € Q with ||z]| < r and dq(z) > 1/r. Suppose not, then for every n € N there exists
Q,, € K with

{z€Q:|Iz|| <nand dg, (2) >1/n} =0.
Since K is compact, we can pass to a subsequence and suppose that (2, converges to
some (), in Xg.

Fix some u € Q. Then let 79 = max{||ul|, %(u)} Then B4(u;2/70) C Qs and so by

Proposition 3.3 part (1) there exists N > 0 such that By(u; 1/ro) C Q, for every n > N.
Thus

u€{z€Q,:|z| <nanddq,(z) >1/n}

when n > max{rg, N} and so we have a contradiction. Hence there exists some r > 0
with the desired property.

Next let Ky denote the set of domains of the form —z 4 2 where Q € K, z € Q,
l|z|| < r, and dq(z) > 1/r. Then Kq is compact in X4z and 0 € Q for every Q € K.
Further Ko € Aff(C%) - K and so

AfF(CY - KoNXg = Aff(CY) - KNXy.

Hence ICy satisfies the hypothesis of Theorem 6.1. Finally, since every domain in K is a
bounded translate of a domain in g, if Theorem 6.1 is true for Ky it is also true for
K. O

Using Lemma 6.4, we may assume that 0 € Q for every Q € K. Then, since K is
compact, there exists dg > 0 such that

IB%d(O; 50) cQ

for every 2 € K.
Next for 2 € K and z € Q\ {0}, define 7o (z) € 9Q U {oo} as follows: if

QNR>p-2=Rx>p 2,
then let mq(z) = co. Otherwise, let
{ma(2)} =002 N R 2.
For the rest of section fix R > 0. Then for Q2 € K let

QP .= {2 Q\ {0} : ||z]| <R and |7a(z)| < R+1}.
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Also for z € QU let T (z) € C? denote the set of unit vectors v € C% where
(7TQ(Z) +C ~U) naQ=0.
Notice that, since 2 is convex, the set T(z) consists of a union of complex hyperplanes

intersected with the unit sphere.
Define

Lemma 6.5. If Q € K and z € QU | then
da(z) 2 1o |Ima(z) — 2|
Proof. Notice that Q contains the convex hull of B4(0;d0) and mq(z). O
We first establish the theorem for certain base points and directions.
Lemma 6.6. There exist Co > 0 and m > 1 such that: if Q € IC, then
Sa(z;v) < Coda(z)t/™
for all z € QW) and v € To(2).

Proof. For Q € K and z € QU define rq(z) := |mq(z) — 2||. By the estimate in
Lemma 6.5 it is enough to prove that there exist C' > 0 and m > 1 such that

da(z;v) < Crq (z)l/m

for all Q € K, z € QU and v € Tq(2).
Suppose for a contradiction that such C' > 0, m > 1 do not exist. Then for each
m € N we can find Q,, € K, 2, € QS,?), and vy, € T, (2m) such that

86, (2mivm) = Crmra,, (2m) /™
and C), > m. Since K is compact in Xy we have

M := sup {59(2;1)) Qe zeQNBy(0;R),v € (Cd\{O}} < 0.

Then, since C,,, > m, we must have

M)m:u ()

lim rq, (zm) < lim (

m—r oo m—r oo
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Since Q,, is convex, the function f,, : [0,1] — R defined by

1/m
£ (1) = 1m0 Gom) =t
" dq,, (tZm; vm)
is continuous. Let ¢, € [0,1] be a minimum point of f. Notice that f,,(1) = é < %
and
m 1
o L )
" 5Qm (O;Um) - M

So for m sufficiently large, f,,(1) < f,,(0) and hence t,, € (0, 1]. So after possibly passing
to a tail of the sequence, replacing z,, with t,,2,,, and increasing C,,, we can assume
that each z,, has the following extremal property:

dq,, (tzm;vm) < Cpra,, (tzm)l/m (10)

for all ¢ € (0, 1]. Finally, by replacing v,, by some e

that

™ v, Where 0, € R, we can assume

Zm + Cmra,, (zm)l/mvm € 0,,.

Notice that vy, is still contained in Tq, (zm).
Let

U, = Tq,, (Zm) € 00,
and
by, 1= 2 + Cmrgm(zm)l/mvm € 0Q,,.

Then let B,, € Aff(C?) be an affine map such that B, (zm) = 0, By (am) = e1, and
B,,,(by,) = e2. By Lemma 6.5, we see that

rolD-e; C BQO
and since vy, € T, (zm) we see that
B, N (61 +C '62) =0.

By construction ey = By, (by) € 0By, and since dq, (2m;0m) = ||bm — 2m|| we see
that

D-es C By
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Thus
BQO M Spanc{el, 62} S KQ(T‘()).

So by Proposition 4.6, we can assume that B, € Kg(rg). Then, since Kg(rg) is
compact, we can pass to a subsequence so that B,,2,, converges to some D; in Xy .
Next define

C .= U B, (t;r0|t—1|) cC.

—oco<t<1

Then C is a convex open cone in C based at 1.
Claim 1. C x {(0,...,0)} C D;.

Proof of Claim 1. Since

A) e1 forall A e C,
Zm)

Bo(am +Azm) =1+
( ) ( —

Lemma 6.5 implies

Cx{(0,...,0} NBy (0; M) C By

m \Zm

So it suffices to show that

iy Mo Gl _
m—0o0 TQ’VTL Zm)

Using the fact that dg, (0) > do, we have

o S Tim N

lim inf || (2m)|| > lim inf 6, (0) > do. (11)
Then combining Equations (9) and (11) yields

fo e Gl _
m—oco T zm)

This proves Claim 1. <«
Claim 2. Rgo -e1 +D-eg C Dy
Proof of Claim 2. By Claim 1 we have

RSO -e1 C Dy.
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Since D; € K4(ro) we have D -e3 C D;. So by Observation 2.14
R<g-e1 +D-ex C Dy.
This proves Claim 2. <«
Claim 3. For each t > 0 there exists some Ay € 0D such that
—ter + \iea € 0D,

Proof of Claim 3. Since D; € Kg4(ro), we have e; € 9D; and so the claim is true when
t = 0. Next fix t > 0. Then for m sufficiently large

B M (—ter) € (0,2,)
and
ra,, (B (—te1)) = (1 +t)ra,, (2m)-
Then by Equation (10)
S, (Bt (—te1); vm) < Cra, (Bt (—te)V™ = Cop (1 + )Y ™rq, (20) /™.

Then

1

GGy oo (B (—tea)ivm) < (146,

0B, (—ter;es) =
So
dp, (—ter;er) = %gnoo OB, (—ter;er) < 77}iﬁmoo(l +H)Ym=1.
By Claim 2, we have dp, (—te1;e2) > 1 and so we must have
0p, (—tey;en) = 1.

This proves Claim 3. <«

Now for each k € N, let Ay € Aff(C?) be the affine map

1 0
Ak(z):el—i— (k—(i)—l )\IZ1> (Z—el).
Claim 4. For all k > 0,

Ak('Dl N Spanc{el, 62}) S KQ(’I"()).
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Proof of Claim 4. Let Uy, := Ax(D;1 N Spanc{e1,e}).
Since Ag(e; + C-e3) = e; + C-es and D; € Ky(rg), we see that e; € Uy and
(e1 + C-e2) NUy = 0. By Claim 3, —ke; + Apea € 9D; and so
ey = Ak(—kel + )\kez) € oUy.
By Claim 2 and 3, dp, (—kej;ez) = 1 and so
D ey = Ak(fkel +D ~62) C Uy.
Finally, by Claim 1
C x {0} = A (C x {0}) C Uy
and so oD -1 C Uy. Thus Uy, € Ka(rg). <
Now using Proposition 4.6 we can extend Ay, to an affine automorphism of C% such
that AxD; € Kgy(rg). Then by passing to a subsequence we can suppose that AxD;
converges to some Dy in X;. Now since each AxD; is in Kg4(rg) we see that

(e1 4+ Spanc{es,...,eq}) N Dy = 0. (12)

Furlher,
1 e1 + D €y = A (ID) (& ) [¢ A D
L 1 1 2 k 2 k1

and so e; + D -e3 C Dy. Then Equation (12) implies that e; + D -es C 0D5. But
Dy C Aff(CY) - Dy NXy € AF(CY) - KN Xy

which contradicts the assumption that every domain in Aff(C?) . K N Xy has simple
boundary. O

Lemma 6.7. There exists C1 > 0 such that: if Q € IC, then
ba(z;0) < Cida(2)'/™

for all z € QB and v € C% non-zero.

Proof. Define

My :=sup {59(0;1}) : Qe Ky(rg),v € (Cd\{O}} < 00
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(recall that ro = /(R + 1)). We claim that

~ V2M,Cy
D

Clt

suffices.
Fix Q € K, z € Q) and v € C? non-zero. Let £ = ma(z) and H be a supporting
hyperplane of 2 at £. Notice that

ro [[§ =0l < ro(R+1) = dg < 00 (0).
So by Theorem 4.3, there exists an affine map A such that AQ € Ky(rg), A(z) =0, and
if 6y = max{dq(z;v) : v € = + H non-zero}, then

7o

[A(z1) = A(z2)[| = T3om

21 — 2| (13)

for all z1, 29 € ce.
By the previous Lemma

5H S Ooég(z)l/m.
Suppose A(-) = b+ g(-) where g € GL4(C) and b € C?. Then Equation (13) implies

V26
0

da(z;v) <

2
. 540(0;9(v)) < \T/O_C’odg(z)l/li = 015Q(z)1/m. O

Lemma 6.8. There exists Cy > 0 such that: if Q € IC, then
S (2;0) < Cada(2)'/™
for all z € QNB4(0; R) and v € C? non-zero.
Proof. Let
My = sup {59(,2;11) :Qek,ze QNBy(0; R),v e C? \{0}} < 0.

We claim that
M
CQ = max Cl, TQ
o m

suffices.
Fix Q € K, z € QN B4(0; R), and v € C% non-zero. By the last lemma we only have
to consider the case when z ¢ Q). We consider two cases.
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Case 1. z = 0. Then

M.
50 (0;v) < My < o /fn 50(0)Y/™ < Cadq(0)H/™
0

since 19 = 50/(R—|— 1) < dg.

Case 2. ||mq(2)|| > R+ 1. Since Q contains the convex hull of B;(0; o) and mo(z),

]
da(z) > Ri = "o
Then
] My 1/m 1/m
da(z;v) < My < Tm 0a(z)™ < Caoa(z)™. O
To

This completes the proof of Theorem 6.1.
7. m-Convexity versus Gromov hyperbolicity

As mentioned in Section 5.1, for smoothly bounded convex domains it is easy to show
that Q is m-convex for some m if and only if Q2 has finite type. In particular, we have
the following equivalences.

Theorem 7.1 ([52, Theorem 1.1]). Suppose § is a bounded convexr domain with C*
boundary. Then the following are equivalent:

(1) O has finite type in the sense of D’Angelo,
(2) (2, Kq) is Gromov hyperbolic,
(3) Q is m-convex for some m > 1.

In the non-smooth case, Gromov hyperbolicity implies “local” m-convexity.

Corollary 7.2. Suppose Q2 is a C-properly convex domain and (Q, Kq) is Gromov hyper-
bolic. Then for any R > 0 there exist C > 0 and m > 1 such that

da(z;v) < Cog(z)Y/™
for all z € B4(0; R) N Q and v € C* non-zero.
Proof of Corollary 7.2. This is a consequence of Theorem 5.1 and Corollary 6.2. O

However, as the next example shows, m-convexity does not, in general, imply Gromov
hyperbolicity.
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Example 7.3. Let €4, ...,Q4 be bounded strongly convex domains with C*° boundaries
such that: 0 € 9, the real hyperplane

{(21,.--,24) € C*: Re(z;) = 0}
is tangent to £2; at 0, and
Q; C {(z1,-..,24) € C*: Re(z;) > 0}.
Define Q = ﬂ?lej. Since each €; has smooth boundary, we see that
(6,...,6) €Q

for € > 0 sufliciently small. So €2 is non-empty. Further, since each €; is strongly convex,
there exists C' > 0 such that

dq,(z;v) < Céq, (2)'/?
forall1<j<d, 2€Q;,and v € C? non-zero. Then for z € Q and v € C? non-zero

. — : (z: < : . 1/2 _ 1/2.
da(z;v) in, da,(z;v) < nin, Cdq,(2) Céq(z)

So € is 2-convex. However n - ) converges in the local Hausdorff topology to
D={(z1,...,24) € C¢: Re(z1) > 0,...,Re(zq) > 0}.

Since D does not have simple boundary, Theorem 5.1 implies that (Q, Kq) is not Gromov
hyperbolic.

8. The behavior of geodesics in a fixed domain

In this section we study the asympt%tic behavior of geodesics in a fixed convex domain.
—E —
Recall, from Definition 1.15, that "® denotes the end compactification of €.
We first establish the following visibility result.

Proposition 8.1. Suppose Q0 is a C-properly conver domain and every domain in
Aff((Cd) -QNXy has simple boundary. Assume oy, : [an,by] — Q is a sequence of geodesics
such that

lim o, (an) =& € ol
n—oo

and
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lim o,(b,)=n¢€ [P
n—oo

If € # 1, then exist sequences ny — 0o and Tj € [an,,by,] such that o, (T}) converges to
a point in §Q.

Remark 8.2.

(1) Informally this proposition says that geodesics joining two distinct points in ﬁEnd
“bend” into the domain.

(2) Notice that in Definition 5.4 we consider the one point compactification of C?% while
in Proposition 8.1 we consider the end compactification of Q.

Proof. By Corollary 6.3 the constant sequence €, 2,... is a visibility sequence. Up to
relabeling ¢ and 7 it is enough to consider two cases:

Case 1. £ € C% In this case, the Proposition follows immediately from applying the
visibility property to the geodesics o,.

Case 2. £,1 ¢ C?. Then there exists R > 0 such that o, (a,) and o, (by,) are in different
connected components of Q\ B4(0; R) for n sufficiently large. So there exist a/, € [an, by]
such that ||oy,(al)|| < R when n is sufficiently large. Passing to a subsequence, we can
assume that o, (al)) — &' € C?. Then we can apply the visibility property to the sequence
of geodesics (s 3,)- O

Proposition 8.3. Suppose Q0 is a C-properly convexr domain and every domain in
AH((Cd) QN Xy has simple boundary. If o : [0,00) — Q is a geodesic ray, then

lim o(t)

t—o0

exists in Ogng()-

Proof. Suppose not, then there exist sequences a,, — co and b,, — oo such that

lim o, (a,) =& € Ognaf?

n—oo

and

lim o,(b,) =n € Ognaf,

n—oo
but £ # 7. By passing to subsequences we can suppose that a,, < b, for all n. Then by
Proposition 8.1 and passing to a subsequence there exist T}, € [an, by] such that o(T},)
converges to some z,, € ). Then
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00 > Kq(0(0),200) = lim Kq(0(0),0(T},)) > lim a, =0
n—o00 n—oo

and we have a contradiction. O

The final result of this section requires a definition. First recall, from Definition 2.15,
that AC(Q) is the asymptotic cone of €.

Definition 8.4.

(1) A real linear subspace V C C% is totally real if V N4V = {0}.
(2) When Q is a C-properly convex domain, AC(Q) is totally real if

Spang AC(Q)
is totally real.

Proposition 8.5. Suppose Q is a C-properly conver domain and every domain in
AfF(CY - QN Xy has simple boundary. Further assume that

(1) Q is bounded or
(2) Q is unbounded and AC(Y) is not totally real.

If 0 : R — Q is a geodesic, then

Ao # i o)
m aEndQ-
Remark 8.6.

(1) f B={z € R*: |z| < 1} and Q = B+iR?, then one can show that every domain
in Aff((Cd) - QN Xy has simple boundary, but there exists a geodesic o : R — € with

lim o(t) = t_l)im o(t) € Opnafl.
—oo

t—o0

Thus some extra assumption is necessary when (2 is unbounded&
~E
(2) When € is unbounded and AC(f2) is not totally real, then @ is simply the one-
point compactification of Q (see Observation 2.17).

Proof. By Proposition 8.3 both limits exist. Suppose for a contradiction that

&:= lim o(t) = lim o(t) € Orna-

t—o0 t——o0
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Case 1. ¢ € C?. Fix some zp €  and let z, € [20,€) be a sequence converging to . By
Theorem 4.3, there exist 7 > 0 and affine maps A, € Aff(C?) such that 4,92 € K(r),
Apn(zn) =0, and A, (&) = e1. Since Kq4(r) is compact, we can pass to a subsequence and
assume that A, converges to some ), in X,. By Corollary 6.3, the sequence A, is
a visibility sequence.

Consider the geodesics v1,, : [0,00) — A,Q and s, : [0,00) — A, given by
.0 (t) = Apo(t) and v2 ., (t) = A,o(—t). Since 2 has simple boundary and z,, — § € 9Q,
we see that

lim max {59(%;1}) cveCY ||| = 1} =0.
n—oo

So by Theorem 4.3 part (5),

lim | 4,0(0)] = lim [|4,(0) = 0] = lim [|4,0(0) — Ay, |

n—oo
T 1
> — [|lo(0) — €| li = co.
2 o0 =l i e Gy ol = 1)~
So
Jim {7, (0)] = lim [ A0 (0)[| = oo.

Further, for any n we have

lim 7, (t) = An(§) = e1.

t—o0

So we can find by j,, b2, — 00 such that

im0 (bj.n) = ex-

Since A, is a visibility sequence, after passing to a subsequence there exist T}, €
[0,b;,»] so that lim,, o ¥jn(Tjn) = 2; € Qoo Notice that since lim,, o ||7;,»(0)| = oo,
the “in particular” part of Observation 3.5 implies that

lim T;, = lim T, = co.
n—oo n—oo

But then Proposition 3.4 implies

oo > KQQO (Zlv ZQ) = nh~>nolo KAnQ(Vl,n(Tl,n)vWQ,R(TQ,TL))

= nh_}rr;C Kqo(o(Tin),0(=Tsy)) = nlgr;o T+ 1oy =00

and we have a contradiction.
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Case 2. ¢ ¢ C% Then Q is unbounded and so AC(f) is not totally real. This implies
that there exists a complex line L such that L N AC(2) has non-empty interior in L. By
applying an affine transformation to  we can assume that L = C -e1, 0(0) = 0, e; € 09,
and

{(x +1iy,0,...,0):x <1l—aly|} CC-e1NQ

for some o > 0.
Let A,, € Aff(C%) be an affine map such that

1
Ay (zer) = (1 + g(z - 1)) er.
Then e; = A,,(e1) € 04, and
{(z +iy,0,...,0):x <1 —aly|]} CC-e3NAN.

So there exists some 7 > 0 such that 4,Q2NC -e; € K;(r) for all n. Then using Proposi-
tion 4.6 we can assume that 4,Q € K4(r) for all n. Since K4(r) is compact, we can pass
to a subsequence and assume that A, converges to some Q. in X4. By Corollary 6.3,
the sequence A, is a visibility sequence.

Consider the geodesics 71, : [0,00) — A, and 72, : [0,00) — A,Q given by
Yn(t) = Apo(t) and 2 5 (t) = Apo(—t). By construction

lim v;,(0) = lim A,(0) = lim (1 - 1) e; =e;

n—oo n—oo n—oo

and

lm |75 ()] = oo

t—o0

for every n. Since A, is a visibility sequence, after passing to a subsequence there
exist T, T2, € [0,00) so that lim, oo ¥jn(Tjn) = 2; € Qs. Notice that since
lim,, 00 V5.0 (0) = €1 € 0o, the “in particular” part of Observation 3.5 implies that

lim Ty, = lim T3, = oco.
n— oo n— o0

But then Proposition 3.4 implies

0o > Kq_ (21,22) = nh_)H;O Ka,omn(Tin),v2,n(=T2n))

= nh~>nolo KQ(O’(TLn), O'(—Tgyn)) = nli}II;o Tl,n + T27n =

and we have a contradiction. O
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9. Proof of Theorem 1.5

In this section we establish Theorem 1.5 by proving the following stronger result.

Theorem 9.1. Suppose ) is C-properly convex and either

(1) Q is bounded or
(2) Q is unbounded and AC(Y) is not totally real (see Definition 8.4).

Then (2, Kq) is Gromouv hyperbolic if and only if every domain in
AF(CY - QNXy
has simple boundary.

Remark 9.2. If B = {z € R?: ||z|| < 1} and Q = B+iR?, then one can show that every
domain in Aff(C?%) - QN X, has simple boundary. However, B is bounded and so (Q, Kq)
is not Gromov hyperbolic by Corollary 1.13. Thus some extra assumption is necessary
when  is unbounded.

‘We need one lemma.

Lemma 9.3. Suppose Q) is C-properly convex and either

(1) Q is bounded or
(2) Q is unbounded and AC(Q) is not totally real.

If D € Aff(C?) - QN Xy, then either

(1) D is bounded or
(2) D is unbounded and AC(D) is not totally real.

Proof. Suppose that D € Aff(C%) - QN X . Then there is a sequence A4, € Aff(C?) such
that A,Q — D. We break the proof into two cases.

Case 1. ) is unbounded. Then AC(£) is not totally real. Then, since AC(Q?) is convex,
there exists a complex line L through 0 such that C := LN AC(Q) is a convex cone with
non-empty interior in L.

Suppose that A, (-) = by4gn(+) for some b, € C% and g, € GL4(C). Then AC(A,Q) =
gnAC(Q2). Since g, € GL4(C) and C is a one-dimensional cone, there exists a unitary
matrix u, € U(d) such that ¢,C = u,C. By passing to a subsequence we can suppose
that u, — u € U(d). Then uC C AC(D). So D is unbounded and AC(D) is not totally
real.
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Case 2. Q) is bounded. Now fix some z € D. Then by passing to a tail of (A, ),en, We
can assume that z € A,Q for all n. So if z,, := A, 'z, then A,(f, 2,) converges to (D, z)
in X4 0. By passing to a subsequence we can suppose that z, — 2’ € Q. Now we consider
two cases based on the location of 2'.

Case 2(a). 2’ € Q. Then (£, z,,) converges to (€2, z") in X4 and so by Proposition 3.7
(D,2) =T(Q,7)
for some T € Aff(C%). Then D = TQ and so D is bounded.

Case 2(b). 2’ € 09. Fix some zy € Q. For each n, let L, denote the complex line
containing zg and z,. Let &, € 99 be the point of intersection with the ray zo+R<o(z, —
20). Since Q) contains the convex hull of Bg(z0; 90 (20)) and &,, there exist some r > 0
and 0 € (0,7/2], which are independent of n, such that

Cn = {ZGLnHz_gnH <Tal<z_§n7zn_§n) <6}CQ'

Next let B, € Aff(C%) be an affine map such that B,(£,) = e; and B,(z,) = 0.
Then, since C,, C 2, we see that

{zel Hz -1 < TL, L(z—1,-1) <9} C B,Q

n

where 1, = ||z, — &,||. In particular, there exists some ¢ > 0, which is independent of n,
such that

B,QNC-e; € Ky(e).

But then, using Proposition 4.6, we can assume that B, € K;(¢). Then by passing to
a subsequence we can suppose that B, (€, z,) = (B,,0) converges to some (D’,0) in
Xa,0. Then by Proposition 3.7 there exists some 1" € Aff(Cd) such that D = TD'. Finally
since r,, — 0 we see that

{ze1: 4(z—1,-1) <0} CD'.
So AC(D’), and hence AC(D), is not totally real. O

Proof of Theorem 9.1. If (2, Kq) is Gromov hyperbolic, then Theorem 5.1 implies that

every domain in
AF(CY - QNXy

has simple boundary.
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Next suppose that every domain in
AfF(CH - QN Xy

has simple boundary. We will use Theorem 5.6 to deduce that (Q, Kq) is Gromov hy-
perbolic. Fix a sequence u,, € 2. By Theorem 3.6 there exist sequences ny — oo and
Ay € Aff(C?) such that Ay (€2, u,, ) converges to some (oo, Uoo) in Xg0. By Lemma 9.3
either

(1) Qs is bounded or
(2) Qo is unbounded and AC(§2o) is not totally real.

Then Observation 2.17 implies that Q. coincides with either €, or the one point
_ —FEnd

compactification of Qu. In either case we have an embedding Q.. < C%U{co}. Then,

since

AF(CY) - Qo NXy C AF(CY) - QN Xy,

Proposition 8.5 implies that geodesics in (oo, Kq_ ) are well behaved. Further, Corol-
lary 6.3 implies that Ax€) is a visibility sequence.

Then since u,, € ) was an arbitrary sequence, Theorem 5.6 implies that (2, Kq) is
Gromov hyperbolic. O

Part 3. Subelliptic estimates
10. Prior work and the outline of the proof of Theorem 1.3
We will use the following result of Straube in the proof of Theorem 1.3.

Theorem 10.1 (Straube [49]). Suppose Q is a bounded pseudoconvex domain in C? and
00 is the graph of a Lipschitz function near some & € 0S). Assume that there exist
Co >0, m > 2, a neighborhood U of € in C%, and a bounded plurisubharmonic function
G:UNQ — R such that

Co .

90| z||> on UNQ

as currents. Then there exists a neighborhood V of & and there exists a constant C; > 0
such that

lull 1 vaq < Crlldullo + [10%ullo)

for allu e L% () Ndom(9) Ndom(9*) and 1 < g < d.

0,9)
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Remark 10.2. For smoothly bounded pseudoconvex domains, Theorem 10.1 is due to
Catlin [18, Theorem 2.2].

In the case of smoothly bounded convex domains with finite type in the sense of
D’Angelo, McNeal [39] constructed functions satisfying the hypotheses of Theorem 10.1
(see [40,45] for some corrections). We will construct such functions using a similar ap-
proach, however McNeal’s work relies heavily on the smoothness of the boundary and
in particular on properties of families of convex polynomials with bounded degree. In
our proof, we replace McNeal’s algebraic and analytic arguments with metric space ar-
guments using the Gromov hyperbolicity assumption. Throughout the argument we also
use the geometric estimates established in Section 6.

The proof of Theorem 1.3 has the following outline:

(1) In Section 11, we recall the construction of “visual metrics” on the Gromov boundary
of a Gromov hyperbolic metric space.

(2) In Section 12, we study how visual metrics behave under the normalizing maps
defined in Section 4.

(3) In Section 13, we construct well behaved plurisubharmonic functions on normalized
domains.

(4) In Section 14, we use the results from the previous two sections to construct functions
satisfying the hypothesis of Theorem 10.1.

(5) In Section 15, we prove Theorem 1.3.

(6) In Section 16, we explain the order of subelliptic estimate obtained by our argument.

The visual metric is analogous to the metric considered by McNeal in [39, Section 5].
The normalizing maps are analogous to the “polydisk coordinates” considered by McNeal
in [39, Section 3]. The constructions in Sections 13 and 14 are analogous to McNeal’s
constructions in [39, Propositions 3.1, 3.2].

11. Visual metrics

Suppose (X, d) is a proper geodesic Gromov hyperbolic metric space. As in Section 2.2,
let ¢ X be the Gromov boundary of X and let YG = X U 0JgX denote the Gromov
comp‘gctiﬁcation. In this expository section we recall the construction of visual metrics
on X .

Theorem 11.1. There exist C > 1 and A > 0 such that: For every xg € X there exists a
function

dpy : X x X7 5 [0, 00)

with the following properties
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(1) dyy(z,y) = dg, (y, x) for all z,y € YG,
(2) dIO('r?y) S diﬂo(xﬂz) + dg;o(Z,y) for a’” 3373/72 S 7G7 and
(8) for all z,y € x¢

1

567)‘51(101'71,1/) S dxo(x7y) S Ce*)\d(IOa’Yz,y)

where 7y, 15 any geodesic in (X, d) joining x to y.
Moreover, dg, restricts to a metric on 0gX which generates the standard topology.
Remark 11.2.

(1) The function dg, restricted to O¢X is often called a visual metric.
(2) By definition, if v : [0,00) — X is a geodesic ray, then

tli)rgo ~(t) € 0c X

exists and equals the equivalence class of 7. So in condition (3), if © € 95X, then
x =lmy_,_ oo Va4 (t). Likewise, if y € 0c X, then y = limy_, o0 g 4 (t)-
(3) Condition (3) implies that dg,(z,z) = 0 if and only if © € d¢X. Thus d;, is not a

metric on all of X . To obtain a metric, one could define

Eﬁco (‘Tv y) = min{)‘d(m7 y)’ dxo (l‘, y)}

where d(z,y) := oo when z or y is in d¢X. For a proof that this works see for
instance [25, Section 3.6.3].

(4) If (X,d) is 6-hyperbolic (in the sense of Definition 2.1), then any 0 < A < }log(2)
satisfies Theorem 11.1, see the proof of Proposition 3.6.8 in [25].

We will sketch the standard construction of d,,. For more details and proofs, see for

instance [25, Section 3.6.2].
Recall that the Gromov product of z,y,z € X is defined to be

(d(l‘, Z) + d(yv Z) - d(.’E, y)) .

| =

(m‘y)z =

In a d-hyperbolic metric space, the Gromov product is, up to a bounded additive error,
an easy to understand geometric quantity.

Observation 11.3. Suppose v : [a,b] — X is a geodesic with v(a) = x and v(b) = y, then

d(z,7) — 26 < (z|y)., < d(z,7).
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Remark 11.4. The upper bound on (z|y). holds for any metric space.
Proof. The second inequality follows from the triangle inequality. To prove the first, pick

w in the image of v such that (x|z), = (y|2)w. Notice that (z|y), = 0. Since (X, d) is
d-hyperbolic

(#]2)w = (Y|2)w = min{(z]2)w, (y]2)w} <6+ (2[y)w = 6.

A calculation shows that

and so

d(z,7) < d(z,w) = (z]y): + (@[2)w + (¥]2)w < (2ly): +26. O

Next we extend the Gromov product by taking limits. For zop € X and (z,y) €
X x X% — X x X we define

liminf, . (Zn|Y) s, ifredegX,ye X
(T|Y) 2y := { liminfy,, 5y (2]Yn) s, ifreX, yedsX .
liminf, 4 oy (@n|Un)z, if 2,y € 0cX

This extension has the following properties.
Proposition 11.5. Assume xg € X.

(1) If z,y € YG, then (z|y)z, = o0 if and only if ¢ € 0gX and x = y.
(2) If x € g X, then the sets

Un(x,20) = {y e X (@|Y)ze > n} n=12...

form a meighborhood basis of x.
(3) If x,y € X and z € YG, then

(#[2)a0 = (y]2)0| < d(z,y).

Proof. Parts (1) and (2) follow from the standard model of the Gromov boundary as
equivalence classes of escaping sequences, see [25, Section 3.4.2] or [36, Section 2]. Part
(3) follows from the triangle inequality. O
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For A > 0 sufficiently small define p,, : X% X% [0,00) by

Pz (.’E, y) = exp (—)\($|y)$0) .
Finally the function d,, is defined by
N G
dyo(x,y) = inf szo<.rj,mj+1> N >0;21,...,env11 €EX ;21 =2,ZN11 =Y
j=1

Miraculously, this yields a function which satisfies Theorem 11.1, see [25, Section 3.6.2]
for details.
We end this discussion with some observations.

Observation 11.6. If (z,,,y,) — (7,y) in X% x XY, then
o (,y) = Hm day (20, yn)-
Proof. Notice that
(g (Tns Yn) = A (2, Y)| < |dg (T, Yn) = g (Tns Y)| + [y (20, ) — g (2, )] -
We first prove that |d, (Tn, Yn) — duo (Tn, y)| converges to zero.

Case 1. Assume y € X. Then we can assume that y,, € X for all n. By the mean value
theorem and Proposition 11.5 part (3), we have

|p$o (Z7yn) - pwo(zay” < ‘(Z|y’ﬂ)wo - (Z|y)$0| < d(ynay)

for all z € YG. Thus

lim |dyo (Tn, Yn) — Ao (Tn, )| < lim d(yn,y) = 0.
o0 n—oo

n—
Case 2. Assume y € x°. Let C' > 1, A > 0 be the constants from Theorem 11.1. Then

Um |dyy (Zn, Yn) — dug (@0, y)| < li_)m Ay (Y, y) < lim Ce Wnlv)eo —

n—oo n—oo
by Proposition 11.5 part (2).

Thus in all cases

lim |dTo (ITHyTL) - dil?o (xnay” =0.

n—oo

The same argument shows that
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nlggo |d10 (xnv y) — dg, (z,y)| =0
and hence the proof is complete. O

As an immediate corollary we obtain:

Observation 11.7. If £ € 0c X and r > 0, then the set
G
Vao(&57) i= {w € X7 1 dyy (6,0) < 7}
is an open neighborhood of £ in x°.

12. Visual metrics and normalizing maps

For the rest of the section, let @ € C? be a C-properly convex domain with Gromov
hyperbolic Kobayashi metric. Then fix some zo € ) and some R > ||zo]|.
Let d,, denote the function constructed in Theorem 11.1 for the metric space (2, Kq).

—End —End
Using Theorem 1.16 we can view d,, as a function on Q " Let C, > 1 and

A > 0 be constants such that: for all z,y € ﬁEnd

C’LU exp ( — /\KQ(ZO,%;,y)) <d,(r,y) < Cyexp ( - )‘KQ(ZO”YL?J))

when v, , is a geodesic in (€, Kq) joining = to y. Then for £ € 99" and r > 0 define

Vaolgr) i= {2 €0 1 duy(62) < v}

The goal of this section is to relate these sets to the normalizing maps constructed in
Section 4. To that end, we make the following definitions.

Definition 12.1. For £ € 9Q and € € (0,1), let g¢ . € [20,&) denote the unique point where

1 1
Ka(ge.e,20) = 3 los -
and

1 1
Ko(q', z0) > 3 log -

for every ¢’ € (ge,e,§). Then let A¢ . denote an affine map satisfying Theorem 4.3 with
Ag,e(Q&G) =0 and A&E(g) = €1.
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In this section we will establish the following four propositions about these normalizing
maps and their relationship with the visual metric. We will list the propositions in order
of importance, but prove them in a different order.

Proposition 12.2. There exist ¢ € (0,1] and an increasing function 7 : (0,00) — (0, 00)
with

li =
lim T(r)=0

such that: if £ € 002N B4(0; R), r > 0, and € € (0,e0/r) N (0,1), then
QN A Ba(er;r) C Vo (& 7(r)e)

and
V., (&re) QN Agi Ba(er; 7(r))

for every r > 0.

Proposition 12.3. There exists L > 1 such that: If S > 1, £ € 0Q N B4(0; R), and
€€ (0, %0), then

Vao (§556) € €+ Lr(5) (Vao (56 = €).

Proof of Proposition 12.3 assuming Proposition 12.2. Fix r € (0,7(1)] with 7(r) < 1.

Notice that » < 1: if 7(1) < 1, then r < 7(1) < 1 and if 7(1) > 1, then r < 1 since
7(r) <1 and 7 is increasing. Then let L = 1.

Fix S>1and e € (0, %’) Since @ > ) > 1, Q is convex, and & € Q, we have

(s

7(5)

r

Voo (&5 5€) C QN AL I Ba(er; 7(S)) C €+
7(S)

T

(ﬁ N Agi Ba(er;r) — E)
7(5)

r

Cé+ (Vzo(g;q—(r)e) - f) c&+ (Vzo(f; €) — §>. O

Proposition 12.4. There exist « > 1, B > 1 such that: if £ € 0QNB4(0; R) and € € (0,1),
then

éez/x < So(ge.c) < B/,
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Moreover, if q € [z0,£), then

A/2
g€ Vi, (§Bla—¢IM?).
Remark 12.5. In the special case when 052 is a C? hypersurface, one can choose o = 1.

Proposition 12.6. There exist ro € (0,1), my > 0, Co > 0 such that: if € € 92N B4(0; R)
and € € (0,1), then

A§7€Q S ]Kd(r())
and
Co
[Ag,e(21) — Ag.e(22)]| > T |21 — 22|

for all z1, 25 € ce.

Proposition 12.3 should be compared to [39, Proposition 2.5] and Proposition 12.6
should be compared to [39, Equation (2.7)].

12.1. Proof of Proposition 12.

Let 0p := 0a(20). If £ € 02N B4(0; R) and g € [z0,&), then

0,
s llo—€l <dale) < llg—¢ (14)

since ) contains the convex hull of B,(z0; o) and £.
By Proposition 2.12 there exist ag > 1, B9 > 0 such that: if £ € 02 NB,4(0; R), then
the curve o¢ : [0,00) — Q given by

ge(t) =€ +e (20 =€)
is an (ayg, Bo)-quasi-geodesic.

Lemma 12.7. There exist « > 1, 8 > 0 such that: if £ € 92N B4(0; R) and q € [20,&),
then

1 o
—ﬁ+§log SKQ(q,zo)§B+§log

1 1
da(q) dalq)

Remark 12.8. The proof below shows that a = « satisfies the lemma, however this may
not be the optimal choice.
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Proof. Fix £ € 90N B4(0; R) and ¢ € [20,&). Then ¢ = o¢(t) where

120 — €I

t= 1log
27 lg—=¢ll-

So
(674} (7)) 1
Ka(20,q) = Ka(0¢(0),0¢(t)) < ot + o < o + 5 log(2R) + > log Ta—el’

Thus Equation (14) implies that

Qg (7] 1
K ,q) < — log(2R) + — log ——.
a(20,9) < Bo + 5 0g(2R) + 5 log 50(@)
For the lower bound, Lemma 2.11 and Equation (14) imply
ll20 = €Il % 1

Ko(zo,q) > = 1 > Liog 1
alod) 2 3108y ) = 2% 2R T 2 ¥ 5oy

So a = ag and

5
B = max {—— 1og ,ﬁo + — 10g(2R)}
suffice. O

Proof of Proposition 12.4. Since

1

1
Ka(gee,20) = XIOgg

the last lemma implies that

e—2ﬂ62/)\ < 5Q(qg,€) < e2,8/a€2/(a/\)'

This proves the first part of the Proposition.
Now fix some ¢ € [z0,£). Then g = o¢(to) where

120 — £l

1
to = = log .
2 7 [lg=¢ll

Fix a sequence tg < t; < t2 < ... converging to oo and for each n let v, : [0,b,] — Q be
a geodesic joining ¢ = o¢ (o) to 0’5( n)- Then by Theorem 2.5 there exists M > 0, which
does depend on ¢, such that
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t€[to,tn] t€[0,b,]

max{ max Kgq (0¢(t),vn), max Kq (’yn(t),oghtmtn])} <M (15)

for all n > 1.

Using the Arzela-Ascoli theorem and passing to a subsequence we can suppose that
~n converges to a geodesic ray vy : [0,00) — 2. By the definition of the Gromov boundary
and Theorem 1.16, we have

lim ~(t) = ¢&.

t—o0

Equation (15) implies that

max {sup Kg(ag(t),'y),igg Kq (’y(t)705|[t0700))} <M.

t>to
Hence
Kq(z0,7) = =M + Kq (20, 0¢|j10,00)) -

But by Lemma 2.11

1 20 = &l
Kqo(z0,0¢(t)) > zlog ————— =1t
¢ 2 Joe(t) = £
for all ¢ > 0. And so
1 20 —
Kq(z0,7) > —-M+ty=—-M + ilogH

1 1 1

>—-M+ —logdp + - log —.
270 T2 P g —¢]

Then
ds(2.€) < Cuexp (~MKa(20,7)) < Cyexp (AM) 55 g — €12
Thus B = max {625, C, exp (AM) 50_)‘/2} suffices. O
12.2. Proof of Proposition 12.6
Fix some & € 02N B4(0; R) and € € (0,1). Then

70 [|§ — 20 < da(z0)

where rg := 0a(20)/(2R). So A¢ 2 € K4(ro) by Theorem 4.3 part (1).
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By Corollary 7.2, there exist mg > 0 and ¢y > 0 such that
ba(zv) < o (z)Y/ ™o

for every z € QN By(0; R) and v € C% non-zero. Since ge . € (20,&) and 20, € B4(0; R)
we see that g¢ . € Bgq(0; R). So by Theorem 4.3 part (5)

To

A4G1) = Alz2)l 2 V2¢080(ge,e) /™o

|21 — 22|

for all z1, 2o € C%. Hence by Proposition 12.4

7o

To
=
V2eo80(qe )t/ mo

\/icOBl/mOGQ/(a)\mo)

[A(21) — A(z2) |21 — 22|l > 21 — 22|

for all z1, 29 € c?. So Co = and

(16)
suffice.
12.3. Proof of Proposition 12.2

We begin by defining €y € (0, 1]. If 2 is bounded, let ey = 1. If © is unbounded, define
€o to be the minimum of 1 and

%min {d. (&) € € 00N B0 ), ne 0™\ )

(notice that this number exists by Proposition 11.6). Then

V., (€, e0) cQcC? (17)

for all £ € 902N B4(0; R).
The proposition will follow from a series of lemmas.

Lemma 12.9. For any r > 0 there exists D1(r) < oo such that: if &€ € 9Q N B4(0; R),
e €(0,1), and v : [a,b] —  is a geodesic with v(a),~(b) € Agi Ba(er;r), then

v C Agi Ba(er; D1(r)).

Remark 12.10. This lemma says that a geodesic segment that starts and ends close to
e1 in Ag £ stays close to ej.
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Proof. Suppose for a contradiction that such a D1 (r) does not exist for some r > 0. Then
for each n € N there exist &, € 92 NB4(0; R), €, € (0,1), a geodesic 7y, : [an, bn] = Q,
and t,, € [an, by] where v, (an), vn(bn) € Afinlﬁn Ba(er;r) and

n < || Ae, e n(tn) — el

By Proposition 12.6 each €, := A, ., Q is in K4(ro), so by passing to a subsequence we
can suppose that §2,, converges to some Q. € K4(rg). Then Corollary 6.3 implies that
Q, is a visibility sequence.

Consider the geodesics 41 := Ag,, e, Ynllan,tn] A0 Vn,2 = A¢, e, Vnljt, b,]- Notice that
Vn,1(an), An,2(by) € By(er;r) and

A1)l = T2 (En) [ = [|Ag, v (tn)ll = n — 1.

So using the fact that €2, is a visibility sequence, we can pass to subsequences and find
Ty € [an,ty) and Ty, 2 € [ty, by] such that 4, 1(Th1) = 21 € Qoo and Ay, 2(Th2) — 22 €
Q. Since

li q =
i[5, 2(t)]| = oo,
the “in particular” part of Observation 3.5 implies that

lim TnZ_Tnl Z lim Tng—thOO.
n—oo ’ n—o00 ’

Then Proposition 3.4 implies that

oo > Ko, (21,22) = lim Kgq, (ﬁn,l(Tn,l)van,Q(TnQ)) = nh_{go KQ('Yn(Tn,l)a'Yn(Tn,Q))

n—oo

= lim TnQ—Tnlz()O.
n—oo ’

So we have a contradiction. 0O
Lemma 12.11. We can assume that Dy is an increasing function with

lim Dy (r) = 0.
N0

Proof. For r > 0 fixed, let Dy (r) be the infimum of all numbers satisfying Lemma 12.9.
Notice that Ds (r) itself may not satisfy the lemma and so we define Dy (r) := 7+ D;(r).
Then, by definition, Dy is non-decreasing and so D; is increasing. Further, D; satisfies
Lemma 12.9.

Suppose that lim,~ o D (r) does not equal zero. Then there exists Dy > 0 such that:
for each n € N there exist &, € 002 NB4(0; R), €, € (0,1), a geodesic vy, : [an,bn] — £,
and t,, € [an, by] where v, (ay), vn(by) € Ag_nl,en Ba(e1;1/n) and
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Dy < HAﬁn,En'Yn(tn) el

By definition

[Ag,.envn(tn) — el < Di(1/n) < Di(1).

Now , := Ag, ,Q is in K4(r0), so by passing to a subsequence we can suppose that
Q,, converges to some Qo € K4(rg). Then Corollary 6.3 implies that €2, is a visibility
sequence. By passing to another subsequence we can suppose that

lim Ag, e, v (tn) =1 € Qoo NByler; D1(1)) \ Ba(er; Do).

n—oo
We divide the proof into two cases based on the location of 7.

Case 1.7 € 0Qu. Consider the geodesics Yn1 = Ag,e.Vnla,t,) and Fn2 1=
Agn,en%htmbn]. Notice that

lim 7, 1(an) =e1 = lim 7, 2(by)
n—00 n—00

and
lim 7,1 (tn) =0 = lm 7, 2(tn).
J—00 n—o0

Since ||n — e1|| > Do and €2, is a visibility sequence, we can pass to a subsequence and
find T, 1 € [an,tn] and Ty, 2 € [tn, by] such that 7, 1(Th,1) = 21 € Qoo and Ay, 2(Th2) —
23 € Q. Since n € 0, the “in particular” part of Observation 3.5 implies that

lim Tn’g - Tn,l Z lim Tn’g - tn = OQ.
n—o0 n—00

Then Proposition 3.4 implies
00 > Ko (21,22) = nlggo KQ]‘ (%,1(Tn,1)ﬁn,2(Tn,2)) = nh—{go KQ(’Yn(Tn,l)v'Yn(TnQ))

= lim TnQ_Tnl = Q.
n—oo ’

So we have a contradiction.

Case 2. € 2. Using Observation 3.5, Lemma 5.7, and passing to a subsequence, we
can assume that the geodesics Ag, ., Vn (- + ) converges locally uniformly to a geodesic
7 : R — Q. where

t—lgl—noo W(t) = nll)ngo Agn’én/}/n(an) =€



A. Zimmer / Advances in Mathematics 402 (2022) 10833/ 57

and

lim 4(t) = lim Ag, ¢, n(bn) = €1.
n—oo

t—o0

Since
Qs € AF(C?) - QN Xy,

Theorem 5.1 implies that (2, Kq_ ) is Gromov hyperbolic. However, then by Theo-
rem 1.16 and the definition of the Gromov boundary the geodesic rays ¢ — 7(¢) and
t — y(—t) are in the same equivalence class. But then

oo > limsup Kq_ (3(t),7(—t)) = limsup 2t = co.
t—o0 t—o0

So we have a contradiction.
Thus lim,~ o D1(r) =0. O

Lemma 12.12. For any r > 0 there exists Do(r) < oo such that: if £ € 90Q N B4(0; R),
e € (0,1), and v : [a,b] = Q is a geodesic with y(a) € Agi Ba(e1;r) and v(b) ¢
Agi Ba(er; 2r), then

Ka(ge.e,v) < Da(r).

Remark 12.13. This lemma says that a geodesic in A¢ ) that starts close to e; and ends
far from e; must pass close to 0 = A¢ (gee).

Proof. Suppose for a contradiction that such a Da(r) does not exist for some r > 0. Then
for each n € N there exist &, € 9Q2NB4(0; R), €, € (0,1), and a geodesic vy, : [an, bp] — Q
where v, (a,) € Agle Ba(er;r), vn(by) ¢ Agi Ba(ey;2r), and

Ka(ge, ., n) = 0.

By Proposition 12.6 each €, := A, ., is in Ky(ro), so by passing to a subsequence we
can suppose that €,, converges to some o, € K4(ro). Then Corollary 6.3 implies that
), is a visibility sequence.

Consider the geodesics 7, = Ag, e, ¥n- Then F,(an) € By(er;r) and 7,(b,) ¢
Bg(e1;2r). So

[ (@n) =3 (bn)l| > 7.

Since 2, is a visibility sequence, we can pass to a subsequence and find T,, € [an, by,]
such that 4, (T},) — 2z € Qs. Then
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00 > Ko, (0,2) = lim Ko, (0,9n(T5)) = lim Ko(ge, e, Yn(Tn))

n—oo

> lim KQ(qgn,en,’Yn) = 00.
n— 00

So we have a contradiction. Hence for each r > 0, there exists some Dy(r) > 0 with the
desired property. 0O

Lemma 12.14. For any r > 0 there exists D3(r) < oo such that: if £ € Q2 N B4(0; R),
€ (0,1), and ~ : [a,b] — Q is a geodesic with y(a) € Agi Ba(er;r) and y(b) = 2o, then

Ka(ge,e;v) < Ds(r).
Moreover, we can assume that D3 is an increasing function.

Remark 12.15. This lemma is similar to Lemma 12.12, however the increasing condition
on D3 (which may not hold for D) will be important for later estimates.

Proof. Define Ds(r) € (0,00] to be the smallest number satisfying the first part of the
lemma (since the inequality is not strict, there does indeed exist a smallest number).
We claim that Ds(r) < oo for every r > 0. Suppose that & € 92N B4(0; R), € € (0,1),
and v : [a,b] — 2 is a geodesic with y(a) € Agi Ba(er;r) and v(b) = 2o.
If zo ¢ Agi Ba(eq; 2r), then

Ka(ge,e,v) < Do(r)

by Lemma 12.12.
Next consider the case when zy € A; Ba(e1;2r). Since A¢ (ge,e) = 0, A¢,c(§) = ex,
and ge . € (z0,&) we see that

1 1
2r +1 2 || Ag.e(20)ll = 777 llge.c — 20l = (1€ = zoll = 11§ = ge.cl) -
llge.c =&l [lge.c — €Il
So
Ja(20)
_ _ > )
e — €l > 5 ll6 — =0l > 2222
Then by Lemma 12.7
a 2r+2
Kﬂ(q&ea’y) S KQ(QE,e,ZO) § 5 + = 10g = 5 + 5 .
llgg.e = €Il a(20)

Thus

~ o 2r +2
Ds3(r) < max {ﬂ + 5 log m,DQ(T)}

is finite.
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Finally, by definition Ds is non-decreasing and so Ds(r) := Ds(r) + r is increasing
and satisfies the lemma. O

For r > 0, let 71(r) € (0, 0] be the infimum of all numbers 7 > 0 such that
Qn Agi B(e1;r) C Vi (&; 7€)
for all £ € 902 NB4(0; R) and € € (0,1). Then define 71 (r) := r + 71(r). Notice that
Qn A; Bley;r) C Vi (&5 m(r)e)
for all £ € 90 NB4(0; R) and € € (0,1).
Lemma 12.16. 7(r) < oo for every r > 0, 1y is increasing, and lim,~ 71 (r) = 0.

Proof. We first prove that 7 (r) < oo for every r > 0. Fix r» > 0, £ € 9Q N B4(0; R),
€€ (0,1),and y € QN Agi Bg(e1;7). Let v : (—00,b) — Q be a geodesic such that

Jim (1) = & and limy(t) =y
(notice that b < oo when y € 2 and b = co when y € 9Q2). Then by Lemma 12.9

v C Agi Bd(el; D1 (7"))

Let T = Kq(z0,7). Then there exists a geodesic o : [0,7] — Q with o(0) = 2y and
o(T) € . Then

o(T) €y C Ag; Ba(er; Di(r)). (18)
Hence, if D4(r) = D3(D1(r)), then by Lemma 12.14
Ka(o(to), ge.e) < Da(r)
for some tg € [0,T]. Then

Ka(20,7) = Ka(zo,0(t0)) + Ka(o(to), o (1))
> KQ(207 q&,e) + Kﬂ(qé,éa U(T)) - 2D4(T)
1

1
\ log - + Ka(ge,e,0(T)) — 2Dy(r).

Thus

dz (&, y) < Cypexp (=AKq(20,7)) < Cuoeexp (2AD4(r)) exp (=AKq(ge.c, o(T))) -
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Next consider the complex hyperplane H := e;+Spanc{es,...,eq}. Then HNA¢ Q =
() since A¢ O € Kq(ro). Then Lemma 2.10 and Equation (18) imply that

1
Dy(r)

duC 7H
log Euc (0, H)

1
— 1
2 dEuc(Aé,eo'(T)a H) 8

1
Ka(ge,e,0(T)) = Ka, 0(Ae e, Ac co(T)) > > 3

Then,
d, (€,y) < Cyeexp (2AD4(r)) Dy (r)2.
Since £ € 92N B4(0; R), € € (0,1), and y € QN Agi Ba(eq;r) were arbitrary we have
m1(r) < r+ Cyexp (2ADy4(r)) Dy (r)M? < .

This proves the first assertion.

By definition, 7y is non-decreasing and so 7 is increasing. Thus the second assertion
is true.

To prove the last assertion, first notice that D, is increasing by Lemmas 12.14
and 12.11. Then Lemma 12.11 implies that

}i{%ﬁ(r) < Cyexp (2AD4(1)) }1{% Di(r)M?=0. O

Next for r > 0 let 7»(r) € (0, 00] be the smallest number such that
Veo(€51€) € QN A Ba(er; 72(r))

for all £ € 92 NB4(0; R) and € € (0,e0/r) N (0,1). Observation 11.7 and Equation (17)
imply that V, (&;7e) is an open set in € and hence 7(r) exists.

Lemma 12.17. lim,~ o 72(r) = 0.

Proof. Suppose not, then there exists 7y > 0 such that: for every n € N there exist
€0 € 02N By(0; R), €, € (0,1), and yy € Vi, (€03 Ley) with

70 < [[Ag e, yn — €l -
Let v, : (—00,b,) — Q be a geodesic with

lim ’7n(t) =&, and tlim Vn(t) = Yn

t——o0 —bn

(notice that b, < oo when y,, € Q and b,, = oo when y,, € 9Q). By Lemma 12.12, there
exists ¢, € (—o0,by) such that

KQ(q&,L,e,LfYn(tn)) < DQ(TO/Q)'
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Then
1 1
KQ(ZO7 ryn) S KQ(Z()’ q£717€n) + Kﬂ(qfn,en’r)/n(tn)) S X log 6_ + DQ(TO/Q)'

So

1 1
ﬁfn > dzo (fn,yn) > — eXp(*)‘KQ(ZO/VTL))

v

1
> Yol exp(—AD2(70/2))e€n.
Then sending n — oo yields a contradiction. Thus lim,~ o 72(r) =0. O

Lemma 12.18. For any r > 0, sup,¢(q v T2(s) < 0.

Proof. Suppose for a contradiction that sup,¢ g, 72(s) = oo for some r > 0. Then for
every n € N there exist s, € (0,7], &, € 02N B4(0; R), €, € (0,e0/s,) N (0,1), and

Yn € Voo (Ens Snen) \ Ag_nl,en Ba(er;n +1).
Notice that y, € © C C? by our choice of €, see Equation (17). Also

[, entimll = 1 Ae, e yn = €1l = llea]] = n.

By passing to a subsequence we can suppose that s, — Soo, €n — €00, and €2, :=
Ag, € converges to some (o in Ky(rg). By Lemma 12.17 we must have s, # 0 and
S0

€0
oo < —.
Sco

Also, Corollary 6.3 implies that €2, is a visibility sequence.
We consider two cases.

Case 1. €5, > 0. Then

1 1
sup Kq(20,4e,.,) = sup — log — < oo.
neN neN A €n

So we can pass to a subsequence such that g¢, ., — ¢ € Q. Then (Q,¢e,..,) — (2,9)
and Ag¢, ¢, (2, ¢, .c,) = (Qo0,0). So by Proposition 3.7, we can pass to a subsequence
where A¢, ., — A € Af(C?). Then

i all = Jim_ A7 Ag, 0] = oo
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By passing to another subsequence we can suppose that &, — £ € 0Q N B4(0; R) and
Yn =N € o™ \ C%. Then Proposition 11.6 implies that

dZo (7775) = nh~>nolo dzo (il/n,fn) S Scoc€o S €0
which contradicts the definition of €g, see Equation (17).

Case 2. €5, = 0. Then

Jim 6 = gg e | = 0. (19)

We first show that Q. is one-ended. By construction A, ., (20) = tpe; for some t,, < 0.
Since 29, ¢, ¢,., and &, are co-linear

20 — 4¢,,en
b = [ta] = e e (20) — Ag, e (gey )] = 12" Gonseall
T
Then, since
liminf |20 — ge, o, | = liminf {20 — all — 1€ — ge,.c. |
n—o0 n—oo

— timinf | — £,l| > dalz0),
Equation (19) implies that ¢, — —c0. So —e; € AC(Qx). Since Qo € Ky(rp), we have
(el + Spanc{es, ..., ed}) NQo =0

and so e; ¢ AC(Q,). Thus Q. is one-ended by Observation 2.17.
Now let 7, : (—00,b,) — Q be a geodesic with
tLlIEloo Tn(t) = & and tligln Yn(t) = Yn
(notice that b, < oo when y, € Q and b, = co when y,, € 99Q). Next consider the
geodesics 7, = A, e, Yn 1 (—00,by) — Q. Since Q,, is a visibility sequence, after passing
to a subsequence there exists a sequence T,, € (—o0, by,) such that 7,,(T},) converges to a
point in .. Passing to a further subsequence, we can assume that

b:= lim b, — T, € [0, <]

n—oo

exists and, by Observation 3.5, that 7, (- + T;,) converges locally uniformly to a geodesic

~

7 (=00, 0] NR — Qu. Since

nli_{rgo ||Afny€nyn|| = 00,
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the “in particular” part of Observation 3.5 implies that b = co. Then, by Lemma 5.7
Jim @) = lim [[Ag,, e, ynll = oo

Next let o, : [0,¢,] = € be a sequence of geodesics with o,(c,) = 29 and 0,(0) =
g¢, .- Notice that

1 1
cn = Kal(ge, e, 20) = X10g€— — 00.

Consider the geodesic 7, = Ag, ¢, 0n : [0,¢,] = Q. Then 7,(0) = 0, so using Obser-
vation 3.5 we can pass to a subsequence such that &, converges locally uniformly to a
geodesic 7 : [0,00) = Qoo. By Lemma 5.7

lim [[6(1)]| = lim_[[Fn(cn)]

t—o0 lim ||A£7”E”ZO|| = nh—{réo Itn| -

‘ - n—oo
Since
Qo € AfF(C?) - QN Xy,

Theorem 5.1 implies that (Qo, Kq. ) is Gromov hyperbolic. Then, since €, is one-
ended, Theorem 1.16 implies that 7|jy,o) and @ are in the same equivalence class of rays
in 8@900 So

M :=sup Kq_, (6(t),7(t)) < occ.
>0

Now fix some
1
T>M+1+ X log(rCy).

Notice that T+ T,, < b,, for n sufficiently large since b = oo. Then for n sufficiently large,
Proposition 3.4 implies that

Ko(on(T)yn(T + Tp)) = Ko, (G,(T),30(T + Ty,))
<14+ Kq_(@(T),7(T)) <1+ M.

Then for n sufficiently large

Ko(20,7) < Ko(20, (T +T3)) < Ka(z0,0n0(T)) + Ka(on(T), v (T + Ty))

1.1
Sen—TH1+M=log—~T+1+M
€

n

and
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1 €n
dzo (Ena yn) > — exp(_)‘KQ(207 ’Yn)) > — eXp()‘T —AM — )‘)
Cy Cy
> Teép.
Thus y,, ¢ V., (&,; ren) for n sufficiently large and hence we have a contradiction. O

Finally we can finish the proof of Proposition 12.2 by setting

7(r) =71(r) + sup 72(s).
s€(0,r]

13. Plurisubharmonic functions on normalized domains

In this section we construct special plurisubharmonic functions on normalized do-
mains. This construction is similar to the proof of [39, Proposition 3.1].

Proposition 13.1. For any d € N and a,r > 0 there exist C,b > 0 such that: if Q € Kq(r),
then there exists a C° plurisubharmonic function F : Q — [0,1] with

i0dF(z) > Cidd ||z||> on Ba(er;a) NQ
and
supp(F) C Bg(e1;0) N
The rest of the section is devoted to the proof of the Proposition.

Definition 13.2. Given Q € K4(r) we say that a list of vectors (v, ..., vq) is Q-supporting
if

ej +Spanc{eji1,...,eq} C {z € C?:Re(z,v;) =1}
and
Qc{zeC?: Re(zv;) <1}
for all j € {1,...,d}.
Lemma 13.3. If Q € K4(r), then there exists a list of Q-supporting vectors.
Proof. Since € is convex and
(ej + Spanc{ejt1,...,ea}) N =0

there exists a real hyperplane H; such that H; N Q = () and
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e; + Spanc{eji1,...,eq} C Hj.

Since 0 € (, for each j we can pick v; € C? such that H; ={z¢ c? . Re (z,v;) = 1}
and Q C {z € C*: Re(z,v;) <1}. O

Lemma 13.4. If Q € K4(r) and (v1,...,vq) is Q-supporting, then

(1) 1< || <r 't

(2) V5 = 1 when] > 1,

(8) vje =0 when {>j,

(4) lvjal <r7t for 1< j<d,
(5) vl <1 forl <t <j.

In particular,
o[ < v/r=2+ (i —1)
for1<j<d.
Proof. Since
rD-e; CQC{z€C%:Re(z,v;) <1}

we must have |vj 1| < 77! for 1 < j < d. This proves (4).
When 1 < ¢ <d,

D-e, CQC{z€C?:Relzv;) <1}

and so |vj¢| < 1. This proves (5).
Since

e; + Spanc{ejt1,...,eq} C {z € C?: Re (z,vj) =1}

we must have Re(v; ;) = 1 and v; ¢, = 0 when ¢ > j. This proves (3) and when combined
with (5) (respectively (4)) implies (2) (respectively (1)). O

Lemma 13.5. For any d € N, r € (0,1], and a > 0 there exist a,b,C > 0 with the
following property: If Q € Kq(r), (v1,...,vq) is Q-supporting, and h : Q@ — (—o0,1) is
defined by

2—( zv]>

1 d
EZ Re(z,v;)— +Zln

then
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(1) —a < h(z) on Bgler;a) N,
(2) h(z) < —2a on Q\ Bg(er;b),
(3) h is strictly plurisubharmonic on €, and

(4) i0Oh(z) > Cidd || z||* on Ba(e1;a) N Q.

Proof. If Q € K4(r) and (v, ...,vq) is Q-supporting, then

'2—<1Zﬂ)j>

forall 1 < j<dand z € . So h does indeed map 2 into (—oo, 1).

The existence of some « > 0 satisfying Part (1) follows from Lemma 13.4.

Lemma 13.4 also implies that there exists € > 0 such that: if Q € K4(r) and (vy, ..., vq)
is Q-supporting, then

1

< 1
~ 2—Re(z,vy) <

2Re (z,v;) —2 <0 and

>
max |{z,v5)] = ellz] (20)

for all z € CY. Hence, if Q € Ka(r), (v1,...,vq) is Q-supporting, and z € Q then

1
<In .
2+ ¢€|2]]

Zln

2— zvj

So there exists some b > 0 satisfying Part (2).

Next we show that any such h is strictly plurisubharmonic. Suppose Q2 € K4(r) and
(v1,...,vq) is Q-supporting. Fix some X € C?. The second sum in the definition of & is
pluriharmonic on 2, so

4 527 1
- Re(z,v;) X ) 2.
Z 82 8Zk d Z ’U]>|
7,k=1 j=1
Then using Equation (20)
d d
d%h(z e—2(1+l1zI) 5 e~ 20F1zID )
> — X0\ > —|X||° > 0. 21
pog x> I (21)

Hence h is strictly plurisubharmonic on €.
Finally, Equation (21) implies that there exists some C satisfying part (4). O

Proof of Proposition 13.1. Let x : R — [0,00) be a convex C'* function such that

(1)

x(z) =0 on (—o0, —2a],
(2) X’

() >0 and x"(x) >0 on (—2a, 00), and



A. Zimmer / Advances in Mathematics 402 (2022) 10833/ 67

3) x(1) =1.

Let £ := min{x"(r) : r € [—a, 1]}

Suppose Q € Ky(r), (v1,...,vq) is Q-supporting, and let h : Q@ — R be the function
from the last lemma. Then define F : Q — [0,1] by F' = x o h. Then by construction
supp(F') C By(eq;b) N Q. Moreover

i00F (2) = (X" o h)(2)id0h(z) + (X" o h(z))?*i0h A Oh
and so F' is plurisubharmonic on €. Finally, when z € QN Bg(e;;a) we have
i00F (z) > (X" o h)(2)id0h(z) > kCiDO ||z||2
where C' > 0 is the constant in the last lemma. O
14. Plurisubharmonic functions on convex domains

In this section we construct functions satisfying the hypothesis of Theorem 10.1. This
construction uses ideas from the proofs of [39, Propositions 3.1, 3.2] and [49, Theorem
2].

Theorem 14.1. Suppose Q C C¢ is a C-properly convex domain and (Q, Kq) is Gromov
hyperbolic. If & € 0S), then there exist C' > 0, mg > 2, a neighborhood U of &, and a
bounded continuous plurisubharmonic function G : U N Q — [0,1] such that

i00G(z) > %z@é”zHQ on UNK.

(59(2)

For the rest of the section fix Q ¢ C¢ a C-properly convex domain where (Q,Kq) is
Gromov hyperbolic. Then fix some zy € Q2 and &, € 0f2. Finally, fix some R > 0 with
20,60 € Ba(0; R).

As in Section 12, let d,, denote the function constructed in Theorem 11.1 for the metric
space (9, Kq). Using Theorem 1.16 we can view d,, as a function on Q7 0™ Let

C, > 1 and X > 0 be constants such that: for all z,y € o™

oo (= AKa(20,7)) < dey(9) < Coexp (— AKa(z0,70.4))

v

when v, , is a geodesic in (2, Kq) joining x to y. As before, for £ € Q™™ and » >0
define

V(&) = {z ca™. d. (& 2) < r} )
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Lemma 14.2. There exist c1,€1 € (0,1) and my > 0 such that: For any £ € 902NB4(0; R)
and € € (0, €1) there is a smooth plurisubharmonic function Fe o : Q — [0, 1] with

i00F o(2) > 5 +—i00 |l2]* on V2, (&2¢) N0
€=/ m1

and

€
supp(Fe ) C Vz, (5; —) :
C1
Remark 14.3. The m; in Lemma 14.2 can be taken to be the m; from Proposition 12.6.

Proof. For £ € 9Q N By(0; R) and € € (0,1), let A¢ . € AfF(C?) be the affine map from
Definition 12.1. By Proposition 12.6 there exist rg, Cp,m; > 0 (which do not depend on
€ or €) such that A¢ Q € Ky(ro) and

C
1 4g.e(z1) = Ag.c(z2)ll = 7= Iz = 22| (22)

El/ml

for all 21, zp € C%. Then let € € (0,1] and 7 : (0, 00) — (0, 00) be the constant and func-
tion from Proposition 12.2. Also, let C; > 0,b > 1 be the constants in Proposition 13.1
associated to r = ro and a = 7(2). Finally let

~ max{2,b}

Fix £ € 02N B4(0; R) and € € (0,€1). By Proposition 13.1 there exists a smooth
plurisubharmonic function F': A¢ Q — [0, 1] such that

i00F(2) > C1i08 ||z]|* on Bga(er;7(2)) N Ag. 0
and
supp(F') C Bg(eq;b) N Ag Q.
Then define Fy . = F o A¢ ¢ : Q — [0,1]. Then
supp(Fe.c) C QN Ag ! Ba(e1;b) C Vz, (& 7(b)e).

Moreover, if Ag(-) = by + g(-) where 29 € C% and g € GLg(C), then Equation (22)
implies that

Co

for all z € CY.
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Since € < ', Proposition 12.2 implies
V., (£2¢) C QN A;i Ba(er;7(2)).
Soif z € V., (€;2¢) NQ and X € C%, we have

i00F ((2)(X, X) = i00F (A¢.c2)(9X,9X) > C1 g X |*
Eee;

- 62/m1

X%

Hence ¢; = min {Cng, %b)} satisfies the lemma. 0O

Next define
Vei=U{V,,(§e) : £ €00NBy(0; R)}.
Lemma 14.4. There exist c2 € (0,1) and e2 € (0,€1) such that: for any € € (0,€3) there
is a plurisubharmonic function F, : Q — [0, 1] with

c

100F(z) > 2/

2_i0d ||z||* on V.N Q.
my

Proof. By Proposition 12.3 there exist €5 € (0,¢;) and M > 0 such that

2 € €
a2 ) cenn (v (69 —¢)

Va(6245) cernr (va () ¢

for all £ € 902 NB4(0; R) and € € (0, €2).
Fix € € (0,€2). Let {&; : j € J} C 92N B4(0; R) be a maximal set such that the sets
V., (&;;€/2) are pairwise disjoint. We claim that
Ve C UjesVa (&5 2€).
If not, there exist £ € 02 NB4(0; R) and z € V,,(&; €) such that
dZO(Zagj) > 2e

for all j € J. Then

dzo (f,fg) Z ]:nll}n,n dzo (ngj) - dzo (Zaf) > €

for all j € J. Hence V,,(;€¢/2) is disjoint from each V,(&;;€/2). This contradicts the
maximality.
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Claim. If z € Q, then

Og#{j:ZGVZO (5j;é)}§M2d.

Proof of Claim. This is just the proof of the Claim on page 124 in [39]: Suppose that

zent_ V., (@k; é)
(e (6 ) = (0 (3)

where y is the Lebesgue measure on C? (recall that these sets are open in 2 by Obser-
vation 11.7). Then

(v (6)

and

IN
|
1~
—
w
<
~/~
o
kol
[ NN e
N—
N——
I
~| =

p (U, Vi, (fjk; g))
,u (Vzo (gjﬁ %)) ’

IN

|

=

/-\ MR
=

? <

l\:)lm

N———

N———

So ¢ < M2, <
Now by the previous lemma, for each j € J there exists F; : Q — [0,1] such that
.03 €1 .a5 2
100F;(z) > Wzaa [I2]|” on V., (&;;2¢) N Q2

and

supp(Fy) C V, <§j; i) .

Finally we define

1
F. = WZFj.

jeJ
Then F, is a smooth plurisubharmonic function, maps into [0, 1], and
.05 C2 a5 2
100F(z) > mzaa||z|| on V,

where ¢y = ¢c; M~2¢. O
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For § > 0 define
S5 :={z € Q:36 €9NNB40; R) such that z € [z0,¢) and |z — ]| < d}.

Lemma 14.5. There exist B > 0 and a neighborhood U of &y such that

(1) S5 C Vggrsz for all § > 0,
(2) if z€ UNQ and dq(z) <6, then z € Sps.

Proof. By Proposition 12.4 there exists By > 1 such that: if ¢ € [z, &), then

a€ Vi (€ Bolla—¢1M?).

So
S5 C VBO(sA/Z

for all 6 > 0.

Let §p := da(z0) and pick U a sufficiently small neighborhood of &, such that: if
z € UNQ, then there exists some { € 902 N B4(0; R) with z € [z, §).

Fix § > 0 and z € U N Q with dq(z) < 4. Then there exists £ € 9Q N B4(0; R) with
z € [20,&). Since Q contains the convex hull of By(z0; o) and &, we have

1)
ﬁ |z =&l < dalz) < 6.

So z € Sp,s where By = %.

Then B = max{By, B;} satisfies the conclusion of the lemma. O

Proof of Theorem 14.1. Define

1 9
51 = WGQ .

By Lemmas 14.4 and 14.5, for each § € (0, ;) there exists a smooth plurisubharmonic
function Fj : Q — [0, 1] such that

i00Fs(z) > %i@é”z”z on S

where c3 = coB~2/™ and £ = 2m; /).
Now we use the argument on page 464 in [49]: Pick ko € N such that 27 < §;. Then
pick any

ma >max{2%,2} (23)
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and define

oo
F(z)= ) 2 2k0/t=lmap,
k=ko

Since each F,-x is bounded in absolute value by 1, the sum is uniformly convergent.
Thus F' is a bounded continuous function. Since each F5—« is plurisubharmonic, F' is as
well. By decreasing U, we can assume that: if z € U N, then Bdg(z) < 27%0. Now fix
some z € U N Q. Then there exists some K > kg such that
1 1
SRTT < Béa(z) < oK

Then z € Sy-« for all kg < k < K. Hence there exists ¢4 > 0 (independent of z) such
that

B K 632216/5 B 5
=Ko
2AK+1)/m2; 951,12 > 4 Loz 2
> 42 100 ||z||” > BQ/m259(2)2/m2188H2H .

1
Then let G = S, T F. O

Remark 14.6. When d > 2, we always have maX{ZTl,Z} = 2% in Equation (23). To

see this, first observe that Equation (16) implies that

almy
2

my =

where o > 1 is the constant in Lemma 12.7 and mg > 0 is the constant from Corollary 7.2.
Remark 5.9 implies that mg > 2. Thus

15. Proof of Theorem 1.3

In this section we prove the following strengthening of Theorem 1.3.
Theorem 15.1. Suppose Q1,...,Q, C C are C-properly convexr domains and each
(Q,dq,) is Gromov hyperbolic. If Q := N7_18; is bounded and non-empty, then S

satisfies a subelliptic estimate.

For the rest of the section fix 2 = N7_,; as in the statement of Theorem 15.1.



A. Zimmer / Advances in Mathematics 402 (2022) 10833/ 73

Lemma 15.2. For every £ € 0X), there is a neighborhood W of £, C' > 0, m > 2, and a
bounded continuous plurisubharmonic function G : W N Q — [0,1] such that

i00G(z) > 09z on WNQ.

_
5Q(z)2/m

Proof. By relabeling we can suppose that £ € 0Q; for 1 < j < £ and £ € € for
{41 < j <n. Then there exists a neighborhood Uy of £ such that: if z € Uy N2, then

By Theorem 14.1, for each 1 < j </, there exist constants C; > 0, m; > 2, a neighbor-
hood Uj of £, and a bounded continuous plurisubharmonic function G; : U; N; — [0, 1]
such that

. C; .
i00G;(z) = 59,-(27)]2/””286 I121* on U; N .

Then G = %Zle G; satisfies the conclusion of the lemma with W = ﬂgonj, C =
%minlgjg Cj, and m = maxi<j<em;. O

So by Straube’s theorem (Theorem 10.1 above) for each & € 92 there exist constants
C¢ > 0,m¢ > 2 and a neighborhood V¢ of { in C? such that

el 22 veme = Ce([|9ullo + 107ullo)

forallu € L%O)q)(Q)ﬂdom(é)ﬂdom(é*). Since 0f1 is compact, we can find &1, ..., &y € 00
such that if V; := V¢, then

o0 C UlSjSN‘/}-
Let Cj = ng and m = maxji<j<n mgj.
Next fix a relatively compact open set Vo C © where Q € UX(Vj. Using standard

interior estimates, see for instance Proposition 5.1.1 and Equation (4.4.6) in [20], we
have the following estimate.

Lemma 15.3. There exists Cy > 0 such that:
lull 1 v, < Co(l9ullo + 10" ullo)

for every u € L%qu)(ﬂ) N dom(9) N dom(9*).

Let V = U;-V:()Vj. Then let xq,...,xn~ be a smooth partition of unity subordinate to
the open cover V = U;-V:()Vj, that is:
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(1) each x; : V — [0, 1] is smooth and supp(x;) C Vj,
(2) Zj.\;o X; =1lon V.

Since Q C V, there exists some constant B > 0 such that: if 0 < j < N and u|vij €
Wo/™(V; N Q), then

Ixjull 2 o < Bllull 1 v,n0 -
m m

Finally, if u € L, (2) N dom(9) N dom(0*), then

N

N
lully <Xl < B3 bl vyon < B (s, €5 ) (1) (19l + 10" ul).
J= J=

16. The order of subelliptic estimate

In this section we describe the order of subelliptic estimate obtained by our argument
in the special case of a bounded convex domain with Gromov hyperbolic Kobayashi
metric.

For a bounded convex domain Q ¢ C%, define

m(Q) :=inf{m > 1:Q is m-convex} € [1, c0].

By Remark 5.9, if d = 1, then m,(Q2) = 1 and if d > 2, then m,(Q2) > 2. Further, by
Corollary 7.2, if (Q, Kq) is Gromov hyperbolic, then m,(£2) < co.

We say that a bounded convex domain  C C? is a-regular if for any z, € Q there
exists some B = B(«, z9) > 0 such that

a 1
K, < B+ -1

for all ¢ € Q2. Then define
() == inf{a > 0: Q is a-regular} € [1,00)
Lemma 2.10 implies that a4 (€2) > 1 and Proposition 2.12 implies that «,(£2) < co.

Theorem 16.1. Suppose d > 2, Q C C? is a bounded convex domain, and (Q,Kq) is
Gromov hyperbolic. If

1

S m Q)

then a subelliptic estimate of order € holds on €.
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Before proving Theorem 16.1 we calculate o, and m, for some classes of domains.

Proposition 16.2. Suppose Q C C? is a bounded convexr domain and 0Q is C*. If € > 0
and zg € Q, then there exists B = B(e, z9) > 0 such that

1+e¢ 1
K <B4+ —log ——
al(g,20) < B+ 5 08 50(Q)

for all g € Q. In particular, a,(2) = 1.
Proof. For £ € 092 let ng € C? denote the inward pointing unit normal vector of € at

&.
Fix € > 0. Since 992 is C*, there exists to = to(e) > 0 such that

1
>
5Q(§+tng) > 1+et

for all £ € 90 and t € (0, 19).
For £ € 09 let ¢ : [0,00) — Q denote the curve

ve(t) =&+ toefztng.

Then for 0 < ¢ we have

Ko ( /kQ ’75 75 dT</ HPYE H

da(ve(r)
t
1+e/d7‘ (I+e)t
0

Now fix ¢ € . Then g = £ + dn(q)ne where & € 00 is a point in 09 closest to ¢. If
da(q) > to, then

1+e€ 1
K <B — log ——
(¢, 20) < Bo + 9 Ogdg(q)
where
1+e 1
By = 5 log - + max{Kq(z,20): z € Q and dq(z) > to}.
0

If 5a(q) < to, then g = ¢ (t) where ¢t = %log #‘(’q) > (0. Then
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1+e€ 1

<B; 4+ —log ——

where

14
B = 5 € logto + maX{KQ('Yg(()),Zo) . g c aQ}

Since B = max{Bj, By} does not depend on ¢ this completes the proof. O

Next we compute m,(€2) in the special case when 99 is C*°. To do this we need to
define the line type at a boundary point. Given a function f: C — R with f(0) =0 let
v(f) denote the order of vanishing of f at 0. Suppose that D C C?is a domain with C>
boundary and

D={zecC%:r(z) <0}

where r is a C*° function with Vr # 0 near dD. The line type of a boundary point
& € 0D is defined to be

LD, &) =sup{v(roy)| ¢ :C — C? is a non-constant complex affine map
with 1(0) = £}

Notice that v(r o) > 2 if and only if (C) is tangent to D. McNeal [38] proved that if
D is convex then £ € 92 has finite line type if and only if it has finite type in the sense
of D’Angelo (also see [15]).

Proposition 16.3. Suppose d > 2, Q C C¢ is a bounded convex domain, and 8§ is C°.
Then

Proof. This is a straightforward calculation, see for instance [52, Section 9]. O
16.1. Proof of Theorem 16.1

This is simply a matter of tracking the constants in the proof of Theorem 1.3.
Fix
1

S @ma ()

and let m := e~ 1. Then there exist mg > 2, a > 1, and zg € € such that
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(1) m > moa,
(2) Q is mp-convex,
(3) Qis a-regular.

Fix zo € Q and let A be the constant associated to d,, in Sections 12 and 14.
Notice that, by definition, « satisfies Lemma 12.7 and so by Equation (16)

almg

2

my =

satisfies the conclusion of Proposition 12.6. Hence m; also satisfies the conclusion of
Lemmas 14.2 and 14.4 (see Remark 14.3). Then by Equation (23) and Remark 14.6, any

le
mo > T = amy
satisfies the conclusion of Theorem 14.1. In particular, m does. Then Straube’s theorem
(Theorem 10.1 above) implies that a local subelliptic estimate of order € = % holds at
every boundary point. Then by the “local to global” proof in Section 15 we see that a
subelliptic estimate of order € = % holds on €.

Part 4. Examples
17. The Hilbert distance

In this expository section we recall the definition of the Hilbert distance and then
state some of its properties.

Suppose © € R? is a convex domain. Given z,y € Q distinct let L, be the real line
containing them and let a,b € QU {oo} be the endpoints of QN L, ,, with the ordering
a,x,y,b. Then define the Hilbert pseudo-distance between x,y to be

1 e —bllly—al
H =~ log MOy — all
o(7.4) = g log 1 5 e —al

where we define

e —ooll _ Jly=ocol _,

ly = ool flz— ool

In the case when € does not contain any affine real lines, we see that Hq(z,y) > 0 for
all z,y € Q distinct. This motivates the following definition.

Definition 17.1. A convex domain  C R? is called R-properly convex if Q) does not
contain any affine real lines.
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Theorem 17.2.

(1) IfQ C R? is a R-properly convex domain, then (Q, Hq) is a proper geodesic metric
space. For x,y € Q distinct, there exists a geodesic line v : R — Q whose image is
Ly, NAQ.

(2) IfQ C R? is a convex domain and V C R is an affine subspace intersecting 2, then

Ho(z,y) = Hoav (7, y)

forallz,y e QNV.
(8) If @ € RY is a conver domain and A € AF(R?) is an affine automorphism of R?,
then

Hg(z,y) = Haq(Az, Ay)
for all x,y € Q.

Properties (2) and (3) in Theorem 17.2 are immediate from the definition and a proof
of Property (1) can be found in [12, Section 28].

We also can define an infinitesimal Hilbert pseudo-metric. Given z € €2 and a non-zero
v e R let a,b € AU {oo} be the endpoints of QN (z + R -v). Then define the Hilbert
norm of v at x to be

ol (1 |
ha(w;v) = 120 .
o(w:0) =" o —a] "o 1l

Given a piecewise C! curve o : [0,1] — Q we define the Hilbert length of o to be

1
lualo) = [ ha(o(t);o’(t))dt.
/

It is fairly straightforward to establish the following.

Proposition 17.3. If Q C R? is a properly conver domain, then
Ho(z,y) = inf {{y.a(0) 1 0 : [0,1] = Q is piecewise C',o(0) = z,0(1) =y} .
We will also use the following result of Karlsson and Noskov.

Theorem 17.4 (Karlsson-Noskov [37]). Suppose Q) C R? is a R-properly conver domain.
If (2, Hq) is Gromov hyperbolic, then

(1) Q is strictly convez (that is, OQ does not contain any line segments of positive length,),
2) 0 is a C' hypersurface.
Y
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Next we consider the space of R-properly convex domains.

Definition 17.5.

(1) Let Y, denote the space of R-properly convex domains in R? endowed with the local
Hausdorff topology.
(2) Let Y0 ={(Q2z): Q€ Y4,z €Q} C Yy xR

As in the complex case, the group Aff (]Rd) acts co-compactly on Y.

Theorem 17.6 (Benzécri [6]). The group AfF(R?) acts co-compactly on'Y 4, that is, there
exists a compact set K C Yq0 such that Aﬁ(Rd) K =Yqp.

Remark 17.7. To be precise, Benzécri established a real projective variant of the above
result which easily implies Theorem 17.6. A direct proof can also be found in [27].

Using the definition of the Hilbert distance it is not difficult to observe that the Hilbert
distance is continuous on Y.

Observation 17.8. Suppose 0, C R? is a sequence of convex domains converging to a
conver domain € in the local Hausdorff topology. Then

HQ = lim HQn

n—oo

locally uniformly on Q x €.
As a consequence of Theorem 17.4 and Observation 17.8 we have the following.

Corollary 17.9. Suppose 2 C R? is a R-properly convexr domain and (Q, Hg) is Gromov
hyperbolic. Then

(1) if D € Aff(RY) - QN Yy, then (D, Hp) is Gromouv hyperbolic,
(2) every domain in AfF(R?) - QN Yy is strictly convez,
(8) every domain in AF(RY)- QN Yy has C* boundary.

Recently, Benoist completely characterized the convex domains which have Gromov
hyperbolic Hilbert metric in terms of the derivatives of local defining functions. To state
his result we need some definitions.

Definition 17.10. Suppose & C R? is an open set and F : U — R is a C* function. Then
for z,z + h € U define

Dy(h) := F(x + h) — F(z) — F'(z) - h.



80 A. Zimmer / Advances in Mathematics 402 (2022) 10833/

Then F is said to be quasi-symmetric if there exists H > 1 so that
D, (h) < HDy(—h)
whenever z,x + h,z — h € U.

Definition 17.11. Suppose 2 C R? is a bounded convex domain. Then € is said to have
quasi-symmetric boundary if its boundary is C! and is everywhere locally the graph of
a quasi-symmetric function.

Theorem 17.12 (Benoist [7, Theorem 1.4]). Suppose Q@ C R% is a bounded convex domain.
Then the following are equivalent:

(1) (R, Hg) is Gromov hyperbolic,
(2) Q has quasi-symmetric boundary.

18. Proof of Corollary 1.11

In this section we prove Corollary 1.11. For the rest of the section suppose that
Q c €% is a bounded convex domain and (Q, Hg) is Gromov hyperbolic. Suppose for a
contradiction that (£2, Kq) is not Gromov hyperbolic.

Since (2, Kq) is not Gromov hyperbolic, Theorem 1.5 implies that there exist affine
maps A, € Aff(Cd) such that 4,2 — Q. in X4z and 99, has non-simple boundary.
Then by Proposition 2.13, 924 contains an affine disk. Then without loss of generality
we can assume that 0 € Q. and eq + D -e5 C 9. Pick A € C such that —Aey € 90
and ||0 — Aez|| = dq._(0; e2). By rotating Q. we can assume, in addition, that A € R-o.

Let V = Spang{e1,es} and C =V N Q.

Claim. C is a R-properly convexr domain in V and (C, H¢) is not Gromouv hyperbolic.
Proof of Claim. By construction e; + [—1,1] - e3 C dC which implies by convexity that
(e1 +R-e2)NC = 0. (24)

Further Aes € 0C. We claim that C' is R-properly convex. Suppose that a+R v C C for
some a,v € Spang{e;,ez}. Since 0 € C, the real analogue of Observation 2.14 implies
that R-v C C. If v = vie; + vaeq, then Equation (24) implies that v; = 0. Then,
since Aes € 9C, we must have v = 0. So v = 0 and hence C is R-properly convex.
Finally, since e; + [—1,1] - e C OC, Theorem 17.4 implies that (C, Hc) is not Gromov
hyperbolic. <«

For a convex domain D ¢ C% and z, Y,z € D define the Gromov product associated
to Hp by
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1
(xly) P = 5 (Hp(z,2) + Hp(y, 2) — Hp(z,y)).-
Since (2, Hq) is Gromov hyperbolic, there exists 6 > 0 such that
(x]2)0* > min {(z]y) >, (y]2)0 "} — 6
for every x,y, z,w € . So by Theorem 17.2 part (3) and Observation 17.8
(]2) > > min {(z|y) 2>, (ylz)g P>} — 0

for every x,y,z,w € Qo (notice that Q. may not be R-properly convex and so Hq__
may not be a distance on Q., but this doesn’t matter). So by Theorem 17.2 part (2)

(]2)e® = min {(zy)u, (yl2)u )

for every z,y,z,w € C. But then (C, H¢) is Gromov hyperbolic which contradicts the
claim.

19. Tube domains

In this section we establish Corollary 1.13 by proving Propositions 19.1 and 19.5
below.

Proposition 19.1. Suppose d > 2, C C R? is a R-properly convex domain, and Q) =
C+iR?% If (Q, Kq) is Gromov hyperbolic, then (C, H¢) is Gromov hyperbolic and C' is
unbounded.

Before proving the proposition we establish two lemmas.
Lemma 19.2. Suppose C' C R? is a R-properly convex domain and Q = C' + iR%. Then
Kq(er,e2) < He(er,e2) < 2Kg(e,c2)
forall c1,c0 € C.

Remark 19.3. When C is bounded, Pflug and Zwonek [47, Proposition 15] proved that
Kq(c1,e2) < He(ey,eq) for ¢p,e0 € C.

Proof. Using Proposition 3.4 and Observation 17.8 it suffices to prove the lemma in the
case when C is bounded. Then by a result of Pflug and Zwonek [47, Proposition 15] we
have

Kq(er,c2) < He(er,co)

for all ¢1,co € C.
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For ¢ € C and v € R? non-zero define
dc(c;v) =min{|| —c]| : £ € (c+R-w)NOC}

and define d¢(c; 0) = oo. Then, by definition,

Il ol
_ P~ ) <
2oo(cv) = el S 5oa

(25)
for all ¢ € C and v € R?. Then let P : RY +iR? — R? be the projection P(z + iy) = x.
Notice that

da(z;v) < dc(P(2); P(v)) (26)

for all z € Q and non-zero v € C%.
Fix ¢1,co € C and let o : [0,1] — Q be a piecewise C! curve with o(0) = ¢; and
o(1) = co. Then by Equation (25), Equation (26), and Lemma 2.9

P’ ()]l

o) Pl (@) "

1
lyc(Poo)= hC(Po(t);Pa’(t))dt</6C(P|(|
0

- O\H

Il [
< O/mdt < 20/1«2(0(75),0 (t))dt = 2lq().

So
He(c1, ) < 20(0).
Then taking the infimum over all such curves we see that
He(ep,e0) < 2Kg(ep,e). O

Lemma 19.4. Suppose C C R? is a bounded convex domain and 2 = C +iR%. If ¢ € C,
then there exists A = A(cg) > 1 such that

1 . .

a ly1 — vall < Ka(co +iy1,co +iyz) < Allyr — vl
for all y1,y € R,
Proof. Since C is bounded, there exists A; > 0 such that

do(z;v) < Ay
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for all z € C and v € C? non-zero. Since € is invariant under translations of the form
z— z+ 1y with y € R, this implies that

do(zv) < Ay

for all z € Q and v € C? non-zero. Then by Lemma 2.9

Ko(z1,22) > |21 — 22|

=24,
for all z1, zo € Q.

Next, since €2 is invariant under translations of the form z — z 4+ 4y with y € RY, we
see that

da(co +1iy) = dalco)

for every y € R%. Now fix y1,7» € R? and define o : [0,1] — Q by o(t) = (1 —t)(co +
1y1) + t(co + iy2). Then Lemma 2.9 implies that

1 1
. . ||y2 - y1|| Hy2 y1H
K, k ))dt < dt =
alco + iy1, co + iy2) / o (1)) 30 (co) 59(60)

0

So the Lemma is true with
A= max{24;,00(co)"t}. O

Proof of Proposition 19.1. By Lemma 19.2, the inclusion map (C, Ho) — (2, Kgq) is a
quasi-isometric embedding. Then (C, H¢) is Gromov hyperbolic, see [11, Chapter IIT.H,
Theorem 1.9].

If C is bounded and ¢y € C, then Lemma 19.4 implies that the map

€ (RY, dguc) — co + iy € (2, Kq)

is an quasi-isometric embedding. But since (2, Kq) is Gromov hyperbolic and d > 2,
this is impossible. So C must be unbounded. 0O

Proposition 19.5. Suppose C C R? is a R-properly convex domain and Q = C +iR%. If
(C,He) is Gromov hyperbolic and C is unbounded, then (2, Kq) is Gromov hyperbolic.

We will need one lemma before proving the proposition.
Lemma 19.6. Suppose C' C R? is a R-properly conver domain and ) = C' + iRe. Then

AfE(CT) - QN X, = AF(CY) - (AH(Rd) SCNYqti Rd).
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In particular, the following are equivalent

(1) every domain in AfF(R?)-C MYy is strictly convex
(2) every domain in AF(C?) - QN Xy has simple boundary.

Proof. Since every map A € Aff(R%) extends to a map in Aff(C?%) we see that
Aff(CY) - (Aﬁ’(Rd) CNYy +iRd) C AF(CY) . QNX,.

For the other inclusion, suppose that A, € Aff(C%) and A,Q converges to some D
in Xy4. Fix some zy € D. Then, after passing to a subsequence, we can suppose that
20 € A for all n. Let 2, = A7 'z0. Then A, (Q, 2,) = (D, 20) in Xq,0.

Suppose z, = z, + iy, € R?+iR%. Then let T}, € Aﬁ(Cd) denote the translation
T.(z) = z — iy,. Next, by Theorem 17.6, we can pass to a subsequence and find B,, €
Aff(R?) such that B, (C,z,) converges to some (Cao, Zoo) in Y 40. Then extending each
B,, to an affine automorphism of C¢,

BT (2 2n) = (Coo +iR% 20)
in X4 . But then, by Proposition 3.7, there exists some A € Aff(C?) such that
D = A(Cs +iR%) € AFF(CY) - (Wm\ydﬂ'w).
Thus
ARG 00 Xa ¢ AR(CY) - (R C 1 ¥R ).

Finally, the in particular part follows from the main assertion and Proposi-
tion 2.13. O

Proof of Proposition 19.5. By Corollary 17.9, every domain in APf(Rd) - CNY g4 is strictly
convex. So by Lemma 19.6 every domain in Aff(C?) - N X, has simple boundary. Since
C' is unbounded, AC(Q) is not totally real and hence (Q, Kq) is Gromov hyperbolic by
Theorem 9.1. O

20. The squeezing function

In this section we construct Example 1.9 by showing that an example of Fornaess
and Wold satisfies all the desired conditions. Their example was constructed to be a
counterexample to a natural question concerning the squeezing function.

Given a domain  c C? biholomorphic to a bounded domain, let sq : Q — (0,1]
denote the squeezing function on (Q, that is
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sq(z) = sup{r : there exists a holomorphic embedding
f:Q—= By with f(2) =0and rBy C f(Q)}.

The quantity sq(z) can be seen as a measure of how close the complex geometry of {2 at
z is to the complex geometry of the unit ball.

For strongly pseudoconvex domains, Diederich, Fornaess, and Wold [22, Theorem 1.1]
and Deng, Guan, and Zhang [24, Theorem 1.1] proved the following.

Theorem 20.1 (/22,2/]). If @ C C% is a bounded strongly pseudoconvex domain with C?
boundary, then lim,_, 90 sq(z) = 1.

Based on the above theorem, it seems natural to ask if the converse holds.

Question. (Fornsess and Wold [30, Question 4.2]) Suppose 2 C C? is a bounded pseudo-
convex domain with C* boundary for some k > 2. If lim, 50 sq(z) = 1, is Q strongly
pseudoconvex?

In the convex case the answer is yes when k > 2 [57] and no when k = 2.

Example 20.2 (Fornass and Wold [30]). For any d > 2 there exists a bounded con-
vex domain Q ¢ C?% with C? boundary such that Q is not strongly pseudoconvex and
limzﬁag SQ(Z) =1.

The next theorem shows that the domains in Example 20.2 satisfy the claims in
Example 1.9.

Theorem 20.3. Suppose d > 2, Q C C? is a bounded convex domain, 0Q is C', and
lim, 50 sa(2) = 1. Then a subelliptic estimate of order € holds for every e € (0,1/2).

The theorem will require several lemmas.

Lemma 20.4. Suppose 2 C C? is a bounded conver domain and lim,_ o0 sa(z) = 1. If
zn € Q is a sequence with

lim dgyc(zn,092) =0
n— oo

and A, € AfF(C?) are affine maps such that A,(Q, z,) converges to (U,u) in Xq, then
U is biholomorphic to B.

Proof. The function

(D, z) € Xq0 — sp(2)
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is upper semi-continuous (see for instance [56, Proposition 7.1]). So

1> sy(u) > lim sy, o(Anzn) = lim sq(z,) = 1.

n—oo n—oo
Hence sy (u) = 1. Then by [23, Theorem 2.1], U is biholomorphic to Bg. O
The proof of the next lemma uses the following result.

Proposition 20.5 (/57, Proposition 2.1]). Suppose Q2 C C? is a conver domain with

(1) N (eq + Spanc{es, ..., eq}) =0,
(2) QNC-e; ={(2,0,...,0) € C*:Re(z) < 1}, and
(3) Q is biholomorphic to Bg.

If v € Spanc{ea, ..., eq}, then
1 .1 .
3= tlggo n log 0 (—e’er;v).
Remark 20.6. The theorem says that €2 asymptotically “looks” like the domain
d
(21, 2a) 1 Re(z1) < 1= |z
j=2

which is biholomorphic to Bg.

Lemma 20.7. Suppose Q C C? is a bounded convex domain, 9 is C1, and lim,_, 50 sa(2)

= 1. Then Q is (2 + a)-convez for every a > 0.

Proof. Without loss of generality we may assume 0 € . Then, as in Section 6, for

z € 2\ {0} let mq(z) € 90 be defined by

{ma(2)} =00 NRsq 2.

Also, for z € Q\ {0} let rq(z) = ||z — ma(2)|| and let To(2) denote the set of unit vectors

v € C* where

(ra(2) + Cv) NQ = 0.

Since Q is convex and 9 is C!, the set To(z) coincides with a complex hyperplane
intersected with the unit sphere. Also, if z € Q\ {0}, then Q contains the convex hull of

B4(0;00(0)) and mq(z). Hence
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maxyeoq ||wl|

|ma(2)ll
ro(z) < 22050 (2) < 5 (0]

50(0) da(2) (27)

for all z € 2\ {0}.
Fix a > 0. We claim that € is (2 + a)-convex. Using Equation (27) and the proof of
Lemma 6.7, it is enough to show that there exists C' > 0 such that

ba(z;v) < Cro(z)Y/ 2+

for every z € Q\ {0} and v € T(z). Suppose not, then there are sequences z,, € Q\ {0}
and vy, € Tq(zm,) such that

5Q(Zm; Um) = Cmrﬂ(zm)l/(2+a)

and C,, > m.
Since €2 is bounded, the quantity

M :=sup {69(2;1}) z€eQue (Cd\{O}}
is finite. Then, since C}, > m, we must have

lim rq(z,) =0. (28)

m—0o0
Since Q,, is convex, the function fp, : [0,1] — R defined by

To(zm) — tzm, || CT
) = Imaen) =tz

00 (th; Um)

is continuous. Let t,, € [0,1] be a minimum point of f,,. Notice that f,,(1) = <
and

£.(0) = ||7m(zm)||1/(2+a) - 59(0)1/(2-&-@
mA 30 (05 vpm) - M '
So for m sufficiently large, f,,(1) < f,,(0) and hence t,, € (0, 1]. So after possibly passing
to a tail of the sequence, replacing z,, with t,,2,,, and increasing C,,, we can further
assume that each z,, has the following extremal property:

5Q(tzm; Um) S CmTQ(th)l/(QJra) (29)

for all ¢ € (0, 1]. Finally, by replacing v,, by some e’

that

™, where 6, € R, we can assume

Zm + Cmrg(zm)l/(2+a)vm € 0N.
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Notice that vy, is still contained in T (2, ).
Let

U, =T (2m) € O
and
b, 1= 2m + C’mrg(zm)l/(1+a)vm € 09.
Then let B,, € Aff(C?) be an affine map such that By,(zm) = 0, Bm(am) = €1, and
Bm(bm) = €3.
For r > 0 and 6 € (0,7/2) let
Cr,0)={z+iyeC:—r<z<l,ly <tan(d)(1—z)}.

Then C(r,0) C C is a truncated cone based at 1 in C. Since 9 is C! and z,, converges
towards the boundary, there exist sequences r,, — oo and 6,, — 7/2 such that

C(rm,Om) - €1 C By, (30)

In particular, there exists some r € (0,1) such that

rD-e; C B0
for all m. Further, since v,, € To(zm), we see that

BN (e +C-e) =0.

By construction es = By, (by,) € 0B, Q and since dq(2m; vm) = ||bm — 2m|| we see that

D ey C B2
Thus

B,,Q N Spanc{er,ea} € Kao(r).

So by Proposition 4.6, we can assume that B,,Q € K4(r). Then, since K4(r) is compact,
we can pass to a subsequence so that By, (€, z,,) — (D,0) in Xg0.

Lemma 20.4 implies that D is biholomorphic to B;. We will use Proposition 20.5 to
derive a contradiction. First, since D € K4(r) we have

DN (e1 + Spanc{es,...,eq}) = 0.

Next, Equation (30) implies that
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{(2,0,...,0) € C%: Re(z) < 1} C D.

Then, since e; € 9D and D is convex, we must have

{(2,0,...,0) e C%: Re(z) <1} =D NC -e1.
Finally we obtain a contradiction by verifying the following claim.
Claim. 6p(—tey;es) < (1+6)Y T for every t > 0.
Proof of Claim. Fix ¢ > 0. Then for m sufficiently large

B, M (—ter) € (0, 2,)
and
ra(By! (—ter)) = (1 +t)ra(zm)-
Then by Equation (29)
ba(Brt(—ter);vm) < Cp(1 4 1)Y TV pg (2,,)/ 2+,

m

Then

1

o (—ter); 1/(24a)
C7nT‘Q(zm)1/(2+a) 5Q(B ( tel), ’Um) < (1 + t) )

m

0p,o(—ter;ez) =
So
6D(—t€1; 62) = lim 6BmQ(_t€1§ 62) < (1 + t)l/(2+a).
m—roo
This proves the claim. <«

Now we have a contradiction: Proposition 20.5 implies that
1 o1 '
- = tlglolo Elogép(fe er;ez),

while the claim implies that this limit is bounded above by 2_%(1 < % O

Lemma 20.8. Suppose Q) C C? is a bounded convexr domain and lim,_, 50 sa(z) = 1. Then
(Q, Kq) is Gromov hyperbolic.
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Proof. Using Theorem 1.5 we need to show that every domain in
AfF(CY - QNXy

has simple boundary.
If

D e Aff(CY) - QN Xy — AfF(CY) - Q,

then D is biholomorphic to By by Lemma 20.4. So, in this case, (D, Kp) is Gromov
hyperbolic and hence D has simple boundary by Theorem 1.5. So it suffices to show that
Q has simple boundary. However, if {2 has non-simple boundary, then there exists some

D' e Aff(C?) - QN Xy —Aff(CY) - Q,

with non-simple boundary, see for instance [32, Proposition A.9], and we just showed
that this is impossible. O

Proof of Theorem 20.3. Since ({2, Kq) is Gromov hyperbolic, Theorem 16.1 says that a
subelliptic estimate of order € holds for all

v
 (Q)m ()

€<
Further m,(Q2) = 2 by Lemma 20.7 and o, (2) = 1 by Proposition 16.2. 0O
21. Miscellaneous examples
21.1. The failure of the converse to Theorem 1.1
In Example 7.3 we constructed strongly convex domains 21, ..., 4 such that
Q:=nJ_,Q;

is non-empty and (€2, dg) is not Gromov hyperbolic. However, each (€;,dq;) is Gromov
hyperbolic by Corollary 1.7 and so (2 satisfies a subelliptic estimate by Theorem 1.3.

21.2. Ezample 1.8
In [55, Theorem 1.8] we proved that the Kobayashi metric on the convex cone
C = {(20,2) € C xC%:Tm(z) > ||2||}

is Gromov hyperbolic. Then by Theorem 15.1 a subelliptic estimate holds on
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Q= Bd+1(0; 7’) NnC
for any r > 0.
21.3. Fxample 1.10

To construct Example 1.10 we need to recall some facts about convex divisible domains
in P(RY).

Definition 21.1.

(1) A domain Q ¢ P(R?) is properly convez if there exists an affine chart of P(R?)
which contains 2 as a bounded convex domain.

(2) Two domains Qi,Q C P(R?) are projectively equivalent if there exists some g €
PGL4(R) such that g = Q.

(3) The projective automorphism group of a domain Q c P(R?) is

Autp () = {g € PGL4(R) : g2 = Q}.

(4) A properly convex domain Q C P(R?) is called divisible if there exists a discrete
group I' < Autp () which acts properly discontinuously, freely, and co-compactly
on §).

Given a properly convex domain 2 C P(IRd)7 one can define the Hilbert distance on
Q by fixing an affine chart that contains Q2 as a bounded convex domain and taking the
Hilbert metric there. Using the projective invariance of the cross ratio, one can show
that this definition does not depend on the choice of affine chart.

The fundamental example of a properly convex divisible domain is the unit ball

d—1
B:{[I:xl:.'wxd1]€P(Rd):2x?<l}.

=1

Then (B, Hg) is the Klein-Beltrami model of real hyperbolic (d — 1)-space and any
real hyperbolic manifold can be identified with a quotient I'\ B for some discrete group
I’ < Autp(B) which acts properly discontinuously on B. Since compact real hyperbolic
manifolds exist in any dimension, this implies that B is divisible.

It turns out that B is not the only example of a properly convex divisible domain.

Theorem 21.2 (Benoist [8, Corollary 2.10], Kapovich [35]). For any d > 3 there exists a
properly convex divisible domain € C ]P’(Rd) such that Q is not projectively equivalent to
B and (2, Hg) is Gromov hyperbolic.
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Benoist [8] proved a number of results about these domains. To state his results we
need one definition.

Definition 21.3. Suppose Q C R? is a bounded convex domain with C! boundary. For
x € 09, let ng(z) be the inward pointing unit normal vector at x. Then the curvature
of 082 is concentrated on a set of measure zero if the pull back of the Lebesgue measure
on S under ngq is singular to the volume induced by some (hence any) Riemannian
metric on 0f).

Theorem 21.4 (Benoist [8, Theorem 1.1, Theorem 1.2, Theorem 1.3]). Suppose  C
]P’(]Rd) is a properly convex divisible domain with (2, Hg) Gromov hyperbolic. If Q is not
projectively equivalent to B, then

(1) 99 is CY* for some o > 0 but not C+1,
(2) Q is strictly convez, and
(3) the curvature of O is concentrated on a set of measure zero

Then the existence of Example 1.10 follows from the previous two theorems.

References

[1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. Math.
(2) 125 (3) (1987) 495-536.

[2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, in: Ecole d’été de Probabilités de
Saint-Flour XVIII—1988, in: Lecture Notes in Math., vol. 1427, Springer, Berlin, 1990, pp. 1-112.

[3] M.T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differ.
Geom. 18 (4) (1984) 701-721, 1983.

[4] M.T. Anderson, R. Schoen, Positive harmonic functions on complete manifolds of negative curvature,
Ann. Math. (2) 121 (3) (1985) 429 461.

[5] T.J. Barth, Convex domains and Kobayashi hyperbolicity, Proc. Am. Math. Soc. 79 (4) (1980)
556-558.

[6] J.-P. Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. Fr. 88
(1960) 229-332.

[7] Y. Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Etudes
Sci. 97 (2003) 181-237.

[8] Y. Benoist, Convexes divisibles. I, in: Algebraic Groups and Arithmetic, Tata Inst. Fund. Res.,
Mumbai, 2004, pp. 339-374.

[9] A. Bernig, Hilbert geometry of polytopes, Arch. Math. (Basel) 92 (4) (2009) 314-324.

[10] F. Bracci, H. Gaussier, A. Zimmer, Homeomorphic extension of quasi-isometries for convex domains
in C? and iteration theory, Math. Ann. 379 (1-2) (2021) 691-718.

[11] M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag,
Berlin, 1999.

[12] H. Busemann, P.J. Kelly, Projective Geometry and Projective Metrics, Academic Press Inc., New
York, N.Y, 1953.

[13] E. Bedford, S.I. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb.
185 (5) (1994) 3-26.

[14] H.J. Bremermann, Holomorphic functionals and complex convexity in Banach spaces, Pac. J. Math.
7 (1957) 811-831.

[15] H.P. Boas, E.J. Straube, On equality of line type and variety type of real hypersurfaces in C", J.
Geom. Anal. 2 (2) (1992) 95-98.




A. Zimmer / Advances in Mathematics 402 (2022) 10833/ 93

[16] H.P. Boas, E.J. Straube, Global regularity of the d-Neumann problem: a survey of the L2-Sobolev
theory, in: Several Complex Variables, Berkeley, CA, 1995-1996, in: Math. Sci. Res. Inst. Publ.,
vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 79-111.

[17] D. Catlin, Necessary conditions for subellipticity of the -Neumann problem, Ann. Math. (2) 117 (1)
(1983) 147-171.

[18] D. Catlin, Subelliptic estimates for the d-Neumann problem on pseudoconvex domains, Ann. Math.
(2) 126 (1) (1987) 131-191.

[19] D.W. Catlin, J.P. D’Angelo, Subelliptic estimates, in: Complex Analysis, in: Trends Math.,
Birkhauser/Springer, Basel AG, Basel, 2010, pp. 75-94.

[20] S.-C. Chen, M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP
Studies in Advanced Mathematics, vol. 19, American Mathematical Society/International Press,
Providence, RI/Boston, MA, 2001.

[21] S.Y. Cheng, S. Tung Yau, On the existence of a complete Kéhler metric on noncompact complex
manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math. 33 (4) (1980)
507-544.

[22] K. Diederich, J.E. Fornaess, E.F. Wold, Exposing points on the boundary of a strictly pseudoconvex
or a locally convexifiable domain of finite 1-type, J. Geom. Anal. 24 (4) (2014) 2124-2134.

[23] F. Deng, Q. Guan, L. Zhang, Some properties of squeezing functions on bounded domains, Pac. J.
Math. 257 (2) (2012) 319-341.

[24] F. Deng, Q. Guan, L. Zhang, Properties of squeezing functions and global transformations of
bounded domains, Trans. Am. Math. Soc. 368 (4) (2016) 2679-2696.

[25] T. Das, D. Simmons, M. Urbariski, Geometry and Dynamics in Gromov Hyperbolic Metric Spaces,
Mathematical Surveys and Monographs, vol. 218, American Mathematical Society, Providence, RI,
2017, With an emphasis on non-proper settings.

[26] S. Frankel, Affine approach to complex geometry, in: Recent Developments in Geometry, Los Ange-
les, CA, 1987, in: Contemp. Math., vol. 101, Amer. Math. Soc., Providence, RI, 1989, pp. 263-286.

[27] S. Frankel, Applications of affine geometry to geometric function theory in several complex variables.
I. Convergent rescalings and intrinsic quasi-isometric structure, in: Several Complex Variables and
Complex Geometry, Part 2, Santa Cruz, CA, 1989, in: Proc. Sympos. Pure Math., vol. 52, Amer.
Math. Soc., Providence, RI, 1991, pp. 183—208.

[28] J.E. Forneess, N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke
Math. J. 58 (3) (1989) 633—655.

[29] S. Fu, E.J. Straube, Compactness of the d-Neumann problem on convex domains, J. Funct. Anal.
159 (2) (1998) 629-641.

[30] J.E. Forneess, E.F. Wold, A non-strictly pseudoconvex domain for which the squeezing function
tends to 1 towards the boundary, Pac. J. Math. 297 (1) (2018) 79-86.

[31] I. Graham, Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex
domains, in: Several Complex Variables and Complex Geometry, Part 2, Santa Cruz, CA, 1989, in:
Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 233-238.

[32] H. Gaussier, A. Zimmer, The space of convex domains in complex Euclidean space, J. Geom. Anal.
30 (2) (2020) 1312-1358.

[33] P.S. Harrington, A quantitative analysis of Oka’s lemma, Math. Z. 256 (1) (2007) 113-138.

[34] G.M. Henkin, A. Tordan, J.J. Kohn, Estimations sous-elliptiques pour le probléme d-Neumann dans
un domaine strictement pseudoconvexe a frontiére lisse par morceaux, C. R. Acad. Sci. Paris Sér. I
Math. 323 (1) (1996) 17-22.

[35] M. Kapovich, Convex projective structures on Gromov-Thurston manifolds, Geom. Topol. 11 (2007)
1777-1830.

[36] I. Kapovich, N. Benakli, Boundaries of hyperbolic groups, in: Combinatorial and Geometric Group
Theory, New York, 2000/Hoboken, NJ, 2001, in: Contemp. Math., vol. 296, Amer. Math. Soc.,
Providence, RI, 2002, pp. 39-93.

[37] A. Karlsson, G.A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. (2)
48 (1-2) (2002) 73-89.

[38] J.D. McNeal, Convex domains of finite type, J. Funct. Anal. 108 (2) (1992) 361-373.

[39] J.D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1) (1994)
108-139.

[40] J.D. McNeal, Uniform subelliptic estimates on scaled convex domains of finite type, Proc. Am.
Math. Soc. 130 (1) (2002) 39-47.

[41] P.R. Mercer, Complex geodesics and iterates of holomorphic maps on convex domains in C", Trans.
Am. Math. Soc. 338 (1) (1993) 201-211.



94 A. Zimmer / Advances in Mathematics 402 (2022) 10833/

[42] E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc. 71 (1951) 152-182.

[43] J. Michel, M.-C. Shaw, Subelliptic estimates for the 9-Neumann operator on piecewise smooth
strictly pseudoconvex domains, Duke Math. J. 93 (1) (1998) 115-128.

[44] N. Mok, S.-T. Yau, Completeness of the Kiahler-Einstein metric on bounded domains and the
characterization of domains of holomorphy by curvature conditions, in: The Mathematical Heritage
of Henri Poincaré, Part 1, Bloomington, Ind., 1980, in: Proc. Sympos. Pure Math., vol. 39, Amer.
Math. Soc., Providence, RI, 1983, pp. 41-59.

[45] N. Nikolov, P. Pflug, P.J. Thomas, On different extremal bases for C-convex domains, Proc. Am.
Math. Soc. 141 (9) (2013) 3223-3230.

[46] G. Peschke, The theory of ends, Nieuw Arch. Wiskd. (4) 8 (1) (1990) 1-12.

[47] P. Pflug, W. Zwonek, Regularity of complex geodesics and (non-) Gromov hyperbolicity of convex
tube domains, Forum Math. 30 (1) (2018) 159-170.

[48] H.L. Royden, Remarks on the Kobayashi metric, in: Several Complex Variables, II, Proc. Internat.
Conf., Univ. Maryland, College Park, Md., 1970, in: Lecture Notes in Math., vol. 185, Springer,
Berlin, 1971, pp. 125-137.

[49] E.J. Straube, Plurisubharmonic functions and subellipticity of the d-Neumann problem on non-
smooth domains, Math. Res. Lett. 4 (4) (1997) 459-467.

[50] D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differ. Geom.
18 (4) (1984) 723-732, 1983.

[61] S. Venturini, Pseudodistances and pseudometrics on real and complex manifolds, Ann. Mat. Pura
Appl. (4) 154 (1989) 385-402.

[52] A.M. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type,
Math. Ann. 365 (3—4) (2016) 1425-1498.

[63] A. Zimmer, Gromov hyperbolicity of bounded convex domains, in: L. Blanc-Centi (Ed.), Metrical
and Dynamical Aspects in Complex Analysis, in: Lecture Notes in Mathematics, vol. 2195, Springer
International Publishing, 2017.

[64] A.M. Zimmer, Characterizing domains by the limit set of their automorphism group, Adv. Math.
308 (2017) 438-482.

[65] A.M. Zimmer, Gromov hyperbolicity, the Kobayashi metric, and C-convex sets, Trans. Am. Math.
Soc. 369 (12) (2017) 8437-8456.

[66] A. Zimmer, A gap theorem for the complex geometry of convex domains, Trans. Am. Math. Soc.
370 (10) (2018) 7489-75009.

[67] A. Zimmer, Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov
exponents, Math. Ann. 374 (3-4) (2019) 1811-1844.



	Subelliptic estimates from Gromov hyperbolicity
	1 Introduction
	1.1 Outline of paper


	Part 1 Preliminaries
	Part 2 Necessary and sufficient conditions for Gromov hyperbolicity
	Part 3 Subelliptic estimates
	Part 4 Examples
	References


