PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 149, Number 4, April 2021, Pages 1641–1646 https://doi.org/10.1090/proc/15335 Article electronically published on February 9, 2021

A LOWER BOUND FOR THE KÄHLER-EINSTEIN DISTANCE FROM THE DIEDERICH-FORNÆSS INDEX

ANDREW ZIMMER

(Communicated by Filippo Bracci)

ABSTRACT. In this paper we establish a lower bound for the distance induced by the Kähler-Einstein metric on pseudoconvex domains with positive hyperconvexity index (e.g. positive Diederich-Fornæss index). A key step is proving an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature bounded from below.

1. Introduction

Every bounded pseudoconvex domain $\Omega \subset \mathbb{C}^m$ has a unique complete Kähler-Einstein metric, denoted by g_{KE} , with Ricci curvature -(2m-1). This was constructed by Cheng and Yau [4] when Ω has \mathcal{C}^2 boundary and by Mok and Yau [9] in general.

Let dist_{KE} be the distance induced by g_{KE} . Since g_{KE} is complete, if we fix $z_0 \in \Omega$, then

(1.1)
$$\lim_{z \to \partial \Omega} \operatorname{dist}_{KE}(z, z_0) = \infty.$$

In this note we consider quantitative versions of Equation (1.1). In particular, it is natural to ask for lower bounds on $\operatorname{dist}_{KE}(z,z_0)$ in terms of the Euclidean distance to the boundary

$$\delta_{\Omega}(z) := \min\{\|w - z\| : w \in \partial\Omega\}.$$

Mok and Yau proved for every $z_0 \in \Omega$ there exist $C_1, C_2 > 0$ such that

$$\operatorname{dist}_{KE}(z, z_0) \ge -C_1 + C_2 \log \log \frac{1}{\delta_{\Omega}(z)}$$

for all $z \in \Omega$, see [9, pg. 47]. Further, by considering the case of a punctured disk, this lower bound is the best possible for general pseudoconvex domains.

However, for certain classes of bounded pseudoconvex domains, there are much better lower bounds. For instance, if Ω is convex, then for any $z_0 \in \Omega$ there exist $C_1, C_2 > 0$ such that

(1.2)
$$\operatorname{dist}_{KE}(z, z_0) \ge -C_1 + C_2 \log \frac{1}{\delta_{\Omega}(z)}$$

©2021 American Mathematical Society

Received by the editors April 14, 2020, and, in revised form, August 9, 2020, and September 5, 2020.

²⁰²⁰ Mathematics Subject Classification. Primary 32Q20; Secondary 32U10, 32T35, 53C20.

This material is based upon work supported by the National Science Foundation under grant DMS-1904099.

for all $z \in \Omega$, see [7]. In this note, we show that Estimate (1.2) holds for a large class of domains - those with positive hyperconvexity index.

First we recall the well studied Diederich-Fornæss index. Suppose $\Omega \subset \mathbb{C}^m$ is a bounded pseudoconvex domain. A number $\tau \in (0,1)$ is a called a *Diederich-Fornæss exponent of* Ω if there exist C>1 and a continuous plurisubharmonic function $\psi:\Omega\to (-\infty,0)$ such that

$$\frac{1}{C}\delta_{\Omega}(z)^{\tau} \le -\psi(z) \le C\delta_{\Omega}(z)^{\tau}$$

for all $z \in \Omega$. Then the Diederich-Fornæss index of Ω is defined to be

 $\eta(\Omega) := \sup\{\tau : \tau \text{ is a Diederich-Fornæss exponent of } \Omega\}.$

It is known that $\eta(\Omega) > 0$ for many domains. For instance, Diederich-Fornæss [5] proved that $\eta(\Omega) > 0$ when $\partial\Omega$ is \mathcal{C}^2 . Later, Harrington [8] generalized this result and proved that $\eta(\Omega) > 0$ when $\partial\Omega$ is Lipschitz.

The hyperconvexity index, introduced by Chen [3], is a similar quantity associated to a bounded pseudoconvex domain $\Omega \subset \mathbb{C}^m$. In particular, a number $\tau \in (0,1)$ is a called a hyperconvexity exponent of Ω if there exist C > 1 and a continuous plurisubharmonic function $\psi : \Omega \to (-\infty, 0)$ such that

$$-\psi(z) \le C\delta_{\Omega}(z)^{\tau}$$

for all $z \in \Omega$. Then the hyperconvexity index of Ω is defined to be

 $\alpha(\Omega) := \sup\{\tau : \tau \text{ is a hyperconvexity exponent of } \Omega\}.$

By definition $\alpha(\Omega) \geq \eta(\Omega)$. Further, it is sometimes easier to verify that the hyperconvexity index is positive, see [3, Appendix].

For domains with positive hyperconvexity index we will establish the following lower bound for dist_{KE} .

Theorem 1.1. Suppose $\Omega \subset \mathbb{C}^m$ is a bounded pseudoconvex domain with $\alpha(\Omega) > 0$. If $z_0 \in \Omega$ and $\epsilon > 0$, then there exists some $C = C(z_0, \epsilon) \leq 0$ such that

$$\operatorname{dist}_{KE}(z, z_0) \ge C + \left(\frac{\alpha(\Omega)}{2m - 1} - \epsilon\right) \log \frac{1}{\delta_{\Omega}(z)}$$

for all $z \in \Omega$.

Remark 1.2. In this note we have normalized the Kähler-Einstein metric to have Ricci curvature equal to -(2m-1). If we instead normalized so that the Ricci curvature equals $-(2m-1)\lambda$ we would obtain the lower bound

$$C + \frac{1}{\sqrt{\lambda}} \left(\frac{\alpha(\Omega)}{2m-1} - \epsilon \right) \log \frac{1}{\delta_{\Omega}(z)}.$$

Theorem 1.1 is a consequence of the following more general result which shows that Estimate (1.2) holds for any complete Kähler metric with Ricci curvature bounded from below.

Theorem 1.3. Suppose $\Omega \subset \mathbb{C}^m$ is a bounded pseudoconvex domain with $\alpha(\Omega) > 0$, g is a complete Kähler metric on Ω with $\mathrm{Ric}_g \geq -(2m-1)$, and dist_g is the distance associated to g. If $z_0 \in \Omega$ and $\epsilon > 0$, then there exists some $C = C(z_0, \epsilon) \leq 0$ such that

$$\operatorname{dist}_g(z_0, z) \ge C + \left(\frac{\alpha(\Omega)}{2m - 1} - \epsilon\right) \log \frac{1}{\delta_{\Omega}(z)}$$

for all $z \in \Omega$.

1.1. Lower bounds on the Bergman metric. It is conjectured that the Bergman distance on a bounded pseudoconvex domain with C^2 boundary also satisfies Estimate (1.2). In this direction, the best general result is due to Błocki [1] who extended work of Diederich-Ohsawa [6] and established a lower bound of the form

$$C_1 + C_2 \frac{1}{\log\log(1/\delta_{\Omega}(z))} \log \frac{1}{\delta_{\Omega}(z)}$$

for the Bergman distance on a bounded pseudoconvex domain with \mathcal{C}^2 boundary. Notice that Theorem 1.3 implies the conjectured lower bound for the Bergman

Notice that Theorem 1.3 implies the conjectured lower bound for the Bergman distance under the additional assumption that the Ricci curvature of the Bergman metric is bounded from below.

2. A HOPF LEMMA FOR RIEMANNIAN MANIFOLDS

The standard proof of the Hopf lemma implies the following estimate:

Proposition 2.1 (Hopf Lemma). If $D \subset \mathbb{R}^m$ is a bounded domain with C^2 boundary and $\varphi: D \to (-\infty, 0)$ is subharmonic, then there exists C > 0 such that

$$\varphi(x) \le -C\delta_D(x)$$

for all $x \in D$.

We will prove a variant of (this version of) the Hopf Lemma for Riemannian manifolds with Ricci curvature bounded below.

Given a complete Riemannian manifold (X,g), let dist_g denote the distance induced by g, let ∇_g denote the gradient, and let Δ_g denote the Laplace-Beltrami operator on X. A function $\varphi: X \to \mathbb{R}$ is subharmonic if $\Delta_g \varphi \geq 0$ in the sense of distributions. Also, for $x \in X$ and r > 0 define

$$B_g(x,r) = \{ y \in X : \operatorname{dist}_g(x,y) < r \}.$$

Proposition 2.2. Suppose that (X,g) is a complete m-dimensional Riemannian manifold with $\operatorname{Ric}(g) \geq -(m-1)$. If $x_0 \in X$, $\epsilon > 0$, and $\varphi : X \to (-\infty,0)$ is subharmonic, then there exists C > 0 such that

$$\varphi(x) \le -C \exp\Big(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\Big)$$

for all $x \in X$.

Remark 2.3. In this section we are working in the category of Riemannian manifolds with real dimension m, which explains the lower bound on Ricci curvature of -(m-1), as compared to the lower bound of -(2m-1) in the statement of Theorem 1.3.

We require one lemma.

Lemma 2.4. Suppose that (X,g) is a complete m-dimensional Riemannian manifold with $Ric(g) \ge -(m-1)$. Then for every $x_0 \in X$ and $\epsilon > 0$, there exists $r_0 > 0$ such that the function

$$\Phi(x) = \exp\left(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\right)$$

is subharmonic on $X \setminus B_q(x_0, r_0)$.

This lemma is probably well known. The proof below is based on an argument of Calabi [2]. The lemma can also be deduced from the non-smooth version of the "Global Laplacian Theorem" stated in [12, Theorem 3.6]. In the special case when the function $x \to \operatorname{dist}_g(x, x_0)$ is smooth on $X \setminus \{x_0\}$ (e.g. X is simply connected and has no conjugate points), the lemma follows from the Laplacian comparison theorem as stated in [10, Lemma 7.1.9].

Proof. It is enough to show that there exists some $r_0 > 0$ such that $\Delta_g \Phi \geq 0$ in the barrier sense on $X \setminus B_g(x_0, r_0)$, that is: for every $q \in X \setminus B_g(x_0, r_0)$ and $\delta > 0$ there exists a \mathcal{C}^2 function $f : \mathcal{O} \to \mathbb{R}$ defined on a neighborhood \mathcal{O} of q such that:

- $(1) \ f(q) = \Phi(q),$
- (2) $f \leq \Phi$ on \mathcal{O} , and
- (3) $\Delta_g f \geq -\delta$ on \mathcal{O}

(see the discussion in [12, Section 3]).

Fix $r_0 > 1$ sufficiently large. Then fix $q \in X \setminus B_g(x_0, r_0)$ and let $\sigma : [0, T] \to X$ be a unit speed geodesic joining x_0 to q. Then consider the function $r_q(x) = \operatorname{dist}_g(x, \sigma(1)) + 1$ (notice that $T > r_0 > 1$). By the proof of [10, Lemma 7.1.9], q is not in the cut locus of $\sigma(1)$. In particular, there exists a neighborhood \mathcal{O} of q such that r_q is \mathcal{C}^{∞} and

$$\|\nabla_q r_q\| \equiv 1$$

on \mathcal{O} , see [11, Proposition III.4.8]. By shrinking \mathcal{O} we can assume that $\mathcal{O} \subset X \setminus B_g(x_0, r_0)$. Then, by the smooth Laplacian comparison theorem

$$\Delta_g r_q(x) \le (m-1) \coth (r_q(x) - 1) = (m-1) \coth \operatorname{dist}_g(x, \sigma(1))$$

$$\le (m-1) \coth (r_0 - 1)$$

on \mathcal{O} , see [10, Lemma 7.1.9]. Next consider the function $f:\mathcal{O}\to[0,\infty)$ defined by

$$f(x) = \exp\left(-(m-1+\epsilon)r_q(x)\right).$$

Then $f(q) = \Phi(q)$, $f \leq \Phi$ on \mathcal{O} , and

$$\Delta_g f(x) = f(x) \left((m - 1 + \epsilon)^2 \|\nabla_g r_q\|^2 - (m - 1 + \epsilon) \Delta_g r_q(x) \right)$$

$$\geq f(x) \left((m - 1 + \epsilon)^2 - (m - 1 + \epsilon)(m - 1) \coth(r_0 - 1) \right).$$

So for $r_0 > 0$ sufficiently large (which only depends on ϵ), $\Delta_g f \geq 0$ on \mathcal{O} . Hence $\Delta_g \Phi(x) \geq 0$ in the barrier sense on $X \setminus B_g(x_0, r_0)$.

Proof of Proposition 2.2. Fix $r_0 > 0$ such that

$$x \to \exp\left(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\right)$$

is subharmonic on $X \setminus B_q(x_0, r_0)$. Since $\varphi < 0$, there exists C > 0 such that

$$\varphi(x) \le -C \exp\left(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\right)$$

for all $x \in B_g(x_0, r_0)$. Then consider

$$f(x) = \varphi(x) + C \exp\Big(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\Big).$$

Then f is subharmonic on $X \setminus B_g(x_0, r_0)$. Fix $R > r_0$ and let

$$A_R = B_a(x_0, R) \setminus B_a(x_0, r_0)$$

Then $f(x) \leq 0$ on $\partial B_q(x_0, r_0)$ and

$$f(x) \le C \exp\left(-(m-1+\epsilon)R\right)$$

on $\partial B_q(x_0, R)$. So by the maximum principle

$$f(x) \le C \exp\left(-(m-1+\epsilon)R\right)$$

on A_R . Then sending $R \to \infty$ shows that

$$f(x) \leq 0$$

on $X \setminus B_q(x_0, r_0)$. So

$$\varphi(x) \le -C \exp\left(-(m-1+\epsilon)\operatorname{dist}_g(x,x_0)\right)$$

for all $x \in X$.

3. Proof of Theorem 1.3

Suppose $\Omega \subset \mathbb{C}^m$ is a bounded pseudoconvex domain with $\alpha(\Omega) > 0$, g is a complete Kähler metric on Ω with $\mathrm{Ric}_q \geq -(2m-1)$, $z_0 \in \Omega$, and $\epsilon > 0$.

Fix $\epsilon_1 > 0$ and a hyperconvexity exponent $\tau \in (0,1)$ such that

$$\frac{\tau}{2m-1+\epsilon_1} \ge \frac{\alpha(\Omega)}{2m-1} - \epsilon.$$

Then there exist a>1 and a continuous plurisubharmonic function $\psi:\Omega\to (-\infty,0)$ such that

$$-\psi(z) \le a\delta_{\Omega}(z)^{\tau}$$

for all $z \in \Omega$.

Since ψ is plurisubharmonic and g is Kähler, ψ is subharmonic on (Ω, g) . So by Proposition 2.2 there exists $C_0 > 0$ such that

$$\psi(z) \le -C_0 \exp\left(-(2m-1+\epsilon_1)\operatorname{dist}_g(x,x_0)\right)$$

for all $z \in \Omega$. Then

$$-a\delta_{\Omega}(z)^{\tau} \le -C_0 \exp\left(-(2m-1+\epsilon_1)\operatorname{dist}_g(x,x_0)\right)$$

and so there exists $C_1 \in \mathbb{R}$ such that

$$C_1 + \left(\frac{\tau}{2m - 1 + \epsilon_1}\right) \log \frac{1}{\delta_{\Omega}(z)} \le \operatorname{dist}_g(z, z_0)$$

for all $z \in \Omega$. Since the set $\{z \in \Omega : \delta_{\Omega}(z) \geq 1\}$ is compact and

$$\frac{\tau}{2m-1+\epsilon_1} \ge \frac{\alpha(\Omega)}{2m-1} - \epsilon,$$

there exists $C \in \mathbb{R}$ such that

$$C + \left(\frac{\alpha(\Omega)}{2m-1} - \epsilon\right) \log \frac{1}{\delta_{\Omega}(z)} \le \operatorname{dist}_g(z, z_0)$$

for all $z \in \Omega$.

Acknowledgments

The author would like to thank Yuan Yuan and Liyou Zhang for bringing the hyperconvexity index to my attention. The author also thanks the referees for their helpful comments and corrections on the original version of this paper.

References

- Zbigniew Błocki, The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2613–2625, DOI 10.1090/S0002-9947-05-03738-4. MR2139520
- [2] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56. MR92069
- [3] Bo-Yong Chen, Bergman kernel and hyperconvexity index, Anal. PDE 10 (2017), no. 6, 1429–1454, DOI 10.2140/apde.2017.10.1429. MR3678493
- [4] Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544, DOI 10.1002/cpa.3160330404. MR575736
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141, DOI 10.1007/BF01390105. MR437806
- [6] Klas Diederich and Takeo Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2) 141 (1995), no. 1, 181–190, DOI 10.2307/2118631. MR1314035
- [7] Sidney Frankel, Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 183–208, DOI 10.1090/pspum/052.2/1128543. MR1128543
- [8] Phillip S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), no. 3, 485–490, DOI 10.4310/MRL.2008.v15.n3.a8. MR2407225
- [9] Ngaiming Mok and Shing-Tung Yau, Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions, The mathematical heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980), Proc. Sympos. Pure Math., vol. 39, Amer. Math. Soc., Providence, RI, 1983, pp. 41–59. MR720056
- [10] Peter Petersen, Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016. MR3469435
- [11] Takashi Sakai, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author. MR1390760
- [12] Guofang Wei, Manifolds with a lower Ricci curvature bound, Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, 2007, pp. 203–227, DOI 10.4310/SDG.2006.v11.n1.a7. MR2408267

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUSIANA Current address: Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin

 $Email\ address:$ amzimmer2@wisc.edu