PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 149, Number 4, April 2021, Pages 1641-1646
https://doi.org/10.1090/proc/15335

Article electronically published on February 9, 2021

A LOWER BOUND FOR THE KAHLER-EINSTEIN DISTANCE
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ABSTRACT. In this paper we establish a lower bound for the distance induced
by the Kahler-Einstein metric on pseudoconvex domains with positive hyper-
convexity index (e.g. positive Diederich-Fornaess index). A key step is proving
an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature
bounded from below.

1. INTRODUCTION

Every bounded pseudoconvex domain 2 C C™ has a unique complete Kahler-
Einstein metric, denoted by gx g, with Ricci curvature —(2m — 1). This was con-
structed by Cheng and Yau [4] when 2 has C? boundary and by Mok and Yau [9]

in general.

Let distx g be the distance induced by gxg. Since gx g is complete, if we fix
zp € 2, then
(1.1) lim distgg(z,20) = co.

z— 00N

In this note we consider quantitative versions of Equation (1.1). In particular, it is
natural to ask for lower bounds on distx g(z, z0) in terms of the Euclidean distance
to the boundary

da(z) == min{|lw — z|| : w € IQ}.
Mok and Yau proved for every zg € 2 there exist C7,Cy > 0 such that

distxg(z, z0) > —C1 + Cyloglog L
da(z)
for all z € Q, see [9, pg. 47]. Further, by considering the case of a punctured disk,
this lower bound is the best possible for general pseudoconvex domains.

However, for certain classes of bounded pseudoconvex domains, there are much
better lower bounds. For instance, if 2 is convex, then for any 2y € Q there exist
C1,Cy > 0 such that

1
1.2 dist z,29) > —C1 + Cylog ——
(1.2) kE(%,20) 1 2 g(SQ(Z)
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1642 ANDREW ZIMMER

for all z € Q, see [7]. In this note, we show that Estimate (1.2) holds for a large
class of domains - those with positive hyperconvexity index.

First we recall the well studied Diederich-Fornaess index. Suppose 2 C C™ is
a bounded pseudoconvex domain. A number 7 € (0,1) is a called a Diederich-
Forness exponent of Q if there exist C > 1 and a continuous plurisubharmonic
function ¢ : Q@ — (—o0,0) such that
1
6552(2)T < —Y(z) < Coq(2)"
for all z € Q. Then the Diederich-Forness index of () is defined to be

n(Q2) := sup{7 : 7 is a Diederich-Fornzess exponent of Q}.

It is known that n(€2) > 0 for many domains. For instance, Diederich-Fornass [5]
proved that n(2) > 0 when 99 is C2. Later, Harrington [8] generalized this result
and proved that n(2) > 0 when 9% is Lipschitz.

The hyperconvexity index, introduced by Chen [3], is a similar quantity as-
sociated to a bounded pseudoconvex domain Q@ C C™. In particular, a number
7 € (0,1) is a called a hyperconvezity exponent of Q if there exist C' > 1 and a
continuous plurisubharmonic function v : @ — (—o00,0) such that

—w(z) S C(SQ(Z)T
for all z € Q0. Then the hyperconvezity index of ) is defined to be
a(Q) ;= sup{r : 7 is a hyperconvexity exponent of Q}.
By definition «(€2) > n(€2). Further, it is sometimes easier to verify that the
hyperconvexity index is positive, see [3, Appendix].
For domains with positive hyperconvexity index we will establish the following
lower bound for distg .

Theorem 1.1. Suppose Q@ C C™ is a bounded pseudoconvex domain with a(2) > 0.
If zp € Q and € > 0, then there exists some C = C(zg,€) <0 such that

. a(Q) 1
S _
distgg(z,20) > C + <2m 1 €> log 6a(z)

for all z € Q.

Remark 1.2. In this note we have normalized the Kéahler-Einstein metric to have
Ricci curvature equal to —(2m — 1). If we instead normalized so that the Ricci
curvature equals —(2m — 1)\ we would obtain the lower bound

SENE e

Theorem 1.1 is a consequence of the following more general result which shows

that Estimate (1.2) holds for any complete Kéhler metric with Ricci curvature
bounded from below.

Theorem 1.3. Suppose Q C C™ is a bounded pseudoconvexr domain with «() > 0,
g is a complete Kéhler metric on Q with Ric, > —(2m—1), and dist, is the distance
associated to g. If zo € Q and € > 0, then there exists some C = C(zg,€) < 0 such
that

. a(Q) 1
> —
disty(20,2) > C + (2m —q 6) log 50(?)

for all z € Q.
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LOWER BOUND FOR DISTANCES 1643

1.1. Lower bounds on the Bergman metric. It is conjectured that the Bergman
distance on a bounded pseudoconvex domain with C? boundary also satisfies Es-
timate (1.2). In this direction, the best general result is due to Blocki [1] who
extended work of Diederich-Ohsawa [6] and established a lower bound of the form

1 1
Ci+C 1
P loglog (1/6a(2)) * dal2)
for the Bergman distance on a bounded pseudoconvex domain with C? boundary.
Notice that Theorem 1.3 implies the conjectured lower bound for the Bergman
distance under the additional assumption that the Ricci curvature of the Bergman
metric is bounded from below.

2. A HoPF LEMMA FOR RIEMANNIAN MANIFOLDS

The standard proof of the Hopf lemma implies the following estimate:

Proposition 2.1 (Hopf Lemma). If D C R™ is a bounded domain with C* boundary
and ¢ : D — (—00,0) is subharmonic, then there exists C > 0 such that

p(r) < —Cép(x)
forallx € D.

We will prove a variant of (this version of) the Hopf Lemma for Riemannian
manifolds with Ricci curvature bounded below.

Given a complete Riemannian manifold (X, g), let dist; denote the distance
induced by g, let V4 denote the gradient, and let A, denote the Laplace-Beltrami
operator on X. A function ¢ : X — R is subharmonic if Agp > 0 in the sense of
distributions. Also, for z € X and r > 0 define

By(z,r) ={y € X : disty(z,y) <r}.

Proposition 2.2. Suppose that (X, g) is a complete m-dimensional Riemannian
manifold with Ric(g) > —(m —1). Ifzg € X, € >0, and ¢ : X — (—00,0) is
subharmonic, then there exists C' > 0 such that

p(z) < —Cexp ( — (m —1+¢)disty(z, xo))
forallz € X.

Remark 2.3. In this section we are working in the category of Riemannian manifolds
with real dimension m, which explains the lower bound on Ricci curvature of —(m—
1), as compared to the lower bound of —(2m — 1) in the statement of Theorem 1.3.

We require one lemma.

Lemma 2.4. Suppose that (X, g) is a complete m-dimensional Riemannian mani-
fold with Ric(g) > —(m —1). Then for every xo € X and ¢ > 0, there exists rg > 0
such that the function

O(x) = exp ( —(m—1+¢€) distg(x,xo))

is subharmonic on X \ Bg(xo,70).
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1644 ANDREW ZIMMER

This lemma is probably well known. The proof below is based on an argument
of Calabi [2]. The lemma can also be deduced from the non-smooth version of the
“Global Laplacian Theorem” stated in [12, Theorem 3.6]. In the special case when
the function x — disty(x, zo) is smooth on X \ {z¢} (e.g. X is simply connected
and has no conjugate points), the lemma follows from the Laplacian comparison
theorem as stated in [10, Lemma 7.1.9)].

Proof. It is enough to show that there exists some ro > 0 such that A;® > 0 in
the barrier sense on X \ Bgy(zo,70), that is: for every ¢ € X \ By(xo,79) and 6 > 0
there exists a C? function f : O — R defined on a neighborhood O of ¢ such that:

(1) f(a) = 2(q),
(2) f<Pon O, and

(3) Ayf>—-0o0n0O
(see the discussion in [12, Section 3]).

Fix ro > 1 sufficiently large. Then fix ¢ € X \ By(zo,70) and let o : [0,7] — X
be a unit speed geodesic joining zy to ¢. Then consider the function r,(z) =
disty(x,0(1)) + 1 (notice that T' > ry > 1). By the proof of [10, Lemma 7.1.9], ¢ is
not in the cut locus of o(1). In particular, there exists a neighborhood O of ¢ such
that r4 is C*° and

IVgrqll =1

on O, see [11, Proposition II1.4.8]. By shrinking O we can assume that O C
X \ By(xo,70). Then, by the smooth Laplacian comparison theorem

Agrq(z) < (m — 1) coth (ry(z) — 1) = (m — 1) coth dist, (z, (1))
< (m — 1) coth(rg — 1)
on O, see [10, Lemma 7.1.9]. Next consider the function f : O — [0, 00) defined by
f(@) = exp (= (m =1+ rg() ).
Then f(q) = ®(q), f < ® on O, and
Agf(@) = f(@) ((m =1+ [Vyrgll® = (m =1+ )Agry(x))
> f() ((m =1+ €)% = (m—1+€)(m — 1) coth(ry — 1))

th(ro —
So for ro > 0 sufficiently large (which only depends on €), Ayf >0 on O.
Hence A,®(z) > 0 in the barrier sense on X \ By(zo,70). O

Proof of Proposition 2.2. Fix rg > 0 such that
T — exp ( —(m—1+4c¢) distg(x,ato)>
is subharmonic on X \ By (zo, 7). Since ¢ < 0, there exists C > 0 such that
p(z) < —Cexp ( —(m—1+4c¢€) distg(x,ato))
for all x € By(xo,70). Then consider
f(z) = ¢(x) + Cexp ( —(m—1+4c¢) distg(x,x0)>.
Then f is subharmonic on X \ By(zo,70). Fix R > ry and let
AR = By(x0, R) \ By(x0,70)
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Then f(x) <0 on 0B,(z9,70) and

fz) < Cexp(— (m — 1+6)R)
on dB,(xo, R). So by the maximum principle

f() < Cexp (—(m—1+0R)
on Agi. Then sending R — oo shows that

f(x) <0
on X \ By(zo,70). So
p(z) < —Cexp ( —(m—1+4c¢€) distg(x,ato))

for all z € X. ]

3. PROOF OF THEOREM 1.3

Suppose 2 C C™ is a bounded pseudoconvex domain with a(2) > 0, g is a
complete Kéahler metric on Q with Ricy > —(2m — 1), 2o € 2, and € > 0.
Fix €1 > 0 and a hyperconvexity exponent 7 € (0,1) such that
T S o) .
2m—1+4+¢ — 2m—1

Then there exist @ > 1 and a continuous plurisubharmonic function ¢ : Q@ —
(—00,0) such that

—1(2) < ado(z)"

for all z € Q.
Since 9 is plurisubharmonic and ¢ is Kéhler, ¢ is subharmonic on (€2, g). So by
Proposition 2.2 there exists Cy > 0 such that

P(z) < —=Cyexp ( —2m—-1+4+¢) distg(x,zo))
for all z € Q2. Then
—adq(z)" < —Cpexp ( — (2m — 1+ ) disty(z, xo))

and so there exists C7 € R such that

T 1 .
Cl —+ (m) log —_— S dlStg(Z, Zo)

da(z)
for all z € Q. Since the set {z € Q: dq(z) > 1} is compact and
T S a(Q)

2m—1+e  2m—1
there exists C' € R such that

C+ (231(53)1 —e) log

1 .
5a(?) < disty(z, 20)

for all z € Q.
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