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Abstract. In this paper we establish a lower bound for the distance induced
by the Kähler-Einstein metric on pseudoconvex domains with positive hyper-
convexity index (e.g. positive Diederich-Fornæss index). A key step is proving
an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature
bounded from below.

1. Introduction

Every bounded pseudoconvex domain Ω ⊂ Cm has a unique complete Kähler-
Einstein metric, denoted by gKE , with Ricci curvature −(2m − 1). This was con-
structed by Cheng and Yau [4] when Ω has C2 boundary and by Mok and Yau [9]
in general.

Let distKE be the distance induced by gKE . Since gKE is complete, if we fix
z0 ∈ Ω, then

lim
z→∂Ω

distKE(z, z0) = ∞.(1.1)

In this note we consider quantitative versions of Equation (1.1). In particular, it is
natural to ask for lower bounds on distKE(z, z0) in terms of the Euclidean distance
to the boundary

δΩ(z) := min{‖w − z‖ : w ∈ ∂Ω}.
Mok and Yau proved for every z0 ∈ Ω there exist C1, C2 > 0 such that

distKE(z, z0) ≥ −C1 + C2 log log
1

δΩ(z)

for all z ∈ Ω, see [9, pg. 47]. Further, by considering the case of a punctured disk,
this lower bound is the best possible for general pseudoconvex domains.

However, for certain classes of bounded pseudoconvex domains, there are much
better lower bounds. For instance, if Ω is convex, then for any z0 ∈ Ω there exist
C1, C2 > 0 such that

distKE(z, z0) ≥ −C1 + C2 log
1

δΩ(z)
(1.2)

Received by the editors April 14, 2020, and, in revised form, August 9, 2020, and September

5, 2020.
2020 Mathematics Subject Classification. Primary 32Q20; Secondary 32U10, 32T35, 53C20.
This material is based upon work supported by the National Science Foundation under grant

DMS-1904099.

c©2021 American Mathematical Society

1641

Licensed to Univ of Wisconsin, Madison. Prepared on Mon Jun 27 15:26:33 EDT 2022 for download from IP 128.104.46.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1642 ANDREW ZIMMER

for all z ∈ Ω, see [7]. In this note, we show that Estimate (1.2) holds for a large
class of domains - those with positive hyperconvexity index.

First we recall the well studied Diederich-Fornæss index. Suppose Ω ⊂ C
m is

a bounded pseudoconvex domain. A number τ ∈ (0, 1) is a called a Diederich-

Fornæss exponent of Ω if there exist C > 1 and a continuous plurisubharmonic
function ψ : Ω → (−∞, 0) such that

1

C
δΩ(z)

τ ≤ −ψ(z) ≤ CδΩ(z)
τ

for all z ∈ Ω. Then the Diederich-Fornæss index of Ω is defined to be

η(Ω) := sup{τ : τ is a Diederich-Fornæss exponent of Ω}.
It is known that η(Ω) > 0 for many domains. For instance, Diederich-Fornæss [5]
proved that η(Ω) > 0 when ∂Ω is C2. Later, Harrington [8] generalized this result
and proved that η(Ω) > 0 when ∂Ω is Lipschitz.

The hyperconvexity index, introduced by Chen [3], is a similar quantity as-
sociated to a bounded pseudoconvex domain Ω ⊂ Cm. In particular, a number
τ ∈ (0, 1) is a called a hyperconvexity exponent of Ω if there exist C > 1 and a
continuous plurisubharmonic function ψ : Ω → (−∞, 0) such that

−ψ(z) ≤ CδΩ(z)
τ

for all z ∈ Ω. Then the hyperconvexity index of Ω is defined to be

α(Ω) := sup{τ : τ is a hyperconvexity exponent of Ω}.
By definition α(Ω) ≥ η(Ω). Further, it is sometimes easier to verify that the
hyperconvexity index is positive, see [3, Appendix].

For domains with positive hyperconvexity index we will establish the following
lower bound for distKE .

Theorem 1.1. Suppose Ω ⊂ Cm is a bounded pseudoconvex domain with α(Ω) > 0.
If z0 ∈ Ω and ε > 0, then there exists some C = C(z0, ε) ≤ 0 such that

distKE(z, z0) ≥ C +

(

α(Ω)

2m− 1
− ε

)

log
1

δΩ(z)

for all z ∈ Ω.

Remark 1.2. In this note we have normalized the Kähler-Einstein metric to have
Ricci curvature equal to −(2m − 1). If we instead normalized so that the Ricci
curvature equals −(2m− 1)λ we would obtain the lower bound

C +
1√
λ

(

α(Ω)

2m− 1
− ε

)

log
1

δΩ(z)
.

Theorem 1.1 is a consequence of the following more general result which shows
that Estimate (1.2) holds for any complete Kähler metric with Ricci curvature
bounded from below.

Theorem 1.3. Suppose Ω ⊂ Cm is a bounded pseudoconvex domain with α(Ω) > 0,
g is a complete Kähler metric on Ω with Ricg ≥ −(2m−1), and distg is the distance

associated to g. If z0 ∈ Ω and ε > 0, then there exists some C = C(z0, ε) ≤ 0 such

that

distg(z0, z) ≥ C +

(

α(Ω)

2m− 1
− ε

)

log
1

δΩ(z)

for all z ∈ Ω.
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1.1. Lower bounds on the Bergman metric. It is conjectured that the Bergman
distance on a bounded pseudoconvex domain with C2 boundary also satisfies Es-
timate (1.2). In this direction, the best general result is due to B�locki [1] who
extended work of Diederich-Ohsawa [6] and established a lower bound of the form

C1 + C2

1

log log (1/δΩ(z))
log

1

δΩ(z)

for the Bergman distance on a bounded pseudoconvex domain with C2 boundary.
Notice that Theorem 1.3 implies the conjectured lower bound for the Bergman

distance under the additional assumption that the Ricci curvature of the Bergman
metric is bounded from below.

2. A Hopf lemma for Riemannian manifolds

The standard proof of the Hopf lemma implies the following estimate:

Proposition 2.1 (Hopf Lemma). If D ⊂ R
m is a bounded domain with C2 boundary

and ϕ : D → (−∞, 0) is subharmonic, then there exists C > 0 such that

ϕ(x) ≤ −CδD(x)

for all x ∈ D.

We will prove a variant of (this version of) the Hopf Lemma for Riemannian
manifolds with Ricci curvature bounded below.

Given a complete Riemannian manifold (X, g), let distg denote the distance
induced by g, let ∇g denote the gradient, and let Δg denote the Laplace-Beltrami
operator on X. A function ϕ : X → R is subharmonic if Δgϕ ≥ 0 in the sense of
distributions. Also, for x ∈ X and r > 0 define

Bg(x, r) = {y ∈ X : distg(x, y) < r}.

Proposition 2.2. Suppose that (X, g) is a complete m-dimensional Riemannian

manifold with Ric(g) ≥ −(m − 1). If x0 ∈ X, ε > 0, and ϕ : X → (−∞, 0) is

subharmonic, then there exists C > 0 such that

ϕ(x) ≤ −C exp
(

− (m− 1 + ε) distg(x, x0)
)

for all x ∈ X.

Remark 2.3. In this section we are working in the category of Riemannian manifolds
with real dimension m, which explains the lower bound on Ricci curvature of −(m−
1), as compared to the lower bound of −(2m− 1) in the statement of Theorem 1.3.

We require one lemma.

Lemma 2.4. Suppose that (X, g) is a complete m-dimensional Riemannian mani-

fold with Ric(g) ≥ −(m− 1). Then for every x0 ∈ X and ε > 0, there exists r0 > 0
such that the function

Φ(x) = exp
(

− (m− 1 + ε) distg(x, x0)
)

is subharmonic on X \Bg(x0, r0).
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This lemma is probably well known. The proof below is based on an argument
of Calabi [2]. The lemma can also be deduced from the non-smooth version of the
“Global Laplacian Theorem” stated in [12, Theorem 3.6]. In the special case when
the function x → distg(x, x0) is smooth on X \ {x0} (e.g. X is simply connected
and has no conjugate points), the lemma follows from the Laplacian comparison
theorem as stated in [10, Lemma 7.1.9].

Proof. It is enough to show that there exists some r0 > 0 such that ΔgΦ ≥ 0 in

the barrier sense on X \Bg(x0, r0), that is: for every q ∈ X \Bg(x0, r0) and δ > 0
there exists a C2 function f : O → R defined on a neighborhood O of q such that:

(1) f(q) = Φ(q),
(2) f ≤ Φ on O, and
(3) Δgf ≥ −δ on O

(see the discussion in [12, Section 3]).
Fix r0 > 1 sufficiently large. Then fix q ∈ X \ Bg(x0, r0) and let σ : [0, T ] → X

be a unit speed geodesic joining x0 to q. Then consider the function rq(x) =
distg(x, σ(1)) + 1 (notice that T > r0 > 1). By the proof of [10, Lemma 7.1.9], q is
not in the cut locus of σ(1). In particular, there exists a neighborhood O of q such
that rq is C∞ and

‖∇grq‖ ≡ 1

on O, see [11, Proposition III.4.8]. By shrinking O we can assume that O ⊂
X \Bg(x0, r0). Then, by the smooth Laplacian comparison theorem

Δgrq(x) ≤ (m− 1) coth (rq(x)− 1) = (m− 1) coth distg(x, σ(1))

≤ (m− 1) coth(r0 − 1)

on O, see [10, Lemma 7.1.9]. Next consider the function f : O → [0,∞) defined by

f(x) = exp
(

− (m− 1 + ε)rq(x)
)

.

Then f(q) = Φ(q), f ≤ Φ on O, and

Δgf(x) = f(x)
(

(m− 1 + ε)2 ‖∇grq‖2 − (m− 1 + ε)Δgrq(x)
)

≥ f(x)
(

(m− 1 + ε)2 − (m− 1 + ε)(m− 1) coth(r0 − 1)
)

.

So for r0 > 0 sufficiently large (which only depends on ε), Δgf ≥ 0 on O.
Hence ΔgΦ(x) ≥ 0 in the barrier sense on X \Bg(x0, r0). �

Proof of Proposition 2.2. Fix r0 > 0 such that

x → exp
(

− (m− 1 + ε) distg(x, x0)
)

is subharmonic on X \Bg(x0, r0). Since ϕ < 0, there exists C > 0 such that

ϕ(x) ≤ −C exp
(

− (m− 1 + ε) distg(x, x0)
)

for all x ∈ Bg(x0, r0). Then consider

f(x) = ϕ(x) + C exp
(

− (m− 1 + ε) distg(x, x0)
)

.

Then f is subharmonic on X \Bg(x0, r0). Fix R > r0 and let

AR = Bg(x0, R) \Bg(x0, r0)
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Then f(x) ≤ 0 on ∂Bg(x0, r0) and

f(x) ≤ C exp
(

− (m− 1 + ε)R
)

on ∂Bg(x0, R). So by the maximum principle

f(x) ≤ C exp
(

− (m− 1 + ε)R
)

on AR. Then sending R → ∞ shows that

f(x) ≤ 0

on X \Bg(x0, r0). So

ϕ(x) ≤ −C exp
(

− (m− 1 + ε) distg(x, x0)
)

for all x ∈ X. �

3. Proof of Theorem 1.3

Suppose Ω ⊂ Cm is a bounded pseudoconvex domain with α(Ω) > 0, g is a
complete Kähler metric on Ω with Ricg ≥ −(2m− 1), z0 ∈ Ω, and ε > 0.

Fix ε1 > 0 and a hyperconvexity exponent τ ∈ (0, 1) such that

τ

2m− 1 + ε1
≥ α(Ω)

2m− 1
− ε.

Then there exist a > 1 and a continuous plurisubharmonic function ψ : Ω →
(−∞, 0) such that

−ψ(z) ≤ aδΩ(z)
τ

for all z ∈ Ω.
Since ψ is plurisubharmonic and g is Kähler, ψ is subharmonic on (Ω, g). So by

Proposition 2.2 there exists C0 > 0 such that

ψ(z) ≤ −C0 exp
(

− (2m− 1 + ε1) distg(x, x0)
)

for all z ∈ Ω. Then

−aδΩ(z)
τ ≤ −C0 exp

(

− (2m− 1 + ε1) distg(x, x0)
)

and so there exists C1 ∈ R such that

C1 +

(

τ

2m− 1 + ε1

)

log
1

δΩ(z)
≤ distg(z, z0)

for all z ∈ Ω. Since the set {z ∈ Ω : δΩ(z) ≥ 1} is compact and

τ

2m− 1 + ε1
≥ α(Ω)

2m− 1
− ε,

there exists C ∈ R such that

C +
( α(Ω)

2m− 1
− ε

)

log
1

δΩ(z)
≤ distg(z, z0)

for all z ∈ Ω.
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