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ABSTRACT. We show that if a bounded domain in complex Eu-
clidean space with C1,1 boundary covers a compact manifold, then the
domain is biholomorphic to the unit ball. In particular, this shows that
complex hyperbolic spaces are the only Hermitian symmetric spaces
biholomorphic to bounded domains with C1,1 boundary.

1. INTRODUCTION

Given a domain Ω ⊂ C
d let Aut(Ω) denote the biholomorphism group of Ω.

When Ω is bounded, H. Cartan proved that Aut(Ω) is a Lie group (with possibly
infinitely many connected components) and acts properly on Ω.

We say that a domain Ω ⊂ C
d covers a compact manifold if there exists a

discrete group Γ ≤ Aut(Ω) such that Γ acts freely, properly discontinuously, and
co-compactly on Ω. The simplest example of a domain which covers a compact
manifold is the unit ball Bd ⊂ C

d. In this case, Aut(Bd) is isomorphic to the
matrix group PU(1, d), and any co-compact torsion-free lattice Γ ≤ Aut(Bd) acts
freely, properly discontinuously, and co-compactly on Bd.

In this paper we prove that, up to biholomorphism, the unit ball is the only
domain covering a compact manifold with C1,1 boundary.

Theorem 1.1. Suppose Ω ⊂ C
d is a bounded domain which covers a compact

manifold. If ∂Ω is C1,1, then Ω is biholomorphic to the unit ball.

A bounded domain Ω ⊂ C
d is called symmetric if Aut(Ω) is a semisimple

Lie group which acts transitively on Ω. A theorem of Borel [2] says that every
bounded symmetric domain covers a compact manifold, and so we have the fol-
lowing corollary.
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Corollary 1.2. Suppose Ω ⊂ Cd is a bounded symmetric domain and ∂Ω is C1,1.
Then, Ω is biholomorphic to the unit ball.

Theorem 1.1 extends a classical result of Rosay and Wong from the 1970s.

Theorem 1.3 (Rosay [15], Wong [22]). Suppose Ω ⊂ Cd is a bounded domain
which covers a compact manifold. If ∂Ω is C2, then Ω is biholomorphic to the unit
ball.

Remark 1.4. Wong proved Theorem 1.3 for strongly pseudoconvex domains,
and Rosay extended the result to any bounded domain with C2 boundary.

Over the last forty years many different proofs of Theorem 1.3 have been
found, but they all rely on essentially the same idea: every bounded domain
Ω ⊂ Cd with C2 boundary has at least one strongly pseudoconvex boundary point,
and the interior complex geometry of Ω near a strongly pseudoconvex boundary
point is close to the interior complex geometry of the unit ball. Then, sinceΩ cov-
ers a compact manifold, the interior complex geometry of Ω is everywhere close to
the interior complex geometry of the unit ball. Then, a limiting argument shows
that Ω is biholomorphic to the ball.

One way to make this precise is to consider the Bergman metric g on Ω.
This is a Aut(Ω)-invariant Kähler metric on Ω and, since the boundary is C2, also
complete by a result of Ohsawa [14]. Kim-Yu [9] proved that the holomorphic
sectional curvature of g is limited to −4/(d+1) at ξ0 (see also [10]). Since Aut(Ω)
acts co-compactly on Ω, for any point z ∈ Ω there exists a sequenceϕn ∈ Aut(Ω)
such that ϕn(z) → ξ0. Then, by the invariance of g, the holomorphic curvature
at z equals −4/(d + 1). Since z was arbitrary, (Ω, g) has constant holomorphic
curvature and hence, by a theorem of Q. K. Lu [12], Ω is biholomorphic to the
ball. (For more details, see Section 5 in [9].)

In the C1,1 case it is no longer possible to simply localize around a strongly
pseudoconvex point, which makes the argument more complicated.

1.1. A conjecture. Recently, we generalized Theorem 1.3 in a different di-
rection by only assuming that the domain covers a finite volume manifold.

Theorem 1.5 (Z. [24]). Suppose Ω ⊂ C
d is a bounded pseudoconvex domain

with C2 boundary and Γ ≤ Aut(Ω) is a discrete group acting freely on Ω. If Γ\Ω has
finite volume with respect to either the Bergman volume, the Kähler-Einstein volume,
or the Kobayashi-Eisenman volume, then Ω is biholomorphic to the unit ball.

Based on this it seems natural to ask if Theorem 1.1 can also be extended to
the finite volume case.

Conjecture 1.6. Suppose Ω ⊂ Cd is a bounded pseudoconvex domain with
C1,1 boundary and Γ ≤ Aut(Ω) is a discrete group acting freely on Ω. If Γ\Ω
has finite volume with respect to either the Bergman volume, the Kähler-Einstein
volume, or the Kobayashi-Eisenman volume, then Ω is biholomorphic to the unit
ball.
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1.2. Outline of the proof of Theorem 1.1. Our proof in the C1,1 case is
substantially different than the standard proofs in the C2 case and requires both
local and global arguments.

Fix a bounded domain Ω ⊂ C
d with C1,1 boundary and a discrete group

Γ ≤ Aut(Ω) such that Γ acts freely, properly discontinuously, and co-compactly
on Ω.

Step 1: For α > 0 define

Pα =

(z1, . . . , zd) ∈ Cd : Re(z1) > α

d∑

j=2

∣∣∣zj
∣∣∣2


 .

Notice that Pα is biholomorphic to the unit ball.
We use a rescaling argument to show that Ω is biholomorphic to a domain

D ⊂ Cd where the following hold:

(1) There exist 0 < β < α such that Pα ⊂ D ⊂ Pβ.
(2) Aut(D) contains the one-parameter subgroup

ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd).

In particular, Aut(Ω) ≅ Aut(D) is non-discrete.

Step 2: Next, we use a theorem of Frankel and Nadel to deduce that Ω is a
bounded symmetric domain.

Theorem 1.7 (Frankel, Nadel [7, 13]). Suppose M is a compact complex man-

ifold with c1(M) < 0 and M̃ is the universal cover of M . If Aut
(
M̃
)

is non-discrete,

then M̃ is biholomorphic to either a bounded symmetric domain, or a non-trivial
product D1 ×D2 where D1 is a bounded symmetric domain and Aut(D2) is discrete.

Remark 1.8.

(1) Nadel [13] proved Theorem 1.7 when d = 2, and then Frankel [7] ex-
tended the result to all dimensions.

(2) Theorem 1.7 is one of several rigidity results which consider manifolds
whose universal cover has a non-discrete isometry group (see [4, 6, 11]).

(3) In our setting, the quotient Γ\Ω will be aspherical, and in this special case
an alternative proof of Theorem 1.7 can be found in [6].

If M := Γ\Ω, then c1(M) < 0 (see the discussion on [7, pg. 286]). Further,
the domainΩ is simply connected (see Proposition 3.3), and hence is the universal
cover of M . Thus, by Step 1 and Theorem 1.7, we see that Ω is either symmetric
or biholomorphic a product D1 ×D2 where D1 is symmetric and D2 has discrete
automorphism group. We will use the geometry of the rescaled domain from
Step 1 to show that it is impossible for Ω to be biholomorphic to such a product.
Thus, Ω is a bounded symmetric domain.
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Step 3: To finish the proof of Theorem 1.1 we exploit the geometry of the rescaled

domain D and the theory of bounded symmetric domains. Let ΩHC ⊂ Cd be the
image of the Harish-Chandra embedding of Ω. Then, by Step 1, there exists a
biholomorphism F : D → ΩHC .

To show that Ω is biholomorphic to the ball, we introduce the holomorphic
function

J : D→ C

J(λ) = det
(
F ′
(

1+ λ
1− λ,0, . . . ,0

))
,

where F ′(z) is the Jacobian matrix of F . This function measures the volume
contraction/expansion of F along the linear slice

C ·e1 ∩D =
{
(z,0, . . . ,0) ∈ Cd : Re(z) > 0

}

of D. Since F is a biholomorphism, J is nowhere zero.
We will estimate J using the “change of variable formula” for the Bergman

kernels on D and ΩHC :

κD(z,w) = κΩHC
(F(z), F(w))det(F ′(z))det(F ′(w)).

Combining this with a formula for the Bergman kernel onΩHC from [5], we show
the following: if Ω is not biholomorphic to the ball, then J extends continuously
to ∂D and J|∂D ≡ 0. But then the maximal principle would imply that J ≡ 0,
which is impossible. Thus, Ω is biholomorphic to the unit ball. A key part in this
step is showing that

λ ∈ D→ F
(

1+ λ
1− λ,0, . . . ,0

)
∈ ΩHC

parameterizes the diagonal of a maximal polydisk in ΩHC .

2. PRELIMINARIES

2.1. Notation. For z0 ∈ Cd and r > 0 let

Bd(z0; r) = {z ∈ Cd : ‖z − z0‖ < r}.

Also let e1, . . . , ed denote the standard basis of Cd.

2.2. The Kobayashi metric. Given a domain Ω ⊂ C
d, the (infinitesimal)

Kobayashi metric is the pseudo-Finsler metric

kΩ(x;v) = inf
{∣∣ξ

∣∣ : f ∈Hol(∆,Ω), f (0) = x, d(f )0(ξ) = v
}
.
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By a result of Royden [16, Proposition 3] the Kobayashi metric is an upper semi-
continuous function on Ω× Cd. In particular, if σ : [a, b] → Ω is an absolutely
continuous curve (as a map [a, b]→ C

d), then the function

t ∈ [a, b]→ kΩ(σ(t);σ ′(t))

is integrable, and we can define the length of σ to be

ℓΩ(σ) =
∫ b
a
kΩ(σ(t);σ ′(t))dt.

One can then define the Kobayashi pseudo-distance to be

KΩ(x,y) = inf
{
ℓΩ(σ) : σ : [a, b]→ Ω is absolutely continuous,

with σ(a) = x, and σ(b) = y} .

This definition is equivalent to the standard definition of KΩ via analytic chains
(see [20, Theorem 3.1]).

We will use the following property of the Kobayashi metric (which is imme-
diate from the definition).

Observation 2.1. Suppose Ω1 ⊂ Cd1 , Ω2 ⊂ Cd2 are domains. If f : Ω1 → Ω2

is holomorphic, then

KΩ2(f (p), f (q)) ≤ KΩ1(p, q) and kΩ2(f (p);d(f )p(v)) ≤ kΩ1(p;v)

for all p,q ∈ Ω1 and v ∈ Cd.

We will also consider the following special class of maps of the disk into a
domain.

Definition 2.2. Suppose that Ω ⊂ C
d is a domain. A holomorphic map

ϕ : D → Ω is called a complex geodesic if KΩ(ϕ(z),ϕ(w)) = KD(z,w) for all
z,w ∈ D.

2.3. The Bergman kernel and basic properties. Let µ denote the Lebesgue
measure on Cd. Then, for a domain Ω ⊂ Cd let H 2(Ω) be the Hilbert space of

holomorphic functions f : Ω → C with
∫
Ω
∣∣f
∣∣2
dµ < +∞. If {φj : j ∈ J} is an

orthonormal basis of H 2(Ω), then the function

κΩ : Ω×Ω→ C

κΩ(z,w) =
∑

j∈J
φj(z)φj(w)

is called the Bergman kernel of Ω.
We now recall two important properties of the Bergman kernel, proofs of both

can be found in [8, Chapter 12].
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Proposition 2.3 (Monotonicity). If Ω1 ⊂ Ω2 ⊂ Cd are domains, then we have
that κΩ2(z, z) ≤ κΩ1(z, z) for all z ∈ Ω1.

Proposition 2.4 (Change of variable formula). If Ω1,Ω2 ⊂ Cd are domains
and F : Ω1 → Ω2 is a biholomorphism, then

κΩ1(z,w) = κΩ2(F(z), F(w))det(F ′(z))det(F ′(w))

for all z,w ∈ Ω1.

We will also use the following well-known calculation.

Observation 2.5. Suppose α > 0 and

Pα :=

(z1, . . . , zd) ∈ Cd : Re(z1) > α

d∑

j=2

∣∣∣zj
∣∣∣2


 .

Then, there exists Cα > 0 such that

κPα
(
(λ,0, . . . ,0), (λ,0, . . . ,0)

)
= CαRe(λ)

−(d+1)

for all (λ,0, . . . ,0) ∈ Pα.

Since the proof is short we include it.

Proof. Let

Cα := κΩ1

(
(1,0, . . . ,0), (1,0, . . . ,0)

)
,

and consider the automorphisms at, ut ∈ Aut(Pα) given by

at(z1, . . . , zd) = (etz1, e
t/2z2, . . . , e

t/2zd)

and

ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd).

Then,

(λ,0, . . . ,0) = uIm(λ)alogRe(λ)(1,0, . . . ,0),

and so Proposition 2.4 implies that

κPα
(
(λ,0, . . . ,0), (λ,0, . . . ,0)

)
= CαRe(λ)

−(d+1). p
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2.4. A higher-dimensional variant of Hurwitz’s theorem. We will use the
following higher-dimensional variant of Hurwitz’s theorem.

Theorem 2.6 (Deng-Guan-Zhang [3, Theorem 2.2]). Suppose D ⊂ Cd is a
bounded domain and x ∈ D. Let fn : D → C

d be a sequence of injective holomorphic
maps such that fn(x) = 0 for all n and fn converges locally uniformly to a map
f : D → C

d. If there exists ε > 0 such that Bd(0; ε) ⊂ fn(D) for all n, then f is
injective.

3. DOMAINS WITH CO-COMPACT AUTOMORPHISM GROUPS

In this subsection we prove two basic facts about domains whose automorphism
group acts co-compactly (i.e., there is a compact subset whose translates by the
automorphism group cover the domain). Both are probably well known.

Proposition 3.1. If Ω ⊂ Cd is a bounded domain and Aut(Ω) acts co-compactly
on Ω, then (Ω, KΩ) is a proper metric space. Hence, Ω is pseudoconvex.

Remark 3.2.

(1) Recall that a metric space is called proper if bounded sets are relatively
compact. Proper metric spaces are clearly Cauchy complete, and so the
“hence” part of Proposition 3.1 follows from a result of Wu [23, Theorem
F].

(2) Siegel [19] proved that if a bounded domain covers a compact manifold,
then the domain is pseudoconvex (see [18, Section 2.1] for an exposition).

Proposition 3.3. If Ω ⊂ Cd is a bounded domain, Aut(Ω) acts co-compactly on
Ω, and ∂Ω is C1, then for every m ≥ 1 the mth homotopy group πm(Ω) is trivial.
In particular, Ω is simply connected.

Remark 3.4. The proof of Proposition 3.3 is a simple modification of the
proof of the Lemma on pg. 256 in [22] which in [22] is attributed to R. Greene.

3.1. Proof of Proposition 3.1. Before proceeding, we recall some terminol-
ogy. If (X,d) is a metric space, [a, b] ⊂ R, and σ : [a, b] → X is continuous,
then we define the length of σ to be

ℓ(σ) = sup



N∑

j=1

d(σ(tj), σ(tj+1)) : N ≥ 1, a ≤ t1 < t2 < · · · < tN ≤ b

 .

Then, (X,d) is called a length space if

d(x,y) = inf
{
ℓ(σ) : σ : [0,1] → X continuous with σ(0) = x,σ(1) = y}

for every x,y ∈ X.
We will use the following version of the Hopf-Rinow Theorem (for a proof,

see, e.g., [1, Chapter I, Theorem 2.2]).
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Theorem 3.5 (Hopf–Rinow). Suppose (X,d) is a locally compact length metric
space. Then, the following are equivalent:

(1) (X,d) is a proper metric space.
(2) (X,d) is Cauchy complete.

We will also use the following lemma.

Lemma 3.6. Suppose (X,d) is a locally compact metric space and there exists a
compact set K ⊂ X such that X = Isom(X,d) ·K. Then, (X,d) is Cauchy complete.

Proof. We first claim that there exists δ > 0 such that for any x ∈ X the set

BX(x;δ) := {y ∈ X : d(x,y) ≤ δ}

is compact. Since (X,d) is locally compact, for any k ∈ K there exists δk > 0
such that BX(k;δk) is compact. Then, since

K ⊂ ∪k∈K{y ∈ X : d(k,y) < δk/2},

there exist k1, . . . , kN ∈ K such that

K ⊂ ∪Ni=1{y ∈ X : d(ki, y) < δki/2}.

Then, if δ := min{δki/2 : i = 1, . . . , N}, we see that BX(x;δ) is compact for any
x ∈ K. Since X = Isom(X,d) · K, then BX(x;δ) is compact for any x ∈ X.

Now suppose that (xn)n≥1 is a Cauchy sequence in (X,d). Then, there exists
N > 0 such that d(xn, xN) < δ for n ≥ N. Thus, {xn : n ≥ N} ⊂ BX(xN ;δ).
But then there exists a subsequence (xnk)k≥1 which converges. Thus, (X,d) is
Cauchy complete. p

Proof of Proposition 3.1. By construction, (Ω, KΩ) is a length metric space.
Further, since Ω is bounded, it is easy to show that (Ω, KΩ) is locally compact.

By Lemma 3.6 the metric space (Ω, KΩ) is Cauchy complete. Thus, by The-
orem 3.5, KΩ is a proper metric on Ω.

Since (Ω, KΩ) is Cauchy complete, a result of Royden [16, Corollary pg. 136]
says Ω is taut. Then, Ω is pseudoconvex by a result of Wu [23, Theorem F]. p

3.2. Proof of Proposition 3.3. Without loss of generality, we can suppose
that 0 ∈ Ω. Then, by rotating and scaling we can assume 1 = max{‖z‖ : z ∈ ∂Ω}
and e1 ∈ ∂Ω. Then, define the function

f : Ω→ C

f(z1, . . . , zd) = ez1−1.

Then,
∣∣f (z)

∣∣ ≤ 1 for all z ∈ Ω with equality if and only if z = e1.
Now fix a sequence (pn)n≥1 in Ω with e1 = limn→∞pn. Since Aut(Ω) acts

co-compactly on Ω, there exist sequences (ϕn)n≥1 in Aut(Ω) and (kn)n≥1 in Ω
such that the following hold:
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(1) pn = ϕn(kn).
(2) {kn : n ≥ 0} is relatively compact in Ω.

By Montel’s theorem we can pass to a subsequence so that ϕn converges locally
uniformly to a holomorphic map ϕ∞ : Ω → Ω. By passing to another subse-
quence, we can also assume that kn → k ∈ Ω. Then,

ϕ∞(k) = lim
n→∞ϕn(kn) = lim

n→∞pn = e1.

We now consider g = f ◦ϕ∞; then,
∣∣g(z)

∣∣ ≤ 1 for all z ∈ Ω and
∣∣g(k)

∣∣ = 1.
Thus, by the maximal principle, g ≡ 1, and so ϕ∞ ≡ e1.

Since ∂Ω is C1, there exists a neighborhood O of e1 such that Ω ∩ O is con-
tractible. Now fix a continuous map σ : Sm → Ω. Since ϕn converges locally
uniformly to ϕ∞ ≡ e1 and σ(Sm) is compact, there exists some n ≥ 0 such that
(ϕn ◦ σ)(Sm) ⊂ O∩Ω. Thus, (ϕn ◦ σ) is homotopically trivial, and so σ is
homotopically trivial. Since σ was arbitrary, πm(Ω) = 1.

4. RESCALING

As before, for α > 0 define

Pα =

(z1, . . . , zd) ∈ Cd : Re(z1) > α

d∑

j=2

∣∣∣zj
∣∣∣2


 .

Proposition 4.1. Suppose Ω ⊂ Cd is a bounded domain with C1,1 boundary. If
Aut(Ω) acts co-compactly on Ω, then Ω is biholomorphic to a domain D ⊂ Cd where
the following hold:

(1) Pα ⊂ D ⊂ Pβ for some 0 < β < α.
(2) Aut(D) contains the one-parameter subgroup

ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd).

4.1. Rescaling Euclidean balls. Before proving Proposition 4.1 we describe
a rescaling procedure.

We begin by recalling the definition of the local Hausdorff topology on the

set of all convex domains in Cd. First, define the Hausdorff distance between two

non-empty compact sets A,B ⊂ Cd by

dH(A, B) =max
{

max
a∈A

min
b∈B

‖a− b‖ ,max
b∈B

min
a∈A

‖b − a‖
}
.

To obtain a topology on the set of all non-empty convex domains in Cd, we con-
sider the local Hausdorff pseudo-distances defined by

d(R)H (A, B) = dH
(
A∩ Bd(0;R), B ∩ Bd(0;R)

)
, R > 0.
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Then, a sequence of convex domains Ωn converges to a convex domain Ω if there

exists some R0 ≥ 0 such that limn→∞ d
(R)
H

(
Ωn,Ω

)
= 0 for all R ≥ R0.

The Kobayashi distance is continuous with respect to this topology (see, e.g.,
[26, Theorem 4.1]).

Theorem 4.2. Suppose Ωn ⊂ C
d is a sequence of convex domains and Ω =

limn→∞Ωn in the local Hausdorff topology. Assume the Kobayashi metric is non-
degenerate on Ω and each Ωn. Then,

KΩ(p, q) = lim
n→∞KΩn(p, q)

for all p,q ∈ Ω. Moreover, the convergence is uniform on compact subsets of Ω×Ω.

Remark 4.3. Under the hypothesis of Theorem 4.2: if K ⊂ Ω is a compact
set, then K ⊂ Ωn for n sufficiently large (see [26, Lemma 4.4]). Thus, KΩn(p, q)
is well defined for n sufficiently large (which depends on p,q).

We end this discussion with the following example.

Example 4.4. Fix r > 0, a sequence rn > 0 converging to 0, and the sequence
of linear maps

Λn(z1, . . . , zd) =
(

1
rn
z1,

1√
rn
z2, . . .

1√
rn
zd

)
.

Then, P1/(2r) = lim
n→∞Λn Bd(re1; r) in the local Hausdorff topology.

4.2. The proof of Proposition 4.1. The rest of the section is devoted to
the proof of the Proposition. Suppose then Ω is a bounded domain with C1,1

boundary and there exists a compact set K ⊂ Ω such that Aut(Ω) · K = Ω.

Lemma 4.5. After applying an affine transformation, we can assume that

Bd(re1; r) ⊂ Ω ⊂ Bd(e1; 1)

for some r ∈ (0,1).
Proof. By translating we can assume that e1 ∈ Ω. Then, we pick ξ0 ∈ ∂Ω

such that
∥∥ξ0 − e1

∥∥ = max{
∥∥ξ − e1

∥∥ : ξ ∈ ∂Ω}. By rotating and scaling Ω about
e1, we can assume that ξ0 = 0. Then, Ω ⊂ Bd(e1; 1).

For ξ ∈ ∂Ω, let nΩ(ξ) be the inward pointing normal unit vector at ξ. Since
∂Ω is C1,1, there is some r > 0 such that Bd(ξ+rnΩ(ξ); r) ⊂ Ω for every ξ ∈ ∂Ω.
Then, since Ω ⊂ Bd(e1; 1), we have nΩ(0) = e1 and so Bd(re1; r) ⊂ Ω. p

Fix a sequence rn ∈ (0, r ) converging to 0. Then, pick ϕn ∈ Aut(Ω) and
kn ∈ K such that ϕn(kn) = rne1. Then, consider the dilations

Λn(z1, . . . , zd) =
(

1
rn
z1,

1√
rn
z2, . . .

1√
rn
zd

)
.
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Let Ωn := ΛnΩ and Fn := Λnϕn : Ω→ Ωn. Then,

Λn Bd(re1; r) ⊂ Ωn ⊂ Λn Bd(e1; 1).

Further, by Example 4.4,

Pα = lim
n→∞Λn Bd(re1; r) where α := 1

2r

and

Pβ = lim
n→∞Λn Bd(e1; 1) where β := 1

2

in the local Hausdorff topology.

Lemma 4.6. After passing to a subsequence, Fn converges to a holomorphic em-
bedding F : Ω→ C

d. Moreover, if D = F(Ω), then Pα ⊂ D ⊂ Pβ.

Proof. By construction Fn(kn) = e1 and Observation 2.1 implies that

KΩn(z,w) ≤ KΛn Bd(e1 ;1)(z,w)

for all z,w ∈ Ωn. Theorem 4.2 implies that KPβ = lim
n→∞KΛn Bd(e1 ;1) locally uni-

formly. Thus, using the Arzelá-Ascoli theorem, we can pass to a subsequence
where Fn converges locally uniformly to a holomorphic map F : Ω→ C

d.
Let D = F(Ω). Since

Λn Bd(re1; r) ⊂ Fn(Ω) ⊂ Λn B(e1; 1)

for every n we see that

(4.1) Pα ⊂ D ⊂ Pβ.

Next, we use Theorem 2.6 to show that F is injective. Since

Pα = lim
n→∞Λn Bd(re1; r)

in the local Hausdorff topology and Λn Bd(re1; r) ⊂ Ωn for every n ≥ 0, there
exists ε > 0 such that Bd(e1; ε) ⊂ Fn(Ω) for every n ≥ 0. By passing to a
subsequence we can suppose that kn → k ∈ K. Then, consider the maps Gn(z) =
Fn(z)− Fn(k). Since

lim
n→∞Fn(k) = lim

n→∞Fn(kn) = F(k) = e1,

Gn converges locally uniformly to F − e1. Further, by passing to another subse-
quence we can suppose that ‖e1 − Fn(k)‖ < ε/2 for every n ≥ 0. Then, for every
n ≥ 0, the map Gn is injective, Gn(k) = 0, and Bd(0; ε/2) ⊂ Gn(Ω). Thus, F is
injective by Theorem 2.6, so F is an embedding.
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Now, since F is an embedding, D is an open set, so Equation (4.1) becomes

Pα = int
(Pα

) ⊂ D ⊂ int
(Pβ

) = Pβ .

This completes the proof. p

Showing that Aut(D) contains a one-parameter subgroup requires some pre-
liminary lemmas.

Lemma 4.7. Suppose (zn)n≥1 is a sequence, zn ∈ Ωn for every n, limn→∞ zn =
z, and lim inf

n→∞ KΩn(e1, zn) < +∞. Then, z ∈ D.

Proof. Fix z0 ∈ Ω and let R = maxk∈K KΩ(z0, k). Then, pick nj → ∞ such
that

M := lim
j→∞

KΩnj (e1, znj) < +∞.

Since Fn(kn) = e1 and kn ∈ K, for each j ≥ 0, there exists

wj ∈ BΩ(z0;R +M)

such that Fnj(wj) = znj . By Proposition 3.1, KΩ is a proper metric on Ω. Thus,
we can pass to a subsequence such that wj → w ∈ Ω. Since Fn → F locally
uniformly, we then have

F(w) = lim
j→∞

Fnj(wj) = lim
j→∞

zj = z.

Thus, z ∈ F(Ω) = D. p

Before proceeding we recall some standard notations. First, let 〈·, ·〉 denote

the standard inner product on Cd, that is, 〈z,w〉 = wtz for all z,w ∈ Cd. Then,
given a C1 function f : Cd → R, let ∇f denote the gradient of f , that is,

lim
h→0

f (z + hv)− f (z)
h

= Re
〈∇f (z), v〉

for all z,v ∈ Cd. The next lemma essentially says that the distance to the bound-
ary in the tangential direction is much larger than the distance to the boundary in
the normal direction.

Lemma 4.8. For everym > 0, there exists δm > 0 such that the following hold:
if z0 ∈ Ω∩ Bd(0;δm), T > 0, and

{z0 + xe1 : −T < x < T} ⊂ Ω,

then

{z0 + (x + iy)e1 : −T/2 ≤ x ≤ T/2, −mT ≤ y ≤mT } ⊂ Ω.
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Proof. Fix a C1 defining function ρ : Cd → R of Ω; that is,

Ω = {z ∈ Cd : ρ(z) < 0}

and ∇ρ(z) ≠ 0 in a neighborhood of ∂Ω. Since 0 ∈ ∂Ω and Ω ⊂ Bd(e1; 1), we
must have ∇ρ(0) = −e1.

Since {0} =
{
z ∈ Ω : Re 〈z, e1〉 = 0

}
, there exists δm > 0 such that if z ∈ Ω

and Re 〈z, e1〉 < 2δm, then

‖∇ρ(z)− (−e1)‖ < 1
2m+ 1

.

Now fix z0 ∈ Ω∩Bd(0;δm) and T > 0 so that {z0+xe1 : −T < x < T} ⊂ Ω.
Since Ω ⊂ Bd(e1; 1), we have

0 ≤ Re 〈z0 − Te1, e1〉 = Re 〈z0, e1〉 − T < δm − T ,

and so T ≤ δm. Thus, Re 〈z0 + xe1, e1〉 < 2δm when −T < x < T .
Now fix −T/2 ≤ x ≤ T/2. Then,

ρ(z0 + xe1) = ρ(z0 − Te1)+
∫ x
−T

Re 〈∇ρ(z0 + te1), e1〉dt

≤ ρ(z0 − Te1)+
∫ x
−T

(
−1+ 1

2m+ 1

)
dt

≤ 0− 2m
2m+ 1

(x + T) ≤ − m

2m+ 1
T .

Let

y+ := min{y ≥ 0 : z0 + (x + iy)e1 ∈ ∂Ω}.

Notice that, if y ∈ [0, y+), then z0 + (x + iy)e1 ∈ Ω and

Re
〈
z0 + (x + iy)e1, e1

〉 = Re 〈z0 + xe1, e1〉 < 2δm.

Thus,

0 = ρ(z0 + (x + iy+)e1)

= ρ(z0 + xe1)+
∫ y+

0
Re
〈∇ρ(z0 + (x + iy)e1), ie1

〉
dy

≤ − m

2m+ 1
T +

∫ y+

0

1
2m+ 1

dy = 1
2m + 1

(
y+ −mT) .

Hence, y+ ≥mT . Next, define

y− = max{y ≤ 0 : z0 + (x + iy)e1 ∈ ∂Ω}.
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Then, a similar argument shows that y− ≤ −mT , and so

{z0 + (x + iy)e1 : −mT ≤ y ≤mT} ⊂ Ω.

Since −T/2 ≤ x ≤ T/2 was arbitrary, this completes the proof of the lemma. p

Lemma 4.9. Aut(D) contains the one-parameter subgroup

ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd).

Proof. It is enough to fix w0 ∈ D and t ∈ R; then, we show w0 + ite1 ∈ D.
Since the sequence Fn converges locally uniformly to F , there exist ε > 0 and

N ≥ 0 such that Bd(w0; ε) ⊂ Fn(Ω) = Λn(Ω) for all n ≥ N.
Define wn := Λ−1

n w0. Then,

{wn + xe1 : −rnε < x < rnε} ⊂ Λ−1
n Bd(w0; ε) ⊂ Ω(4.2)

when n ≥ N.
Fix m ∈ N such that |t| < mε. Let δm > 0 be the associated constant

from Lemma 4.8. Since rn → 0, we have limn→∞wn = 0. Thus, by increasing
N we can assume wn ∈ Bd(0;δm) when n ≥ N. Then, by Equation (4.2) and
Lemma 4.8,

{
wn + (x + iy)e1 : −rnε/2 < x < rnε/2, −mrnε < y <mrnε

} ⊂ Ω

when n ≥ N. Thus,

S := {w0 + (x + iy)e1 : −ε/2 < x < ε/2, −mε < y <mε} ⊂ ΛnΩ.

Then, when n ≥ N,

KΛnΩ(w0,w0 + ite1) ≤ KS(w0,w0 + ite1),

and so

sup
n≥N

KΛnΩ(w0,w0 + ite1) < +∞.

Hence, Lemma 4.7 implies that w0 + ite1 ∈ D. p

5. THE GEOMETRY OF THE RESCALED DOMAIN

For the rest of this section, suppose that D ⊂ Cd is a domain where Pα ⊂ D ⊂ Pβ
for some 0 < β < α.

Define

HD := D ∩C ·e1 =
{
(z,0, . . . ,0) ∈ Cd : Re(z) > 0

}

and H := {z ∈ C : Re(z) > 0}.
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Observation 5.1. If z,w ∈H , then

KD
(
(z,0, . . . ,0), (w,0, . . . ,0)

)
= KH (z,w).

Proof. The inclusion map

ι : H → D
ι(z) = (z,0, . . . ,0)

implies that

KD
(
(z,0, . . . ,0), (w,0, . . . ,0)

)
≤ KH (z,w).

for all z,w ∈H . Since

D ⊂ Pβ ⊂
{
(z1, . . . , zd) ∈ Cd : Im(z1) > 0

}
,

the projection map

π : D →H
π(z1, . . . , zd) = z1

implies that

KH (z,w) ≤ KD
(
(z,0, . . . ,0), (w,0, . . . ,0)

)

for all z,w ∈H . p
Observation 5.1 implies that HD can be parametrized to be a complex geo-

desic (see Definition 2.2). The next observation proves that, up to parametriza-
tion, this is the only complex geodesic joining two points in HD.

Proposition 5.2. Suppose p,q ∈HD are distinct and ϕ : D→ D is a complex
geodesic with p,q ∈ϕ(D). Then, there exists φ ∈ Aut(D) such that

(ϕ ◦φ)(λ) =
(

1+ λ
1− λ,0, . . . ,0

)

for all λ ∈ D. In particular, ϕ(D) =HD.

Proof. By hypothesis, p = (p1,0, . . . ,0) and q = (q1,0, . . . ,0) for some
p1, q1 ∈ H . Let f : H → D be a biholomorphism, and consider the map
ϕ̂ := ϕ ◦ f : H → D. Let ϕ̂1, . . . , ϕ̂d denote the coordinate functions of ϕ̂.
Since

D ⊂ Pβ ⊂
{
(z1, . . . , zd) ∈ Cd : Re(z1) > 0

}
,
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we have ϕ̂1(H ) ⊂ H . Further, by Observation 5.1, if ϕ̂(λ1) = p and ϕ̂(λ2) =
q, then

KH (λ1, λ2) = KD(f (λ1), f (λ2)) = KD
(
ϕ(f(λ1)),ϕ(f (λ2))

) = KD(p, q)
= KH (p1, q1) = KH (ϕ̂1(λ1), ϕ̂1(λ2)).

Thus, by the Schwarz lemma, ϕ̂1 is a biholomorphism of H . Then, by replacing
f with f ◦ ϕ̂−1

1 , we can assume that ϕ̂1 = id.
We claim that ϕ̂j ≡ 0 for 2 ≤ j ≤ d. Fix t ∈ R; then, since D ⊂ Pβ we have

lim sup
λ→it

d∑

j=2

∣∣∣ϕ̂j(λ)
∣∣∣2 ≤ lim sup

λ→it
Re
(
ϕ̂1(λ)

) = lim sup
λ→it

Re(λ) = 0.

Thus,
lim
λ→it

ϕ̂j(λ) = 0

for 2 ≤ j ≤ d, so ϕ̂j extends continuously to H ∪iR with ϕ̂j|iR ≡ 0. Thus,
by the Schwarz reflection principle, ϕ̂j extends holomorphically to all of C. But
then, since ϕ̂j|iR ≡ 0, we have ϕ̂j ≡ 0.

Thus,
ϕ(λ) = (ϕ1(λ),0, . . . ,0)

where ϕ1 : D→H is a biholomorphism. Finally, define φ ∈ Aut(D) by

φ(λ) = ϕ−1
1

(
1+ λ
1− λ

)
.

Then,

(ϕ ◦φ)(λ) =
(

1+ λ
1− λ,0, . . . ,0

)

for all λ ∈ D. p

Proposition 5.3. Suppose (zn)n≥1, (wn)n≥1 are sequences in D with

lim
n→∞zn = ξ ∈ (iR)× {(0, . . . ,0)} = HD ∩ ∂D

and lim supn→∞KD(wn, zn) < +∞; then, limn→∞wn = ξ.

Proof. Notice that KPβ(z,w) ≤ KD(z,w) for all z,w ∈ D and

(iR)× {(0, . . . ,0)} ⊂ ∂D ∩ ∂Pβ .

Thus, this proposition follows immediately from the well-understood geometry of
(Pβ, KPβ); it is a standard model of complex hyperbolic d-space.
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For the reader’s convenience we provide a complete argument. Consider the
complex affine hyperplane

H = ξ + Span
C
{e2, . . . , ed}.

Then, H ∩Pβ = ∅ and ξ ∈ H. By standard estimates for the Kobayashi distance
on a convex domain (see, e.g., [25, Lemma 4.2]),

KPβ(z,w) ≥
1
2

log
dEuc(w,H)

dEuc(z,H)

for all z,w ∈ Pβ. Thus, we must have limn→∞ dEuc(wn,H) = 0. Then, since
H ∩Pβ = {ξ}, we have limn→∞wn = ξ. p

6. THE DOMAIN IS SYMMETRIC

In this section we prove the following.

Proposition 6.1. Suppose Ω ⊂ Cd is a bounded domain which covers a compact
manifold. If ∂Ω is C1,1, then Ω is a bounded symmetric domain.

Before starting the proof, we recall the following notation.

Definition 6.2. Given a domain Ω ⊂ Cd, let Aut0(Ω) denote the connected
component of the identity in Aut(Ω).

Proof of Proposition 6.1. Proposition 4.1 implies that Aut(Ω) is non-discrete,
and Proposition 3.3 implies that Ω is simply connected. Hence, by Theorem 1.7
either Ω is a bounded symmetric domain, orΩ is biholomorphic to D1×D2 where
D1 is a bounded symmetric domain and Aut(D2) is an infinite discrete group.

We assume the second possibility and derive a contradiction.
By Proposition 4.1, there exists a biholomorphism F : D1 × D2 → D where

D ⊂ Cd is a domain such that Pα ⊂ D ⊂ Pβ for some α > β > 0, and Aut(D)
contains the one-parameter subgroup ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd).

Define
G := F ◦

(
{id} × Aut(D2)

)
◦ F−1 ≤ Aut(D).

Then, by assumption, G is an infinite discrete subgroup of Aut(D), and G com-
mutes with

Aut0(D) = F ◦
(

Aut(D1)× {id}
)
◦ F−1.

We will obtain a contradiction by establishing the following.

Claim: G is a finite group.

Since Aut0(D1 ×D2) = Aut0(D1)× {id}, for any z = (z1, z2) ∈ D1 ×D2 we
have

Aut0(D1 ×D2) · z = D1 × {z2}.
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In particular, the orbit Aut0(D1×D2) ·z is a complex analytic variety in D1×D2.
Thus, for any w ∈ D, the orbit Aut0(D) ·w is a complex analytic variety in D.
Further, since Aut(D) contains the one-parameter group

ut(z1, . . . , zd) = (z1 + it, z2, . . . , zd),

for any w0 ∈ D and w ∈ Aut0(D) ·w0, the tangent space Tw(Aut0(D) ·w0) of
Aut0(D) ·w0 at w contains ie1. Thus, since Aut0(D) ·w0 is a complex analytic
variety,

C ·e1 ⊂ Tw
(

Aut0(D) ·w0

)
.(6.1)

As before, let HD := {(z,0, . . . ,0) : Re(z) > 0}. Then, by Equation (6.1),

HD ⊂ Aut0(D) · e1.

Thus, for each z ∈HD, there exists φz ∈ Aut0(D) such that φz(e1) = z.
Now suppose g ∈ G. Then, for z ∈HD we have

KD(z, g(z)) =KD(φz(e1), gφz(e1)) = KD(φz(e1),φzg(e1)) = KD(e1, g(e1)),

since G commutes with Aut0(D). Hence,

sup
z∈HD

KD(z, g(z)) = KD(e1, g(e1)) < +∞.(6.2)

Let H := {λ ∈ C : Re(λ) > 0}, and define the map

ψ : H → D
ψ(λ) = g(λ,0, . . . ,0).

Then, let ψ1, . . . ,ψd denote the coordinate functions of ψ. By Proposition 5.3
and Equation (6.2), if t ∈ R, then

lim
λ→it

ψ(λ) = (it,0, . . . ,0).

Thus, by applying the Schwarz reflection principle to each ψj , we can extend ψ

to a map C→ C
d such that

ψ(it) = (it,0, . . . ,0)

for t ∈ R. But then, by the identity theorem for holomorphic functions, we have
ψ(λ) = (λ,0, . . . ,0) for all λ ∈ C. In particular, g(e1) = e1.

Since g ∈ G was arbitrary we see that G · e1 = e1. Since D is biholomorphic
to a bounded domain, Aut(D) acts properly onD, and hence G must be compact.
Since G is also discrete, we see that G is finite. Thus, we have a contradiction. p
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7. POLYDISKS IN BOUNDED SYMMETRIC DOMAINS

In this section we recall some facts about polydisks in bounded symmetric do-
mains.

Definition 7.1. Suppose Ω is a bounded symmetric domain. The real rank of
Ω is the largest integer r such that there exists a holomorphic isometric embedding
f : (Dr , KDr )→ (Ω, KΩ).

From the characterization of bounded symmetric domains, every bounded
symmetric domain has real rank at least one. Moreover, the real rank is one if and
only if the symmetric domain is biholomorphic to the unit ball.

The next result says that there are many isometric embeddings of polydisks
(see [21, pg. 280]).

Theorem 7.2 (Polydisk Theorem). Suppose Ω is a bounded symmetric domain
with real rank r . If z1, z2 ∈ Ω, then there exist a holomorphic isometric embedding
f : (Dr , KDr )→ (Ω, KΩ) whose image contains z1, z2.

For any bounded symmetric domain Ω ⊂ C
d, Harish-Chandra constructed

an embedding F : Ω ֓ C
d whose image is convex and bounded (see [17, Chapter

II, Section 4]). Further, there exists a norm ‖·‖HC on Cd such that

F(Ω) =
{
z ∈ Cd : ‖z‖HC < 1

}
.

We will use the following terminology.

Definition 7.3. A bounded symmetric domain Ω ⊂ Cd is in standard form if
it coincides with the image of its Harish-Chandra embedding.

We now recall the following well-known description of the Bergman kernel
on a bounded symmetric domain (see, e.g., [5] or [17, Chapter II, Section 5]).

Theorem 7.4. Suppose Ω ⊂ C
d is a bounded symmetric domain in standard

form with real rank r . Assume Φ : (Dr , KDr ) → (Ω, KΩ) is a holomorphic isometric
embedding with Φ(0) = 0. Then, there exist constants p,C > 0 such that

κΩ(Φ(z),Φ(z)) = C



r∏

j=1

(
1−

∣∣∣zj
∣∣∣2
)

−p

for all z ∈ Dr . Moreover, p ≥ (d+ r)/r .

Here are precise references for the proof of Theorem 7.4: by the discussion on
pages 76 and 77 in [5], there exist constants p,C > 0 such that

κΩ(Φ(z),Φ(z)) = C



r∏

j=1

(
1−

∣∣∣zj
∣∣∣2
)

−p

for all z ∈ D
r . The lower bound on p follows from Equations (1.9) and (3.3)

in [5].
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7.1. Complex geodesics in polydisks. We will use the following observations
about complex geodesics in polydisks.

Lemma 7.5. Suppose z = (z1, . . . , zr ) ∈ D
r and |za| ≠ |zb| for some 1 ≤

a,b ≤ r . Then, there exist two complex geodesics ϕ1,ϕ2 : D → D
r whose images

contain z and 0, but ϕ1(D) ≠ ϕ2(D).

Proof. By permuting the coordinates we can assume that

0 ≤ |z1| ≤ |z2| ≤ · · · ≤ |zr | .
Since |z1| < |zr | there exist two holomorphic functions f1, f2 : D→ D such that
f1(0) = f2(0) = 0, f1(zr ) = f2(zr ) = z1, and f1 ≠ f2. For 2 ≤ j ≤ r − 1, select
ωj ∈ D such that ωjzr = zj . Then, for j = 1,2, define the map

ϕj : D→ D
r

ϕj(λ) = (fj(λ),ω2λ, . . . ,ωr−1λ,λ).

Since each ϕj is holomorphic, we have

KDr (ϕj(λ1),ϕj(λ2)) ≤ KD(λ1, λ2)

for all λ1, λ2 ∈ D. Further, by projecting onto the last component, we have

KDr (ϕj(λ1),ϕj(λ2)) ≥ KD(λ1, λ2)

for all λ1, λ2 ∈ D. Thus, ϕ1,ϕ2 : D → D
r are both complex geodesics with

ϕ1(zr ) = ϕ2(zr ) = z. Finally, since f1 ≠ f2, we have ϕ1(D) ≠ϕ2(D). p

Lemma 7.6. Suppose z = (z1, . . . , zr ) ∈ Dr −{0} and

|z1| = · · · = |zr | .
If ϕ : D → D

r is a complex geodesic with ϕ(0) = 0 and ϕ(λ0) = z, then |λ0| =
|z1| and

ϕ(λ) =
(
z1

λ0
λ, . . . ,

zr
λ0
λ

)

for all λ ∈ D.

Proof. Since

KD(0, λ0) = KDr (0, z) = max
1≤j≤r

KD(0, zj) = KD(0, z1),

we must have |λ0| = |z1|. Then, applying the Schwarz lemma to each component
function of ϕ shows that

ϕ(λ) =
(
z1

λ0
λ, . . . ,

zr
λ0
λ

)

for all λ ∈ D. p
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8. BOUNDED SYMMETRIC DOMAINS WITH SMOOTH BOUNDARIES

Theorem 8.1. Suppose Ω is a bounded symmetric domain with C1,1 boundary.
Then, Ω is biholomorphic to the unit ball.

The rest of the section is devoted to the proof of the Theorem. Suppose then
Ω is a bounded symmetric domain with C1,1 boundary. Let r denote the real rank
of Ω.

LetΩHC denote the image of the Harish-Chandra embedding ofΩ. By Propo-

sition 4.1, there exists a biholomorphism F : D → ΩHC where D ⊂ Cd is a domain
such that Pα ⊂ D ⊂ Pβ for some α > β > 0. By post-composing F with an ele-
ment of Aut(ΩHC) we may assume that F(e1) = 0.

Lemma 8.2. A holomorphic isometric embedding Φ : (Dr , KDr ) → (D,KD)
exists such that

Φ(λ, . . . , λ) =
(

1+ λ
1− λ,0, . . . ,0

)

for all λ ∈ D.

Proof. As before, define

HD := D ∩C ·e1 =
{
(z,0, . . . ,0) ∈ Cd : Re(z) > 0

}
.

Fix w0 ∈ HD \{e1}. By Theorem 7.2 there exists a holomorphic isometric
embedding Φ0 : (Dr , KDr ) → (D,KD) with e1,w0 ∈ Φ0(D

r ). By pre-composing
Φ0 with an element of Aut(Dr ) ≥ Aut(D)× · · · × Aut(D), we may assume that

Φ0(0) = e1 and Φ0(t1, . . . , tr ) = w0

for some real numbers t1, . . . , tr ∈ [0,1).
By the “in particular” part of Proposition 5.2, every complex geodesic in D

containing e1,w0 has imageHD. Thus, by Lemma 7.5, we must have t1 = · · · =
tr . Then, by Lemma 7.6,

HD = {Φ0(λ, . . . , λ) : λ ∈ D}.

Then, by the first part of Proposition 5.2, there exists φ ∈ Aut(D) such that

Φ0(φ(λ), . . . ,φ(λ)) =
(

1+ λ
1− λ,0, . . . ,0

)

for all λ ∈ D. Finally, the map

Φ(z1, . . . , zr ) := Φ0(φ(z1), . . . ,φ(zr ))

has all of the desired properties. p



2674 ANDREW ZIMMER

Next, consider the function

J : D→ C

J(λ) = det
(
F ′
(

1+ λ
1− λ,0, . . . ,0

))
= det(F ′(Φ(λ, . . . , λ)))

where F ′(z) is the complex Jacobian matrix of F . Since F is a biholomorphism, J
is nowhere zero. We will show thatΩHC is biholomorphic to the ball by estimating
the boundary values of J. To that end, define ΦHC := F◦Φ. Notice that ΦHC(0) =
F(e1) = 0.

Let κD and κΩHC
be the Bergman kernels of D and ΩHC , respectively. We will

use the notation that

κD(z) := κD(z, z) and κΩHC
(w) := κΩHC

(w,w)

for z ∈ D and w ∈ ΩHC . Then, by Proposition 2.4,

|J(λ)|2 = κD (Φ(λ, . . . , λ))
κΩHC

(ΦHC(λ, . . . , λ))
=

κD
(

1+λ
1−λ ,0, . . . ,0

)

κΩHC
(ΦHC(λ, . . . , λ))

(8.1)

for all λ ∈ D.

Lemma 8.3. There exist constants 0 < a < b such that

a

(
1− |λ|
|1− λ|2

)−(d+1)

≤ κD
(

1+ λ
1− λ,0, . . . ,0

)
≤ b

(
1− |λ|
|1− λ|2

)−(d+1)

for all λ ∈ D.

Proof. Since Ω ⊂ Pβ, Proposition 2.3 and Observation 2.5 imply there exists
a constant Cβ > 0 such that

Cβ (Re(z))
−(d+1) = KPβ(z,0, . . . ,0) ≤ KD(z,0, . . . ,0)

for all z ∈H . Further,

1− |λ|
|1− λ|2 ≤ Re

(
1+ λ
1− λ

)
≤ 2

1− |λ|
|1− λ|2

for all λ ∈ D. Combining these two estimates provides the lower bound

Cβ

(
1− |λ|
|1− λ|2

)−(d+1)

≤ κD
(

1+ λ
1− λ,0, . . . ,0

)
.

The same argument with Pα ⊂ Ω yields the upper bound. p
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Lemma 8.4. Ω is biholomorphic to the unit ball.

Proof. By Equation (8.1), Theorem 7.4, and Lemma 8.3, there exist constants
C > 0 and p ≥ (d+ r)/r such that

|J(λ)|2 ≤ C

(
1− |λ|
|1− λ|2

)−(d+1)(
1− |λ|2

)rp ≤ C

(
1− |λ|
|1− λ|2

)−(d+1)(
1− |λ|2

)d+r

≤ C |1− λ|2(d+1) (1+ |λ|)d+r (1− |λ|)r−1

for all λ ∈ D.
Thus, if r > 1, then J extends continuously to ∂D and J|∂D ≡ 0. Then,

by the maximal principle, J ≡ 0. But this contradicts the fact that J is nowhere
vanishing. Thus, we must have r = 1, and hence Ω is biholomorphic to the unit
ball.

p

9. PROOF OF THEOREM 1.1

Theorem 1.1 is an immediate consequence of Proposition 6.1 and Theorem 8.1.
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