Smoothly Bounded Domains Covering Compact
Manifolds

ANDREW ZIMMER

ABSTRACT. We show that if a bounded domain in complex Eu-
clidean space with C'"! boundary covers a compact manifold, then the
domain is biholomorphic to the unit ball. In particular, this shows that
complex hyperbolic spaces are the only Hermitian symmetric spaces
biholomorphic to bounded domains with C"! boundary.

1. INTRODUCTION

Given a domain Q ¢ C4 let Aut(Q) denote the biholomorphism group of Q.
When Q is bounded, H. Cartan proved that Aut(Q) is a Lie group (with possibly
infinitely many connected components) and acts properly on Q.

We say that a domain Q ¢ C% covers a compact manifold if there exists a
discrete group I' < Aut(Q) such that I acts freely, properly discontinuously, and
co-compactly on Q. The simplest example of a domain which covers a compact
manifold is the unit ball B; ¢ C%. In this case, Aut(Bg) is isomorphic to the
matrix group PU(1, d), and any co-compact torsion-free lattice I' < Aut(Bg4) acts
freely, properly discontinuously, and co-compactly on Bg.

In this paper we prove that, up to biholomorphism, the unit ball is the only
domain covering a compact manifold with C"! boundary.

Theorem 1.1. Suppose Q C C% is a bounded domain which covers a compact
manifold. If0Q is C'', then Q is biholomorphic to the unit ball.

A bounded domain Q ¢ C4 is called symmetric if Aut(Q) is a semisimple
Lie group which acts transitively on Q. A theorem of Borel [2] says that every
bounded symmetric domain covers a compact manifold, and so we have the fol-
lowing corollary.
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Corollary 1.2. Suppose Q C C? is a bounded symmetric domain and dQ is C-'.
Then, ) is biholomorphic to the unit ball.

Theorem 1.1 extends a classical result of Rosay and Wong from the 1970s.

Theorem 1.3 (Rosay [15], Wong [22]). Suppose Q) C C% is a bounded domain

which covers a compact manifold. If 0Q is C?, then Q is biholomorphic to the unit
ball.

Remark 1.4. Wong proved Theorem 1.3 for strongly pseudoconvex domains,
and Rosay extended the result to any bounded domain with C* boundary.

Over the last forty years many different proofs of Theorem 1.3 have been
found, but they all rely on essentially the same idea: every bounded domain
Q ¢ €% with C? boundary has at least one strongly pseudoconvex boundary point,
and the interior complex geometry of Q near a strongly pseudoconvex boundary
point is close to the interior complex geometry of the unit ball. Then, since Q cov-
ers a compact manifold, the interior complex geometry of Q is everywhere close to
the interior complex geometry of the unit ball. Then, a limiting argument shows
that Q is biholomorphic to the ball.

One way to make this precise is to consider the Bergman metric g on Q.
This is a Aut(Q)-invariant Kihler metric on Q and, since the boundary is C 2 also
complete by a result of Ohsawa [14]. Kim-Yu [9] proved that the holomorphic
sectional curvature of g is limited to —4/(d+1) at & (see also [10]). Since Aut(Q)
acts co-compactly on Q, for any point z € Q there exists a sequence @, € Aut(Q)
such that @, (z) — &o. Then, by the invariance of g, the holomorphic curvature
at z equals —4/(d + 1). Since z was arbitrary, (Q, g) has constant holomorphic
curvature and hence, by a theorem of Q. K. Lu [12], Q is biholomorphic to the
ball. (For more details, see Section 5 in [9].)

In the C"! case it is no longer possible to simply localize around a strongly
pseudoconvex point, which makes the argument more complicated.

1.1. A conjecture. Recently, we generalized Theorem 1.3 in a different di-
rection by only assuming that the domain covers a finite volume manifold.

Theorem 1.5 (Z. [24]). Suppose Q C C% is a bounded pseudoconvex domain
with C* boundary and T < Aut(Q) is a discrete group acting freely on Q. IfT\Q has
finite volume with respect to either the Bergman volume, the Kiihler-Einstein volume,
or the Kobayashi-Eisenman volume, then Q) is biholomorphic to the unit ball.

Based on this it seems natural to ask if Theorem 1.1 can also be extended to
the finite volume case.

Conjecture 1.6. Suppose Q C C% is a bounded pseudoconvex domain with
C"! boundary and T < Aut(Q) is a discrete group acting freely on Q. If I'\Q
has finite volume with respect to either the Bergman volume, the Kihler-Einstein
volume, or the Kobayashi-Eisenman volume, then Q is biholomorphic to the unit

ball.
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1.2. Outline of the proof of Theorem 1.1. Our proof in the C"'! case is
substantially different than the standard proofs in the C* case and requires both
local and global arguments.

Fix a bounded domain @ ¢ €% with C! boundary and a discrete group

I' < Aut(Q) such that T acts freely, properly discontinuously, and co-compactly
on Q.

Step 1: For & > 0 define
d 2
Pu=1(21,...,2a) € C?*:Re(z1) > a > ‘Zj‘ )
j=2

Notice that P« is biholomorphic to the unit ball.
We use a rescaling argument to show that Q is biholomorphic to a domain

D ¢ C% where the following hold:

(1) There exist 0 < B < & such that Py € D C Pg.
(2) Aut(D) contains the one-parameter subgroup

U (z1,...,2q3) = (z1 +1it,z3,...,24).

In particular, Aut(Q) = Aut(D) is non-discrete.

Step 2: Next, we use a theorem of Frankel and Nadel to deduce that Q is a
bounded symmetric domain.

Theorem 1.7 (Frankel, Nadel [7,13]). Suppose M is a compact complex man-
ifold with ¢, (M) < 0 and M is the universal cover of M. If Aut (1\7 ) is non-discrete,

then M is biholomorphic to either a bounded symmetric domain, or a non-trivial
product D\ X Dy where Dy is a bounded symmetric domain and Aut(D,) is discrete.

Remark 1.8.

(1) Nadel [13] proved Theorem 1.7 when d = 2, and then Frankel [7] ex-

tended the result to all dimensions.

(2) Theorem 1.7 is one of several rigidity results which consider manifolds

whose universal cover has a non-discrete isometry group (see [4,6, 11]).

(3) In our setting, the quotient I'\Q will be aspherical, and in this special case

an alternative proof of Theorem 1.7 can be found in [6].

If M :=T\Q, then ¢; (M) < 0 (see the discussion on [7, pg. 286]). Further,
the domain Q is simply connected (see Proposition 3.3), and hence is the universal
cover of M. Thus, by Step 1 and Theorem 1.7, we see that Q is either symmetric
or biholomorphic a product D X D, where D; is symmetric and D has discrete
automorphism group. We will use the geometry of the rescaled domain from
Step 1 to show that it is impossible for Q to be biholomorphic to such a product.
Thus, Q is a bounded symmetric domain.
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Step 3: To finish the proof of Theorem 1.1 we exploit the geometry of the rescaled
domain D and the theory of bounded symmetric domains. Let Qg € C% be the
image of the Harish-Chandra embedding of Q. Then, by Step 1, there exists a
biholomorphism F : D — Qpc.

To show that Q is biholomorphic to the ball, we introduce the holomorphic
function

J:D-C

JQ) =det(F'(iiLi,0,...,0>>,

where F'(z) is the Jacobian matrix of F. This function measures the volume
contraction/expansion of F along the linear slice

C-e;ND = {(z,o,...,()) e 4 : Re(2) >0}

of D. Since F is a biholomorphism, J is nowhere zero.
We will estimate J using the “change of variable formula” for the Bergman
kernels on D and Qp¢:

Kp(z,w) = Koy, (F(z),F(w)) det(F'(z))det(F' (w)).

Combining this with a formula for the Bergman kernel on Qg ¢ from [5], we show
the following: if Q is not biholomorphic to the ball, then J extends continuously
to 0D and J|ap = 0. But then the maximal principle would imply that J = 0,
which is impossible. Thus, Q is biholomorphic to the unit ball. A key part in this
step is showing that

1+A
1-A

AelD)—»F( ,0,...,0>eQHc

parameterizes the diagonal of a maximal polydisk in Qpc.
2. PRELIMINARIES
2.1. Notation. Forzye C%and v > 0 let

Ba(zo;7) = {z € C%: |z — zoll < 7).

Also let ey, ..., e4 denote the standard basis of C.

2.2. The Kobayashi metric. Given a domain Q C C%, the (infinitesimal)
Kobayashi metric is the pseudo-Finsler metric

ko(x;v) = inf{|E] : f € Hol(A,Q), £(0) = x, d(f)o(§) = v}.
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By a result of Royden [16, Proposition 3] the Kobayashi metric is an upper semi-
continuous function on Q X C%. In particular, if 0 : [a,b] — Q is an absolutely
continuous curve (as a map [a, b] — (Cd), then the function

t € [a,b] = ka(o(t);0'(1))

is integrable, and we can define the length of o to be

b
la(0) = | kalo®s0" )t
a
One can then define the Kobayashi pseudo-distance to be

Kao(x,y) =inf{fq(0) : 0: [a,b] — Q is absolutely continuous,
with o (a) = x, and o (b) = y}.

This definition is equivalent to the standard definition of Kq via analytic chains
(see [20, Theorem 3.1]).

We will use the following property of the Kobayashi metric (which is imme-
diate from the definition).

Observation 2.1. Suppose O C C™, Qy ¢ C% are domains. If f: Q1 — O
is holomorphic, then

Ko,(f(p), f(@) <Kq,(p,a) and kq,(f(p);d(f)p(v)) < ko, (p;v)

forallp,g e Qyand v € c4,

We will also consider the following special class of maps of the disk into a
domain.

Definition 2.2. Suppose that Q ¢ C% is a domain. A holomorphic map
@ : D — Qis called a complex geodesic it Ko(p(2),p(w)) = Kp(z,w) for all
z,w e D.

2.3. The Bergman kernel and basic properties. Let i denote the Lebesgue
measure on C%. Then, for a domain Q ¢ C% let H?*(Q) be the Hilbert space of
holomorphic functions f : Q — C with [, | £*du < +oo. If {¢pj:jeJ}isan
orthonormal basis of H2(Q), then the function

Ko:QxQ —C
Ko(z,w) = > ¢j(z)P;(w)
jel

is called the Bergman kernel of Q.
We now recall two important properties of the Bergman kernel, proofs of both
can be found in [8, Chapter 12].
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Proposition 2.3 (Monotonicity). If Q) C Q C C% are domains, then we have
that Ko, (z,z) < Kq,(2,2) forall z € Q.

Proposition 2.4 (Change of variable formula). If Q1,Q, C C% are domains
and F : Q1 — Qy is a biholomorphism, then

Ko, (z,w) = Kq,(F(2),F(w)) det(F'(z))det(F' (w))

forall z,w € Q.
We will also use the following well-known calculation.
Observation 2.5. Suppose x > 0 and

a
Py = {(21,---,Zd) € C%:Re(z1) > a3, ‘Zj)z}'

j=2
Then, there exists Cx > 0 such that
kpo ((A,0,...,0),(A,0,...,0)) = CaRe(A)"@*D

forall (A,0,...,0) € Py.
Since the proof is short we include it.

Proof. Let
Co = Kq, ((1,0,...,0),(1,0,...,0)),
and consider the automorphisms a, us € Aut(Py) given by

U2z, ..., et'?zy)

ai(zi,...,zq) = (e'zy,e
and
U (Z1,...,2q3) = (z1 +1it,z3,...,24).
Then,
(A,0,...,0) = Umnm@®) AlogRe(r) (1, 0,..., 0),

and so Proposition 2.4 implies that

kpo ((4,0,..,0),(A,0,....,0)) = CoRe(A)~ @+, .
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2.4. A higher-dimensional variant of Hurwitz’s theorem. We will use the
following higher-dimensional variant of Hurwitz’s theorem.

Theorem 2.6 (Deng-Guan-Zhang 3, Theorem 2.2]). Suppose D C C%isa
bounded domain and x € D. Let fy : D — C% be a sequence of injective holomorphic
maps such that fn(x) = 0 for all n and fn converges locally uniformly to a map

f:D - C% If there exists € > 0 such that B4(0;€) C fu(D) for all n, then f is
injective.

3. DOMAINS WITH CO-COMPACT AUTOMORPHISM GROUPS

In this subsection we prove two basic facts about domains whose automorphism
group acts co-compactly (i.e., there is a compact subset whose translates by the
automorphism group cover the domain). Both are probably well known.

Proposition 3.1. IfQ C C% is a bounded domain and Aut(Q) acts co-compactly

on Q, then (O, Kq) isa proper metric space. Hence, Q) is pseudoconvex.

Remark 3.2.

(1) Recall that a metric space is called proper if bounded sets are relatively
compact. Proper metric spaces are clearly Cauchy complete, and so the
“hence” part of Proposition 3.1 follows from a result of Wu [23, Theorem
F].

(2) Siegel [19] proved that if a bounded domain covers a compact manifold,
then the domain is pseudoconvex (see [18, Section 2.1] for an exposition).

Proposition 3.3. IfQ C C% is a bounded domain, Aut(Q) acts co-compactly on
Q, and 0Q is C', then for every m > 1 the m" homotopy group 1t (Q) is trivial.
In particular, Q) is simply connected.

Remark 3.4. The proof of Proposition 3.3 is a simple modification of the
proof of the Lemma on pg. 256 in [22] which in [22] is attributed to R. Greene.

3.1. Proof of Proposition 3.1. Before proceeding, we recall some terminol-
ogy. If (X, d) is a metric space, [a,b] C R, and 0 : [a,b] — X is continuous,
then we define the length of o to be

N
{(o) = sup{z d(o(tj),o(tjy)):N=zl,a<ti<t)<---<Iiy< b]».
j=1
Then, (X, d) is called a length space if

d(x,y) =inf{€(0): 0 :[0,1] — X continuous with o (0) = x,0 (1) = y}
for every x,y € X.

We will use the following version of the Hopf-Rinow Theorem (for a proof,
see, e.g., [1, Chapter I, Theorem 2.2]).
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Theorem 3.5 (Hopf-Rinow). Suppose (X,d) is a locally compact length metric
space. Then, the following are equivalent:

(1) (X,q) is a proper metric space.

(2) (X,d) is Cauchy complete.

We will also use the following lemma.

Lemma 3.6. Suppose (X,d) is a locally compact metric space and there exists a
compact set K C X such that X = Isom(X,d) - K. Then, (X,d) is Cauchy complete.

Proof. We first claim that there exists 6 > 0 such that for any x € X the set
Bx(x;0):={yeX:d(x,y) <}

is compact. Since (X, d) is locally compact, for any k € K there exists 6 > 0
such that By (k; 6x) is compact. Then, since

K C Ukex{y € X :d(k,y) < 6k/2},
there exist k1,...,kn € K such that
Kcul {yeX:dkiy) < 6k/2}

Then, if § := min{8y,/2:i =1,...,N}, we see that Bx(x; ) is compact for any
x € K. Since X = Isom(X,d) - K, then Bx(x;6) is compact for any x € X.
Now suppose that (x5 )n>1 is a Cauchy sequence in (X, d). Then, there exists
N > 0 such that d(x,,xn) < & for n = N. Thus, {x, : n = N} € Bx(xn;98).
But then there exists a subsequence (X, )k=1 which converges. Thus, (X, d) is
Cauchy complete. O

Proof of Proposition 3.1. By construction, (Q,Kq) is a length metric space.
Further, since Q is bounded, it is easy to show that (Q, Kq) is locally compact.

By Lemma 3.6 the metric space (Q,Kq) is Cauchy complete. Thus, by The-
orem 3.5, Kq is a proper metric on Q.

Since (Q, Kq) is Cauchy complete, a result of Royden [16, Corollary pg. 1306]
says Q) is taut. Then, Q is pseudoconvex by a result of Wu [23, Theorem F]. O

3.2. Proof of Proposition 3.3. Without loss of generality, we can suppose
that 0 € Q. Then, by rotating and scaling we can assume 1 = max{||z|| : z € 0Q}
and e; € 0Q. Then, define the function

f:Q-C
f(zi,..,2zq) = e® 7L,
Then, | f(z)| <1 forall z € Q with equality if and only if z = e;.
Now fix a sequence (pn)n=1 in Q with e; = limy e pyn. Since Aut(Q) acts

co-compactly on Q, there exist sequences (@y)n>1 in Aut(Q) and (ky)pn>1 in Q

such that the following hold:
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(1) pn = Pn(kn).
(2) {kyn:mn = 0} is relatively compact in Q.

By Montel’s theorem we can pass to a subsequence so that @, converges locally

uniformly to a holomorphic map @« : Q — Q. By passing to another subse-
quence, we can also assume that k, — k € Q. Then,

QPw(k) = lim @, (ky) = lim p,, = e;.
N—o00 N — 0o

We now consider g = f o Qw; then, |g(z)| < 1forallz € Qand |g(k)| = 1.
Thus, by the maximal principle, g = 1, and so @ = e;.

Since 8Q is C!, there exists a neighborhood O of e; such that Q N O is con-
tractible. Now fix a continuous map o : S™ — Q. Since @y, converges locally
uniformly to @« = e and 0 (S™) is compact, there exists some 1 > 0 such that
(Pnoo)(S™) € ONQ. Thus, (pn o 0) is homotopically trivial, and so o is
homotopically trivial. Since o was arbitrary, 7, (Q) = 1.

4, RESCALING
As before, for & > 0 define

d
Py = {(21,...,zd) e C?: Re(zy) > az ‘Zj‘z}.
j=2

Proposition 4.1. Suppose Q) C C% is a bounded domain with ™' boundary. If

Aut(Q) acts co-compactly on Q, then Q is biholomorphic to a domain D ¢ C4 where
the following hold:

(1) Py C D C Pg forsome0 < B < «.
(2) Aut(D) contains the one-parameter subgroup

U (z1,...,2zq) = (z1 +it, z2,...,24).

4.1. Rescaling Euclidean balls. Before proving Proposition 4.1 we describe
a rescaling procedure.

We begin by recalling the definition of the local Hausdorff topology on the
set of all convex domains in C%. First, define the Hausdorff distance between two
non-empty compact sets A, B ¢ C% by

dy (A, B) = max {maxmin la — b||,maxmin ||b — all} .
acA beB beB acA

To obtain a topology on the set of all non-empty convex domains in C%, we con-
sider the local Hausdor(f pseudo-distances defined by

dif’ (A,B) = dy (AnBa(O;R), BN Ba(0;R)), R > 0.
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Then, a sequence of convex domains Q, converges to a convex domain € if there
exists some Rg > 0 such that limy;,_ « dH (Qn, ) =0 forall R = R,.
The Kobayashi distance is continuous with respect to this topology (see, e.g.,

[26, Theorem 4.1]).

Theorem 4.2. Suppose Qn C C% is a sequence of convex domains and Q =
limp—co Qn in the local Hausdorff topology. Assume the Kobayashi metric is non-
degenerate on Q) and each Qy. Then,

Ka(p,q) = lim Ko, (p,q)

Jorall p,q € Q. Moreover, the convergence is uniform on compact subsets of Q x Q.

Remark 4.3. Under the hypothesis of Theorem 4.2: if K C Q is a compact
set, then K C Qy, for n sufficiently large (see [26, Lemma 4.4]). Thus, Ko, (p,q)
is well defined for n sufficiently large (which depends on p, q).

We end this discussion with the following example.

Example 4.4. Fixv > 0, asequence ¥, > 0 converging to 0, and the sequence
of linear maps

An(21,...,24) = < L \/1_ %Zd)

Then, P10 = 71113.10 AnBg(re;7) in the local Hausdorff topology.

4.2. The proof of Proposition 4.1. The rest of the section is devoted to
the proof of the Proposition. Suppose then Q is a bounded domain with C"!
boundary and there exists a compact set K C Q such that Aut(Q) - K = Q.

Lemma 4.5. After applying an affine transformation, we can assume that
Ba(re;;v) CQC Bgler;1)

for some v € (0,1).

Proof- By translating we can assume that e; € Q. Then, we pick § € 0Q
such that [|§ — e1]| = max{||€ — e1|| : £ € 0Q}. By rotating and scaling Q about
e1, we can assume that & = 0. Then, Q C Bi(e;1).

For & € 0Q), let ng (&) be the inward pointing normal unit vector at §. Since
0Qis C1, there is some 7 > 0 such that B4 (E+rnq(E);v) c Q for every & € 0Q.
Then, since Q € By(ey; 1), we have nq(0) = e; and so By (re;r) C Q. O

Fix a sequence 7, € (0,7) converging to 0. Then, pick @, € Aut(Q) and
kyn € K such that @4, (k) = rneq. Then, consider the dilations

An(z1,...,24) = < 1 \/1_ %Zd)
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Let Qp := ApQand Fy, := Ap@y : Q — Qu. Then,

AnBg(rep;r) € Qun C Ay Baler; 1).
Further, by Example 4.4,

x = Ai_rgAn Ba(rey;v) where o := %
and

Pg = A%An B4(eq; 1) where B := %

in the local Hausdorft topology.
Lemma 4.6. After passing to a subsequence, Fy, converges to a holomorphic em-
bedding F : Q — 4. Moreover, if D = F(Q), then Py C D C Pg.

Proof. By construction Fy (ky) = e; and Observation 2.1 implies that

Ko, (z,w) < KA, By(e;;1) (2, W)

forall z,w € Qy. Theorem 4.2 implies that Kp, = 71113.10 KA, By(e;51) locally uni-

formly. Thus, using the Arzeld-Ascoli theorem, we can pass to a subsequence

where Fy, converges locally uniformly to a holomorphic map F : Q — C¢.
Let D = F(Q). Since

AnBa(resr) C Fu(Q) C AnBless 1)
for every n we see that
(4.1) Py CD CPg.
Next, we use Theorem 2.6 to show that F is injective. Since

Py = 7lli_f£10/\n Ba(rey;7)

in the local Hausdorff topology and Ay, Ba(rei;7) C Qy for every n = 0, there
exists € > 0 such that Bg(ej;€) C Fn(Q) for every n = 0. By passing to a
subsequence we can suppose that k, — k € K. Then, consider the maps G, (z) =
F,(z) — F,, (k). Since

lim F, (k) = lim Fy(ky) = F(k) = ey,
Nn—oo n—o

Gy converges locally uniformly to F — e;. Further, by passing to another subse-
quence we can suppose that |[e; — Fp (k) || < /2 for every n = 0. Then, for every
n = 0, the map Gy, is injective, G, (k) = 0, and B;4(0;€/2) € G, (Q). Thus, F is
injective by Theorem 2.6, so F is an embedding.
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Now, since F is an embedding, D is an open set, so Equation (4.1) becomes
P =int (Px) C D Cint (Pg) = Pg.

This completes the proof. O

Showing that Aut(D) contains a one-parameter subgroup requires some pre-
liminary lemmas.

Lemma 4.7. Suppose (zn)n=1 is a sequence, zy € Qp for everyn, limy—.o Zn =
z, andliminfKq, (e1,zyn) < +o. Then, z € D.
n—oo )

Proof. Fix zg € Q and let R = maxgekx Ka(2o, k). Then, pick nj — co such
that

M := lim KQ"'j(e],an) < 400,

j—oo
Since F,, (ky) = e and k, € K, for each j > 0, there exists
wj; € BQ(Z();R + M)

such that Fn;(wj) = zy,. By Proposition 3.1, Kq is a proper metric on Q. Thus,
we can pass to a subsequence such that w; — w € Q. Since F, — F locally
uniformly, we then have

F(w) = lim Fy,(wj) = lim z; = z.
Jj—oo Jj—oo

Thus, z € F(Q) = D. O

Before proceeding we recall some standard notations. First, let (-, -) denote
the standard inner product on C4, that is, (z,w) = W'z forall z,w € C%. Then,
given a C' function f : C?* - R, let Vf denote the gradient of f, that is,

. fz+hv) - f(z2)
m

|
hlqo h

=Re(Vf(2),v)

forall z,v € C?. The next lemma essentially says that the distance to the bound-
ary in the tangential direction is much larger than the distance to the boundary in
the normal direction.

Lemma 4.8. For every m > 0, there exists O > 0 such that the following hold:
ifzo € QN Ba(0;0m), T >0, and

{zo+xe;:-T<x<T}CQ,
then

{zo+ (x+iy)e: —-T/2<x<T/2, -mT <y =<mT}CQ.
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Proof. Fixa C 1 defining function p : C4 - R of Q; that is,
Q={zeC¥: p(z) <0}

and Vp(z) # 0 in a neighborhood of 0Q. Since 0 € 0Q and O C By (e;; 1), we
must have Vp(0) = —e;.

Since {0} = {Z € Q:Rel(z,e) = 0}, there exists 8, > 0 such thatif z € Q
and Re(z,e1) < 26, then

1

IVp(z) = (=ep)ll < ol

Now fix zg € QNB;4(0;0,,) and T > Osothat {zg+xe;: —-T <x < T} C Q.
Since Q € B4(eq; 1), we have

0SR€<20—T€1,€1> =Re<20,€1) -T< (Sm—T,

and so T < 0. Thus, Re(zg + xej,e1) <26y when —-T < x < T.
Now fix —T/2 < x < T/2. Then,

X
p(z0 + xe1) = plzo — Ter) +j Re (Vp(zo + te),er) dt
-T

X
<p(zo—Te;) + LT (—1 + 2m1+ 1) dt

<0-

2m
it D =T

Let
vy i=min{y =20:2zp + (x +iy)e; € 0Q}.
Notice that, if ¥ € [0, ), then zg + (x + iy)e; € Q and
Re(zo + (x +iy)er,e1) = Re(zg + xe1,e1) < 26m.
Thus,

0=p(zo+ (x+iyFer)

y+
—plzotxen) + | Re(Vplzo+ (x + iv)en)ier) dy
0

¥ 1 .
= T om+1 +Jo i 1Y = om0 omI).

Hence, y* = mT. Next, define
vy  =max{y <0:z0+ (x +iy)e; € 0Q}.
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Then, a similar argument shows that Yy~ < —mT, and so
{zo+ (x+iy)eg:—mT <y <mT} C Q.
Since —T/2 < x < T/2 was arbitrary, this completes the proof of the lemma. [
Lemma 4.9. Aut(D) contains the one-parameter subgroup
U (z1,...,2zq) = (z1 +it, z2,...,24).

Proof. Tt is enough to fix wy € D and t € R; then, we show wy + ite; € D.

Since the sequence Fy, converges locally uniformly to F, there exist € > 0 and
N = 0 such that Bz (wg; €) C Fp(Q) = Ap(Q) forall m = N.

Define wy, := A;;'wy. Then,

(4.2) {wy + xey : —rpe <x <1}t C AL By(wese) € Q

when n > N.

Fix m € N such that |[t|] < me. Let 8, > 0 be the associated constant
from Lemma 4.8. Since v, — 0, we have limy_ wy = 0. Thus, by increasing
N we can assume Wy € By(0;0,,) when n = N. Then, by Equation (4.2) and
Lemma 4.8,

{wy + (x +iy)er: —1pe/2 < x <1p€/2, —Mmrye <y <mrue} CQ
when n = N. Thus,
S:={wo+ (x +iy)e;: —€/2<x <¢&/2, —-me <y <me} C Ay Q.
Then, when n > N,

Kn,0(wo, wo + ite)) < Ks(wo, wo + itey),

and so
sup Ka,o(wo, wo + ite;) < +oo.
n=N
Hence, Lemma 4.7 implies that wy + ite; € D. |

5. THE GEOMETRY OF THE RESCALED DOMAIN

For the rest of this section, suppose that D ¢ C% is a domain where P € D C Pg
for some 0 < B < «.
Define

Hp:=DNC-ef = {(z,o,...,()) € C%: Re(2) >0}

and H := {z € C: Re(z) > 0}.
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Observation 5.1. If z,w € H , then
Kp((2,0,...,0), w,0,...,0)) = Ksr(z,w).

Proof. The inclusion map

t:H -D
t(z)=(z0,...,0)

implies that
KD((z,o,...,O),(w,o,...,())) < Kyr(z,w).

forall z,w € H. Since
DcPgci(zi....za) €C?:Im(z)) > 0},

the projection map

mw:D - H
(21,...,24) = Z1

implies that
Ky (z,w) < KD((z,o,...,O), (w,o,...,O))

forall z,w € H. O

Observation 5.1 implies that #{ p can be parametrized to be a complex geo-
desic (see Definition 2.2). The next observation proves that, up to parametriza-
tion, this is the only complex geodesic joining two points in H p.

Proposition 5.2. Suppose p,q € H p are distinct and @ : D — D is a complex
geodesic with p,q € @ (D). Then, there exists p € Aut(D) such thar

(@od)A) = (Hi,o,...,o)

for all A € D. In particular, (D) = Hp.

Proof- By hypothesis, p = (p1,0,...,0) and g = (41,0,...,0) for some
PLa1 € H. Let f : 5—[ — D be a blholomorphlsm, and con51der the map
Q:=@of:H — D. Let 1,...,Pa denote the coordinate functions of P.
Since

D cPgci{(zi....za) € C? :Re(z1) > 0},
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we have 1 (H') c H . Further, by Observation 5.1, if (A1) = p and $(A3) =
q, then

Kyr(A1,A2) = Kp(f (A1), f(A2)) = Kp(@(f(A1), (f(A2))) = Kp(p,q)
=Ky (p1,q1) = Ksr (@1(A1), P1(A2)).

Thus, by the Schwarz lemma, @; is a biholomorphism of # . Then, by replacing
f with f o @71, we can assume that @ = id.
We claim that @; = 0 for 2 < j < d. Fix t € R; then, since D C Pg we have

d
2
lim sup Z ‘(f?j(A) ‘ < limsupRe (91(A)) = limsupRe(A) = 0.
A—it  j=) A—it A—it

Thus,
lim &;(A) =0
A—it

for2 < j < d, so @; extends continuously to H Ui R with @lir = 0. Thus,
by the Schwarz reflection principle, @ ; extends holomorphically to all of C. But
then, since @;lir = 0, we have ; = 0.
Thus,
@A) = (@1(A),0,...,0)

where @1 : D — H is a biholomorphism. Finally, define ¢ € Aut(D) by

o (1+A
¢(A)_(pl (1—A>
Then,
1+A
(@) = (17,0,--,0)
forall A € D. O

Proposition 5.3. Suppose (zn)n=1, (Wn)n=1 are sequences in D with
%@;zn =f£e(iR) x{(0,...,0)} =HpnaD
and limsup, _  Kp(Wn,zn) < +00; then, limy oo Wy = &.
Proof. Notice that Kp;(z,w) < Kp(z,w) forall z,w € D and
(iR) x {(0,...,0)} coD NOPg.

Thus, this proposition follows immediately from the well-understood geometry of
(Pg,Kp,); itis a standard model of complex hyperbolic d-space.
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For the reader’s convenience we provide a complete argument. Consider the
complex affine hyperplane

H = & + Spanc{ey,...,e4}.

Then, H N Pg = & and & € H. By standard estimates for the Kobayashi distance
on a convex domain (see, e.g., [25, Lemma 4.2]),

dEuc(w, H)

1
Kps(z,w) = Elog deu (2, 1)

for all z,w € Pg. Thus, we must have limy e dgyc(Wn, H) = 0. Then, since
H N Pg = {&}, we have limy ... wy, = E. O

6. THE DOMAIN IS SYMMETRIC

In this section we prove the following.

Proposition 6.1. Suppose Q@ C C? is a bounded domain which covers a compact
manifold. IfoQ) is ™', then Q is a bounded symmetric domain.

Before starting the proof, we recall the following notation.

Definition 6.2. Given a domain Q C C%, let Auty(Q) denote the connected
component of the identity in Aut(Q).

Proof of Proposition 6.1. Proposition 4.1 implies that Aut(Q) is non-discrete,
and Proposition 3.3 implies that Q is simply connected. Hence, by Theorem 1.7
either Q is a bounded symmetric domain, or Q is biholomorphic to D x D, where
D is a bounded symmetric domain and Aut(D>) is an infinite discrete group.

We assume the second possibility and derive a contradiction.

By Proposition 4.1, there exists a biholomorphism F : Dy x D, — D where
D c €4 is a domain such that P, ¢ D C Pg for some & > B > 0, and Aut(D)
contains the one-parameter subgroup u(z1,...,zq) = (z1 + it, z2,...,24).

Define

G :=Fo ({id} x Aut(Dy)) o F~! < Aut(D).

Then, by assumption, G is an infinite discrete subgroup of Aut(D), and G com-
mutes with
Auto(D) = F o (Aut(Dy) x {id}) o F7L.

We will obtain a contradiction by establishing the following.
Claim: G is a finite group.

Since Auty(Dy X D7) = Autg(D;) X {id}, for any z = (z1,22) € Dy X D we
have
Auto(Dl XDz) Z = D1 X {Zz}.
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In particular, the orbit Auty(D; X D3) - z is a complex analytic variety in D; X D.
Thus, for any w € D, the orbit Autg(D) - w is a complex analytic variety in D.
Further, since Aut(D) contains the one-parameter group

ue(z1,...,2a) = (z1 +it, z2,..., 2a),

for any wy € D and w € Autg(D) - wy, the tangent space Ty, (Autg(D) - wp) of
Autg(D) - wy at w contains ie;. Thus, since Auty(D) - wy is a complex analytic
variety,

6.1) C-e1 € Ty (Autg(D) - wp).
As before, let Hp := {(z,0,...,0) : Re(z) > 0}. Then, by Equation (6.1),
.7‘[1) - Auto(D) - e.

Thus, for each z € H p, there exists ¢, € Autg(D) such that ¢p,(e;) = z.
Now suppose g € G. Then, for z € H p we have

Kp(z,9(z)) =Kp(¢z(e1),gPz(e1)) = Kp(Pz(e1),P-g(e1)) = Kpler,gler)),
since G commutes with Auty(D). Hence,

(6.2) sup Kp(z,9(z)) = Kp(ey,g(e1)) < +oo.
ZE.'}‘[D

Let H := {A € C:Re(A) > 0}, and define the map

y:H —-D
P@) =g(@,0,...,0).

Then, let @1,...,Pa denote the coordinate functions of . By Proposition 5.3
and Equation (6.2), if t € R, then

lim ¢(A) = (it,0,...,0).
A—it

Thus, by applying the Schwarz reflection principle to each , we can extend @
to a map C — C% such that

Y (it) = (it,0,...,0)

for t € R. But then, by the identity theorem for holomorphic functions, we have
Y(A) = (A,0,...,0) forall A € C. In particular, g(e;) = ey.

Since g € G was arbitrary we see that G - e; = e;. Since D is biholomorphic
to a bounded domain, Aut(D) acts properly on D, and hence G must be compact.
Since G is also discrete, we see that G is finite. Thus, we have a contradiction. O
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7. POLYDISKS IN BOUNDED SYMMETRIC DOMAINS

In this section we recall some facts about polydisks in bounded symmetric do-
mains.

Definition 7.1. Suppose Q is a bounded symmetric domain. The real rank of
Q is the largest integer 7 such that there exists a holomorphic isometric embedding
f:(D",Kpr) — (Q,Kq).

From the characterization of bounded symmetric domains, every bounded
symmetric domain has real rank at least one. Moreover, the real rank is one if and
only if the symmetric domain is biholomorphic to the unit ball.

The next result says that there are many isometric embeddings of polydisks
(see [21, pg. 280]).

Theorem 7.2 (Polydisk Theorem). Suppose Q) is a bounded symmetric domain
with real rank v. If z1,zy € Q, then there exist a holomorphic isometric embedding
S (D",Kpr) — (Q,Kq) whose image contains 1, Z,.

For any bounded symmetric domain Q ¢ C%, Harish-Chandra constructed
an embedding F : Q — C4 whose image is convex and bounded (see [17, Chapter
I1, Section 4]). Further, there exists a norm ||- ||y on C% such that

F(Q) = {z e zllye < 1}.

We will use the following terminology.

Definition 7.3. A bounded symmetric domain Q ¢ C% is in standard form if
it coincides with the image of its Harish-Chandra embedding.

We now recall the following well-known description of the Bergman kernel
on a bounded symmetric domain (see, e.g., [5] or [17, Chapter II, Section 5]).

Theorem 7.4. Suppose QO C C4 is a bounded symmetric domain in standard
Jform with real rank v. Assume ® : (D", Kpr) — (Q,Kq) is a holomorphic isometric
embedding with ®(0) = 0. Then, there exist constants p,C > 0 such that

- -p
Ko (®(2),®(2)) = C (1_[ (1 - ‘me)
j=1

Jorall z € D". Moreover, p = (d +7)/v.

Here are precise references for the proof of Theorem 7.4: by the discussion on
pages 76 and 77 in [5], there exist constants p, C' > 0 such that

- -P
Ko (®(2),®(2)) =C (l_[ (1 - ‘ZJ"Z))
j=1

for all z € D". The lower bound on p follows from Equations (1.9) and (3.3)
in [5].
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7.1. Complex geodesics in polydisks. We will use the following observations
about complex geodesics in polydisks.

Lemma 7.5. Suppose z = (z1,...,2zy) € D" and |za| + |zp| for some 1 <
a,b < v. Then, there exist two complex geodesics 1, Q2 : D — D" whose images
contain z and 0, but (D) = @, (D).

Proof. By permuting the coordinates we can assume that
0<lzil =lz2f <--- <lzr].

Since |z;| < |z, | there exist two holomorphic functions fi, f> : D — D such that
f1(0) = f2(0) =0, fi(zy) = f2(zy) = z1,and f1 # f2. For2 < j < v — 1, select
w; € D such that wjz, = zj. Then, for j = 1,2, define the map

@;:D-D"
@A) = (fi(Ad), w2A, ..., wWyr_1A,A).
Since each @; is holomorphic, we have
Kpr (@j(A1),®(A2)) < Kp(A,Az)
forall A, A, € D. Further, by projecting onto the last component, we have
Kpr (@j(A1),®;(A2)) = Kp(Aq,Az)

for all A;,A, € D. Thus, 1,2 : D — D" are both complex geodesics with
®1(zy) = P2(2y) = z. Finally, since f1 # f>, we have @1 (D) # @2(D). O

Lemma 7.6. Suppose z = (z1,...,2y) € D" —{0} and
|zil == lz¢].

If @ : D — D" is a complex geodesic with @(0) = 0 and @ (Ag) = z, then |Ag| =
|z1| and

_([& Zr
@(A)—(AOA,...,/\OA>

for all A € D.
Proof- Since

Kp(0,A9) = Kpr(0,z) = max Kp(0, z;) = Kp(0,z1),

1<j<r

we must have [Ag| = |z;|. Then, applying the Schwarz lemma to each component
function of @ shows that

_([& Zr
@(A)—(AOA,...,/\OA>

forall A € D. |
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8. BOUNDED SYMMETRIC DOMAINS WITH SMOOTH BOUNDARIES

Theorem 8.1. Suppose Q is a bounded symmetric domain with C"' boundary.
Then, Q is biholomorphic to the unit ball.

The rest of the section is devoted to the proof of the Theorem. Suppose then
Q is a bounded symmetric domain with C""! boundary. Let + denote the real rank
of Q.

Let Qg ¢ denote the image of the Harish-Chandra embedding of Q. By Propo-
sition 4.1, there exists a biholomorphism F : D — Qp¢ where D C C% is 2 domain
such that Py € D C Pg for some & > > 0. By post-composing F with an ele-
ment of Aut(Qpc) we may assume that F(e;) = 0.

Lemma 8.2. A holomorphic isometric embedding ® : (D",Kpr) — (D,Kp)

exists such that
1+A

1-A

cp(A,...,A):( ,o,...,o)

forall A € D.
Proof. As before, define

Hp:=DnNC-e :{(z,o,...,()) e 4 : Re(z2) >0}.

Fix wy € Hp \{e1}. By Theorem 7.2 there exists a holomorphic isometric
embedding ® : (D",Kpr) — (D,Kp) with e, wy € ®o(D"). By pre-composing
@) with an element of Aut(D") > Aut(D) X - - - X Aut(D), we may assume that

®g(0) =e; and Dy(ty,...,t) = wo
for some real numbers t4,...,t, € [0, 1).

By the “in particular” part of Proposition 5.2, every complex geodesic in D
containing ey, wo has image H p. Thus, by Lemma 7.5, we must have t; = - - - =
ty. Then, by Lemma 7.6,

.7‘[1) = {‘IJ()(A,...,A) : A € D}.

Then, by the first part of Proposition 5.2, there exists ¢ € Aut(D) such that

Db, () = (153.0,...,0)

for all A € D. Finally, the map
O(z1,...,2¢) := Po(P(21),...,P(2¢))

has all of the desired properties. O
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Next, consider the function

J:D-C

,(1+A ,

J(A) = det (F (m,(), .. .,0)) =det(F' (®(A,...,A)))
where F'(z) is the complex Jacobian matrix of F. Since F is a biholomorphism, J
is nowhere zero. We will show that Qg ¢ is biholomorphic to the ball by estimating
the boundary values of J. To that end, define ¢ := Fo®. Notice that & (0) =
F(e;) =0.

Let kp and Kq,,, be the Bergman kernels of D and Qp¢, respectively. We will

use the notation that

Kp(z) := kp(z,z) and Koy, (W) := Koy, (W, W)
for z € D and w € Qp¢. Then, by Proposition 2.4,
1+A 0

kp (®(A,...,A)) KD(M, 0)

1 AP = =
(8 ) |J( )| KQHC ((I)HC(A!’A)) KQHC (CI)HC(A!’A))

forall A € D.
Lemma 8.3. There exist constants 0 < a < b such that

—(d+1) —(d+1)
1—1A] (1+A ) (1 |A|>
a <kp|—=,0,...,0) <b
<|1—A|2> PAT-2 TR

forall X € D.

Proof. Since Q C Pg, Proposition 2.3 and Observation 2.5 imply there exists
a constant Cg > 0 such that

Cp (Re(2)) "D = Kp,(2,0,...,0) < Kp(z,0,...,0)

for all z € H . Further,

1—|A| (l-i-?\) 1— Al
7 = = 2
[1— Al 1-A [1- Al

for all A € D. Combining these two estimates provides the lower bound

(d+1)
1— Al (1+A )
C <K —Q'0,...,0]).
(n |) PAT-2A

The same argument with Py C Q yields the upper bound. O
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Lemma 8.4. Q) is biholomorphic to the unit ball.

Proof. By Equation (8.1), Theorem 7.4, and Lemma 8.3, there exist constants
C > 0and p = (d +7)/r such that

—(d+1) —(d+1)
1-—|A 1-|A d+
s so(TTRE) (- se (AR T -t

<O = AP (1 4 AT (1 - [A"!

forall A € D.

Thus, if ¥ > 1, then J extends continuously to 0D and Jlzp = 0. Then,
by the maximal principle, J = 0. But this contradicts the fact that J is nowhere
vanishing. Thus, we must have ¥ = 1, and hence Q is biholomorphic to the unit

ball.
O

9. PROOF OF THEOREM 1.1
Theorem 1.1 is an immediate consequence of Proposition 6.1 and Theorem 8.1.
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